
End-User Debugging of Machine-Learned Programs:
Toward Principles for Baring the Logic

First Author Name (Blank if Blind Review)
Affiliation (Blank if Blind Review)
Address (Blank if Blind Review)

e-mail address (Blank if Blind Review)
Optional phone number (Blank if Blind Review)

Second Author Name (Blank if Blind Review)
Affiliation (Blank if Blind Review)
Address (Blank if Blind Review)

e-mail address (Blank if Blind Review)
Optional phone number (Blank if Blind Review)

ABSTRACT
Many applications include machine learning algorithms
intended to learn “programs” (rules of behavior) from an
end user’s actions. When these learned programs are wrong,
their users receive little explanation as to why, and even
less freedom of expression to help the machine learn from
its mistakes. In this paper, we develop and explore a set of
candidate principles for providing salient debugging
information to end users who would like to correct these
programs. We informed the candidate principles through a
formative study, built a prototype that instantiates them, and
conducted a user study of the prototype to collect empirical
evidence to inform future variants. Our results suggest the
value of exposing the machine’s reasoning process,
supporting a flexible debugging vocabulary, and illustrating
the effects of user changes to the learned program’s logic.

Author Keywords
Debugging, end-user programming, machine learning,
principles, saliency.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces: Theory and methods.

INTRODUCTION
New programs are emerging on end-users’ desktops:
programs written by machines. At its heart, a computer
program is a set of rules of behavior, instructing the
computer how it should react to inputs. Programs such as
spam filters and recommender systems employ machine
learning (ML) algorithms to learn rules of behavior from a
user’s actions, and then uses these rules to automatically
process new data. We term the resulting set of rules a
machine-learned program. Many of these programs
continuously learn as users perform actions and build rules
based on probabilistic models that are specific to the given
user. As a result, only that particular user can determine
whether the machine-learned program is performing

adequately and, by extension, fix it when required.

Debugging a machine-learned program, however, presents a
number of challenges to end users: 1) Users often lack a
clear understanding of how the program makes decisions
[23], 2) it is unclear what changes users need to make to
improve the program’s performance [6], 3) users can
usually only provide additional training examples to fix its
logic [4], and 4) the impact of user changes can only be
determined at run-time. One of our study participants
succinctly summed up these challenges by answering the
question, “How do you think the program makes its
decisions?” with the response, “I don’t know. Magic?”

We hypothesize that to help users effectively debug an ML
program, it must provide explanations regarding its logic
and allow the user to influence the program’s behavior
beyond providing mere training examples. Previous studies
[12, 20, 21] have explored ways to overcome these
challenges by exposing some of the program’s logic and by
allowing users to adjust parts of this logic. There has,
however, been no systematic investigation into what
information regarding the logic of a learned program is
particularly useful for end-user debugging.

In this paper, we introduce and explore the principle of
machine-learning saliency, which we define as the
exposure of useful and accurate pieces of information about
the logic of a machine-learned program. Building upon this
concept, we investigate the information users require when
debugging ML programs, as well as how users respond to
programs that present them with this information.

We worked within the domain of “auto-coding” (i.e.
assisting with categorizing data from verbal transcripts)
while exploring ML saliency. Coding is a familiar task in
the fields of psychology, social science, and HCI, and
involves categorizing segmented portions of study
transcripts as part of an empirical analysis process.

We chose this domain for three reasons. First, the user’s
debugging time is potentially much less than the time
needed to do the entire task manually, because coding can
be extremely time-consuming. Second, debugging is
necessary because the codes and their meanings are tailored
to each individual study. Finally, coding is a good
environment for studying end-user debugging of machine
learning because there is likely to never be enough data

Submitted to CHI 2010. Do not circulate.

pertinent to any one coding project for machine learning to
succeed without help. These factors suggest the domain of
auto-coding will involve end users who are highly
motivated to debug the ML program.

This paper explores the principle of ML saliency as a
foundation for exposing the logic of ML programs to end
users. We present three saliency principles and implement
them through seven UI widgets in a research prototype,
basing them upon prior literature and a formative study
investigating how end users interpret and correct a
machine-coded transcript. Finally, we explore how end
users react to these saliency features and the implications
for future approaches toward supporting end-user
debugging of machine-learned programs.

BACKGROUND AND RELATED WORK
In order for users to efficiently debug ML logic, they must
understand when and where problems exist. Researchers
have found that both technical and non-technical users have
difficulty understanding how ML systems generate their
predictions [6, 17, 23], and would like to understand more
about their reasoning [6, 8]. Machine-generated
explanations that address this knowledge gap have taken a
variety of forms, such as highlighting the relationship
between user actions and the resulting predictions [2],
detailing why a machine made a particular prediction [15],
or explaining how an outcome resulted from user actions [8,
23, 24]. Much of the work in explaining probabilistic
machine learning algorithms has focused on the naive
Bayes classifier [1, 11] and, more generally, on linear
additive classifiers [18], because explanations of these
systems are relatively straightforward. More sophisticated,
but computationally expensive, explanations have been
developed for general Bayesian networks [13]. All of these
approaches, however, are intended to explain how a specific
decision was reached, instead of assisting a user who is
debugging a program’s overall behavior.

Some research has started to shed light on debugging of
simple ML programs [12, 20], as well as more complex
ensemble classifiers [22]. Initial steps have been taken to
include some results of these studies in user interfaces [21],
but a thorough investigation of ML logic that could and
should be made salient in the machine’s explanations has
not been attempted.

Focusing on the particular domain of auto-coding, the
TagHelper auto-coding system is highly accurate with
extensive training data, but not for categories with few
training examples [5]. Obtaining training data, however, is
expensive because manual coding is time-consuming. Our

research addresses this issue by attempting to reduce the
need for training by instead fine-tuning the program’s logic.

A FORMATIVE STUDY OF ML SALIENCY
To draw out principles of saliency, we conducted a
formative study to investigate end users’ understanding of
ML logic, desired debugging feedback, and the effects of
explanations exposing the program’s logic. The study
comprised two parts: applying the Natural Programming
approach [16] we first exposed end users to a machine-
learned program without any explanations, while the second
part added explanations about the program’s logic.

Our research questions were:

RQ1: Natural conversations: How do end users
“naturally” give feedback to machine-learned programs?

RQ2: Mental models: What are end users’ mental models of
the program’s logic, i.e. what do they believe is salient?

RQ3: Influence of saliency: What happens when relevant
debugging information is provided to end users?

Participants and Materials
Participants included nine psychology and HCI graduate
students (five female, four male). Five participants had
prior experience coding transcripts and all were familiar
with the domain covered in the transcript. No participants
had any background in machine learning.

We obtained a coded transcript from an unrelated study and
developed two different paper prototypes of an auto-coding
application. Both prototypes showed transcript segments
and the codes applied to them. We randomly changed 30%
of the assigned codes to elicit participant corrections.

The first prototype showed only segments and codes
(Figure 1 left). The second prototype added explanations
about each ML prediction (Figure 1 right). The
explanations were inspired by the Whyline [9], a debugging
environment that can answer user questions about program
behavior. Each explanation included two reasons why the
segment was classified with a particular code and two
reasons each for not classifying it as a different code. The
explanations drew attention to a total of ten types of
information items that a designer of a machine learning
algorithm could reasonably select and implement for the
algorithm to make a classification, such as the presence of
particular words, sequential ordering of codes, etc.

Procedure
In a pre-session, we familiarized participants with the
particular code set and gathered information on the

Figure 1: Paper prototypes without (left) and with (right) explanations.

participants’ background (gender, academic major, and
prior experience with coding).

For the study, we led participants to believe that the paper
transcript had been coded using a machine-learned
program. The participants were asked to fix any incorrect
codes applied to segments and to help improve the
program’s accuracy by suggesting things to which the
program should pay attention. Participants were given 30
minutes to debug the first prototype (79 segments without
explanations), after which they filled out a questionnaire
asking how they believed the system made its decisions and
what information it should use to make better predictions.
Participants then debugged the second prototype (41
segments with explanations) for another 20 minutes. We
repeated the questionnaire, asking how they now believed
the computer made its decisions, and in addition, which
aspects of the explanations they found confusing or helpful.

Pens, colored pencils, and post-it notes were provided to
encourage feedback directly on the paper prototype in any
manner the participant preferred. We also recorded their
verbalizations as they worked on the main task, prompting
them if their remarks were unclear or they stopped talking,
and transcribed the recordings for further analysis.

Analysis Methodology
To categorize what our participants found salient, four
researchers jointly established a candidate code set by
analyzing a subset of the marked-up prototypes combined
with the transcribed audio. Two researchers then iteratively
applied this set to sections of a transcript and adjusted the
code set after each iteration to ensure reliability.

We employed a code set from a previous study [20] to

identify potential gaps in our code set. Our code set
accounts for all of the feedback types identified in [20],
extended by codes that capture information deemed salient
by our participants prior to the introduction of explanations.
This final code set is given in Table 1.

Two researchers independently coded a transcript using this
coding scheme, achieving an inter-coder reliability of 87%
as calculated by the Jaccard index. This level of agreement
indicated a robust code set, so the remaining data was split
between the two researchers to code.

ML SALIENCY FINDINGS

What Types of Information Are Important?
As a starting point toward investigating ML saliency, we
need to understand what types of information users regard
as useful when debugging a program and the vocabulary
naturally used to tell this information to the program (RQ1).
Thus we examined the suggestions participants provided to
influence the machine-learned program’s logic. These
suggestions illustrate the types of information participants’
believed the program should use to make its predictions.

Figure 2 illustrates participants’ feedback suggesting
various types of features. In machine learning parlance, a
feature is a characteristic of the data that is useful for the
ML algorithm in making a prediction. First, the high
frequency of suggestions about whole segments (n=157,
40%) or word combinations (n=98, 25%) point to a need to
shift away from classification approaches based on single
words (e.g. “bag-of-words” classifiers) to algorithms that
can handle larger functional units. In particular, word
combinations appeared twice as often as single words and
punctuation combined. From a machine learning
perspective, designing an algorithm that adds features for
all possible n consecutive words up to some cut-off value of
n is infeasible because it would introduce too many
irrelevant features. As a consequence, machine learning
algorithms need to take account of user input, as complex
features need to be definable by the user as they debug the
program.

Code
Subcode Participant talked about…

Word/Punctuation
Single a single word.

Multiple multiple words.
Punctuation a punctuation mark.
Adjustment a change in word(s) importance.

Process a change in how features should be
extracted or processed.

Segment a segment as a whole
Relationship

Word relationship between words within one
segment.

Segment relationship between segments.
QA-Pair a question-answer pair of segments.

Reference some other portion of the transcript.
Double code being just a continuation of a previously

coded segment.
Code Elimination the segment not fitting into any of the

other codes.
Other Other or unclear.

Table 1: The code set used for data analysis.

Figure 2: Number of instances of different types of feedback,

prior to introduction of explanations.

!"#

$%#

"&#

"'(#

!!#)!#
!#

0!

50!

100!

150!

!
"#

$%
&'
()
'*
++
"&
%,

+%
-'

Second, all but one of the participants reported taking
relationships among different words or segments into
consideration (P1: “So is this part a continuation of
this?”), especially between contiguous segments. Hence,
when providing opportunities for users to change the logic
of the learned program, the application should support the
creation of features representing relationships between
existing ML features.

Third, although participants seldom mentioned punctuation,
seven out of nine participants talked about it at least once.
This suggests that punctuation is significant when end users
analyze transcripts, yet current ML algorithms routinely
ignore it. The reverse is true for absence of features, which
participants mentioned three times less often as their
presence. This indicates that participants are primarily
focused on what they see in the data, as opposed to what is
not present. This creates an opportunity for saliency to draw
attention to the common practice by ML algorithms of
using the absence of certain features for classification.

How Do Explanations Affect Saliency?
We investigated the effects of saliency by introducing
explanations of the learned program’s logic in the second
prototype and comparing the changes of participants’
mental models of the prototypes’ reasoning processes. This
data was gathered by free-form responses to paired
questions, allowing us to gauge their mental models before
explanations were provided (RQ2), and examine how their
mental models changed after salient explanations were
made available (RQ3). As illustrated in Figure 3, after
interacting with the first prototype (without explanations),
participants’ perception of the program’s logic relied on
word and punctuation presence. Seven of our nine
participants thought the program made decisions based on
the presence of single words, while only two participants
mentioned multiple words. Four participants also reported
that punctuation played a role. Nobody thought the
computer used absence of words or punctuation, and only
one participant thought it paid attention to relationships
between segments. In contrast with how participants
thought the program should make decisions (cf. Figure 2),
their mental model of how it did make decisions revealed a
much simpler decision process.

Most participants’ mental models changed after exposure to
explanations, tending toward richer and more complex
types of features like word combinations and relationships.
Five participants now thought the presence of multiple, not
single, words mattered to the computer, and seven
participants now thought the program used sequential
relationships among words and segments.

An important change in users’ models was the appearance
of probabilistic reasoning in five of our participants:

P1: “...Uses probabilities of certain codes occurring before
and/or after other codes.”
P2: “Using probabilities about what the previous boxes
were coded....”

On many occasions, however, user descriptions implied
probabilities were the product of consistent rules. This
reflects a known bias in reasoning called the outcome
approach, commonly referred to as “the weather problem”
[10]. The outcome approach is the phenomenon of
interpreting probabilities as binary, rather than the
likelihood of a particular response. For example, if a
meteorologist states there is a 70% chance of rain the next
day, many people interpret this to mean it is supposed to
rain. Thus, if the next day is sunny, people will say the
meteorologist was wrong. In other words, while participants
understood that the computer was using probabilistic
reasoning, they still expected it to apply its strongest rule.

Additionally, two participants found the “why not”
explanations to be particularly helpful. As one said:

P3: “The info about why it wasn!t something was very
helpful… Most of the time I didn!t agree with reasoning for
what the segment was coded as, so having the other
reasons helped me understand.”

These participants seemed to appreciate a balance of
evidence pointing to decisions and valued the ability to tell
why something did not happen. This finding correlates with
a study of the Whyline debugging environment [9], and
suggests that such information may be considered salient by
end users debugging machine-learned programs.

Taken together, it appears salient explanations
demonstrated to participants that the machine-learned
program was more complex than initially thought. Saliency
particularly enhanced our participant’s mental models
regarding the learned program’s probabilistic nature,
modeling of relationships, and its ability to use sequences
of words. Furthermore, the fact that participants changed
their mental models after new information was presented

Figure 3: Participants’ mental models before (circles) and

after (squares) explanations. Categories with <2 before and
after instances are omitted.

contradicts the findings of [23], whose participants’ early
mental models were remarkably persistent, even given
counter-evidence. Our results point to the potential for
saliency to help users adjust their mental models by
providing information necessary for them to properly
understand the program’s behavior.

SUPPORTING SALIENCY IN CONVERSATIONS WITH A
MACHINE-LEARNED PROGRAM
Building upon background literature and the results of our
formative study, we identified aspects of machine-learned
programs where saliency could provide the user with
knowledge both helpful and relevant to their debugging
task. These fall into three saliency principles (SP), which
later served as design constraints for our prototype.

SP1: Expose the ML Program!s Reasoning Process
Just as one would not expect a professional programmer to
debug an algorithm’s implementation without first
understanding how the algorithm operates, it is
unreasonable to expect end-user programmers to debug a
machine-learned program without understanding its logic or
the data it draws upon. Previous research [6, 21] has shown
that users are interested in the features the ML algorithm
uses. The “Why” explanations in [15] proved effective at
enriching the participants’ understanding of the program’s
reasoning process, as did similar explanations in our own
formative study.

Two specific aspects of the reasoning process that our
formative study suggests should be made salient concerned
probabilities and absence of features. Both concepts were
completely absent from participants’ initial mental models,
indicating a need for explanations highlighting each.

Our formative explanations about probabilistic reasoning
were framed in the context of a particular prediction, e.g.,
“Segments containing ‘compare’ are probably ‘Seeking
Info’”, instead of the static, non-concrete explanations in
[12]. This proved to be quite successful and indicates that
making the reasoning process explicit should be done with
concrete explanations. Further exposure of the machine’s
reasoning might also help resolve the outcome approach
phenomenon discussed earlier, allowing end users to better
reason about the learned program’s logic.

SP2: Support a Flexible Vocabulary
Debugging a machine-learned program is akin to the user
holding a conversation with it: the program tells the user
why it is making various predictions, and the user tells it
why some of those predictions are right and why others are
wrong. Before such a conversation is held, however, a
vocabulary must exist which both parties understand [3]. As
we and other researchers [21] have found, users have a
much richer vocabulary than the standard bag-of-words
representation used by current ML systems. This richer
vocabulary consists of word combinations, punctuation, and
relational information. Hence, an aspect of this principle is
that both the user interface and the ML algorithm must
support a much larger vocabulary than is currently possible,

and that this vocabulary be extensible. While the interface
should allow for vocabulary expansion by the user, the
algorithm must be able to deal with the resulting new user-
generated features.

SP3: Illustrate Effects of User Changes
Our participants expressed a clear interest in how a rule was
used in the learned program’s logic, as evidenced by their
positive reaction to explanations regarding why the learned
program made each of its predictions. Additionally, end
users like to see the effects of their actions in the context of
a program’s behavior [21], and this has been noted
previously with “non-learned” programs [9]. Thus, the
impact of changes to a learned program’s logic should be
expressed to end users, so they may understand how their
behavior affects the machine’s predictions and to be able to
adapt their actions to increase the program’s accuracy.

One specific effect, peculiar to machine-learned programs,
illustrates a second reason behind this saliency principle.
Most end users are unaware of a problem plaguing many
machine learning algorithms; when one category of data is
over-represented in the training set, this same over-
representation cascades into the program’s predictions.
Known as class imbalance, this problem is often
exacerbated by end user strategies that focus on one
category of information at a time [12]. By clearly
displaying the effects of user changes, end users can both
be educated about such problems, and informed when their
actions are contributing to the problem.

THE AUTOCODER PROTOTYPE
Building upon the saliency principles, we designed a hi-fi
auto-coding prototype. The AutoCoder application allows
users to code segmented text transcripts (Figure 4 A) using
a predefined code-set (Figure 4 B). Codes shown on the
interface are colored to give users an overview of their
coding activity. These colors are replicated in the
navigation scrollbar to provide an overview of each code’s
occurrence over the whole transcript (Figure 4 C). The user
is able to manually assign a code to each segment; after
three segments have been coded, the computer will attempt
to predict the codes of the remaining segments using a
variant of the naive Bayes algorithm for sequential data.
The learned program updates its predictions as the user
provides corrections and additional training data.

In addition to the basic ability of coding a transcript, we
devised a series of widgets implementing our saliency
principles for the AutoCoder prototype.

Figure 4: The basic AutoCoder prototype showing a series of
segments (A), their corresponding codes (B), and an overview

of the transcript’s codes (C).

Exposing the Logic
We designed the AutoCoder such that it could describe the
most relevant pieces of information leading to its decisions
and expose the types of rules it used, thus satisfying our
first saliency principle (SP1). AutoCoder provides a list of
Machine-generated Explanations (Figure 5 W1) for each
prediction, informing users of the features and logic that
most influenced its decision. A computer icon reminds
users that these explanations are based upon machine-
selected features.

Specific Absence Explanations (Figure 5 W2) inform
users about how the learned program utilizes the absence of
words or phrases when predicting codes, e.g. “The absence
of ‘?’ often means that a segment is ‘Info Gained’”. The
idea of invisible things affecting the machine’s predictions
has traditionally been difficult to express to users in a
comprehensible manner [12, 20], and questions still remain
over whether being truthful about this aspect of machine-
learned decision-making is desirable, considering its
potential to confuse end users.

In providing the above explanations, end users are given the
ability to review important elements of the learned
program’s logic. Users can select any segment to view
explanations about its current prediction, resulting in the
machine-generated explanation with the highest-weighted
features appearing beneath the segment text: this is
generally the suggestion that was most influential toward
the learned program’s prediction. Since the algorithm is
probabilistic, it can employ a large number of competing
pieces of logic, so the AutoCoder sorts the explanations list
according to the most influential features. Users can click a
button to progressively show more. If a user disagrees with
an explanation, she can delete it to exclude its logic from
the learned program’s future predictions.

We carefully crafted the wording of the explanations to
illustrate that suggestions are open to uncertainty. To
further expose the probabilistic nature of the learned
program we designed a Prediction Confidence (Figure 6
W3) widget. This is a pie graph that displays the program’s
probability of coding a given segment using any of the
possible codes. A confident prediction is indicated by a
predominantly solid color within the pie graph, while a

graph containing an array of similarly sized colors indicates
that the program cannot confidently determine which code
to apply. If the program does not display a high confidence
in its prediction, users can implement measures to improve
its logic.

Debugging With a Flexible Vocabulary
We provided debugging support with a flexible vocabulary
to support saliency principle SP2. By selecting a sequence
of text, users can add their own features to the program.
Hence, they are given the ability to explain to the machine
why a segment should be coded in a particular manner. The
User-generated Suggestions (Figure 5 W4) are integrated
into the learned program’s logic for determining the codes
of the remaining segments not already manually coded.
User-generated suggestions are treated by the learned
program similarly to machine-generated explanations, but
with added weight to reflect the fact that the user attempted
to correct the machine. They are distinguished from
machine-generated explanations by a “human” icon.

Users are able to create features spanning adjacent
segments to model relationships between words and
segments, as well as including non-consecutive portions of
text in a single segment. An example of a possible user-
generated suggestion that incorporates such a relationship
is: “‘?’ in the preceding segment followed by ‘OK’ in this
segment often means this segment is ‘Info Gained’”. We
also allow users to add single words or combinations of
words to the program. For example, Figure 5 shows a user
creating a word combination feature by selecting a portion
of text. This flexibility allows a user to extend the
machine’s vocabulary to closer-match her own.

Illustrate Effects
We developed three widgets that illustrate the effects each
user change had on the learned program (SP3). These
widgets serve a similar function as a run-time debugger in
traditional programming: they provide detailed information
about the current state of the program during its execution.

To reflect how a user suggestion impacts the overall coding
task, we designed an Impact Count Icon (Figure 6 W5) to
reflect how many predictions each suggestion affects. For
example, the suggestion stating that “?” implies a
particular code will impact each segment containing a “?”,
likely resulting in a high impact count. A suggestion with a

Figure 5: An AutoCoder Machine-generated Explanation

(W1), Absence Explanation (W2), and User-generated
Suggestion (W4).

Figure 6: The Prediction Confidence widget (W3), Impact

Count Icons (W5), Popularity Bar (W7), and Change History
Markers (W6).

high impact count is important, since it will affect many
predictions. To indicate which segments are affected by a
suggestion, AutoCoder highlights affected segments and
their corresponding sections in the scrollbar.

To help users understand the specific implications of their
last action, Change History Markers (Figure 6 W6)
provide feedback on where changes in the program’s
predictions recently occurred. A black dot is displayed
adjacent to the most recently altered predictions beside their
respective segments in the scrollbar. This gives the user an
overview of every change throughout the program. As the
user makes changes that do not alter the machine’s
prediction for a segment, its mark gradually fades away.

The Popularity Bar (Figure 6 W7) specifically addresses
the problem of class imbalance. It represents proportions of
each code amongst the user-coded and machine-predicted
segments. The left bar represents code popularity among
user-coded segments, i.e., the proportion of codes the user
has manually applied to segments. The right bar contrasts
code popularity among machine-predicted segments, i.e.,
the proportion of codes the machine is predicting for
remaining segments.

The Popularity Bar serves to illustrate an added nuance of
designing widgets to support our saliency principles: a
single widget may implement multiple principles. The
initial goal of the Popularity Bar was to show the effects of
class imbalance (SP3), but we later realized that this would
only be helpful if users knew why class imbalance was a
problem for the learned program (SP1). Thus, we indirectly
exposed an aspect of the machine’s reasoning process to the
end user by crafting a widget that would illustrate the
negative effects of class imbalance.

USER STUDY
To better understand the impact of saliency on end-user
debuggers, we conducted a user study of the AutoCoder
prototype. We developed four versions (VB, V1, V2, and
V3), each embedding various sets of saliency widgets. The
basic version (VB) provided machine-generated
explanations, user suggestions, and change history markers;
these widgets support the three saliency principles at a basic
level. Another version, V1, extended the basic version by
including Absence Suggestions and the Impact Count Icon.
Version V2 extended the basic prototype by adding
Prediction Confidence widgets and the Popularity Bar. A
final version (V3) included all seven widgets. A summary
of the various versions is given Table 2.

By presenting several subsets of widgets to users, we
intended to collect nuanced differences in user reactions.
Since working with independent versions for each of the
widgets would have placed intensive demands on the user,
we grouped saliency widgets with respect to the class of
information they display. Inspired by traditional
programming languages, we created two classes of widgets,
code-oriented and run-time oriented. Code-oriented

widgets present information that is independent of the
machine’s predictions (i.e., information that could be
gleaned from the learned program’s “source code”). Run-
time oriented widgets present information that requires the
program to “run” or make predictions (i.e., information can
only be determined by actually running the “source code”).
It is difficult to imagine a professional programmer
debugging without both types of information being
available. The same logic may apply when end users debug
machine-learned programs. The Absence Suggestions and
Impact Count Icon both present code-oriented saliency
information, and are represented in V1. The Prediction
Confidence widget and Popularity Bar displayed saliency
information only available at run-time, and were in V2.

The addition of V3, consisting of all seven saliency widgets
at once, allowed us to investigate whether too much
saliency would be a problem for end users.

Procedure
We recruited 74 participants (40 males, 34 females) from
the local student population and nearby residents for our
study. None possessed experience with machine learning
algorithms and only one had previous experience with a
task similar to coding. The high number of participants was
chosen to allow statistical tests on the resulting log data.
We plan to investigate how end-user debugging strategies
were affected by the different versions each user interacted
with in a future paper. In this paper we focus on how useful
end users perceived the various saliency widgets, and the
implications this holds for our saliency principles.

The tutorial consisted of a 30-minute introduction to
coding, the coding set itself, and the prototype’s
functionalities. This was followed by a 20-minute period
where users coded a transcript with one version of the
prototype. We then gave additional instructions regarding a
second version of the prototype, before asking users to code
another transcript using this different version. We assigned
versions and transcript orders randomly across our
participants.

In addition to logging participant interactions with the
prototype, we used a set of questionnaires to obtain
comprehensive user feedback about each saliency widget,
participant mental models of the learned program’s logic,
and their preferred version (out of the two they
experienced). We also employed the NASA-TLX survey
[7] to evaluate difficulties and perceived success with each
prototype version.

 W1 W2 W3 W4 W5 W6 W7
VB ! ! !
V1 ! ! ! ! !
V2 ! ! ! ! !
V3 ! ! ! ! ! ! !

Table 2: The saliency widgets included in each version of the
AutoCoder prototype.

Findings
Through participants’ questionnaire responses relating to
different prototype versions, we were able to collect
reactions to individual saliency widgets and compare code-
oriented and run-time saliency widgets. Figure 7 shows
counts of how useful participants found the various saliency
widgets, and Figure 8 displays the perceived effort of
interacting with the different prototype versions.

Absence Features and Prediction Widgets
Most participants found the Absence Explanations
unhelpful (Figure 7), while still considering Machine-
generated Explanations to be useful. Additionally, the
Prediction Confidence graphs were widely seen as very
helpful. These three widgets reflect SP1 by exposing the
learned program’s reasoning process, and variation in users’
reaction may be due to the amount of effort required to
comprehend them. As others [20] have reported, many end
users have trouble understanding how absence of something
plays a role in a machine’s decision-making. As one
participant explained:

P4: “[Absence explanations were] very confusing and
provided no help.”

Furthermore, our formative study showed that participants
preferred simple explanations of why the words in a
segment led the machine to make a particular prediction.
These results imply that the complexity of the reasoning
should be taken into account when crafting explanations
supporting SP1 (Expose the program’s reasoning process).

Impact Count, Popularity Bars, and Change History Markers
A majority of our participants found the Impact Count
Icons unhelpful, and responses to the Popularity Bar and
Change History Markers were neutral. All of these widgets
supported SP3; they illustrated the effects of user changes
to the learned program. A frequent criticism of all three
widgets was that the information they represented was
unclear, such as:

P5: “The number in the circle means nothing to me.”
P6: “What is it???”
P7: “I don!t understand what this graphic was implying.”

This may simply illustrate a learning curve that was not

adequately dealt with in the tutorial, but it may also imply
that widgets supporting SP3 should clearly indicate the type
of effects they represent. While our widgets included
tooltips to remind participants what the information they
conveyed meant, it seems many participants did not use
them. Providing visual cues that reflect this kind of
information could alleviate the primary participant
complaint against these widgets.

Code-oriented vs. Run-time Information
Next we examined participants’ preference regarding the
classes of widgets they interacted with. As Figure 9 Right
illustrates, V3, which combined both types of saliency
widgets, was a clear favorite. It was most frequently a
user’s top choice, and least frequently their second choice.
The run-time version, V2, was preferred slightly more often
than not, but both the code-oriented and basic versions (V1
and VB) were more likely to be the runner-up than the first
choice. Participants preferred run-time saliency to code-
oriented saliency, but preferred the inclusion of both types
of information in a single interface even more.

Interestingly, our participants’ preferred version contrasted
with the system they felt yielded the best results. The
NASA-TLX questionnaire showed that participants felt
they performed better with V2 than any other version
(Figure 9 Left). V3 did not lead to a clear feeling of success
over other systems; instead, users may have preferred
working with it for other reasons, such as improved
confidence that they could eventually accomplish the task.

Figure 7: The number of participants who rated each saliency
widget “very unhelpful” (darkest) to “very helpful (lightest).

Figure 8: The number of participants who rated each version
as requiring the most mental demand, the most effort to use

properly, or causing the most frustration.

Figure 9: Left: The number of participants who felt they were

most successful with each version. Right: The number of
participants who rated each version as preferred (dark) and

non-preferred (light).

0!

10!

20!

30!

N
um

be
r o

f "
Pa

rt
ic

ap
an

ts
"

0

10

20

Highest
Mental

Demand!

Most Effort! Most
Frustrating!

N
um

be
r o

f "
Pa

rt
ic

ap
an

ts
"

VB!
V1!
V2!
V3!

0!

10!

20!

VB! V1! V2! V3!

N
um

be
r o

f "
Pa

rt
ic

ap
an

ts
"

VB! V1! V2! V3!

These results are mirrored by the other TLX responses in
Figure 8, which showed V1 being more mentally
demanding, requiring more effort and leading to more
frustration than the other systems. V2 and V3 often
performed much better in these respects. This shows that
code-oriented saliency (V1) may lead to higher task load
than run-time saliency (V2 and V3).

LESSONS LEARNED AND FUTURE DIRECTIONS
As a result of our studies exploring saliency, we learned
lessons and design implications that will be explored in
future work regarding the effects of saliency on end users
debugging machine-learned programs.

Saliency Facets
While we explored the saliency principles overall, their
subtle facets and associated usefulness have not been
addressed thus far. In our study we fulfilled one such
principle (SP3) through two different facets: code-oriented
and run-time debugging information. Our study participants
displayed a noticeable preference for run-time saliency
widgets versus code-oriented saliency widgets. A typical
participant response about the Impact Count Icon marked it
as unhelpful:

P8: “Honestly, didn!t even look at this.”
This same participant, however, found the run-time
Popularity Bar to be quite useful:

P8: “I could see if I was spending more time and energy on
specific tags and less on others.”

Thus, it may be the difference between code-oriented and
run-time debugging information, rather than the saliency
principles embodied, that determines the perceived
usefulness of a particular widget. In addition, the
contribution of facets to the remaining saliency principles
and their respective influence on usefulness for debugging
merits more research.

Debugging Behavior
Exposing the ML program’s logic (SP1) may influence user
debugging behavior. Some participants in the formative
study commented on being uncertain how to code some
segments. The popularity of the Prediction Confidence
widget may be related to these users gaining confidence in
the machine’s predictions and feeling there was a lower risk
of the program predicting incorrectly than of the user
herself being wrong. As one participant phrased it:

P9: “If I was undecided, the pie would help me decide.”
Other participants indicated a similar lack of confidence in
their decisions, but did not appreciate the computer’s help:

P10: “I felt like I HAD to agree with the program.”
Here, the saliency widget may have had a negative effect on
the user’s debugging behavior. Similarly, the Popularity
Bar altered some users’ behavior in unintended ways:

P11: “This was more distracting than anything, because I
wanted each color to be evenly spaced!”

P12: “I had an internal drive to want to teach the computer
to be equal. I think this caused me to favor one answer
over the next.”

Further research could lay bare how saliency leads to
changes in user debugging behavior and how to guard
against unwise feedback choices.

Future Design of Machine-Learned Programs
A surprise was that the combination of all saliency widgets
did not overwhelm or intimidate most users, as the most
popular version by far included all seven saliency widgets.
Participants often commented on them when asked which
treatment they preferred:

P9: “I liked [V3] better because it had a wider overview of
outcomes each tag would cause. Easier to see changes
occur also.”
P8: “I liked having the percentages of what the computer
thought, but I could also see what and how much I was
telling the computer about each tag.”
P13: “[V3] because it provided more detail and information
on why the computer suggested a particular tag.”

It appears that one practical implication for the design of
machine-learned programs is to give the user as wide a
choice as possible when implementing saliency.

Machine-learned programs could also further support the
saliency principle of supporting a flexible vocabulary
(SP2). Future research will explore how the machine
learning program could suggest possible extensions to the
vocabulary. For example, if it detects that the user created
features involving negative words (e.g. not, never, neither,
etc.) as indicators for the code “Info Lost”, it could suggest
similar words the user may have missed. Exploiting English
as a knowledge source could be amendable to machine
learning techniques, such as using WordNet [19] to find
synonyms, or exploiting sentence construction and
composition. This highlights the importance of making
information available to the ML algorithm that may not be
expressed solely from the current data via statistics on
features and relationships, and hints at the possibility of
supplementing a machine-learned program’s reasoning
through commonsense knowledge sources (e.g., [14]).

CONCLUSION
In this paper we explored candidate principles for
incorporating saliency into the design of machine-learned
programs. We investigated what information end users
considered salient when fixing a machine-learned program,
and built upon the results to inform three saliency principles
for machine learned programs: expose the ML program’s
reasoning process; support a flexible vocabulary; and
illustrate the effects of user changes.

Our user study explored the perceived usefulness of several
widgets built upon these principles and gave us additional
insight into how users react to various forms of saliency:

• The combination of code-oriented and run-time saliency
was viewed very positively. Code-oriented saliency on its

own, however, was viewed as unhelpful.
• End users were not overwhelmed by the inclusion of

saliency widgets. Conventional wisdom often tells us to
keep interfaces simple, so this result is surprising.

• A majority of our participants perceived at least one
widget instantiating the three saliency principles to be
helpful, providing initial evidence that the principles
themselves are a sound starting point for supporting
saliency in an end-user debugging context.

Supporting saliency can give end users the information
necessary to effectively fix a machine-learned program. As
such programs continue to become more prevalent, aiding
users in understanding and debugging them will play an
important role in the ultimate usefulness of programs
learned by machines.

ACKNOWLEDGEMENTS
[Removed for blind review]

REFERENCES
1. Becker, B., Kohavi, R., and Sommerfield, D.

Visualizing the simple Bayesian classifier. In Fayyad,
U, Grinstein, G. and Wierse A. (Eds.) Information
Visualization in Data Mining and Knowledge Discovery,
(2001), 237-249.

2. Billsus, D., Hilbert, D. and Maynes-Aminzade, D.
Improving proactive information systems. Proc. IUI,
ACM (2005), 159-166.

3. Clark, H. H. Using language. Cambridge: Cambridge
University Press. (1996).

4. Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996).
Active learning with statistical models. J. of Artificial
Intelligence Research, 4, 129-145.

5. Dönmez, P., Rosé, C., Stegmann, K., Weinberger, A.
and Fischer, F. Supporting CSCL with automatic corpus
analysis technology. Proc. CSCL, ACM (2005), 125-
134.

6. Glass, A., McGuinness, D. and Wolverton, M. Toward
establishing trust in adaptive agents. Proc. IUI, ACM
(2008), 227-236.

7. Hart, S. and Staveland, L. Development of a NASA-
TLX (Task load index): Results of empirical and
theoretical research, Hancock, P. and Meshkati, N.
(Eds.), Human Mental Workload, (1988), 139-183.

8. Herlocker, J., Konstan, J. and Riedl, J. Explaining
collaborative filtering recommendations. Proc. CSCW,
ACM (2000), 241-250.

9. Ko, A. and Myers, B. Designing the Whyline: A
debugging interface for asking questions about program
failures. Proc. CHI, ACM (2004), 151-158.

10. Konold, C. Informal conceptions of probability.
Cognition and Instruction 6, 1, (1989), 59-98.

11. Kononenko, I. Inductive and bayesian learning in
medical diagnosis. Applied Artificial Intelligence 7,
(1993), 317-337.

12. Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S.,
White, S., Burnett, M., Oberst, I. and Ko, A. Fixing the
program my computer learned: Barriers for end users,
challenges for the machine. Proc. IUI, ACM (2009)
187-196.

13. Lacave, C., and Diez, F. A review of explanation
methods for Bayesian networks. Knowledge
Engineering Review 17, 2, Cambridge University Press,
(2002) 107-127.

14. Lieberman, H., Liu, H., Singh, P. and Barry, B. Beating
some common sense into interactive applications. AI
Magazine 25, 4, (2004), 63-76.

15. Lim, B. Y., Dey, A. K., and Avrahami, D. 2009. Why
and why not explanations improve the intelligibility of
context-aware intelligent systems. Proc. CHI, ACM
(2009), 2119-2128.

16. Pane, J., Myers, B. and Miller, L. Using HCI techniques
to design a more usable programming sys-tem. Proc.
HCC, IEEE (2002), 198-206.

17. Patel, K., Fogarty, J., Landay, J. and Harrison, B.
Investigating statistical machine learning as a tool for
software development. Proc. CHI, ACM (2008), 667-
676.

18. Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R.,
Wishart, D. S., Fyshe, A., Pearcy, B., MacDonnell, C.,
and Anvik, J. Visual explanation of evidence in additive
classifiers. Proc. IAAI, (2006).

19. Miller, G. 1995. WordNet: A lexical database for
English. Comm. ACM 38, 11, (1995), 39-41.

20. Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich,
T., Sullivan, E., Drummond, R. and Her-locker, J.
Toward harnessing user feedback for machine learning.
Proc. IUI, ACM (2007), 82-91.

21. Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong,
W.-K. and Burnett, M. Integrating rich user feedback
into intelligent user interfaces. Proc. IUI, ACM (2008),
50-59.

22. Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. 2009.
EnsembleMatrix: interactive visualization to support
machine learning with multiple classifiers. Proc. CHI,
ACM (2009). 1283-1292.

23. Tullio, J., Dey, A., Chalecki, J. and Fogarty, J. How it
works: a field study of non-technical users interacting
with an intelligent system. Proc. CHI, ACM (2007), 31-
40.

24. Vig, J., Sen, S., and Riedl, J. Tagsplanations: explaining
recommendations using tags. Proc. IUI, ACM (2009),
47-56

