
AN ABSTRACT OF THE THESIS OF

Jin-Woo Eo for the degree of Master of Science in

Electrical and Computer Engineering presented on June

9, 1988.

Title: Mathematical Morphology: A Case Study of Linear

Shift-Invariant Filter Implementation

Abstract approved: Redacted for Privacy
I

W. J. Kolodziej

Morphological filters have shown good performance

in various image processing applications. Furthermore,

their algorithms are easy to implement in special ar-

chitectures, with the exception that linear filtering

cannot be implemented in many of these cases.

In this study, a new architecture and corres-

ponding algorithm, capable of realizing linear shift-

invariant filters, as well as morphological filters,

are presented, using the symmetrical nature of the most

commonly used linear filtering masks. The architecture

suggested in the study, along with the algorithm pre-

sented, will provide considerable improvement in the

power of image processing systems, as well as improve-

ments in the application fields of mathematical mor-

phology.

Mathematical Morphology: A Case Study of
Linear Shift-Invariant Filter Implementation

by

Jin -Woo Eo

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 9, 1988

Commencement June 1989

APPROVED:

Redacted for Privacy
06-20-4988

Associate Professor of Electrical and Computer
Engineering in charge of major

Redacted for Privacy
Head of Departs nt of Electisical and Computer

Engineering

Redacted for Privacy

7Dean of ura tie cn9T

Date thesis is presented June 9, 1988

Typed by B. McMechan for Jin-Woo Eo

Table of Contents

Page

I INTRODUCTION 1

1.1 Historical Overview of Mathematical
Morphology 1

1.2 Research Motivation and Organization
of the Study 4

II WHAT IS MATHEMATICAL MORPHOLOGY? 6
2.1 Minkowski's Set Addition and Subtraction 9

2.1.1 Minkowski Addition a Definition ...10
2.1.2 Dilation Definition 10
2.1.3 Properties of Set Dilation and

Erosion 11
2.1.3.1 Translation-invariance 11
2.1.3.2 Distributivity 11
2.1.3.3 Iterativity 13

2.2 Opening and Closing 14
2.3 Relationship between Sets and Functions 16

2.3.1 Cross-Section of a Function 16
2.3.1.1 Theorem 2-1 17
2.3.1.2 Theorem 2-2 17

2.3.2 Umbra of a Function 18
2.3.2.1 Theorem 2-3 20

III MORPHOLOGICAL FILTERS 21
3.1 Morphological Filters 22

3.1.1 Morphological Transformation of
Function by Set 22

3.1.2 Morphological Transformation of
Function by Function 28

3.2 Applications of Morphological Filters 31
3.2.1 Non-linear Filtering 32
3.2.2 Edge Detection 32
3.2.3 Noise Suppression 33

3.3 Morphological Representation for
Translation Invariant Systems 34
3.3.1 Kernel Representation of TI system 36
3.3.2 Basis Representation of Increasing

TI System 38
3.3.3 Linear Shift-Invariant System

Representation 41
3.3.4 Summary 45

Table of Contents (continued)

Page

IV IMPLEMENTATION OF MORPHOLOGICAL FILTERS IN
TYPICAL PARALLEL ARCHITECTURES 47
4.1 Considerations on Effective Architecture

for the Implementation of Morphological
Filters 48
4.1.1 Parallel Array Processor 50
4.1.2 Pipeline Image Processor 51

4.2 Overview of Cytocomputer Architecture 53
4.3 Examples of Morphological Transformation

Algorithm 56
4.3.1 Set-Processing Erosion Algorithm 56
4.3.2 Function-Processing Erosion

Algorithm 58
4.4 Linear-Shift-Invariant Filtering

Algorithm 60
4.5 Summary 66

V CONCLUSIONS 68
5.1 Conclusions and Contributions of This

Study 68
5.1.1 Analysis of Mathematical Morphology68
5.1.2 Relationship Between Theory and

Realization 68
5.1.3 Linear Filter Realization 69

5.2 Suggestions for Future Study 70

BIBLIOGRAPHY 72

APPENDIX 75

List of Figures

Figure Page

2.1 Erosion, dilation, opening, and closing
of X by B 12

2.2 The hexagon considered as the Minkowski
sum of the segments 14

2.3 (a) A function f, (b) cross-section Xt(f),
and (c) umbra U(f) 16

2.4 Reconstruction of a function from its
cross section. 18

2.5 (a) Umbra of a set B, (b) umbra and graph
of a function 19

3.1a Original signal f by a set B
(B = 25

3.1b FSP erosion of f by a 25

3.1c FSP dilation of f by a set B 26

3.2a FSP opening XB = XeSsOB 26

3.2b FSP closing XB = XEDBseB 27

3.2c FSP low pass filter, Xe2B92B 27

3.3 FP transformation procedure 29

4.1 Neighborhood operation 49

4.2 Parallel array processor 50

4.3 Cytocomputer block diagram 54

4.4 Moving window implemented with shift
register storage. 55

4.5 ERIM image processing laboratory 56

List of Figures (continued)

Figure Page

4.6 Large structuring element formation as
the dilation (Minkowski sum) of simpler
sets (within 3 x 3 window) 57

4.7 Set-processing erosion 57

4.8 Function-processing erosion 59

4.9 Convolver using 3 x 3 moving window 65

MATHEMATICAL MORPHOLOGY: A CASE STUDY OF

LINEAR SHIFT-INVARIANT FILTER IMPLEMENTATION

I. INTRODUCTION

1.1 Historical Overview of Mathematical Morphology

Mathematical morphology was developed in 1964 at

the Paris School of Mines (France) by G. Matheron and

J. Serra, who were asked to (1) investigate the rela-

tionships between the geometry of porus media and their

permeabilities and (2) to quantify the petrography of

iron ores in order to predict their milling properties

[2]. By probing and transforming a geometric structure

with different patterns of predefined shapes, or struc-

turing elements, Matheron and Serra extracted a number

of different techniques. Thus, they called their geo-

metric transformations "morphology," meaning the "study

of forms." In order to avoid tying the results of mor-

phological transformations to the specific objects of

the observer, they derived four mathematical quantifi-

cation constraints with four corresponding principles,

or the method of "mathematical morphology."

Originally, Matheron and Serra represented image

objects and structuring elements by sets in a Euclidean

2

space. Hence, the morphological operations are actu-

ally set operations based on unions and intersections.

The simplest morphological operations are erosion, di-

lation, opening, and closing, all of which grew out of

Minkowski addition and subtraction. Since binary im-

ages can be represented by two-dimensional sets, Math-

eron [1] and Serra [2] applied the Minkowski set opera-

tions to image analysis by mathematical morphology. In

this sense, image analysis by mathematical morphology

is also called morphological image analysis or morph-

ological filtering.

Binary signal analysis was extended to multilevel

signals by Serra [2] and Sternberg [3,4]. Serra used

signal cross sections to generalize the morphological

operations of multilevel signals. Sternberg further

generalized morphological transformations for multi-

level signals by considering greytone images as sur-

faces of three-dimensional volumes (the umbra).

Since Matheron [1] provided a theorem stating that

any translation-invariant increasing system can be rep-

resented by a union of morphological set erosions,

mathematical morphology extended its field to algebraic

(not topological) analysis. Lantuejoul and Serra [8]

studied properties of generalized (algebraic) openings

and closings, which they called M-filters, examining

the relationships between morphological filters and

classical linear filters. By showing that the mapping

3

between a function and its umbra is one-to-one, Maragos

[10] viewed any system as a set mapping from one class

of sets to another, and unifying the representation,

analysis, and synthesis of a large class of transla-

tion-invariant systems through the concept of minimal

elements.

There are numerous applications for morphological

filters in image processing and analysis, including

biomedical image processing, automated industrial in-

spection, shape recognition, nonlinear filtering, edge

detection, noise suppression, thinning, enhancement,

representation and coding, texture analysis, and shape

smoothing. The literature for these applications has

been surveyed by Maragos [11].

Between 1965 and 1975, Serra [2] constructed four

prototype devices, or "texture analyzers," for the per-

formance of morphological operations. However, since

the onset of modern computer technology, Serra's tex-

ture analyzers can no longer be said to represent the

cutting edge of advance techniques and various parallel

architectures have been developed. The pipeline image

processor (cytocomputer) [23], developed at the Envi-

ronmental Research Institute of Michigan, has been

evaluated as most effective architecture for the per-

formance of mathematical morphology.

4

1.2 Research Motivation and Organization of the Study

Morphological filters have shown good performance

in various image processing applications. Furthermore,

their algorithms are simple to implement on special ar-

chitectures, with the exception that linear filtering

(convolution) cannot be implemented in many such cases.

However, linear filtering cannot be avoided in many ap-

plications. Therefore, it is of interest to develop a

practical linear filtering algorithm which can be im-

plemented on morphological transformation-oriented ar-

chitectures.

Since mathematical morphology has not become a

popular genre in either image processing or system the-

ory, a historical overview of theoretical developments,

applications, and devices is provided in this chapter.

In Chapter II, the philosophy and principles of math-

ematical morphology and basic morphological transfor-

mations are summarized, while Chapter III provides an

analysis of morphological filters, in accorance with

signals and systems classification, their applications,

and the relationship between morphological and linear

filters. Chapter IV includes discussion of morphologi-

cal transformations as neighborhood operations for im-

plementation on parallel architecture and a review of

selected effective architecture based upon reasonable

5

effectiveness criteria, as well as providing a morpho-

logical transformation algorithm and a linear filtering

algorithm. Conclusions drawn from this study and sug-

gestions for future research are presented in Chapter

V.

6

II. WHAT IS MATHEMATICAL MORPHOLOGY?

The literal meaning of mathematical morphology is

the quantitative description of geometrical structures.

Since Maragos [10] has provided a thorough analysis of

the philosophy and principles of mathematical morphol-

ogy, originally proposed by Matheron and Serra, the

following introduction represents a summary of Maragos'

descriptions.

To describe a geometrical structure an image ob-

ject and an observer are required. According to Math-

eron [1], by itself the image object contains no in-

formation until the observer determines, a priori,

which property of the object is to be examined, i.e.,

an observer sees in an image object only what he wants

to see. The problem is how the observer can reach ini-

tial assumptions about some aspects of geometrical

shapes of which he cannot yet be aware? Serra summa-

rized the problems and the means to a solution as fol-

lows:

The notion of a geometrical structure or texture
is not purely objective. It does not exist in the
phenomenon itself, nor in the observer, but some-
where in between the two. Mathematical morphology
quantifies this intuition by introducing the con-
cept of structuring elements. Chosen by the mor-
phologist, they interact with the object under

7

study, modifying its shape and reducing it to a
sort of caricature which is more expressive than
the actual phenomenon. [2, p. v]

Since there are a large variety of possible object

shapes and sizes, number of potential structuring ele-

ments which can be offered is extensive. Then the next

step is to provide a means of choosing and classifying

the elements, or sorting them structurally. Once the

image object can be transformed with the use of differ-

ent structuring element, information about its size,

shape, smoothness, and orientation can be obtained.

Thus, "only the interaction of the image with the

structuring element has an objective meaning" [2, p.

57].

In order that the morphological transformation of

an image object can be said to be quantitative, the re-

sults of the morphological transformation must not be

dependent on the specific viewpoint of the observer.

In the system developed by Matheron and Serra, this ob-

jectivity is dependent upon four quantification con-

straints, including:.

C1) The observer cannot know the exact location of

the object;

C2) All observed objects can be magnified or re-

duced;

C3) Due to the field of view of optical instrument

or the restrictions of the size which the ob-

8

serving instrument can provide, only a piece-

meal knowledge of object can be extracted; and

C4) Since the various powers of resolution of ob-

serving instruments divide the scale of the di-

mensions, there will always exist such details

that cannot be delineated properly.

Corresponding to the these constraints, mathemati-

cal morphology presents four supporting principles. To

express these four principles, let the set X denote the

original image object and 0(X) the transformed object.

Then, every morphological transformation must satisfy

the following four principles:

P1) Translation invariance. The result of the

translation should not depend on the location

of the object in the space, which may be sym-

bolically written:

0(Xh) = [0(X)]h

where Xh denotes the translate of set X by vec-

tor h.

P2) Compatibility under change of scale. The

transformation should be compatible with scale

changes. Then, a following family of transfor-

mations, Oa, can be generated, depending on the

positive parameter a,

Oa(X) = a0(X/a) .

P3) Local knowledge. The transformation 0 satis-

fies the local approach principle if, for any

9

bounded set ZI in which we want to know (1)(X),

we can find a bounded set Z in which the knowl-

edge of X is sufficient to locally perform

(i.e. within Z') the transformation. Symboli-

cally, for all bounded Z1 and for all bounded

Z:

[41.(xnz)] n z' (W) n z/ .

P4) Upper semi-continuity. For any increasing set

transformation, 4*, and a decreasing sequence of

closed sets, Xn, tending towards a limit X, the

sequence of transformed sets, t(Xn), must tend

towards (D(X).

2.1 Minkowski's Set Addition and Subtraction

An m-dimensional (m-D) signal can be represented

mathematically by a function of m independent variables

(m-D function). This function can be any value. If it

is assumed that this function can have only two dis-

tinct values, it is called the binary function, in

which case the signal can be represented as set in an

m-D Euclidean space. Since mathematical morphology is

based on the set-theoretical method, the ensuing dis-

cussion in this section begins with binary signals

(viewed as a set). In section 2.3, this set-theoreti-

cal method is expanded into multilevel functions.

10

2.1.1 Minkowski Addition 9 Definition

Minkowski set addition, AeB, of two sets A and B,

consists of all points that can be expressed as an vec-

tor addition, a+b, where the vector a and b belong, re-

spectively, to the sets A and B:

AMB = {a+b: aEA, bEB} . (2-1)

From Equation (2-1) the following properties are ob-

tained:

Minkowski addition is an associative and

commutative operation , (2-2)

Ae{o} = A , (2-3)

and

ASO = 0 , (2-4)

where {o} is origin.

Let Ae{b} denote the translate of A by the vector

b, often writing Ab instead of Ae{b}. Also we denote

Bs as the symmetric set of B with respect to the ori-

gin: Bs = {-b: bEB}. Thus, following expression is

obtained:

AeB = {a+b: aEA, bEB} = U Ab = U B,
bEB aEA

= {z: A fl (Bs)z * 0) . (2-5)

2.1.2 Dilation Definition

The dilation of A by B is the set {z: A fl Bz * 0)

of the point z such that A hits the translate Bz.

Therefore the dilation of A by B is equal to AGMs.

11

The Minkowski set subtraction of A by B, denoted

as AeB, is defined indirectly as the operational dual

to Minkowski set addition with respect to complementa-

tion:

AeB = (AceB)c =
bE
n
B

Ab = (z: (Bs)zC A) . (2-6)

The operation dual to dilation is called erosion. The

erosion of A by B is the set (z: BZCA) of the point z

such that the translate Bz is included in A and, by

Equation (2-6), is equal to AeBs.

2.1.3 Properties of Set Dilation and Erosion

See Figure 2.1.

2.1.3.1 Translation-invariance

Dilation or erosion by a single point, Xe(x) or

Xe(x), is the translate of X by x, Xx. For the origin

(o), Xe{o} or xe{00} is X itself. Consequently, the

origin can be taken by any point which is or is not

contained by structuring element B. By the relations

(2-5) and (2-6), the erosion xeB or the dilation XOB

will be the same modulo a shift, which means transla-

tion-invariant.

2.1.3.2 Distributivity

Since we can write

Xe(A U B) =
xE
U
X

(Ax U Bx) = (U Ax) U (
xE
U
X
Bx) ,

xEX

we obtain relation (2-7), and by duality (2-8) and

(2-9):

12

EROSION : Xe B

OPENLNG : XB

B

DILATION X B

CLOSLNG : XB

Figure 2.1 Erosion, dilation, opening, and
closing of X by B.

and

xe(A U B) (xeA) U (xeB) ,

xe(A u B) (xeA) n (xeB) ,

(x n z)eB = (xeB) n (zeB) .

13

The above three relations imply a measure of tech-

nological importance. From (2-7) and (2-8), X can be

dilated or eroded by taking the structuring element

piece by piece, and then combining the intermediary re-

sults, respectively, by union or intersection.

2.1.3.3 Iterativity

From (2-5) and (2-6) we derive:

(xeA)eB =
bE
n
B

(xeA)b =
bE
n
B aE

u
A

Xa+b , (2-10a)

(xeB)®A = u (xeB)a u n_ Xa441 ,

aEA aEA bEJ5
(2 -10b)

and thus we obtain the set inequality:

(XeB)0A C (XEDA)GB . (2-11)

This means that it is more severe to erode before di-

lating than to do the reverse.

Consider the following successive erosions:

(xeA)eB = (xeA)b Xa+b =bEB brE1B aEA zPAEDB Xz

then

(xeA)eB = Xe(A9B) .

Taking complements from (2-12):

(X9A)9B = X9(AEBB) .

(2-12)

(2-13)

Relations (2-12) and (2-13) provide a powerful morpho-

logical tool, which enables decomposition of a given

14

structuring element into the Minkowski sum of several

much simpler segments. Figure 2.2 shows that the hex-

agon structuring element can be considered as the Min-

kowski sum of the segments.

. 8,.Bt. -
..... 111000--004110111-...........................

---411-004110-4,41.0-...0004,4800.
,.x. . zB, . . 11(68402......

t t-B.wel3)92)613.3
-

Figure 2.2 The hexagon considered as the Minkowski
sum of the segments (adapted from Serra).

2.2 Opening and Closing

By combining erosion and dilation, opening and

closing operations are obtained. The opening AB of A

by B and closing AB of A by B are defined as follows:

AB = (AeBs)(60

AB = (AeBs)60 . (2-14)

Since the opening of A by B is the union of the trans-

lates, By included in A (i.e., AB = U {By: yEE, ByCA}),

this operation smooths the contours of X, suppresses

the small islands and the sharp capes of X, and cuts

the narrow isthmuses. By duality, since the closing of

an object, X, is equivalent to the opening of its back-

ground, the closing blocks up the narrow channels, the

small lakes, and the long thin gulfs of X (see Figure

15

2.1). The morphological opening defined by (2-14) has

the following three properties:

1. Property 1: Anti-extensivity. Since every

point xEXB belongs to at least one B included in X, XB

is included in X:

XBCX . (2-15a)

2. Property 2: Increasing property. Let X be

included in XI (XCX1). Since every point xEXB belongs

to one B contained in X, so in X/, the open set XB is

contained in X1B:

XCX1 XBCX'B . (2-15b)

3. Property 3: Idempotence. By anti-extensivity

we can write:

(XB)BCXB (*)

and (XB)B can be written as follows:

(XB)B = {[(XeBs)9B]eBs)9B .

We can then write (XeSs)6019Bs = (XeBs)Bs, and

(XeBs)B8 D (XeBs)

by the extensivity of the closing. Since

(XB)B = (XeBs)B3 a BD(XeBs)60B = XB (**)

By (*) and (**), (XB)B = XB . (2-15c)

By duality, the closing XB is extensive, increas-

ing,and idempotent:

XBDX , (2-16a)

XICX X/BCXB , (2-16b)

and

(XB)B = xB .

2.3 Relationship between Sets and Functions

16

(2-16c)

To extend all the morphological set transforma-

tions to functions, relationships must be established

between sets and functions. Therefore, representing

functions by sets is the main issue. There are two

different but equivalent approaches to this problem:

(1) An m-D function can be represented either by an en-

semble of m-D sets called its cross sections or by (2)

a single (m+1)-D set called its umbra. Figure 2.3

shows a 1-D function f, one of its cross-sections, and

its umbra.

x

(a) (b)

t A

I

U(f

\,
(0)

x

Figure 2.3 (a) A function f, (b) cross-section Xt(f),
and (c) umbra U(f).

2.3.1 Cross-Section of a Function

The cross-section Xt(f) of f at level t is defined

by the set obtained by thresholding f at level t:

17

Xt(f) = (xED: f(x) > t }, co < t < co . (2-17)

Since work is carried out in the class of closed sets,

it is obvious that all cross-sections of f should be

closed. There is a useful classical topological result

which may be applied:

2.3.1.1 Theorem 2-1 [29]

A real-valued function f on Rm is upper semi-con-

tinuous (u.s.c.) if and only if (iff) its cross-

sections Xt(f) are closed sets in Rm for all tER. Con-

sequently, the corresponding class of function which is

always treated is the class of u.s.c. functions on D,

denoted as USC(D).

If all the cross sections of a u.s.c. function are

known, it can be uniquely reconstructed by Theorem 2.

2.3.1.2 Theorem 2-2 [2]

First, let f(x) be a u.s.c. real valued function

on Rm and let Xt(f), tER be its cross sections. Then,

the Xt's are closed and monotonically decreasing, i.e.

ti < t2 Xti D Xt2 and
xt r<t

xr (2-18)

and we have

f(x).sup{tER: xEXt} . (2-19)

Conversely, a family Xt (-co < t < + co) of closed

sets generates a u.s.c. function, f(x), if and only if

conditions (2-18) are satisfied; then f(x) is defined

by (2-19) and satisfies (2-17).

18

The main concept underlying Theorem 2-2 is illus-

trated in Figure 2.4, showing a 1-D function f(x) and

two of its cross sections at level t1 and t2. For a

given point xER, xEXti(f) iff f(x) > tl. In contrast,

xEXt2(f) iff f(x) < t2. Thus, the value of f at x is

equal to the supremum of t's such that f(x) > t or

equivalently, xEXt(f).

t2

f(x)

ti

Xti(f)1.-

Figure 2.4 Reconstruction of a function
from its cross section.

2.3.2 Umbra of a Function

The concept of cross section deals with sets which

have same dimensions, (m-D), as function. Now, the

morphology of sets in Euclidean (m+1)-D space is con-

sidered. In illustration, it can be assumed that the

function is a 2-D image without loss of generality.

The cross sections of this image can be considered as

binary images of Euclidean 2-D, seen as flat cutouts of

the horizontal X,Y plane, henceforth referred to as the

19

binary plane. On the other hand the umbra, which is

considered in Euclidean 3-D, has a solid volume. The

details of an umbra's third dimension can be determined

by a single parameter, the height of t at coordinates

(x,y) of the binary plane.

ti

U(B

x

(a)

A

f(x)

t

G(f)

U(f)

x

(b)

Figure 2.5. (a) Umbra of a set B, (b) umbra
and graph of a function.

Umbra means shadow, and the umbra of a set, B, in

3-D includes both B and the volume of the point in its

shadow. The shadow is cast by a point light source at

an infinite distance in the positive T direction. Fig-

ure 2.5a shows this concept. Analytically, the umbra

of the set B can be expressed as a morphological trans-

formation of B and a structuring element, T, composed

of the points belonging to the T axis, including the

origin. By Minkowski-sum definition (section 2.1), the

umbra of the closed set B equals Be(-00,0]. This rela-

tion corresponds to BED[0,00)s, dilating B by the posi-

20

tive T axis. Similarly, the umbra of a function, f, is

the Minkowski-sum of the function and (-co,0]. Thus the

umbra of f, denoted as U(f), is the set:

U(f) . {(x,t): f(x) > t} . (2-20)

According to Serra [2], mapping a u.s.c. function

f and U(f) is one-to-one. However, Maragos [10] mathe-

matically formalized what Serra had maintained with a

proof.

2.3.2.1 Theorem 2-3 [10]

First, to any real-valued u.s.c. function, f(x),

xERm, there corresponds a unique umbra U(f). This um-

bra, U, is a closed set in Rm+1 such that

(x,t)EU 0 t < f(x) xEXt(f) (2-21)

and

(x,t)EU -4 (x,a)EU, for all a < t .

Also for each xERm,

f(x) = sup(tER: (x,t)EU}

(2-22)

(2-23)

b) Conversely, to any closed subset U of Rm+1 sat-

isfying (2-22), there corresponds a unique u.s.c. func-

tion f(x), which can be constructed from (2-23). Thus

the umbra of f(x) is equal to U.

21

III. MORPHOLOGICAL FILTERS

Morphological transformations locally modify geo-

metric features of signals by introducing the concept

of structuring elements. In the sense of modifying

signals, this transformation can be termed a filter.

In section 2.1, function and set were introduced to

represent signals mathematically, with the distinction

that an m-D function implies a multilevel m-D signal,

whereas an m-D set refers to a binary m-D signal.

Maragos [10] introduced a classification of systems in

accordance with the classification of signals (e.g.,

function or set). Since the term "system" means any

process or device responding to particular signals by

producing other signals, filters correspond to systems.

According to Maragos' [10] classification, an m-D

set-processing (SP) filter is a filter capable of ac-

cepting m-D binary signals as inputs and producing m-D

binary signals as outputs. An m-D function processing

(FP) filter is any filter capable of accepting m-D

functions as inputs and producing m-D functions as out-

puts. A sub-class of m-D FP filters can produce an m-D

binary signal whenever the input is also an m-D binary

signal; these are called function-and-set processing

22

(FSP) filters. SP filters were discussed in sections

2.1 and 2.2. In this chapter, FSP and FP filters are

discussed, using the relationship between sets and

functions (refer to section 2.3). In addition, some of

the applications of morphological filters are surveyed,

and the relationship between morphological and linear

filters, according to Maragos [10], are discussed.

3.1 Morphological Filters

3.1.1 Morphological Transformation of Function by

Set

Nakagawa and Rosenfeld [6] have shown that if lo-

cal minimum and maximum operations are applied to a

picture (function) H, and II is then thresholded (using

any threshold t), the results are exactly same as if H

were first thresholded at t and shrinking and expanding

operations were then applied to the thresholded H

(i.e., local min and max commute with thresholding).

The terms shrinking and expanding are used in the field

of fuzzy logic, which was introduced by Zadeh in 1965,

and they have,respectively, meanings identical to those

of SP erosion and dilation. Using this property,

Goetcherian [7] extended some already well known binary

processes into grey level algorithms.

Consider a morphological transformation, t, of

function, f, by a structuring element B. This trans-

23

formation, §, is basically an FP system. Since the FP

system 4 commutes with thresholding, the following re-

lationship is obtained:

Xt[§(f)] = §[Xt(f)] for all tER . (3-1)

The right side of relation (3-1) shows that 4) can also

be an SP system for all cross-sections, Xt(f). There-

fore, the morphological transformations of functions by

sets are FSP systems. The simplest of these filters

are the erosion, feBs, the dilation, feBs, the opening,

fB, and the closing, fB, of an u.s.c. function f by a

compact structuring set B. The following relations

(Table 3.1) show the analytical definitions operating

on function f as a whole and on each of its cross-sec-

tions:

Table 3.1 Analytical definitions of function f.

Functions
Cross-sections
(for all t) Eqn.

Erosion: (feBs)(x) Xt(feBs) (3-2a)
= inf{f(y):y0x} = Xt(f)eBs

Dilation: (feBs)(x) Xt(feBs) (3-2b)
= sup{f(y):yEBO = Xt(f)0Bs

Opening: (fB)(x) Xt(f g) (3-2c)
= [(feBs)9B](x) = tXt(f)]B

Closing: (fB)(x) Xt= (3-2d)
= [(feBs),96](x) [(fB)Xt(f)]B

The FSP erosion or the FSP dilation of f by B at

any point x is obtained by taking, respectively, the

24

infimum or the supremum of f inside the shifted set Bx,

which plays the same role as a running window in signal

processing. Maragos [10] provided proof for Equation

(3-2), using the relation (2-19), allowing reconstruc-

tion of the whole transformed function. For a discrete

system, infimum or supremum operations should be re-

placed,respectively, by local minimum or maximum.

Figure 3.1 shows erosion and dilation of the 1-D

sampled function f by the symmetric set B { -2,- 1,0,1,2).

It may be seen that the erosion of a function by a set

reduces the peaks and enlarges the minima of the func-

tion. The dilation of f by B increases the valleys and

enlarges the maxima of the function. Figure 3.2 shows

the opening and closing of the function by same set B.

As expected, the opening smooths the graph of function

f from below by cutting down its peaks and the closing

smooths the graph of function f from above by filling

up its valleys. Goetcherian [7] noted that iterative

erosion and dilation can provide non-linear low-pass

filtering. Figure 3.2c shows the low-pass filtering

effect after double erosion and double dilation

(feBABISBEDB), i.e., the higher the number of iterations,

the lower the cut-off frequencies.

200

210

2C.:1

103

1 -
1440

1252

103

03 -
a0

10 -
20 -
0

0

203

240

21=

100

1121

1,03 -

120

100

00 -

40

20

'ORIGINAL SIGNAL

00 120 103

Figure 3.1a Original signal f.

P EROSION

240

0
0 00 120 210

Figure 3.1b FSP erosion of f by a
set B (B = (-2,-1,0,1,2)).

25

203

240

220

NCO

100

100

140

120

/0D

00

CO

.80

20

0

200

240

=20

220

100

1 03

140

1m
ICC

trt
eg,

40

0

FSP DILATION

0 00 120 1= WA 240

Figure 3.10 FSP dilation of f by a set B.

FSP OPENING

0
I 1 1 10 11:10 120 1 03 2C0

1-

240

Figure 3.2a FSP opening XB = X8B89B.

26

TOO

240

220

200

100

100

140

120

1 CO -

00

CO

40

20 -
0

0

250

240

220

=0
100

100

140

120

100

CO

CO -
40

20

0
0

27

FSP CLOSING

I I0 00
r

100 =CI 240

Figure 3.2b FSP closing XB = XeBseB.

FSP (EROSION)° (DI LATION):

I I I r0 00 12:1 100 200 240

Figure 3.2c FSP low pass filter, Xe2B92B.

28

3.1.2 Morphological Transformation of Function by

Function

An u.s.c. function, f, can be transformed by an-

other u.s.c. function, g, the structuring function,

which has a compact region of support. In this trans-

formation, the cross-section approach is more compli-

cated than the umbra approach. Therefore, discussion

is limited to only the umbra interpretation.

Serra [2] gives the following analytic relations

for the Minkowski FSP addition feB and subtraction feB

of the u.s.c. function, f, with a compact structuring

element B:

U(feB) = U(f)GB = UMEDU(B) (3-3a)

and

U(feB) = U(f)9Br = U(f)e[U(B)]r (3 -3b)

where Br = ((x,-t)ED x R: (x,t)EB) is the reflected set

of B with respect to the horizontal plane, D, of ab-

scissas x. This FSP transformation is a special case

of function (f) transformation by a function g. Since

U(g) may be considered a set, we replace B with U(g) in

Equations (3-3a) and (3-3b). Then the umbra U(f9g) of

the Minkowski function addition feg of f and g is equal

to the Minkowski set addition of U(f)OU(g). Similarly,

the umbra U(feg) of the Minkowski function subtraction

fOg of g from f is equal to the Minkowski set subtrac-

tion of [U(g)]r from U(f). As mentioned in section

29

2.2, the dilation or the erosion of function f by

structuring function g is, respectively, equal to the

Minkowski sum, ffts, or subtraction, fegs.

From this point, a graphical illustration (Figure

3.3) is presented, which may be used to extract alge-

braic formulations. Consider the umbras U(f) and U(g)

of 1-D functions f and g.

Figure 3.3 FP transformation procedure.

Then the umbras U(f) and U(g) are 2-D sets and the di-

lation U(f)90(gs) is the set dilation. Therefore, this

set transformation can be illustrated by defining the

set dilation in accordance with the following proce-

dure:

1) Take the symmetric structuring function

(gs = g(-z)) and its umbra; (the upper part of

abscissa z of the original umbra can be taken

as umbra (Fig. 3.3) without loss of general-

ity);

30

2) Shift the umbra U(gs) parallel in order that

the right end point of U(gs) can hit the f(x)

point (at Fig. 3.3, 0 position);

3) Calculate the sum of f and gs over the region

of support of g (e.g., f(x-z) + g(-z));

4) While shifting the umbra U(gs) to the right

side until the left end point of U(gs) hits the

f(x) point (at Fig. 3.3, 0 position), then re-

peat procedure step 3; and

5) The supremum of the results of procedure step 3

is the value of the dilation (fegs)(x).

This procedure can be formulated by the following

algebraic equation,

(fegs)(x) = f(x)et(-x) =
ZED D

or equivalently,

(fegs)(x) = sup{f(z) + g(z -x)} . (3-4a)
zED

Similarly, the erosion of a function f by structuring

function g can be represented:

(fegs)(x) =
zED
inf{f(z) g(z -x)} . (3 -4b)

As may be seen in Equations (3.4a) and (3.4b), the di-

lation, or the erosion, of f by g is defined, respec-

tively, through an additive, or a subtractive, convolu-

tion between f and g, then taking a supremum, or an in-

fimum. Maragos [10] referred to this dilation and ero-

sion of two functions as morphological convolutions.

31

The set, D, is a discrete or continuous space in

which f and g are defined. By letting the value of f

and g be equal to -op wherever they are not defined, it

may be assumed that both f and g are defined throughout

D. The region of support of the function f is defined,

and denoted as Ros(f), as the subset of D in which

f(x) * -08. In morphological convolution (3-4), the

symbol (-co) plays the role of a neutral element in

linear convolution.

3.2 Applications of Morphological Filters

A variety of tasks in image processing/analysis

can be approached or solved by the use of morphological

concepts, and many algorithms can be expressed com-

pactly and systematically in terms of morphological

filters. Recently, mathematical morphology has been

applied to standard areas of image processing and anal-

ysis, including non-linear image filtering, edge detec-

tion, noise suppression, shape representation, smooth-

ing, and recognition, skeletonization, and coding. A

detailed discussion of each of these applications is

beyond the scope of this study, but a brief review of

those applications relevant to this study is provided

in this section. For a detailed discussion of skele-

tonization and shape representation, refer to Maragos

[14].

32

3.2.1 Non-linear Filtering

As noted in section 3.1.1, Goetcherian [7] pro-

vided the following FS processing morphological filter-

ing operations, using the opening concept:

Let B be the structuring element (set) and

nB =B9Be . . . eB (n times)

denoting an element of size n, where n is any nonnega-

tive integer. Then,

"Low Pass" = fnB (= fenBenB)

"High Pass" = f fnB

"Band Pass" = fnB fmB (n<m)

The characteristics of all non-linear filters given

above are determined by those of the low pass (e.g.,

the high pass and the band pass are effectively defined

by the low pass filter), which is to say, the higher

the n, the lower the cut-off frequency. On the other

hand, by combining the structuring elements, there may

be other alternative configurations, e.g.:

"Low Pass" = fenBe2nBenB, or

"Low Pass" = fenBe2nBenB.

3.2.2 Edge Detection

Consider a 2-D image set, X, an image function f,

and a structuring element, B. Since SP erosion or FSP

erosion erodes the original image, X-(XenB) gives the

boundary of a binary image, X, and f-(fenB) enhances

33

the edges of a greytone image, f. The size n of nB

controls the thickness of the edge markers.

3.2.3 Noise Suppression

The opening of a function cuts down its peaks,

while the closing of a function fills in the valleys.

In greytone image, positive noise spikes (bright spots)

are peaks, and geographical valleys in the umbra of the

function can be considered as negative noise spikes

(dark spots). In images these positive and negative

noise spikes are called salt-and-pepper noise. There-

fore, opening followed by closing (by the same struc-

turing element), which is called open-closing, or clos-

ing followed by opening, which is called close-opening,

can eliminate salt-and-pepper noise. Median filtering

[16] (which is not morphological filtering) can also

eliminate this kind of noise. Maragos [10] compared

open-closing with median filtering to the same salt-

and-pepper noised image. The structuring element for

open-closing was 2 x 2 square and the running window

for median filtering was 3 x 3 square. Since Maragos

obtained a similar result, it was claimed that open-

closing has less computational complexity than median

filtering for the elimination of salt-and-pepper noise

and open-closing can be advantageously used to decom-

pose noise suppression into two separate tasks: clean-

ing of the positive or cleaning of the negative spikes.

34

3.3 Morphological Representation for Translation In-

variant Systems

Matheron [1] and Maragos [10], respectively, pro-

vided morphological representations for any increasing

translation invariant set-processing system and any

function-processing system. Therefore, the terms

translation invariant (TI) and increasing are of par-

ticular importance in this section.

As noted in chapter II, TI means that the transla-

tion should not depend on the location of object in the

space. That is,

4(Xh) = [t(X)]h

where Xh denotes the translate of set X by vector h,

and t denotes the system. This definition can be ex-

tended to the function-processing system by considering

the umbra of a function as the input X. If the umbra

U(f) and U[tf(f)] of the input and output functions are

considered, then the umbra-processing system t can be

defined as

t[U(f)] = U[tf(f)] (3-5)

where subscript f denotes the function-processing sys-

tem. Since the umbra-processing system is a set-

processing system, the umbra-processing system t is TI

if and only if t(Uz) = [t(U)]z. There is a one-to-one

and onto mapping between the function-processing system

35

§f and its equivalent umbra-processing system § through

the Equation (3-5). Therefore, the function-processing

system §f can be defined TI if and only if its equiva-

lent umbra-processing system 40 is TI. That is, the

vector translation of the umbra U(f) of f by the vec-

tor, z = (y,t)ED x R induces the following vector

translation of function f(x) by the vector z:

f(x) f(x-y) + t,

where D is the space where the function f is defined

and R is the additional one dimension according to tak-

ing of an umbra. Thus, the function-processing system,

§f, is called TI if and only if it commutes with such a

translation of its input function, i.e.,

dof is TI §f[f(x-y) + t]

= [4:Df(f)](x-y) + t . (3-6)

The relation (3-6) shows that the vector translation of

a function is a shift, both with respect to the argu-

ment of a function as well as with respect to its am-

plitude. On the other hand, the term shift-invariant

for a system is only concerned with a shift of the ar-

gument of the input function. Hence, a TI function-

processing system is also shift-invariant, but the con-

verse is not true.

A system is termed increasing, provided that it

preserves the order between inputs and outputs with re-

spect to a certain ordering relationship, i.e., A C B

36

implies st(A) C '(B), and similarly for functions, f < g

implies clf(f) <

3.3.1 Kernel Representation of TI system

Let E = Rm or Zm be a Euclidean space and let t9

denote a subcollection of p(E) closed under transla-

tion, where p(E) is the space of all subsets of E.

Matheron [1] defined the kernel of translation invari-

ant set-processing system (I) as follows:

= {AO: oell(A)} (3-7)

where "o" denotes the origin in the space E. That is,

the kernel of (D is a collection of input sets, such

that their respective output sets from the system con-

tain the origin. Conversely, if an arbitrary kernel

family ,,c, is known, the system § is uniquely defined

by

(HA) = (xEE: A_xec) , AEO . (3-8)

For example, the erosion ID(A) = AeBs by a fixed BCE has

the kernel

e(B) = (AEO: AJB) . (3-9)

We can prove Equation (3-9) using the definition

of erosion (2-6). Also, increasing system means that

BE,c and AJB implies AE,c. With the notion of Equation

(3-9),

(I) increasing .=-* K = BE, e(B) . (3-10)

37

If Equations (3-9) and (3-10) are compared, it may be

concluded that any increasing TI system admits the rep-

resentation

§(A) =
BUDK

(AeBs) (3-11)

that is, §(A) is the union of erosion of A by the sets

BEK.

Maragos [10] extended this set-processing repre-

sentation, Equation (3-11), to the function-processing

system using the umbra concept. If we consider a func-

tion, f, and a function-processing system, §f, then its

umbra, U(f), belongs to the kernel of 4* if and only if

00[U(f)]. From Equation (3-5),

UMEK(§) =-* (0,0) E U[4'f(f)] . (3-12)

From the umbra property, Equation (3-12) means

[40f(f)](0) > 0. Thus, the kernel of any TI function-

processing system, §f, can be defined as

lc(4'f) = (fE4: [4'f(f)](0) > 0} . (3-13)

That is, the kernel of §f is a collection of input

function, f, whose output function 4'f(f) at the origin

has a nonnegative value. The erosion §f(f) = fee by a

function, g, is inf(f(z)-g(z-x):zED) (Equation (3-4b)).

Thus, fec(40f) implies

(fegs)(0) > 0 -..=.* inf(f(z)-g(z):zED) > 0

f(z) > g(z) f > g .

From the above relationships, the erosion 4'f(f) =fegs

has the kernel:

38

C(g) (f0: f > g) . (3-14)

In a manner similar to the set-processing system,

let a function-processing system, tf, be increasing.

Then gec(tf) and f > g imply fec(tf). Thus, gec(tf) -4

e(g)Ex(tf) from Equation (3-14). Hence, n(tf) is the

union of C(g) for all gec(tf), and thus the union of

kernels e(g) corresponds to the supremum of erosion by

g. Therefore, any TI increasing system can be repre-

sented using mathematical morphology, as expressed in

the following theorem:

Theorem 3.1 [10]: Any translation invariant and

increasing function-processing system defined

as a class of u.s.c. functions closed under

translation can be represented exactly as the

supremum of erosion by all its kernel func-

tions, i.e.,

[tf(f)](x) = sup {(fegs)(x)} . (3-15)
gEK(110

3.3.2 Basis Representation of Increasing TI Sys-

tem

Since the kernel of an increasing TI system has an

infinite number of elements, and an infinite number of

erosions are needed to implement this system, theorem

3.1 is of no practical importance. Therefore, Maragos

[10] introduced a concept of so-called basis of system,

39

which he defined as the collection of minimal kernel

elements. The central idea of this approach can be ex-

tracted from the following example [10]. Consider a

very simple increasing TI system t: the set erosion by

B. Suppose that it is not originally known that t(X) =

XeBs, but only its kernel is known, ,c = (A:A J B).

Since every subset A of E is such that A J B belongs to

K, the kernel of t has an infinite number of elements.

Equation (3-11) states that

t(X)=
AEAK

XeAs for all X,

and, hence t is realized as an infinite number of

erosions. The erosion XeAs is decreasing with respect

to A. Hence, XeAs C xeBs for all AE,c and the infinite

union of the erosions,

AEAK
XeAs ,

is equal to just one erosion, i.e., the erosion XeBs by

the element B of the kernel K. Thus, it is possible to

revert to the original unredundant definition of the

system by realizing it with only one of its kernel ele-

ments.

In the general case, the kernel, K(t), of a set-

processing system, t, equipped with the ordering rela-

tions of set inclusion, is a partially ordered set. A

kernel element is minimal in (K(t),C) if and only if it

is not preceded (with respect to C) by any other kernel

element. If the system t is also increasing, and M is

40

one of its kernel elements, then e(M) C K(0). Thus,

any set A 3 M belongs to K(0), and knowing M is equiv-

alent to knowing e(M). In addition, XeAs C XeMs for

any input set X. Thus, in representing the system 0 as

a union of erosion, the erosion by M contains the ero-

sion by any other set in e(M), and it is the only one

needed. The collection of minimal kernel elements

(sets) of t is henceforth defined as the basis of 0,

denoted as:

3(t) = (MEK(§): AEK(D)

and

ACM-4A= M) . (3-16)

Similarly, the basis of function-processing system

0f can be defined as follows:

#(110 = {gEtc(C'f) : fec(00

and

f < g - f = g} . (3-17)

Maragos [10] proved that the basis of an increas-

ing TI system exists if the system is also upper semi-

continuous (u.s.c.). According to Matheron [1], dila-

tion, erosion, opening and closing are u.s.c. mappings.

Moreover, any finite union or intersection of u.s.c. TI

set-processing systems is an u.s.c. system. The same

is true for function-processing systems if the finite

union is replaced with maximum and intersection with

minimum.

41

Therefore the increasing and u.s.c. TI set-

processing system 0 can be represented as the union of

erosions by its basis elements, i.e., for any XE#,

0(X) =
ME

XeMs . (3-18)
(0)

Theorem 3.2 [10]: Similarly, increasing and

u.s.c. TI function-processing system Of is

exactly represented as the supremum of ero-

sions by all of its basis functions, i.e., for

any fE0 and any xED,

[Of(f)](x) = sup ((fegs)(x)) . (3-19)
ge3(00

3.3.3 Linear Shift-Invariant System Representation

A linear shift-invariant (LSI) system is viewed as

an FP filter that commutes only with a shift with re-

spect to the argument of its input functions. From

Equation (3-6), since the TI system commutes with a

translation which is a shift with respect to both the

argument and amplitude, the LTI system is an LSI system

whose dc-gain is equal to one. Let h(x), xED, denote

the impulse response of LSI system 01. If

ID h(x)dx = 1

(or

nED
h(n) = 1),

LSI system 01 can be an LTI system. Maragos [10] pro-

vided the following theorem with proof concerning the

increasing property requirement.

42

Theorem 3.3 [10]: A linear shift-invariant system

is increasing if and only if its impulse re-

sponse is non-negative everywhere.

Then we can make a kernel representation for a linear

shift-invariant system, using the theorems 3.1 and 3.3:

Theorem 3.4 [10]: Let (DI be a linear shift-

invariant system defined as u.s.c. functions

closed under translation. Also let its im-

pulse response, h(x), satisfy the following

two conditions:

1) h(x) > 0 for all aED = Rm (or Zm), and

2) ID h(x)dx = 1 (or 2 h(n) = 1).
n=D

Then §1 is exactly represented as the supremum of ero-

sions by all its kernel functions, gEK(§1); thus, for

any f and xED,

(h*f)(x) = sup [inf{f(z)-g(z-x))] . (3-20)
gE(1) ZED

For discrete LTI systems, a sufficient condition

to finding a non-empty basis in their kernel is to have

an impulse response of finite extent. Such a system

can be represented as the supremum of erosions by all

its basis functions, as given in the following theorem:

Theorem 3.5 [10]: Let h(n), nEZm, be the finite-

extent impulse response of an increasing LTI

discrete system, (DI, which is defined as a

class, p, of real-valued sampled functions

43

closed under translation. Then, the basis of

l'i is equal to

POO = {gE40:
kERos(h)

2 h(k)g(-10 = 0

and g(n) = -00 =..* h(-n) = 0) . (3-21)

Furthermore, (Di can be represented exactly as the su-

premum of erosions by all of its basis functions

g6301). That is, for any feo and nEZm,

(h*f)(n)=
kERo s(h)

h(k)f(n-k)

= sup [min {f(k) - g(k-n))] . (3-22)
1;000 kE[Ros(g)]n

The proofs, used to find an implementing algorithm in

Chapter IV, are also provided by Maragos [10].

1) Basis: Call /3 the class of functions given by

Equation (3-21), and let m be the true basis of

41. We must show that m = /3; g is nonempty,

because g*Eg, where g*(n)= 0 iff h(-n) * 0 and

g*(n) = -00 otherwise. Let now gE/3, then

gE/c01) because h*g(0) = 0. Is g minimal?

Suppose it is not. Then there is fec(01), such

that f < g and f * g. Since h(n) > 0 for all

n, 0 < h*f(0) < h*g(0) =0 -t=-* h*f(0) = 0.

Since f < g and g(n) = -00 for all n011os(g),

there exists kERos(g) such that f(k) < g(k);

this implies h(-k)f(k) < h(-k)g(k) and thus

h*f(0) < h*g(0) = 0: Contradiction! Hence,

gEm, and thus, /3 C m.

44

Let now gem. All the basis functions g

must have a minimal region of support

G = [Ros(h)]s, because only the indexes neG are

required for g(n) in computing h*g(0). Thus, g

satisfies the second of the two requirements of

Equation (3-21). Suppose that g00, then h*g(0)

= p > 0, and consider the function fee) with

f(n) = g(n)-p, nEG. Then, f < g and f * g.

However, h*f(0) = h*g(0)-p = 0, and hence f is

a kernel function of (Di that precedes g.

Hence, g is not a minimal element: Contradic-

tion! Therefore, gEfl, and thusmCpCm*m=

P-

2) Representation: Since (Di is translation-

invariant, increasing, and u.s.c. (due to the

finite extent of h), it can be represented ex-

actly as the supremum of erosions by its basis

functions according to Theorem 3.4.

An alternative proof proceeds as follows: Let

Ros(h) = {kl,k2,...,kN} be the N-point finite region of

support of h(n). Let also hi = h(ki), f(n-ki) = fi,

and g(-ki) = gi, with i=1,2,...,N and kieRos(h). Then,

it must be proved that for all n,

hifi = sup [min{fi-gi)] , (3-23)
8E0(00

subject to

higi = 0, hi = 1, hi > 0.

45

For any n, all fi and Eihifi are arbitrary but fixed

real numbers. Hence, among all functions in p(k) a

basis function g* defined by gi* = g*(-ki) = fi-Eihifi,

i = 1,2,...,N may always be found. For each gE(b1),

there is a j < N such that

fj - gj < fi -gi for all i ,

* hi(fj-g3) < hi(fi-gi) for all i ,

and

* Eihi(fj-gj) < Eihi(fi-gi) for all i . (3-24)

Since Eihi = 1 and Eihigi= 0,

fj gj < Eihifi . (3-25)

From Equations (3-24) and (3-25), if the following

lower and upper bound of inequality are chosen,

gj = fj - Eihifi

and

(3-26)

gi = gj + fi fj for all i *J , (3-27)

then the result is sup [min(fi-gi)] = sup {fj-gi)

= Eihifi. Thus the proof is complete.

3.3.4 Summary

In summary, a simple example, including the pre-

viously discussed main concepts and theorems, is pre-

sented as follows:.

Consider the one-dimensional, three-point, low

pass-filter, whose impulse response is

h(n) = 0.45(n-1) + b6(n) + ab(n+1),

46

where 2a + b = 1 and a,b > 0. Since a,b > 0 and 2a + b

= 1, this filter is increasing and translation invar-

iant. From Equation (3-13), its kernel is equal to

= (f:af(n-1) + bf(n) + af(n-1) > 0} .

From Equation (3-22), its minimal elements (basis) are

the function g such that

h(-1)g(1) + h(0)g(0) + h(1)g(-1)

= ag(1) + bg(0) + ag(-1)

= 0 .

Hence, the structuring functions g(n) can be chosen,

g(-1) = rER, g(0) = sES, g(1) = (-ar-bs)/a

and

g(n) = -co if n0{-1,0,1} .

Thus, the output of system (1)1 can be written from

Equation (3-22),

(h*f) (n) = af(n-1) + bf(n) + af(n+1)

= sup [min {f(n -1) - r,f(n) -s,f(n+1)
(r,$)ER'

+ (ar+bs)/a}] .

47

IV. IMPLEMENTATION OF MORPHOLOGICAL FILTERS

IN TYPICAL PARALLEL ARCHITECTURES

A variety of image processing tasks can be per-

formed by combining basic morphological filters, e.g.,

erosions, dilations, openings, and closings. Applica-

tions for morphological filters were discussed section

3.2 and in this chapter, selected typical parallel ar-

chitectures, those in such categories of operator par-

allelism as pipelining, are discussed. In addition,

the erosion algorithms for SP, FSP ,and FP cases are

discussed. Because dilation is essentially complemen-

tary to the erosion of the original image, and of the

same computational complexity, and opening and closing

are combinations of erosion and dilation, the point of

concentration is placed upon erosion.

Although the morphological representation of lin-

ear shift invariant filters was discussed in section

3.3, using minimal kernel elements (as the basis), the

realization of such representation remains impractical

because of infinite numbers of basis functions. How-

ever, suppose the use of a special parallel architec-

ture which cannot support multiplying operations. Lin-

ear filtering then becomes necessary. In section 4.4,

48

a new architecture and corresponding parallel algorithm

to implement a linear filter (convolution) will be pre-

sented to remedy this situation. Moreover, the reason

why morphological representation of LSI filtering is

impractical is discussed.

4.1 Considerations on Effective Architecture for the

Implementation of Morphological Filters

Since morphological transformation locally modi-

fies geometric features of images by introducing the

concept of structuring elements, this transformation is

a type of neighborhood operation. Neighborhood opera-

tions, which are nearly equivalent to what Preston et

al. [21] call cellular logic operations, are illus-

trated in Fig. 4.1.

In Fig. 4.1, a program step defines an operation

both in terms of which pixels in the input data contri-

bute to an output value and in terms of the parameters

and constants involved. Each operation on a pixel and

its defined neighborhood shall be repeated at each

pixel in the array , in each case using the value of

pixels at time t to compute the new value of each pixel

at time ti-St. Thus if a defined neighborhood of for a

two-dimensional operation is the M x M region surround-

ing each pixel Axy, then the new value of each pixel is

given by Cxy where

Cxy = f(Ajk)

49

x-1/2M < i < x + 1/2M

y-1/2M < k < y + 1/2M (4-1)

for all x and y in the array.

Image
AVAIIMOrraf

arIIIVAV--tv 1.1.!traMillr

4/2/411%./.11t051%

41/414111,

Neighborhood

Image

Processor 4

Airlsgrozapaziraw
Wel A PA WM IA I/

P IA P2 VA I Fa FA
IA I. II VA I IIA 101 IA

ANIIIIIMPWAMPAI

Image
MWIAWAIAM1111677417,

A PA 1/41 IA II IA KM VA FM V
I I IA WM FA I I Ir 110

KM KIVIMR1 F4 Rd I FM

I I I /AM I WA I /a IA

Function fl_

Task program

Definition of fl

Figure 4-1 Neighborhood operation.

Unfortunately, neighborhood operations performed

by general purpose processors (serial processors) are

extremely slow. This limitation results from such ar-

chitectural factors as memory structure (a one-

dimensional vector vs the two dimensional array data

structure of an image), computational power (one cen-

tral processing element which must perform all pro-

gram/data access and computations), and limited address

space (a typical image is often too large to reside in

50

main memory storage). Therefore, various special pur-

pose architectures have been proposed to surmount these

problems.

4.1.1 Parallel Array Processor

Figure 4.2 indicates a two-dimensional parallel

array architecture with a connection pattern for a

3 x 3 window configuration. Each element of the array

is a distinct processor element, containing a memory

register for holding the current pixel value. The two-

dimensional configuration of pixels constitutes a digi-

tized image. Each processing element is directly con-

nected to the set of nearest-neighbor elements in the

array, forming the neighborhood relationship.

SERIAL IMAGE

LOAD &
UNLOAD

MASTER
CONTROL

INSTRUCTION-4
TO ALL
STAGES

Figure 4.2 Parallel array processor.

Processing elements of the parallel array contain

a neighborhood-transform logic module for computing

51

pixel transitions. Transition instructions are broad-

cast in parallel to each logic module by the master

control, which then stores the complete sequence of

transition instructions constituting the algorithm.

Each pixel transition is effected simultaneously on all

pixels. The output of each neighborhood logic module

is a new pixel state, replacing the old values in the

pixel state register. A computer image transformation

algorithm is executed by a sequence of logic module

program steps and pixel state neighborhood transforma-

tions.

Although digitized image dimensions may often ex-

ceed 1000 x 1000 pixels in many applications, the

largest arrays produced to date are only on the order

of 256 x 256 [34]. Large images must be partitioned

into image segments and each segment is processed in

turn. Furthermore, segment border effects propagate

into the segment when multiple neighborhood transforma-

tions are applied, necessitating extremely costly and

time-consuming I/O hardware and software subsystems for

rapid segment swapping.

4.1.2 Pipeline Image Processor

The concept of pipeline processing has been devel-

oped to match image processing system architecture to

serial data inputs. At each stage, a limited amount of

buffer memory and only one processor are available.

52

Typically, only a limited number of consecutive lines

of the input data are stored in the buffer memory. The

processor obtains data from this buffer, computing the

output data in a serial fashion. But at the same time,

the second stage in the pipeline is already busy with

the next step in the operation, delivering data for the

third stage long before the entire first stage image is

completed.

Although pipelining is a concept implemented in

many architectures, none employ it to a greater extent

than the cytocomputer developed at the Environmental

Research Institute of Michigan (ERIM), where Sternberg

[27] was the main investigator. The inspiration for

the development of this alternative structure was the

practical shortcomings of parallel array processors.

Lougheed and McCubbrey [26] have compared cytocomputer

and parallel array processor architectures, showing

that the cytocomputer offers several advantages with

respect to array architecture, including low complex-

ity, high bandwidth, and considerable architectural

flexibility.

Therefore, pipeline image processor (cytocomputer)

designs are clearly preferable to parallel arrays in

terms of cost effectiveness, processing capability, and

architectural flexibility in real-world situations.

Furthermore, the main objective of the cytocomputer is

to support morphological operations. In this sense,

53

this chapter focuses upon on cytocomputer architecture,

including discussion of algorithms for morphological

operations and LSI filter implementation for this

system.

4.2 Overview of Cytocomputer Architecture

The name "cytocomputer" is derived from cyto, the

Greek word for cell, referring to its cellular archi-

tecture, and "computer" because a cytocomputer is a

computer in the formal sense of the word. First pro-

posed by Sternberg [27] in 1976, a cytocomputer (Fig.

4.3) consists of a serial pipeline of neighborhood pro-

cessing stages with a common clock, in which each stage

in the pipeline performs a single transformation of an

entire image. Pictures are entered into the pipeline

as a stream of pixels in sequential line-scanned for-

mat, progressing through the pipeline of processing

stages at a constant rate. Following initial latency

in filling the pipeline, processed images are produced

at the same rate at which they can be entered. Shift

registers within each stage store two contiguous scan

lines, while window registers hold the 9 neighborhood

pixels which constitute the 3 x 3 window input of a

neighborhood logic module. This module performs a pro-

grammed transformation of the center pixel based on the

54

values of the center and its 8 neighbors. Neighborhood

logic transformations are

iminucnous

FROM

PREVIOUS STAGE

IMPOW
LOGIC
FUNCTION

FROM
jilliNSTER CONTROL \

N-3ELEMENTS

NE/G1111011 TO NEXT STAGE
N000 LOGIC
FUNCTION

N-3ELEMENTS

DISCARD /
Figure 4.3 Cytocomputer block diagram.

computed within the data transfer clock period, allow-

ing the output of a stage to appear at the same rate as

its input. At each discrete time interval, a new pixel

is clocked into the stage. Simultaneously, the con-

tents of all delay units are shifted one element. In

addition, operations which do not involve the states of

a pixel's neighbors, such as scaling or bit setting,

can be performed in a separate point-by-point logic

section to simplify the neighborhood logic circuit.

An effort to visualize the transformation process

is presented as a 3 x 3 window in Figure 4.4. The pro-

cessing stage storage section shows the contents of the

latches after pixel A6.6 has been read. The contents

of the neighborhood latches allow the stage to compute

55

1

4.,

t

C
I.

'-.44 ...Kitt lute 111,1 l SitC

Figure 4.4 Moving window implemented with
shift register storage.

the transformed value of the pixel in the center latch,

A5.5. This transformed pixel becomes an element of the

serial input to the next stage. From this example, it

may be seen that the latency of a stage is equal to

N + 2 time steps, N being the line length. Processing

occurs as a series of 3 x 3 windows, following each

other across the image as each one processes the output

of the previous stage.

Figure 4.5 shows the ERIM image processing labora-

tory. It contains two different stage types: two-

dimensional and three-dimensional transformation

stages, of which there are, respectively, 88 and 25.

56

TERMINAL 1111,

(COLOR

i\DESPL AT

POP-11,45
I DMA

COMPUTER INTERFACE

r
CTOCOMPUTER

PANEL

CONTROLLER

4,..N TURING
NPROCESSO

4
lt

sumer

L

2-0 PROCESSING PINUP*

STREAM 3-D
7 in

iT.Hs 1.ot STAGE

PIXEL

M3-0
1.4 343 I

AGI STAGE ...I STAGE
FVFn

0
I 24 j

3-0 PROCESSING PIPELINE

J

Figure 4.5. ERIM image processing laboratory.

4.3 Examples of Morphological Transformation Algorithm

4.3.1 Set-Processing Erosion Algorithm

Set-processing erosion can be executed by 'ANDing'

all binary pixels within designed structuring element.

Figure 4.6 shows various possible structuring elements

using 3 x 3 windows. According to the properties of

dilation and erosion (section 2.1.1),

xe(B1es2).xeB1es2 .

Therefore, an input image X can be eroded by larger

structuring elements by successively eroding structur-

ing elements B1 and B2, which can be represented in a

3 x 3 window.

The following procedure describes set-processing

erosion steps for a two-dimensional stage (Figure 4.7):

00e
4- #4- =--. .4-41

00000*

el- 4-0 = --Olt*
004144100

04-4e

+

is, s 0

G -;-
+0

f
-10-

41

0 .-
IP 0 0 0
41 00 0
00 00

(= object points, 9 = origin)

Figure 4.6 Large structuring element formation
as the dilation (Minkowski sum) of
simpler sets (within 3 x 3 window).

xi X2 X3

(1)
X4 X5 X6

1

X7 X8 X9

Neighborhood of

nine 1-bit pixel

Al A2 A3 A4 A81 A6 A7 A8I A9

Active neighbor vector

9-bit word

(2)

57

To next stage

Neighborhood-transformed

center pixel

Figure 4.7 Set-processing erosion.

58

1) Mapping of the 9 neighborhood pixels, Xn

(n=1,...,9), into an active neighborhood vec-

tor:

An = Xn (n=1,...,9)

2) Using the 9-bit active neighborhood vector as

index, obtain a neighborhood-transformed center

pixel from a table of 512, 1-bit values prepro-

grammed as follows:

a. Table index = Active neighborhood vector;

and

b. Make all required tables by "ANDing" all

bits within the structuring element, which

can also be represented by a 9-bit word.

4.3.2. Function-Processing Erosion Algorithm

Arithmetic representation of function processing

erosion feg (Equation 3 -4b) can be realized directly in

a three-dimensional stage with the following procedure

(Fig. 4.8):

1) Calculate Equation (3 -4b) and scale, using pre-

determined appropriate bias values ensuring the

positive values as follows:

Qn = Bias + Pn - Gn ,

where the additions are modulo 256, and Gn is

nth cell of the structuring function;

2) Obtain the min 01,...,0n); and

3) Subtract the bias from the result of step 2.

P1 P2 P3
(1)

P4 P5 P6

P7 P$ 9

Q1 Q2 Q3

04 Qs 06

07 Q8 09

Initial neighborhood Modified neighborhood
nine 8-bit pixels nine 8-bit pixels

(2) (3)

Minimum

one 8-bit value

59

To next stage
----------p-

Unbiased minimum

One 8-bit value

Figure 4.8 Function-processing erosion.

Function-set-processing erosion is a special case of

function-processing erosion, i.e., (Gn = 0, Bias = 0).

Morphological transformations of gray-scale images

by a gray-scale structuring function is understood in

terms of the gray-scale image umbra. In accordance

with the umbra concept, two-dimensional gray-scale im-

ages can be interpreted as three-dimensional sets.

Similar to the set-processing structuring element,

larger structuring element can be constructed to dilate

subsets of 3 x 3 x 3 windows. For practical purposes,

spherical structural elements are used in rolling ball

opening algorithms. Sternberg [4] created a sphere

(i.e., a digital ball) by dilating a single point with

a sequence of 26 gray-scale neighborhood operations.

However, there is no general algorithm for the con-

struction of a particular structuring element by se-

quential dilation of 3 x 3 x 3 window subsets. This

problem and related image analysis are suitable topics

for further study.

60

4.4 Lineapi-Shift-Invariant Filtering Algorithm

In section 3.3, morphological representation

(Theorem 3.5) of a linear-shift-invariant system was

obtained. Maragos [10] noted that if the amplitude of

basis functions is quantified and their range is bound

between certain limits, the true response of the LSI

filter can be approximated. In addition, a linear fil-

ter can be realized only by using max-min and algebraic

additions, thus avoiding algebraic multiplications.

However, there is some disagreement with these comments

since Maragos omitted the following facts which cause

Equations (3-21) and (3-22) to be impractical for use

with existing image processors:

1) To obtain basis functions, g(k), from Equation

(3-21) without the use of multiplications, an

N-1 dimensional memory array, where N is the

number of impulse response terms, is required.

When 3 x 3 window and 28 gray-level quantifica-

tion is considered, there should be a 256(9-1)

look-up table array.

2) Moreover, to realize Equation (3-22), the f(k)

- g(k-n) term must be calculated 256(9-1)

times.

However convenient this algorithm may be, it is imprac-

tical. The reader may ask, then, why the morphological

61

representation of a linear shift-invariant filter may

be derived? The answer is as follows:

1) Although morphological filters are nonlinear

transformations, linear-shift-invariant filters

can be represented by nonlinear filters; and

2) The basis (or kernel) function is uniquely de-

termined by Equations (3-26) and (3-27), from

which a convolution algorithm may be derived

while using morphological architecture.

Most conventional image enhancement techniques use

a linear spatial filtering method, e.g., low pass fil-

tering for noise suppression and/or image smoothing,

and high pass filtering for image sharpening. The fol-

lowing discussion presents an approach to determination

of an algorithm supporting linear spatial filtering

(i.e., a convolution algorithm) using morphological ar-

chitecture. Of necessity, this method submits to aban-

donment of some of the advantages of linear filtering

due to limited window size (i.e., 3 x 3 in the case of

the cytocomputer). Nevertheless, the following algo-

rithm extends the power of the cytocomputer consider-

ably.

Consider the following linear convolution,

Q(n,m) = F*H = H*F = h(k,r)f(n-k,m-r)
k=-00 r=-0*

where F = input image,

Q = output image (filtered image),

62

H = impulse response (mask or moving window),

f(.,.) = gray scale value of the input pixel, and

h(.,.) = impulse response at (.,.).

Pratt [17] lists several noise cleaning masks and

edge sharpening masks as follows:

1) Noise-cleaning mask (low-pass form).

[

1 1

Maskl. H = 1/9 1 1 1

1 1 1

[

1 1

Mask2. H = 1/10 1 2 1

1 1 1

[

1 2

Mask3. H = 1/16 2 4 2

1 2 1

2) Edge sharpening mask (high-pass form).

[

0 -1 0

Maskl. H = -1 .5 -1

0 -1 0

[

-1 -1 -1

Mask2. H = -1 9 -1

-1 -1 -1

[

1 -2 1

Mask3. H = -2 5 -2

1 -2 1

As may be seen, F is symmetric. Therefore, a 3 x 3

moving window, H, may be written as follows, without

loss of generality:

h2 hl h2

H = h1 h0 hi] ,

h2 hl h2

where E E h = h0 + 4h1 + 4h2 = 1 .

From Equation (3-26),

63

(4-2)

(4-3)

3 3
g(0,0) = f(n,m) - E E h(i,j)f(n-i,m-j) . (4-4)

i=1 j=1

Using Equation (4-3),

f(n,m) = f(n,m)(h0 +4h1 +4h2) .

Then Equation (4-4) can be written,

g(0,0) = [{f(n,m) - f(n +1,m)} + {f(n,m)

- f(n,m+1))

+ {f(n,m) f(n,m -1)} + {f(n,m)

- f(n-1,m))]h1

+ [{f(n,m) - f(n+1,m+1) + {f(n,m)

- f(n +1,m -1)}

+ {f(n,m) - f(n- 1,m +1)} + f(n,m)

- f(n-1,m-1))]h2 . (4-5)

Since Equations (3-26) and (3-27) are true for all i

and j (i*j), from Equation (3-23) the resultant center

pixel is

q(n,m) = f(n,m) - g(0,0) . (4-6)

The above relations (4-5) and (4-6) provide a parallel

algorithm which can then be implemented on the cytocom-

puter with only slight architectural modifications.

64

As shown in Figure 4.9, to synchronize (execute

within one clock) with other stages in the pipeline,

stages K and K+1 are divided. The parallel connected

stages K and Kt have such architectures that are simi-

lar to three-dimensional stages (see Fig. 4.5), with

the exception of the bit length of registers Al and A2.

With this architecture, linear filters can be realized

by means of the following algorithm:

0) Input an 8-bit pixel from the previous stage in

the pipeline;

1) Calculate the terms within brace ({ }) in Equa-

tion (4-5);

2) Add M2, M4, M6, and M8 and add M1, M3, M7, and

M9;

3) Find a value from a look-up table preprogrammed

to provide AO' and A2h2;

4) Add the two values, Bl and B2;

5) Subtract the result of step 4 from f5;

6) Find a value from a table preprogrammed to pro-

vide denormalization (in case of E S h * 1);

and

7) Output an 8-bit pixel to the next stage.

From

previous stage

(0) r
I

1

1

1

*-1111,

I

I

I

I

L....

fl

£4

f7

f2

f5

fs

f3

£6

f9

(1)

f1 £2 f3

f4 f5 £6

f7 f8 f9

M2

144 M6

Ms

Al

>

mi 143

M7 M9

Initial neighborhood

nine 8-bit pixels

) A2

Modified neighborhood

four 9 -bit pixels

12-bit value

I

t

I

- -1

Stage (8+1)

1 I

(6)

---.
[I

Figure 4.9 Convolver using 3 x 3 moving window.

To

next stage

0.8.1.....m..mme

(7)

1
Resultant

8 -bit center pixel

66

4.5 Summary

In this section we suggested a new architecture

and presented a corresponding algorithm in order to re-

alize linear shift-invariant filters as well as morpho-

logical filters. Using the symmetrical nature of the

most commonly used linear filtering masks, a simple al-

gorithm was derived for implementation on systems based

upon pipeline parallel architecture. Preserving both

the pipeline architecture and the concept of stages

used in the morphological filter realization, real time

(TV rate) image analysis can be maintained with the use

of this algorithm. Therefore, the material provided in

this study may be used for the considerable improve-

ment of the image analyzing capabilities of mathema-

tical morphology, which in its original form is non-

linear.

A number of areas remain, however, as appropriate

topics for future study. The principal remaining prob-

lems are (1) to determine an architecture and an algo-

rithm suitable for use in the case of non-symmetric

windows, (2) to determine an architecture and an algo-

rithm which can preserve real time processing in the

case of window sizes larger than 3 x 3, and (3) to con-

duct an analytical study of hybrid-filters, which can

67

be constructed by combining linear and morphological

filters.

68

V. CONCLUSIONS

5.1 Conclusions and Contributions of this Study

5.1.1 Analysis of Mathematical Morphology

Since the term "mathematical morphology" has not

to date become a popular genre in image processing or

in system theory, the concepts of mathematical morphol-

ogy, including the relationship between sets and func-

tions, the various classes of morphological transforma-

tions and applications, and its relative ease of read-

ability, were discussed and analyzed. To introduce

these concepts was one of the original goals of this

study.

5.1.2 Relationship Between Theory and Realization

The theoretical background of mathematical mor-

phology was provided by Matheron [1] and Serra [2], and

the umbra concept was added by Sternberg [4]. More-

over, Sternberg developed a special architecture, the

pipeline image processor, which operates very well in

conformity with the principles of mathematical morphol-

ogy.

In this study, morphological transformations as

neighborhood operations, which are feasible on existing

69

parallel architecture, were discussed. Among the num-

ber of proposed special purpose parallel architectures

capable of realizing neighborhood operations, the most

effective architecture, based upon reasonable criteria

of effectiveness, was selected . This study then pro-

vided a morphological transformation algorithm, in ac-

cordance with the classification of signals and system,

for the selected architecture.

5.1.3 Linear Filter Realization

In this study, a new architecture and correspond-

ing algorithem, capable of realizing linear shift-

invariant filters as well as morphological filters, has

been presented. Since most conventional image enhance-

ment techniques use linear spatial filtering method,

linear filtering (convolution) cannot be avoided. Al-

though Maragos [10] provided a morphological represen-

tation of a linear shift-invariant system, it has

proved to be impractical due to excessive memory size

and calculation time requirements. Furthermore, the

architecture selected in the study cannot execute lin-

ear filtering algorithms in its existing form due to

the structure of its mathematical morphological orien-

tation.

Consequently, the architecture suggested in study,

with the algorithm presented, will provide considerable

improvement in the power of image processing systems,

70

as well as improvements in the application fields of

mathematical morphology.

5.2 Suggestions for Future Study

The universe of all possible object shapes is

vast. There is, therefore, a huge number of potential

structuring elements. The systematic analysis of

structuring elements would prove an interesting and

useful topic for future research. Specifically, if ar-

bitrary structuring functions capable of dilating sub-

sets of 3 x 3 x 3 windows could be constructed, it

would constitute a considerable extension of the appli-

cations of function processing filtering.

Most morphological filters are combinations of

erosion and dilation, each with its own filtering char-

acteristics. A new filter could be constructed by com-

bining erosion and dilation in a different manner, but

its construction should be accompanied by filtering

performance analysis of the new filter and its related

fields of application.

The research field for new applications of morpho-

logical filters in image and signal processing is open

for additional attention, especially in such problems

as the extraction of peaks and valleys from signals,

currently requiring geometrical formulations. Previous

research has mainly concentrated on image analysis. It

71

may now be worthwhile to extend applications knowledge

to the fields of any two-dimensional signal manipula-

tion (e.g., image data-base management).

72

BIBLIOGRAPHY

[1] G. Matheron, Random Sets and Integral Geometry, J.
Wiley and Sons, New York, 1975.

[2] J. Serra, Image analysis and Mathematical Morphol-
ogy, Academic Press, New York, 1982

[3] S. R. Sternberg, "Biomedical Image Processing,"
IEEE Computer ,Jan. 1983 ,pp. 22-34.

[4] S. R. Sternberg, "Greyscale morphology," Comput.
Vis. Graph. Image Processing, vol. 35, 1986, pp.
333-355.

[5] S. R. Sternberg, "Parallel Architectures for Image
Processing," in Real Time/Parallel Computing Image
Analysis (Onoe, Preston, and Rosenfeld, eds.),
Plenum Press, New York, 1981.

[6] Y. Nakagawa and A. Rosenfeld, "A note on the use
of local min and max operations in digital picture
processing," IEEE Trans. Syst. Man Cybern., vol.
SMC-8, Aug. 1978, pp. 632-635.

[7] V. Goetcherian, "From binary to grey tone image
processing using fuzzy logic concepts," Pattern
Recog., vol. 12, 1980, pp. 7-15.

[8] C. Lantuejoul and J. Serra, "M-filter," in Proc.
1982 IEEE Intern. Conf. on Acoust., Speech., and
Signal Processing, Paris, France, May 1982, pp.
2063-2066.

[9] M. Werman and S. Peleg, "Min-max operators in tex-
ture analysis," IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. PAMI-7, no. 6, Nov.
1985, pp. 730-733.

[10] P. Maragos, A unified theory of translation-in-
variant systems with applications to morphological
analysis and coding of images, Unpublished doc-
toral dissertation, School Elec. Eng., Georgia
Inst. Technol., Tech. Rep. DSPL-85-1, Atlanta, GA,
July 1985..

73

[11] P. Maragos and R. W. Schafer, "Morphological fil-
ters-Part I: Their Set-Theoretic Analysis and Re-
lations to Linear Shift-Invariant Filters," IEEE
Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, Aug. 1987, pp. 1153-1169.

[12] P. Maragos and R. W. Schafer, "Morphological fil-
ters-Part II: Their relations to median, order-
statistic, and stack filters," IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-35,
Aug. 1987, pp. 1170-1184.

[13] P. Maragos, "Tutorial on advances in morphological
image processing and analysis," in Proc. SPIE,
Vis. Commun. Image Processing, vol. 707, 1986, pp.
64-74.

[14] P. Maragos and R. W. Schafer, "Morphological skel-
eton representation and coding of binary images,"
IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-34, Oct. 1986.

[15] T. R. Crimmins and W. M. Brown, "Image algebra and
automatic shape recognition," IEEE Trans. Aerosp.
Electron. Syst., vol. AES-21, Jan. 1985, pp. 60-
69.

[16] S. G. Tyan, "Median Filtering: Deterministic Prop-
erties," in Two-Dimensional Digital Signal Pro-
cessing II: Transforms and Median Filters (T. S.
Huang, ed.), Springer Verlag, New York,1981.

[17] W. K. Pratt, Digital Image Processing, J. Wiley &
Sons, New York,1978.

[18] W. B. Green, Digital Image Processing (A system
approach), Van Nostrand Reinhold Company, New
York, 1983.

[19] R. C. Gonzalez and P Wintz, Digital Image Process-
ing, Addison-Wesley Publishing Company, 1977.

[20] A Rosenfeld and A. C. Kak, Digital Picture Pro-
cessing, vols. 1 & 2, Academic Press, New York,
1982.

[21] K. Preston, Jr., J. B. Duff, S. Levialdi, P. E.
Norgren, and J. I. Toriwaki, "Basis of cellular
logic with some applications in medical image pro-
cessing," Proc. IEEE, vol. 67, no. 5, May 1979,
pp. 826-856.

74

[22] J. C. Klein and J. Serra,"The texture analyzer,"
J. Microscopy, vol. 95, pt. 2, Apr. 1972, pp. 349-
356.

[23] R. M. Lougheed, D. L. McCubbrey, and S. R. Stern-
berg, "Cyto-computers: Architectures for parallel
image processing," in Proc. Workshop Picture Data
Descr. Manag., Pacific Grove, CA, Aug. 1980.

[24] S. R. Sternberg, "Language and architecture for
parallel image processing," in Pattern Recognition
in Practice (E. S. Gelsema and L. N. Kanal, eds.),
North-Holland Publishing Company, 1980.

[25] E. Cloud and W. Holsztynski, "Higher efficiency
for parallel processors," Professional Program
Session Record 14/4, Computer Vision, SOUTHCON
'84, 1984.

[26] R. M. Lougheed and D. L. McCubbrey, "The Cytocom-
puter: a practical pipelined image processor," in
Proc. 7th Annual International Symposium on Com-
puter Architecture, May 1980.

[27] S. R. Sternberg,"Automatic image processor," U.S.
Patent 4,167,728.

[28] P. E. Danielsson and S. Levialdi, "Computer archi-
tectures for pictorial information systems," IEEE
Computer, Nov. 1981, pp. 53-67.

[29] G. Choquet, Topology, Academic Press, New York,
1966.

[30] K. Preston, Jr. and L. Uhr, ed., Multicomputer and
Image Processing (Algorithms and Programs), Aca-
demic Press, New York, 1982.

[31] M. Onoe, K. Preston, Jr. and A. Rosenfeld, ed.,
Real-Time /Parallel Computing (Image Analysis),
Plenum Press, New York, 1981.

[32] J. Kittler and J. B. Duff, ed., Image Processing
System Architectures, Research Studies Press, Eng-
land, 1985.

[33] J. B. Duff and S. Levialdi, ed., Languages and Ar-
chitectures for Image Processing, Academic Press,
New York, 1981.

[34] L. Uhr, ed., Parallel Computer Vision, Academic
Press, Orlando, FL, 1987.

APPENDIX

75

Appendix

Table of Symbols and Notations

E Euclidean space

FP function processing

FSP function-and-set processing

G(f) graph of function f; G(f)= {(x,t)EE:f(x) =t)

inf infimum (lower bound)

max maximum

min minimum

m-D m-dimensional

nB BEDB99B (n times)

o origin

R set of real numbers (one-dimensional
Euclidean space)

Ros region of support

Rm m-D Euclidean space

SP set-processing

sup supremum (upper bound)

TI translation invariant

USC(D) the class of upper semi-continuous on set D

u.s.c. upper semi-continuous

U(f) umbra of function f

XB closing of X by B; XB.(X9Bs)AB

X13 opening of X by B; Xr(XeBs)913

Xc complementary set of a set X

76

Xh translate of set X by h; Xh=Xe{h}

Xr reflected set of B with respect to horizontal
plane

Xs symmetric set of X about the origin;
Xs = (- x,xEX}

Xt (f) cross-section of function f at level t

X/a similar of X with scaling factor 1/a (a>0);
X/a= {x:xaEX}

Zm m-dimensional integer space

Greek

p(§) basis of the transformation 4)

kernel of the erosion

,c(D) kernel of the transformation 4)

(XX) set transformed of X with respect to set
transformation

(Df function processing morphological
transformation

(DI linear transformation

(Da transformation depending on positive
parameter a

O empty set

II picture or function

p(E) space of all subset of E

O subcollect of p(E)

9 Minkowski addition

Minkowski subtraction

