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ABSTRACT 
Many applications include machine learning algorithms 
intended to learn “programs” (rules of behavior) from an 
end user’s actions. When these learned programs are wrong, 
their users receive little explanation as to why, and even 
less freedom of expression to help the machine learn from 
its mistakes. In this paper, we develop and explore a set of 
candidate principles for providing salient debugging 
information to end users who would like to correct these 
programs. We informed the candidate principles through a 
formative study, built a prototype that instantiates them, and 
conducted a user study of the prototype to collect empirical 
evidence to inform future variants. Our results suggest the 
value of exposing the machine’s reasoning process, 
supporting a flexible debugging vocabulary, and illustrating 
the effects of user changes to the learned program’s logic. 
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Debugging, end-user programming, machine learning, 
principles, saliency. 

ACM Classification Keywords 
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INTRODUCTION 
New programs are emerging on end-users’ desktops: 
programs written by machines. At its heart, a computer 
program is a set of rules of behavior, instructing the 
computer how it should react to inputs. Programs such as 
spam filters and recommender systems employ machine 
learning (ML) algorithms to learn rules of behavior from a 
user’s actions, and then uses these rules to automatically 
process new data. We term the resulting set of rules a 
machine-learned program. Many of these programs 
continuously learn as users perform actions and build rules 
based on probabilistic models that are specific to the given 
user. As a result, only that particular user can determine 
whether the machine-learned program is performing 

adequately and, by extension, fix it when required. 

Debugging a machine-learned program, however, presents a 
number of challenges to end users: 1) Users often lack a 
clear understanding of how the program makes decisions 
[23], 2) it is unclear what changes users need to make to 
improve the program’s performance [6], 3) users can 
usually only provide additional training examples to fix its 
logic [4], and 4) the impact of user changes can only be 
determined at run-time. One of our study participants 
succinctly summed up these challenges by answering the 
question, “How do you think the program makes its 
decisions?” with the response, “I don’t know. Magic?” 

We hypothesize that to help users effectively debug an ML 
program, it must provide explanations regarding its logic 
and allow the user to influence the program’s behavior 
beyond providing mere training examples. Previous studies 
[12, 20, 21] have explored ways to overcome these 
challenges by exposing some of the program’s logic and by 
allowing users to adjust parts of this logic. There has, 
however, been no systematic investigation into what 
information regarding the logic of a learned program is 
particularly useful for end-user debugging. 

In this paper, we introduce and explore the principle of 
machine-learning saliency, which we define as the 
exposure of useful and accurate pieces of information about 
the logic of a machine-learned program. Building upon this 
concept, we investigate the information users require when 
debugging ML programs, as well as how users respond to 
programs that present them with this information. 

We worked within the domain of “auto-coding” (i.e. 
assisting with categorizing data from verbal transcripts) 
while exploring ML saliency. Coding is a familiar task in 
the fields of psychology, social science, and HCI, and 
involves categorizing segmented portions of study 
transcripts as part of an empirical analysis process. 

We chose this domain for three reasons. First, the user’s 
debugging time is potentially much less than the time 
needed to do the entire task manually, because coding can 
be extremely time-consuming. Second, debugging is 
necessary because the codes and their meanings are tailored 
to each individual study. Finally, coding is a good 
environment for studying end-user debugging of machine 
learning because there is likely to never be enough data 
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pertinent to any one coding project for machine learning to 
succeed without help. These factors suggest the domain of 
auto-coding will involve end users who are highly 
motivated to debug the ML program. 

This paper explores the principle of ML saliency as a 
foundation for exposing the logic of ML programs to end 
users. We present three saliency principles and implement 
them through seven UI widgets in a research prototype, 
basing them upon prior literature and a formative study 
investigating how end users interpret and correct a 
machine-coded transcript. Finally, we explore how end 
users react to these saliency features and the implications 
for future approaches toward supporting end-user 
debugging of machine-learned programs. 

BACKGROUND AND RELATED WORK 
In order for users to efficiently debug ML logic, they must 
understand when and where problems exist. Researchers 
have found that both technical and non-technical users have 
difficulty understanding how ML systems generate their 
predictions [6, 17, 23], and would like to understand more 
about their reasoning [6, 8]. Machine-generated 
explanations that address this knowledge gap have taken a 
variety of forms, such as highlighting the relationship 
between user actions and the resulting predictions [2], 
detailing why a machine made a particular prediction [15], 
or explaining how an outcome resulted from user actions [8, 
23, 24]. Much of the work in explaining probabilistic 
machine learning algorithms has focused on the naive 
Bayes classifier [1, 11] and, more generally, on linear 
additive classifiers [18], because explanations of these 
systems are relatively straightforward. More sophisticated, 
but computationally expensive, explanations have been 
developed for general Bayesian networks [13]. All of these 
approaches, however, are intended to explain how a specific 
decision was reached, instead of assisting a user who is 
debugging a program’s overall behavior. 

Some research has started to shed light on debugging of 
simple ML programs [12, 20], as well as more complex 
ensemble classifiers [22]. Initial steps have been taken to 
include some results of these studies in user interfaces [21], 
but a thorough investigation of ML logic that could and 
should be made salient in the machine’s explanations has 
not been attempted. 

Focusing on the particular domain of auto-coding, the 
TagHelper auto-coding system is highly accurate with 
extensive training data, but not for categories with few 
training examples [5]. Obtaining training data, however, is 
expensive because manual coding is time-consuming. Our 

research addresses this issue by attempting to reduce the 
need for training by instead fine-tuning the program’s logic. 

A FORMATIVE STUDY OF ML SALIENCY 
To draw out principles of saliency, we conducted a 
formative study to investigate end users’ understanding of 
ML logic, desired debugging feedback, and the effects of 
explanations exposing the program’s logic. The study 
comprised two parts: applying the Natural Programming 
approach [16] we first exposed end users to a machine-
learned program without any explanations, while the second 
part added explanations about the program’s logic.  

Our research questions were: 

RQ1: Natural conversations: How do end users 
“naturally” give feedback to machine-learned programs? 

RQ2: Mental models: What are end users’ mental models of 
the program’s logic, i.e. what do they believe is salient? 

RQ3: Influence of saliency: What happens when relevant 
debugging information is provided to end users? 

Participants and Materials 
Participants included nine psychology and HCI graduate 
students (five female, four male). Five participants had 
prior experience coding transcripts and all were familiar 
with the domain covered in the transcript. No participants 
had any background in machine learning. 

We obtained a coded transcript from an unrelated study and 
developed two different paper prototypes of an auto-coding 
application. Both prototypes showed transcript segments 
and the codes applied to them. We randomly changed 30% 
of the assigned codes to elicit participant corrections.  

The first prototype showed only segments and codes 
(Figure 1 left). The second prototype added explanations 
about each ML prediction (Figure 1 right). The 
explanations were inspired by the Whyline [9], a debugging 
environment that can answer user questions about program 
behavior. Each explanation included two reasons why the 
segment was classified with a particular code and two 
reasons each for not classifying it as a different code. The 
explanations drew attention to a total of ten types of 
information items that a designer of a machine learning 
algorithm could reasonably select and implement for the 
algorithm to make a classification, such as the presence of 
particular words, sequential ordering of codes, etc.  

Procedure 
In a pre-session, we familiarized participants with the 
particular code set and gathered information on the 

 
Figure 1: Paper prototypes without (left) and with (right) explanations.  



participants’ background (gender, academic major, and 
prior experience with coding). 

For the study, we led participants to believe that the paper 
transcript had been coded using a machine-learned 
program. The participants were asked to fix any incorrect 
codes applied to segments and to help improve the 
program’s accuracy by suggesting things to which the 
program should pay attention. Participants were given 30 
minutes to debug the first prototype (79 segments without 
explanations), after which they filled out a questionnaire 
asking how they believed the system made its decisions and 
what information it should use to make better predictions. 
Participants then debugged the second prototype (41 
segments with explanations) for another 20 minutes. We 
repeated the questionnaire, asking how they now believed 
the computer made its decisions, and in addition, which 
aspects of the explanations they found confusing or helpful. 

Pens, colored pencils, and post-it notes were provided to 
encourage feedback directly on the paper prototype in any 
manner the participant preferred. We also recorded their 
verbalizations as they worked on the main task, prompting 
them if their remarks were unclear or they stopped talking, 
and transcribed the recordings for further analysis.  

Analysis Methodology 
To categorize what our participants found salient, four 
researchers jointly established a candidate code set by 
analyzing a subset of the marked-up prototypes combined 
with the transcribed audio. Two researchers then iteratively 
applied this set to sections of a transcript and adjusted the 
code set after each iteration to ensure reliability.  

We employed a code set from a previous study [20] to 

identify potential gaps in our code set. Our code set 
accounts for all of the feedback types identified in [20], 
extended by codes that capture information deemed salient 
by our participants prior to the introduction of explanations. 
This final code set is given in Table 1. 

Two researchers independently coded a transcript using this 
coding scheme, achieving an inter-coder reliability of 87% 
as calculated by the Jaccard index. This level of agreement 
indicated a robust code set, so the remaining data was split 
between the two researchers to code. 

ML SALIENCY FINDINGS 

What Types of Information Are Important? 
As a starting point toward investigating ML saliency, we 
need to understand what types of information users regard 
as useful when debugging a program and the vocabulary 
naturally used to tell this information to the program (RQ1). 
Thus we examined the suggestions participants provided to 
influence the machine-learned program’s logic. These 
suggestions illustrate the types of information participants’ 
believed the program should use to make its predictions. 

Figure 2 illustrates participants’ feedback suggesting 
various types of features. In machine learning parlance, a 
feature is a characteristic of the data that is useful for the 
ML algorithm in making a prediction. First, the high 
frequency of suggestions about whole segments (n=157, 
40%) or word combinations (n=98, 25%) point to a need to 
shift away from classification approaches based on single 
words (e.g. “bag-of-words” classifiers) to algorithms that 
can handle larger functional units. In particular, word 
combinations appeared twice as often as single words and 
punctuation combined. From a machine learning 
perspective, designing an algorithm that adds features for 
all possible n consecutive words up to some cut-off value of 
n is infeasible because it would introduce too many 
irrelevant features. As a consequence, machine learning 
algorithms need to take account of user input, as complex 
features need to be definable by the user as they debug the 
program. 

Code   
Subcode Participant talked about… 

  

Word/Punctuation  
Single a single word. 

Multiple multiple words. 
Punctuation a punctuation mark. 
Adjustment a change in word(s) importance. 

Process a change in how features should be 
extracted or processed. 

Segment a segment as a whole 
Relationship  

Word relationship between words within one 
segment. 

Segment relationship between segments. 
QA-Pair a question-answer pair of segments. 

Reference some other portion of the transcript. 
Double code being just a continuation of a previously 

coded segment. 
Code Elimination the segment not fitting into any of the 

other codes. 
Other Other or unclear. 

Table 1: The code set used for data analysis. 

 
Figure 2: Number of instances of different types of feedback, 

prior to introduction of explanations. 
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Second, all but one of the participants reported taking 
relationships among different words or segments into 
consideration (P1: “So is this part a continuation of 
this?”), especially between contiguous segments. Hence, 
when providing opportunities for users to change the logic 
of the learned program, the application should support the 
creation of features representing relationships between 
existing ML features. 

Third, although participants seldom mentioned punctuation, 
seven out of nine participants talked about it at least once. 
This suggests that punctuation is significant when end users 
analyze transcripts, yet current ML algorithms routinely 
ignore it. The reverse is true for absence of features, which 
participants mentioned three times less often as their 
presence. This indicates that participants are primarily 
focused on what they see in the data, as opposed to what is 
not present. This creates an opportunity for saliency to draw 
attention to the common practice by ML algorithms of 
using the absence of certain features for classification. 

How Do Explanations Affect Saliency? 
We investigated the effects of saliency by introducing 
explanations of the learned program’s logic in the second 
prototype and comparing the changes of participants’ 
mental models of the prototypes’ reasoning processes. This 
data was gathered by free-form responses to paired 
questions, allowing us to gauge their mental models before 
explanations were provided (RQ2), and examine how their 
mental models changed after salient explanations were 
made available (RQ3). As illustrated in Figure 3, after 
interacting with the first prototype (without explanations), 
participants’ perception of the program’s logic relied on 
word and punctuation presence. Seven of our nine 
participants thought the program made decisions based on 
the presence of single words, while only two participants 
mentioned multiple words. Four participants also reported 
that punctuation played a role. Nobody thought the 
computer used absence of words or punctuation, and only 
one participant thought it paid attention to relationships 
between segments. In contrast with how participants 
thought the program should make decisions (cf. Figure 2), 
their mental model of how it did make decisions revealed a 
much simpler decision process. 

Most participants’ mental models changed after exposure to 
explanations, tending toward richer and more complex 
types of features like word combinations and relationships. 
Five participants now thought the presence of multiple, not 
single, words mattered to the computer, and seven 
participants now thought the program used sequential 
relationships among words and segments. 

An important change in users’ models was the appearance 
of probabilistic reasoning in five of our participants: 

P1: “...Uses probabilities of certain codes occurring before 
and/or after other codes.” 
P2: “Using probabilities about what the previous boxes 
were coded....” 

On many occasions, however, user descriptions implied 
probabilities were the product of consistent rules. This 
reflects a known bias in reasoning called the outcome 
approach, commonly referred to as “the weather problem” 
[10]. The outcome approach is the phenomenon of 
interpreting probabilities as binary, rather than the 
likelihood of a particular response. For example, if a 
meteorologist states there is a 70% chance of rain the next 
day, many people interpret this to mean it is supposed to 
rain. Thus, if the next day is sunny, people will say the 
meteorologist was wrong. In other words, while participants 
understood that the computer was using probabilistic 
reasoning, they still expected it to apply its strongest rule. 

Additionally, two participants found the “why not” 
explanations to be particularly helpful. As one said: 

P3: “The info about why it wasn!t something was very 
helpful… Most of the time I didn!t agree with reasoning for 
what the segment was coded as, so having the other 
reasons helped me understand.” 

These participants seemed to appreciate a balance of 
evidence pointing to decisions and valued the ability to tell 
why something did not happen. This finding correlates with 
a study of the Whyline debugging environment [9], and 
suggests that such information may be considered salient by 
end users debugging machine-learned programs. 

Taken together, it appears salient explanations 
demonstrated to participants that the machine-learned 
program was more complex than initially thought. Saliency 
particularly enhanced our participant’s mental models 
regarding the learned program’s probabilistic nature, 
modeling of relationships, and its ability to use sequences 
of words. Furthermore, the fact that participants changed 
their mental models after new information was presented 

 
Figure 3: Participants’ mental models before (circles) and 

after (squares) explanations. Categories with <2 before and 
after instances are omitted.  



contradicts the findings of [23], whose participants’ early 
mental models were remarkably persistent, even given 
counter-evidence. Our results point to the potential for 
saliency to help users adjust their mental models by 
providing information necessary for them to properly 
understand the program’s behavior. 

SUPPORTING SALIENCY IN CONVERSATIONS WITH A 
MACHINE-LEARNED PROGRAM 
Building upon background literature and the results of our 
formative study, we identified aspects of machine-learned 
programs where saliency could provide the user with 
knowledge both helpful and relevant to their debugging 
task. These fall into three saliency principles (SP), which 
later served as design constraints for our prototype. 

SP1: Expose the ML Program!s Reasoning Process 
Just as one would not expect a professional programmer to 
debug an algorithm’s implementation without first 
understanding how the algorithm operates, it is 
unreasonable to expect end-user programmers to debug a 
machine-learned program without understanding its logic or 
the data it draws upon. Previous research [6, 21] has shown 
that users are interested in the features the ML algorithm 
uses. The “Why” explanations in [15] proved effective at 
enriching the participants’ understanding of the program’s 
reasoning process, as did similar explanations in our own 
formative study. 

Two specific aspects of the reasoning process that our 
formative study suggests should be made salient concerned 
probabilities and absence of features. Both concepts were 
completely absent from participants’ initial mental models, 
indicating a need for explanations highlighting each. 

Our formative explanations about probabilistic reasoning 
were framed in the context of a particular prediction, e.g., 
“Segments containing ‘compare’ are probably ‘Seeking 
Info’”, instead of the static, non-concrete explanations in 
[12]. This proved to be quite successful and indicates that 
making the reasoning process explicit should be done with 
concrete explanations. Further exposure of the machine’s 
reasoning might also help resolve the outcome approach 
phenomenon discussed earlier, allowing end users to better 
reason about the learned program’s logic. 

SP2: Support a Flexible Vocabulary 
Debugging a machine-learned program is akin to the user 
holding a conversation with it: the program tells the user 
why it is making various predictions, and the user tells it 
why some of those predictions are right and why others are 
wrong. Before such a conversation is held, however, a 
vocabulary must exist which both parties understand [3]. As 
we and other researchers [21] have found, users have a 
much richer vocabulary than the standard bag-of-words 
representation used by current ML systems. This richer 
vocabulary consists of word combinations, punctuation, and 
relational information. Hence, an aspect of this principle is 
that both the user interface and the ML algorithm must 
support a much larger vocabulary than is currently possible, 

and that this vocabulary be extensible. While the interface 
should allow for vocabulary expansion by the user, the 
algorithm must be able to deal with the resulting new user-
generated features. 

SP3: Illustrate Effects of User Changes 
Our participants expressed a clear interest in how a rule was 
used in the learned program’s logic, as evidenced by their 
positive reaction to explanations regarding why the learned 
program made each of its predictions. Additionally, end 
users like to see the effects of their actions in the context of 
a program’s behavior [21], and this has been noted 
previously with “non-learned” programs [9]. Thus, the 
impact of changes to a learned program’s logic should be 
expressed to end users, so they may understand how their 
behavior affects the machine’s predictions and to be able to 
adapt their actions to increase the program’s accuracy. 

One specific effect, peculiar to machine-learned programs, 
illustrates a second reason behind this saliency principle. 
Most end users are unaware of a problem plaguing many 
machine learning algorithms; when one category of data is 
over-represented in the training set, this same over-
representation cascades into the program’s predictions. 
Known as class imbalance, this problem is often 
exacerbated by end user strategies that focus on one 
category of information at a time [12]. By clearly 
displaying the effects of user changes, end users can both 
be educated about such problems, and informed when their 
actions are contributing to the problem. 

THE AUTOCODER PROTOTYPE 
Building upon the saliency principles, we designed a hi-fi 
auto-coding prototype. The AutoCoder application allows 
users to code segmented text transcripts (Figure 4 A) using 
a predefined code-set (Figure 4 B). Codes shown on the 
interface are colored to give users an overview of their 
coding activity. These colors are replicated in the 
navigation scrollbar to provide an overview of each code’s 
occurrence over the whole transcript (Figure 4 C). The user 
is able to manually assign a code to each segment; after 
three segments have been coded, the computer will attempt 
to predict the codes of the remaining segments using a 
variant of the naive Bayes algorithm for sequential data. 
The learned program updates its predictions as the user 
provides corrections and additional training data.  

In addition to the basic ability of coding a transcript, we 
devised a series of widgets implementing our saliency 
principles for the AutoCoder prototype. 

 
Figure 4: The basic AutoCoder prototype showing a series of 
segments (A), their corresponding codes (B), and an overview 

of the transcript’s codes (C). 



 

Exposing the Logic 
We designed the AutoCoder such that it could describe the 
most relevant pieces of information leading to its decisions 
and expose the types of rules it used, thus satisfying our 
first saliency principle (SP1). AutoCoder provides a list of 
Machine-generated Explanations (Figure 5 W1) for each 
prediction, informing users of the features and logic that 
most influenced its decision. A computer icon reminds 
users that these explanations are based upon machine-
selected features. 

Specific Absence Explanations (Figure 5 W2) inform 
users about how the learned program utilizes the absence of 
words or phrases when predicting codes, e.g. “The absence 
of ‘?’ often means that a segment is ‘Info Gained’”. The 
idea of invisible things affecting the machine’s predictions 
has traditionally been difficult to express to users in a 
comprehensible manner [12, 20], and questions still remain 
over whether being truthful about this aspect of machine-
learned decision-making is desirable, considering its 
potential to confuse end users. 

In providing the above explanations, end users are given the 
ability to review important elements of the learned 
program’s logic. Users can select any segment to view 
explanations about its current prediction, resulting in the 
machine-generated explanation with the highest-weighted 
features appearing beneath the segment text: this is 
generally the suggestion that was most influential toward 
the learned program’s prediction. Since the algorithm is 
probabilistic, it can employ a large number of competing 
pieces of logic, so the AutoCoder sorts the explanations list 
according to the most influential features. Users can click a 
button to progressively show more. If a user disagrees with 
an explanation, she can delete it to exclude its logic from 
the learned program’s future predictions. 

We carefully crafted the wording of the explanations to 
illustrate that suggestions are open to uncertainty. To 
further expose the probabilistic nature of the learned 
program we designed a Prediction Confidence (Figure 6 
W3) widget. This is a pie graph that displays the program’s 
probability of coding a given segment using any of the 
possible codes. A confident prediction is indicated by a 
predominantly solid color within the pie graph, while a 

graph containing an array of similarly sized colors indicates 
that the program cannot confidently determine which code 
to apply. If the program does not display a high confidence 
in its prediction, users can implement measures to improve 
its logic. 

Debugging With a Flexible Vocabulary 
We provided debugging support with a flexible vocabulary 
to support saliency principle SP2. By selecting a sequence 
of text, users can add their own features to the program. 
Hence, they are given the ability to explain to the machine 
why a segment should be coded in a particular manner. The 
User-generated Suggestions (Figure 5 W4) are integrated 
into the learned program’s logic for determining the codes 
of the remaining segments not already manually coded. 
User-generated suggestions are treated by the learned 
program similarly to machine-generated explanations, but 
with added weight to reflect the fact that the user attempted 
to correct the machine. They are distinguished from 
machine-generated explanations by a “human” icon. 

Users are able to create features spanning adjacent 
segments to model relationships between words and 
segments, as well as including non-consecutive portions of 
text in a single segment. An example of a possible user-
generated suggestion that incorporates such a relationship 
is: “‘?’ in the preceding segment followed by ‘OK’ in this 
segment often means this segment is ‘Info Gained’”. We 
also allow users to add single words or combinations of 
words to the program. For example, Figure 5 shows a user 
creating a word combination feature by selecting a portion 
of text. This flexibility allows a user to extend the 
machine’s vocabulary to closer-match her own. 

Illustrate Effects 
We developed three widgets that illustrate the effects each 
user change had on the learned program (SP3). These 
widgets serve a similar function as a run-time debugger in 
traditional programming: they provide detailed information 
about the current state of the program during its execution. 

To reflect how a user suggestion impacts the overall coding 
task, we designed an Impact Count Icon (Figure 6 W5) to 
reflect how many predictions each suggestion affects. For 
example, the suggestion stating that “?” implies a 
particular code will impact each segment containing a “?”, 
likely resulting in a high impact count. A suggestion with a 

 
Figure 5: An AutoCoder Machine-generated Explanation 

(W1), Absence Explanation (W2), and User-generated 
Suggestion (W4). 

 
Figure 6: The Prediction Confidence widget (W3), Impact 

Count Icons (W5), Popularity Bar (W7), and Change History 
Markers (W6). 



high impact count is important, since it will affect many 
predictions. To indicate which segments are affected by a 
suggestion, AutoCoder highlights affected segments and 
their corresponding sections in the scrollbar. 

To help users understand the specific implications of their 
last action, Change History Markers (Figure 6 W6) 
provide feedback on where changes in the program’s 
predictions recently occurred. A black dot is displayed 
adjacent to the most recently altered predictions beside their 
respective segments in the scrollbar. This gives the user an 
overview of every change throughout the program. As the 
user makes changes that do not alter the machine’s 
prediction for a segment, its mark gradually fades away. 

The Popularity Bar (Figure 6 W7) specifically addresses 
the problem of class imbalance. It represents proportions of 
each code amongst the user-coded and machine-predicted 
segments. The left bar represents code popularity among 
user-coded segments, i.e., the proportion of codes the user 
has manually applied to segments. The right bar contrasts 
code popularity among machine-predicted segments, i.e., 
the proportion of codes the machine is predicting for 
remaining segments. 

The Popularity Bar serves to illustrate an added nuance of 
designing widgets to support our saliency principles: a 
single widget may implement multiple principles. The 
initial goal of the Popularity Bar was to show the effects of 
class imbalance (SP3), but we later realized that this would 
only be helpful if users knew why class imbalance was a 
problem for the learned program (SP1). Thus, we indirectly 
exposed an aspect of the machine’s reasoning process to the 
end user by crafting a widget that would illustrate the 
negative effects of class imbalance. 

USER STUDY 
To better understand the impact of saliency on end-user 
debuggers, we conducted a user study of the AutoCoder 
prototype. We developed four versions (VB, V1, V2, and 
V3), each embedding various sets of saliency widgets. The 
basic version (VB) provided machine-generated 
explanations, user suggestions, and change history markers; 
these widgets support the three saliency principles at a basic 
level. Another version, V1, extended the basic version by 
including Absence Suggestions and the Impact Count Icon. 
Version V2 extended the basic prototype by adding 
Prediction Confidence widgets and the Popularity Bar. A 
final version (V3) included all seven widgets. A summary 
of the various versions is given Table 2. 

By presenting several subsets of widgets to users, we 
intended to collect nuanced differences in user reactions. 
Since working with independent versions for each of the 
widgets would have placed intensive demands on the user, 
we grouped saliency widgets with respect to the class of 
information they display. Inspired by traditional 
programming languages, we created two classes of widgets, 
code-oriented and run-time oriented. Code-oriented 

widgets present information that is independent of the 
machine’s predictions (i.e., information that could be 
gleaned from the learned program’s “source code”). Run-
time oriented widgets present information that requires the 
program to “run” or make predictions (i.e., information can 
only be determined by actually running the “source code”). 
It is difficult to imagine a professional programmer 
debugging without both types of information being 
available. The same logic may apply when end users debug 
machine-learned programs. The Absence Suggestions and 
Impact Count Icon both present code-oriented saliency 
information, and are represented in V1. The Prediction 
Confidence widget and Popularity Bar displayed saliency 
information only available at run-time, and were in V2.  

The addition of V3, consisting of all seven saliency widgets 
at once, allowed us to investigate whether too much 
saliency would be a problem for end users. 

Procedure 
We recruited 74 participants (40 males, 34 females) from 
the local student population and nearby residents for our 
study. None possessed experience with machine learning 
algorithms and only one had previous experience with a 
task similar to coding. The high number of participants was 
chosen to allow statistical tests on the resulting log data. 
We plan to investigate how end-user debugging strategies 
were affected by the different versions each user interacted 
with in a future paper. In this paper we focus on how useful 
end users perceived the various saliency widgets, and the 
implications this holds for our saliency principles. 

The tutorial consisted of a 30-minute introduction to 
coding, the coding set itself, and the prototype’s 
functionalities. This was followed by a 20-minute period 
where users coded a transcript with one version of the 
prototype. We then gave additional instructions regarding a 
second version of the prototype, before asking users to code 
another transcript using this different version. We assigned 
versions and transcript orders randomly across our 
participants. 

In addition to logging participant interactions with the 
prototype, we used a set of questionnaires to obtain 
comprehensive user feedback about each saliency widget, 
participant mental models of the learned program’s logic, 
and their preferred version (out of the two they 
experienced). We also employed the NASA-TLX survey 
[7] to evaluate difficulties and perceived success with each 
prototype version. 

 W1 W2 W3 W4 W5 W6 W7 
VB !   !  !  
V1 ! !  ! ! !  
V2 !  ! !  ! ! 
V3 ! ! ! ! ! ! ! 

Table 2: The saliency widgets included in each version of the 
AutoCoder prototype. 



 

Findings 
Through participants’ questionnaire responses relating to 
different prototype versions, we were able to collect 
reactions to individual saliency widgets and compare code-
oriented and run-time saliency widgets. Figure 7 shows 
counts of how useful participants found the various saliency 
widgets, and Figure 8 displays the perceived effort of 
interacting with the different prototype versions. 

Absence Features and Prediction Widgets 
Most participants found the Absence Explanations 
unhelpful (Figure 7), while still considering Machine-
generated Explanations to be useful. Additionally, the 
Prediction Confidence graphs were widely seen as very 
helpful. These three widgets reflect SP1 by exposing the 
learned program’s reasoning process, and variation in users’ 
reaction may be due to the amount of effort required to 
comprehend them. As others [20] have reported, many end 
users have trouble understanding how absence of something 
plays a role in a machine’s decision-making. As one 
participant explained: 

P4: “[Absence explanations were] very confusing and 
provided no help.” 

Furthermore, our formative study showed that participants 
preferred simple explanations of why the words in a 
segment led the machine to make a particular prediction. 
These results imply that the complexity of the reasoning 
should be taken into account when crafting explanations 
supporting SP1 (Expose the program’s reasoning process).  

Impact Count, Popularity Bars, and Change History Markers 
A majority of our participants found the Impact Count 
Icons unhelpful, and responses to the Popularity Bar and 
Change History Markers were neutral. All of these widgets 
supported SP3; they illustrated the effects of user changes 
to the learned program. A frequent criticism of all three 
widgets was that the information they represented was 
unclear, such as: 

P5: “The number in the circle means nothing to me.” 
P6: “What is it???” 
P7: “I don!t understand what this graphic was implying.” 

This may simply illustrate a learning curve that was not 

adequately dealt with in the tutorial, but it may also imply 
that widgets supporting SP3 should clearly indicate the type 
of effects they represent. While our widgets included 
tooltips to remind participants what the information they 
conveyed meant, it seems many participants did not use 
them. Providing visual cues that reflect this kind of 
information could alleviate the primary participant 
complaint against these widgets. 

Code-oriented vs. Run-time Information 
Next we examined participants’ preference regarding the 
classes of widgets they interacted with. As Figure 9 Right 
illustrates, V3, which combined both types of saliency 
widgets, was a clear favorite. It was most frequently a 
user’s top choice, and least frequently their second choice. 
The run-time version, V2, was preferred slightly more often 
than not, but both the code-oriented and basic versions (V1 
and VB) were more likely to be the runner-up than the first 
choice. Participants preferred run-time saliency to code-
oriented saliency, but preferred the inclusion of both types 
of information in a single interface even more. 

Interestingly, our participants’ preferred version contrasted 
with the system they felt yielded the best results. The 
NASA-TLX questionnaire showed that participants felt 
they performed better with V2 than any other version 
(Figure 9 Left). V3 did not lead to a clear feeling of success 
over other systems; instead, users may have preferred 
working with it for other reasons, such as improved 
confidence that they could eventually accomplish the task. 

Figure 7: The number of participants who rated each saliency 
widget “very unhelpful” (darkest) to “very helpful (lightest). 

Figure 8: The number of participants who rated each version 
as requiring the most mental demand, the most effort to use 

properly, or causing the most frustration. 

 
Figure 9: Left: The number of participants who felt they were 

most successful with each version. Right: The number of 
participants who rated each version as preferred (dark) and 

non-preferred (light). 
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These results are mirrored by the other TLX responses in 
Figure 8, which showed V1 being more mentally 
demanding, requiring more effort and leading to more 
frustration than the other systems. V2 and V3 often 
performed much better in these respects. This shows that 
code-oriented saliency (V1) may lead to higher task load 
than run-time saliency (V2 and V3). 

LESSONS LEARNED AND FUTURE DIRECTIONS 
As a result of our studies exploring saliency, we learned 
lessons and design implications that will be explored in 
future work regarding the effects of saliency on end users 
debugging machine-learned programs. 

Saliency Facets 
While we explored the saliency principles overall, their 
subtle facets and associated usefulness have not been 
addressed thus far. In our study we fulfilled one such 
principle (SP3) through two different facets: code-oriented 
and run-time debugging information. Our study participants 
displayed a noticeable preference for run-time saliency 
widgets versus code-oriented saliency widgets. A typical 
participant response about the Impact Count Icon marked it 
as unhelpful: 

P8: “Honestly, didn!t even look at this.” 
This same participant, however, found the run-time 
Popularity Bar to be quite useful: 

P8: “I could see if I was spending more time and energy on 
specific tags and less on others.” 

Thus, it may be the difference between code-oriented and 
run-time debugging information, rather than the saliency 
principles embodied, that determines the perceived 
usefulness of a particular widget. In addition, the 
contribution of facets to the remaining saliency principles 
and their respective influence on usefulness for debugging 
merits more research. 

Debugging Behavior  
Exposing the ML program’s logic (SP1) may influence user 
debugging behavior. Some participants in the formative 
study commented on being uncertain how to code some 
segments. The popularity of the Prediction Confidence 
widget may be related to these users gaining confidence in 
the machine’s predictions and feeling there was a lower risk 
of the program predicting incorrectly than of the user 
herself being wrong. As one participant phrased it: 

P9: “If I was undecided, the pie would help me decide.”  
Other participants indicated a similar lack of confidence in 
their decisions, but did not appreciate the computer’s help: 

P10: “I felt like I HAD to agree with the program.” 
Here, the saliency widget may have had a negative effect on 
the user’s debugging behavior. Similarly, the Popularity 
Bar altered some users’ behavior in unintended ways: 

P11: “This was more distracting than anything, because I 
wanted each color to be evenly spaced!” 

P12: “I had an internal drive to want to teach the computer 
to be equal. I think this caused me to favor one answer 
over the next.” 

Further research could lay bare how saliency leads to 
changes in user debugging behavior and how to guard 
against unwise feedback choices. 

Future Design of Machine-Learned Programs  
A surprise was that the combination of all saliency widgets 
did not overwhelm or intimidate most users, as the most 
popular version by far included all seven saliency widgets. 
Participants often commented on them when asked which 
treatment they preferred: 

P9: “I liked [V3] better because it had a wider overview of 
outcomes each tag would cause. Easier to see changes 
occur also.” 
P8: “I liked having the percentages of what the computer 
thought, but I could also see what and how much I was 
telling the computer about each tag.” 
P13: “[V3] because it provided more detail and information 
on why the computer suggested a particular tag.” 

It appears that one practical implication for the design of 
machine-learned programs is to give the user as wide a 
choice as possible when implementing saliency. 

Machine-learned programs could also further support the 
saliency principle of supporting a flexible vocabulary 
(SP2). Future research will explore how the machine 
learning program could suggest possible extensions to the 
vocabulary. For example, if it detects that the user created 
features involving negative words (e.g. not, never, neither, 
etc.) as indicators for the code “Info Lost”, it could suggest 
similar words the user may have missed. Exploiting English 
as a knowledge source could be amendable to machine 
learning techniques, such as using WordNet [19] to find 
synonyms, or exploiting sentence construction and 
composition. This highlights the importance of making 
information available to the ML algorithm that may not be 
expressed solely from the current data via statistics on 
features and relationships, and hints at the possibility of 
supplementing a machine-learned program’s reasoning 
through commonsense knowledge sources (e.g., [14]). 

CONCLUSION  
In this paper we explored candidate principles for 
incorporating saliency into the design of machine-learned 
programs. We investigated what information end users 
considered salient when fixing a machine-learned program, 
and built upon the results to inform three saliency principles 
for machine learned programs: expose the ML program’s 
reasoning process; support a flexible vocabulary; and 
illustrate the effects of user changes. 

Our user study explored the perceived usefulness of several 
widgets built upon these principles and gave us additional 
insight into how users react to various forms of saliency: 

• The combination of code-oriented and run-time saliency 
was viewed very positively. Code-oriented saliency on its 



 

own, however, was viewed as unhelpful.  
• End users were not overwhelmed by the inclusion of 

saliency widgets. Conventional wisdom often tells us to 
keep interfaces simple, so this result is surprising. 

• A majority of our participants perceived at least one 
widget instantiating the three saliency principles to be 
helpful, providing initial evidence that the principles 
themselves are a sound starting point for supporting 
saliency in an end-user debugging context. 

Supporting saliency can give end users the information 
necessary to effectively fix a machine-learned program. As 
such programs continue to become more prevalent, aiding 
users in understanding and debugging them will play an 
important role in the ultimate usefulness of programs 
learned by machines. 
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