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Synthesis, Characterization and Deposition of Dendrimers Using
a Continuous Flow Microreactor

Chapter 1 Introduction

Dendrimers are nanoscale macromolecules that have highly branched, core-
shell structures. Higher generation dendrimers have close-packed peripheral
functional groups and a hollow interior. The chemistry of the core and the terminal
functionalities can be tailored according to specific applications. These structural
characteristics provide room for the design of dendrimers to meet a wide set of
supra-molecular recognition and hosting tasks. Dendrimers are synthesized in a
stepwise manner to higher generations using a number of chemical reactions; as a
result, carrying out the synthesis in a conventional reactor is time-consuming, and
the dendrimer products are expensive. Here the syntheses of two different
dendrimers will be carried out in a continuous flow microreactor. Compared with
conventional flask synthesis, microreactor synthesis provides desired products
with comparable yield and selectivity but much shorter residence time.
Meanwhile, the microreactor is utilized as a powerful tool to study reaction
kinetics. Subsequently, the microreactor is used to deposit dendrimer thin film on
glass surfaces for further applications. The evaluation of the mixing quality and its

impact on the synthesis of dendrimers of several different micromixers will be



experimentally conducted. The experimental results will be compared with
simulation of the mixing quality of the micromixers by using the program
software, COMSOL. The evaluation and simulation will help the rational design of
the microreactor.

Objectives

(1) Compare mixing quality of micromixers having different geometries
experimentally and computationally (COMSOL simulation).

(2) Demonstrate the syntheses of dendrimers including convergent and
divergent synthesis strategies by utilizing a microreactor.

3) Study the reaction kinetics of dendrimer formation. The reaction
kinetics of amidation reaction of plolyamide Gl dendron will be
studied in detail.

4) Explore the deposition of dendrimers or dendrons on the surface of

glass slides by a continuous flow micromixer.



Chapter 2 Literature Review

2.1 General Background of Dendrimer

Polymer chemistry and technology have contributed numerous useful linear
and occasionally branched polymeric materials to benefit human condition.
Although some of linear polymers displaced three-dimensional characteristics,
they are covalently assembled in a one-dimensional style. The special property
and potential application of highly branched units in macromolecular was
originally studied in theory by Flory and co-workers in 1945.[1]

It was not until 1978, however, that the first dendrimer chemistry emerged
when Vogtle and co-workers disclosed a fully controlled synthesis of a low
molecular weight, branched amine in an iterative cascade way.[2] Tomalia and
co-workers disclosed a thoroughly investigated divergent synthesis and
characterization of one of the first dendrimeric members, PAMAM dendrimer, by
using an iterative Michael addition of a core ethylenediamine molecule to four
molecules of methyl acrylate, followed by exhaustive amidation using a large
excess of ethylenediamine.[3] At a later date, another demerimeric family,
poly(propylene imine) dendrimers were synthesized based on Vdgtle’s original
work by Miilhaupt and de Brabander by using a divergent strategy.[4] A
convergent strategy to grow dendrimers, which nowadays is recognized as the

second general approach to dendrimeric structure, was practiced by Hawker and



Frechét.[5] After the foundation of all these corner stones, studies toward the
synthesis, properties, and applications of dendrimers had gained tremendous
popularity. To date, there are more than fifty families of dendrimers, each of them
with some unique properties; many of them are commercially available.
Applications of dendrimers are widely ranged from catalysis to drug delivery, gene
therapy, and in-vitro diagnosis.
2.2 Structural Characteristics of Dendrimer

The hyperbranched dendritic compound firstly synthesized by Tomalia and co-
workers was called dendrimer, originated from a Greek word “dendron” meaning a
“tree”. Interestingly, in another independent work reported by Newkome,[6] a
similar highly branched macromolecule was named arborols from the Latin word
“arbor”, which also means a “tree”. Other names for dendrimers, such as cascade,
cauliflower, and starburst also describe its unique structural characteristics.

Compared with a linear or a hyperbranched polymer, two critical differences in
producing dendrimers render a uniform structure of dendrimer with a narrow
molecular weight distribution or even an exactly single molecular weight. The
first difference is the use of AB, monomers instead of the standard AB monomer,
which can only lead to a linear polymer. Secondly, a dendrimer is prepared in an
iterative manner, which is fundamental to the narrow distribution of molecular
weight. Although a hyperbranched polymer is also assembled from an AB,
monomer, it was generally produced by a non-iterative polymerization procedure;

therefore, it contains an unpredictable irregular structure. The molecular weight of



a hyperbranched polymer has a wide molecular weight distribution characterized
by the Gaussian distribution rule.

Taking PAMAM as an example (see figure 2-1), one molecule
ethylenediamine (AB,) is used as the core, which reacts with four molecules of
methylacrylate to generate the G-0.5. After obtaining G-0.5, an amidation reaction
with four molecules of ethylenediamine yields GO dendrimer. In an iterative
manner, this stepwise procedure will lead to a higher generation dendrimer with
complete control of the mass and structure. Equally impressive is the fact that a
structurally complex macromolecule can be assembled in a manner with only a

few steps.
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Figure 2-1. Preparation of PAMAM dendrimer.

2.3 Applications Related to the Dendritic Structure

Many applications of dendritic structures were inspired by the extended
analogies from nature. For example, neurons (brain cells) take forms of dendritic
structures to magnify the mutual conncections; natural polysaccharides take

dendritic structures to maximize glucose storage and speed its release, and in a



macro view, a crown of a tree can modify an environment by absorbing CO,,
releasing O,, and creating shade beneath itself. Likewise, applications related to
dendrimers’ aesthetically appealing structure involve three levels, the void core,
the well-tailored branch, and the crown-like surface.[7]

2.3.1 Applications Related to the Core

A specially designed core of dendrimer can be a ligand for certain transition
metals, such as Ru or Pd, which can catalyze certain organic transformation. The
branches surrounding the core can serve to modify its catalytic properties to
improve either regio or diastereoselectivity.[8] Dendrimers also can be applied to
mimic globular proteins. One example would be hemoglobin, which is responsible
for transporting and storing O, in biological systems. Unlike non-dendritic
structures, dendrimers can prevent the formation of porphyrin p-oxo dimer that
leads to the failure of imitation.[9] Also, dendrimers can be used to recognize
specific guest molecules such as monosaccharides.[10]

2.3.2 Applications Related to the Dendritic Branches

Protected from the outside world by the dendrimer surface layer, the branches
layer is a localized, tailored environment. There are two types of combination of
the branches and the surface layers, hydrophilic groups on the surface with
hydrophobic moieties in the branches or the opposite order. The former
combination resembles surfactants, which form micelles in a polar solvent (i.e.
water) with hydrophilic “heads” outside in touch with the polar solvent and

hydrophobic “tails” inwardly aggregated toward the central cores. This type of



dendrimer is referred to as a unimolecular micelle,[11] and it shows similar
solubility to typical surfactant such as sodium dodecyl sulfate with a wider active
concentration range. The other combination was referred to as a reversed micelle,
which was applied as a catalyst to some reaction involving a positively charged
intermediate in the transition state.[12] In addition, a reversed-micelle-dendrimer
could be specially designed as a trap to remove a certain gas such as CO,.[13]

2.3.3 Applications Related to the Surface

Most of the applications related to dendritic surface are derived from the
cauliflower-like, maximized surface area. Dendritic sensors were rooted in the
beneficially structural characteristic. ~As many fluorescent groups can be
assembled on the surface, the sensitivity for fluorescent change will be amplified.
When a transition metal or an organic compound, such as saccharide molecules,
coordinates with aromatic fluorescent functionalities, the change of fluorescence
intensity can be sensitively monitored.[14] Also, dendrimers can be applied as
recyclable supporters of some organometallic catalyst for some organic
transformations.

Among all the application areas of dendrimers, the potential for medical
applications is the most exciting one. Ranged from improving Magnetic
Resonance Imaging to drug delivery, there is an infinite future of dendrimers in

medical use. As one of the powerful diagnostic medical tool, Magnetic Resonance



Imaging (MRI) often requires the use of contrast agents to provide quality image.
The unfavorable short-stay time in the blood vessel of the often-used Gd agent
makes the Gd agent only partially suitable for imaging the cardiovascular system.
Since dendrimers have a large molecular weight and dendritic surface, it can be
used as an anchoring plat