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UNIFORM CONVERGENCE ON CLASSES OF SUBSETS 

CHAPTER I 

INTRODUCTION 

The investigation of the relationship of uniform convergence of 

a sequence of functions on subsets of a set X to the uniform con- 

vergence of this sequence on the whole of X suggests itself in 

several well -known theorems. Moreover, it is desirable to carry 

out such an investigation in as many situations as possible. As the 

structure on the set X changes, a number of related theorems 

will arise from the investigation of uniform convergence. 

The investigations will originate with sequences of functions 

which map the reals into the reals. Chapter II deals only with func- 

tions whose range space is the reals and whose domains vary from 

the reals, to pseudometric spaces, to generalized topological spaces. 

Chapter III moves on to sequences of functions whose ranges are 

pseudometric and general topological spaces. Chapter IV carries 

this process of generalization to uniform spaces, and Chapter V 

generalizes the sequences of functions to nets of functions. 
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CHAPTER II 

CONVERGENCE OF SEQUENCES OF REAL VALUED FUNCTIONS 

Knowledge of the basic theory of convergence of sequences of 

real valued functions of a real variable will be assumed and no gen- 

eral discussion of this point will be given in this paper. The nota- 

tion < yn > will be used to denote a sequence of objects indexed by 

the natural numbers. The notation { . .} will be used to denote 

a set of objects. 

As a point of motivation for the initial questions dealt with 

here, it is noticed that sequences of real valued functions exist 

whose pointwise convergence on a closed and bounded set implies 

that the sequence converges uniformly there. This fact might well 

pose a question as to the nature of the relationship of pointwise con- 

vergence to that of uniform convergence on more general sets. 

The following example will serve as motivation, The se- 

quence < fn> where fn (x) = xn, x an element of the interval (0, 1) 

converges uniformly on every closed subset of (0, 1), but the con- 

vergence on all of (0, 1) is not uniform. This poses a question as 

to the relationship of uniform convergence on subsets of a set to 

that of uniform convergence on the whole space. 

The following theorems answer some of these questions. 

. 
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Theorem 1: If <f 
n 

is a sequence of functions mapping the 

reals to the reals such that for each r, an element of the reals, 

<fn(r)> converges to g(r), then <fn> is uniformly convergent 

on any finite subset of the reals. 

Proof: Let {r , rn} be a finite subset of the reals. 

For each r. there is an N(c, r,) such that 

(r ) If n - g(r.) I 

i i 
< E if n > N(c, r). Take N as the maxi- 

mum 

i 

mum element of the set {N(c, ri) /i =1, , n }, written 

max {N(E, r.)i =1, ,n} = N. Then If (r.) - g(r.)) < E for 
i n i i 

all r., an element of {r rn} if n > N. Thus point - 

wise convergence implies uniform convergence on finite 

sets. 

In the above theorem, the restriction that the domain of the 

functions lie in the reals was unnecessary, since none of the prop- 

erties of the reals were used. Thus, a natural generalization of 

Theorem 1 would be to replace the domain space by a general top- 

ological space X. Most of the remaining theorems of this chapter 

have functions with such a domain space, 

The fact that pointwise convergence implies uniform conver- 

gence on finite sets suggests the question of whether uniform con- 

vergence of a sequence of functions on every finite subset of a 

n n 

, 
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countable set X implies uniform convergence on all of X. The 

following example shows this is not the case. 

Example 1: Let f (x) = 
x 

n n where x is an element of the 

rationals. On any finite subset {xi, x2, , x }, the sequence 
P 

<f 
n 

> converges uniformly to zero as shown in Theorem 1. 

However, <f > 
n 

does not converge uniformly on all of the rationals. 

This can be seen by supposing that for a given E > 0, an N(e) 

could be found such that I f (x ) - 01<E for all n N(E). In 
n o x x 

particular for n = n > N, I f (x ) - 0 
I = I -no - 0 I n I < e 

o n o 
0 o x 2sn 

One choice for x would be x = 2En . Thus I -° I = - 2e <E n n 
o o 

which is a contradiction. So uniform convergence on every finite 

subset of a countable set X does not imply uniform convergence 

on all of X. 

From pointwise convergence a result of uniform convergence 

on finite subsets was established. Example 1 dealt with uniform con- 

vergence on finite subsets of a countable set. The next reasonable 

step would be to investigate how uniform convergence on every 

countable subset of a space x relates to uniform convergence 

on X. 

Theorem 2: If <f 
n 

> is a sequence of functions each of 

which maps a topological space X to the reals and if <f 
n> n 

, 

> 

= I 

o 

o o o 

ó 
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converges uniformly to g on every countable subset of X, then 

<f 
n 

> converges uniformly to g everywhere on X. 

Proof: Assume that <f> does not converge to g uni- 

formly on X. Then for some E > 0 there is no N(c) such 

that If 
n 

(x) - g(x)I < E for all x in X when n > N(E). 

That is, for some E = E and any N it is always possible 
o 

to find an x such that I fn(x) - g(x) I > E for some n > N. - o 

In particular for E = co and N = 1 there is an x = x1 

such that If(x1) - 
1)1 - > E 

o 
for some n > 1. Also for 

N = 2 there is an x = x2, not necessarily different from x1, 

such that If (x ) - f(x ) I > E for some n > 2. For N = k n2 2 - o 

there is an x = xk such that I fn(xk) - g(xk) I > co for some 

n > k. By this construction two countable sets, 

I_ {1,2,...,k,...} and E = .. }, are 

obtained. Now note that <f > n does not converge uniformly 

on E. 

For <f 
n 

> to converge uniformly on E, there would 

have to exist an M such that (x.) - g(x.)I < co all n o 

x., an element of E, when n > M. However there is an 

N which is an element of I such that N > M, and 

fn(xN) - g(xN) I > Eo for some n > N > M. Thus E is a 

countable set on which <f 
n 

> does not converge uniformly. 

{x1,x2,... 

for 
i i 

I 

n 

xk, 
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In the above theorem the countable subsets of X may be 

thought of as sequences (with repetitions if the set is finite). Theo- 

rem 2 could be restated in terms of sequences. The validity of The- 

orem 2 could be questioned if, rather than all sequences, only spe- 

cial sequences are considered. Among the most useful special se- 

quences are the Cauchy sequences. To discuss Cauchy sequences 

some concept of distance is required. Thus pseudometric spaces 

are used for domain spaces rather than general topological spaces. 

A complete definition and discussion of pseudometric spaces is given 

in most general topology texts (Kelley, 1955). Theorem 2 suggests 

the question of whether uniform convergence on every Cauchy se- 

quence of X implies uniform convergence on all of X. The fol- 

lowing example shows this is not the case. 

Example 2: The sequence of functions <f > defined by 

0 if x < 
2n-1 

2 

2n -1 fn(x) _ 2x- 2n+1 if < x <n 

1 if x > n 

converges uniformly to zero on each Cauchy sequence E of the 

reals. To see this suppose E converges to r, an element of 

the reals. Then fn(r) = 0 for all n > r +1. Being Cauchy, E 

n 

- 

2 - - 
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is bounded by some number M, so for n > max {M, r+ 1 }, 

fn(x.) = 0 for all xi in E. It is also clear that the sequence 

is not uniformly convergent on the reals, since for any N there 

is an M > N such that fn(x) = 1 for n > M. 

Since uniform convergence on Cauchy sequences of X does 

not imply uniform convergence everywhere on X, the question 

arises as to whether it implies uniform convergence on something 

less than all of X. 

Theorem 3: Let <f 
n 

> be a sequence of functions mapping 

the reals to the reals. Then <f 
n > converges uniformly to g 

on every Cauchy sequence of reals if and only if <f > converges 

uniformly to g on every compact set of reals. 

Proof: Any compact subset of the reals is closed and bounded. 

Assume the convergence on the compact subset S is not uni- 

form. Then there is an E > 0 such that for each N there 

is an x in S for which 
I 
f (x) - g(x) I > E for some 

n > N. Choose for values of N each natural number and 

obtain a corresponding element of S. The preceding con- 

struction yields two sets, I = { 1, 2, , n, } and 

E = {x , xn, }. The set E is a bounded sequence 

and so has a Cauchy subsequence E' = {xi, x. , , xk, 

n 

n 

2 

j 
} . 

n 
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<f > 
n 

is not uniformly convergent on E' , for if it were we 

could find an M, given an c, such that I f (xJ J n l - g (xi.) 
I 
< E 

J 

for all x. in E' when n > M. However there is an N 
J 

in I such that N > M and such that 

of E' . Thus Ifn(X17) g(X17) I 
> E 

N 
xN xk an element 

for some n > N > M. 

Now suppose <f > is uniformly convergent on every 

compact subset S of the reals. Note that every Cauchy se- 

quence of reals is contained in a bounded set which is in turn 

contained in a compact set. Thus uniform convergence on 

compact subsets implies uniform convergence on Cauchy se- 

quences of recels. 

A basic theorem in analysis is that if a sequence of real- valued 

continuous functions of a real variable converges uniformly on a 

given interval I to a function g, then g is continuous on I. 

The question then naturally arises as to an analog in the suggested 

context of Theorem 3. 

If g is a function mapping X into Y, the restriction 

of g to the subset K of X is denoted by g /K. 

Lemma 1: If g is a function mapping the reals into the 

reals such that g/K is continuous for every compact K con- 

tained in the reals, then g is continuous on all of the reals. 

J 

= 

n 

- 



9 

Proof: If g is not continuous on r, then for some e > 0 

there is an x such that I g(x) - g(x ) I > e for some x 
0 0 

in the open interval (x - 5, x + b). However the closed 

interval [x - S, x + ó] is a compact subset of the reals on 

which g is continuous. So the above statement can not 

occur. 

Theorem 4: If <f 
n 

> is a sequence of continuous functions 

mapping the reals into the reals such that <f> is uniformly con- 

vergent to g on every Cauchy sequence of reals, then g is con- 

tinuous on all of the reals. 

Proof: By Theorem 3, <f 
n > converges uniformly to g 

on every compact subset K contained in the reals. On K 

each fn is continuous and so g is continuous on each 

compact subset of the reals. By Lemma 1, g is continuous 

on all of the reals. 

n 
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CHAPTER III 

A GENERALIZATION TO FUNCTIONS WHOSE IMAGES LIE IN 
PSEUDOMETRIC AND GENERAL TOPOLOGICAL SPACES 

In this chapter as many of the theorems of Chapter II as is pos- 

sible will be carried over to this more general setting. New con- 

cepts suitable to the generality will be introduced in this chapter 

giving rise to theorems having no analog in Chapter II. 

In a pseudometric space (X, dx) where d is the pseudo- 

metric, a spherical neighborhood about a given point x and of 

radius E will be written 

B(x, E) = {y/dx(x, y) < E} . 

Theorem 5: If < f > is a sequence of functions mapping a n 

general topological space X to a pseudometric space (Y, dY) 

and if <f > 
n converges pointwise to g at each point of X, 

then <f > 
n is uniformly convergent to g on every finite subset 

of X. 

Proof: The hypothesis states that f 
n (x) is in B(g(x), E) 

for all n > N(E, x). Take a set {x1, , x }. Obtain the 

corresponding set of N, {N(E, x1), , N(E, x ) } Thus 

fn(xi) is in B(g(xi), E) for all x. in {x1, , xp} 

P 

P 

x x 

p 
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whenever n > max {N(s, xi ) /i = 1, , 
. p} . 

Theorem 6 :. If <f > is a sequence of functions mapping a 

general topological space X to the pseudometric space (Y, dY) 

and if <f > 
n 

is uniformly convergent to g on every countable 

subset of X, then <f > is uniformly convergent to g on all 

of X. 

Proof: Suppose that <f n 
> does not converge uniformly on 

X. Then for some s > 0, there is no N(6) such that 

fn(x) is in B(g(x), s) for all x in X when n > N(s). 

So there is some s = s 
0 

such that for any N chosen there 

is an x for which fn(x) is not in B(g(x), 60) for some 

n > N. In particular for N = 1 there is an x1 such that 

fn(xi) is not in B(g(x1), co) for some n > 1. After sys- 

tematically exhausting the natural numbers two sets are cre- 

ated, I = {1, 2, ,n, } the set of values chosenfor N and 

E = {x1,x2, ,xn, } the set of corresponding x, elements of X. 

If <f 
n 

> were uniformly convergent to g on E 

then there would have to exist an M such that f (x.) is 
n 

in B(g(x.), s ) for all n > M and for all x. in E. 
i o i 

However there is an N > M such that N is in I. By the 

above construction fn(xN) is not in B(g(xN), co) for some 

n> N > M. Thus E is a countable on which <f > is not n 

n 

n 

i 
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uniformly convergent. 

By introducing the concept of sequential compactness an analog 

of Theorem 3 may be obtained. 

Definition 1: A subspace E of topological space X is sequenti- 

ally compact if and only if every sequence of points of E contains 

a subsequence which converges to a point of E (Pervin, 1964). 

Theorem 7: If <f > is a sequence of functions mapping a 

topological space X to a pseudometric space (Y, d) which con- 

verges uniformly to g on all Cauchy sequences, then <f > is 

uniformly convergent to g on sequentially compact subsets F 

contained in X. 

Proof: Suppose that <f > does not converge uniformly on 

sequentially compact subsets. Then for some s = e and for 
o 

every M there is an x in F for which f (x) 
n 

is not in 

B(g(x), so) for some n > M. Let M assume as its value 

each natural number. For each natural number n find an 

xn in F and in so doing create two sets 

I = {1,2, ,n, } and E = {xi, x2, , xn, } where E 

is a subset of F. However, F is a sequentially compact 

set which implies that E has a convergent subsequence 
1 2 E' _ {xi, x3 , , xk, } . Now <fn> is not uniformly 

n 

n 

n 

n 

3 

0 
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convergent on E' since for any M there is an N in I 

such that N > M, xN in E' , and 

B(g(xN), co) for some n> N> M. 

f (xN) is not in 

By adding structure to the domain space X of Theorem 7, 

two corollaries may be obtained. The following are, however, 

needed. 

Definition 2: A topological space X is a T1 -space if and only if 

for distinct x and y in X there exists two open sets one con- 

taining x but not y and the other containing y but not x 

(Pervin, 1964). 

Definition 3: A topological space X is a first axiom or C1 -space 

if and only if for every point x in X there exists a countable 

family {B (x)} 
n of open sets containing x such that whenever 

x belongs to an open set G, B (x) 
n 

is contained in G for some 

(Pervin, 1964). 

Definition 4: A subset E of a topological space will be called 

countably compact if and only if every infinite subset of E has at 

least one limit point in E (Pervin, 1964). 

The following theorem and its proof may be found in general 

topology texts: If x is a point and E a subset of a Tl, 

n 

0 
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C1 -space X then x is a limit point of E if and only if there 

exists a sequence of distinct points in E converging to x 

(Pervin, 1964). 

Corollary 1: The sequence <f 
n 

> of Theorem 7 converges 

uniformly to g on countably compact subsets if the space X is a 

T1, C1- space. 

Proof: Theorem 7 gives uniform convergence on sequentially 

compact subsets. By proving that sequential compactness is 

equivalent to countable compactness in a T1, C1-space, the 

corollary will be established. 

By the definition of sequential compactness any sequen- 

tially compact subset E is countably compact since any in- 

finite subset of E contains an infinite sequence which has a 

limit point. 

Now if E is countably compact, take an infinite se- 

quence E' of E. E' has a limit point x by the count- 

able compactness. This limit point has a subsequence of E' 

which converges to x, by the theorem which was just stated. 

Thus sequential compactness and countable compactness are 

equivalent in a T1' C -space and the result is established. 

Corollary 2: If the space X in Theorem 7 is metric, 
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then the sequence <f > 
n 

converges uniformly on compact subsets. 

Proof: A metric space is T1 and C1 (Kelley, 

1955). By Corollary 1, <f > n converges uniformly on 

countably compact subsets. In metric s p a c e s countable 

compactness and compactness are equivalent (Pervin, 1964). 

Thus the desired result is established. 

In Chapter II, Theorem 4 dealt with the question of the continu- 

ity of the limit function of a sequence of continuous functions. The 

analog in the generality of this chapter follows. 

Definition 5: A topological space X is locally compact if and only 

if each point of X is contained in a compact neighborhood (Pervin, 

1964). 

Lemma 2: If g is a function mapping a locally compact 

topological space X to a topological space Y, such that g/K 

is continuous for all compact subsets K contained in X, then 

g is continuous on X. 

Proof: If g were not continuous on X, then given an 

open set G containing g(x), an x , 
0 

element of F, 

would exist for all open sets F containing x, such that 

g(x ) is not in G. However, for each x there exists a 
0 
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neighborhood H which is compact. Thus g is continuous 

on H. So g(H') is contained in G for some open set 

H' , x an element of H' . Therefore, the above statement 

can not occur and g is continuous. 

Theorem 8: If <f > is a sequence of continuous functions n 

mapping a locally compact metric space X to a pseudometric space 

Y such that <f 
n 

> is uniformly convergent to 

sequence, then g is continuous on X. 

on every Cauchy 

Proof: By Corollary 2, uniform convergence on Cauchy se- 

quences implies uniform convergence on compact subsets. On 

each compact subset K contained in X each fn is Con- 

tinuous, thus g is continuous on each compact K. Thus 

by Lemma 2, g is continuous on X. 

Theorem 4 and Theorem 8 are actually discussions of the con- 

cept of completeness of a topological space. That is, discussions 

as to whether the space C(X, Y) of all continuous functions map- 

ping X to Y contains all its limit points. Note that in such a 

space as C(X, Y), the points or elements of the space are in fact 

functions. This suggests the forming of the space of all functions 

from X to Y. This space is called °4h; (X, Y). 

There are many ways of topologizing %X, Y), and these are 

g 

n 
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covered in most general topology texts. However, as Theorems 4 

and 8 dealt with compact subsets, it seems natural to investigate the 

topology of uniform convergence on compacta. 

Definition 6: If , is the family of all compact subsets of X, 

the collection of all subsets of the form B(f, c, E) _ {g /d(f(x), g(x)) < c 

for all x in E} for E in and > 0 is a subbase for the 

topology of uniform convergence on compacta (Pervin, 1964). 

Another collection of special subsets of X which play an 

important part in Theorems 4 and 8 are the Cauchy sequences. A 

definition analogous to Definition 3, but with a as the collection 

of all Cauchy sequences, would give another topology which Theorem 

7 and its corollaries imply might be related to the topology of uni- 

form convergence on compacta. 

Definition 7: Let '(X, Y) be the set of all functions from the 

metric space X to the pseudometric space Y. Topologize 

(» (X, Y) by using as a subbase for the topology all sets 

W(f, c, E) = {g /dY(f(x), g(x)) < c for all x in E }, where E is 

a Cauchy sequence in X. This topology we call the topology of 

uniform convergence on Cauchy sequences. 

As noted, Theorem 7 and its corollaries show a relationship 

between uniform convergence on Cauchy sequences and uniform 

e 
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convergence on compact subsets. An important thing to notice is 

that convergence of a sequence of points in Vi (X, Y) in one of these 

two topologies means uniform convergence of a sequence of functions 

on some set or sets. Thus the following theorem is the answer to an 

evident question. 

Theorem 9: Convergence of a sequence <f 
n 

> of elements 

of %'(X, Y) in the topology of uniform convergence on Cauchy se- 

quences implies convergence of <f 
n 

> in the topology of uniform 

convergence on compacta. 

Proof: Suppose <f n> 
n 

converges in the topology of uniform 

convergence on Cauchy sequences. Suppose, also, that there 

exists a compact set F contained in X on which <f 
n> n 

did not converge uniformly. Then there is an e > 0 such 

that for any N chosen there exists an x in F for which 

fn(x) is not in B(f, s, F) for some n > N. That is, 

dY(fn(x), f (x)) > e for some n > N. In particular, for N = 1 

there is an x in F such that f n (x) is not in B(f, c, F) 

which implies that dY(fn(xl),f(xl)) > e for some n > 1. 

the values of N are allowed to range over all natural num- 

bers, two sets are created: I = { 1, , k, . } and 

E = {x1, } . Note that X is a metric and Y is a 

pseudometric space. F is a compact subset of X and 

If 
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with the induced topology forms a compact pseudometric space. 

Every compact metric space is countably compact and so seqen- 

tially compact, Thus, E = {x1, , xk, } 

has a subsequence E' _ {x., x. , xk, } which con- 

verges and is therefore Cauchy. The sequence <f 
n > does 

not converge uniformly on E' , for if it did, given an E > 0 

there would exist an M such that fn(x?) is in W(f, c, E' ) 

whenever n > M. However there is an N > M such that 

xN is in E' , and so fn(x.N) is not in B(f, E , F) for 

some n > N > M. Thus dy(fn(xN), f(xN)) > E for some 

n > N > M. Then fn(_xN) is not in W(f, e, E') for some 

n > N > M. Thus E' is a Cauchy sequence on which the 

convergence is not uniform. 

contained in F 

Theorem 9 shows that convergence in a particular one of these 

two topologies implies convergence in the other. Is the convergence, 

in fact, equivalent in the two topologies? The following example 

shows this is not the case. 

Example 3: Take the sequence <f> where fn( ) = xn . 

Let X be the interval (0, 1) with the induced usual topology. 

First note that the sequence <f 
n 

> converges uniformly on [a, b], 

0 < a < b < 1. Thus, <f n > converges uniformly on every compact 

subset of X. However, <f > fails to converge uniformly on any 

2 

e 

n 

n 

n 

1 

, n 

i 
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Cauchy sequence of X which converges to 1. 

Since the convergence is not equivalent in general, under what 

added structure will they be equivalent? The final theorem of this 

chapter gives a sufficient condition for this equivalence. 

Theorem 10: If X is a complete space, then convergence 

of a sequence <f 
n> n of elements of (X, Y) in the topology of 

uniform convergence on Cauchy sequences is equivalent to the con- 

vergence of <f 
n > in the topology of uniform convergence on 

compacta. 

Proof: Theorem 9 gives the result one way. 

So suppose <f n > converges to g in the topology of 

uniform convergence on compacta, then, given a compact sub- 

set F and an E > 0, there is an N(E) such that f is 

in {f /dy(f(x), g(x)) < E for all x in F} if n > N. 

Now take a Cauchy sequence <x n > contained in X. 

Since X is complete, <x n > converges to, say, x. 

The set {xi,' , xn, } {x} is a sequentially compact 

metric subspace of X. Thus, {x1,,xn, } {x} 

is compact (Pervin, 1964). Thus every Cauchy sequence in a 

complete m e t r i c s pa c e is contained in a compact set 

F. 

c 
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CHAPTER IV 

A GENERALIZATION TO UNIFORM SPACES AND CAUCHY NETS 

As was the case in Chapter III, Chapter IV is mainly concerned 

with generalizing previously established theorems. Uniform spaces 

allow the highest generality in whp.ch to discuss uniform convergence; 

there must be some notion of uniform smallness of sets. 

A different approach to generalizing these theorems is also 

used in this chapter. The concept of Cauchy nets replaces that of 

Cauchy sequences. 

The definition and discussion of uniform spaces is given in 

most general topology texts (Pervin, 1964). The notation which is 

used is Pervin's, and a brief explanation follows: 

(1) (X, U) is a space X with uniformity U. 

(2) {u(x) /u in U} is the family of neighborhoods of x 

in the topology induced by U. 

As in previous chapters, the concepts of pointwise and uniform 

convergence shall be important. 

Definition 8: Let <f 
n > be a sequence of functions mapping X 

to a uniform space (Y, U). Then, for each x in X a sequence 
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of points <f (x)> in Y is obtained. If for each u in U 

there is an N(u, x) such that fn(x) is in u(g(x)) whenever 

n > N(u, x), then this sequence is said to be pointwise convergent 

to g in the uniformity U. 

Definition 9: With the sequence <f > of Definition 8, if when 
n 

given a u in U there is a single N(u) such that fn(x) n is in 

u(g(x)) when n > N(u) for all x of a given set E contained in 

X, then <f 
n 

> is uniformly convergent to g on E in the 

uniformity U. 

The next two theorems are analogs of previous results. 

Theorem 11: If <f > is a sequence of functions mapping the 

topological space X to the uniform space (Y, U) and <f 
n 

> is 

pointwise convergent to g in the uniformity U, then <f 
n 

> is 

uniformly convergent to g on every finite subset of X in the 

uniformity U. 

Proof: For each xi in {xl, ,x } 
P i 

there is an N(u,x.) 

such that f (x.) is in u(g(x.)) if n > N(u, xi). Let 
n i 

N(u) = max {N(u, xi) /i = 1, , p }. Then f (x.) is in 
n I 

u(g(xi)) if n > N(u). 

Theorem 12: If <f > 
n 

is a sequence of functions mapping 

n 

n 

1 

n 
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the topological space X to the uniform space (Y, U) and <f n> 
n 

is uniformly convergent to g on every countable subset 

E = {x1, , xn, ' } contained in X, then <fn> is uniformly 

convergent to g on all of X in the uniformity U. 

Proof: Suppose the conclusion of the theorem were in fact 

false, then there would have to exist a in U such that 

for every M, an x in X could be found such that fn( x) 

is not in uo(g(x)) for some n > M. For M = 1, an xl 

exists such that fn(xl) is not in uo(g(x1)) for some n > 1. 

For M = k, an xk exists such that fn(xk) is not in 

u (g(xk)) for some n > k. In this manner, a set 

E _ {xi, x2, , xk, } contained in X is constructed cor- 

responding to the set I = { 1, 2, k, } of values of M. 

If <f 
n 

> were to converge uniformly on E in U, 

then there would have to exist an M' such that f (x.) is in 
n I 

uo(g(xi)) for all x, in E when n > M' . However, there 
i 

exists an N in I such that N > M' and such that xN 

is in E. Then, fn(xN) is not in uo(g(xi)) for some 

n> N > M' . Thus E is a countable set of X on which 

<f 
n 

> does not converge uniformly in the uniformity U. 

As has been seen before, theorems do not carry over in their 

exact form. After the structure on the spaces is changed, new 

u 
o 

0 

n 

o i 
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concepts are often needed to form theorems, One such concept 

needed here is total boundedness. 

Definition 10: A uniform space (X, U) is totally bounded if and 

only if for every u in U there is a finite set of points 
n 

{xl, , xn} contained in X such that X = v u(xi) (Pervin, 
1=1 

1964). 

A form of generalization which is usually found in uniform 

spaces is that of the net. A discussion of nets may be found in many 

general topology texts. The notation used here has been taken from 

Kelley (1955). 

Definition 11: A net <S , n in D> in the uniform space (X, U) 

is a Cauchy net, if and only if for each member u in U there 

exists an N in D such that (S m , S n ) 
is in u whenever both 

m and n follow N in the ordering of D (Kelley, 1955). 

Theroem 13; If <f 
n 

> is a sequence of functions mapping a 

totally bounded uniform space (X, U) to a uniform space (Y, W) 

and <f 
n 

> is uniformly convergent to g on every Cauchy net of 

(X, U), then <fn> is uniformly convergent to g on all of X. 

Proof: Suppose <f > 
n 

is not uniformly convergent on X. 

Then there sould be a u in U. such that for every N, 

n 
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fn(x) is not in u(g(x)) for some n > N and some x in 

X. Let u be this u and choose N = 1. There is an x1 

such that fn(x1) is not in uo(g(x1)) for some n > 1. Now 

choose N = 2, there is an x for which fn(x2) is not in 

uo(g(x2)) for some n > 2. Continuing this process, two sets 

are obtained: I = 11, 2, ,n, }, as the values of N, 

and E = {x, . , xn, }, as the corresponding values of 

x. Since X is totally bounded, every net, including E, 

has a Cauchy subnet (Kelley, 1955). Let E' , contained in 

E, be a Cauchy subset of E. If <f > were uniformly 

convergent on E' there would have to be an N such that, 

given a u = uo, fn(x) is in uo(g(x)) for all n > N and all 

x in E' . However, there is an M > N such that xM is 

in E' and fn(xM) is not in uo(g(x)) for some 

n>M>N. 

From this theorem, the analog of Theorems 4 and 8 is immedi- 

ate. 

Theorem 14: If <f 
n 

> is a sequence of continuous functions 

mapping a totally bounded space (X, U) to a uniform space (Y, W), 

and if < f 
n 

> converges uniformly to g on all Cauchy nets of X, 

then g is continuous on X. 

n 

, 

n o 
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Proof: By Theorem 13, the sequence <f > converges 

uniformly on all of X. Thus g is continuous on all of 

X. 

n 
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CHAPTER V 

CONVERGENCE OF NETS OF FUNCTIONS 

Since uniform spaces were the ultimate generalization available 

to still allow discussion of uniform convergence, further generali- 

zation must occur elsewhere than in the structure of the spaces. 

The last thing to be generalized is the sequences of functions. 

The method of nets has been introduced in Chapter IV, and now the 

investigation changes to nets of functions in the various spaces that 

have been examined. 

The following three theorems are analogs to Theorems 1, 5 

and 11. 

Theroem 15: If <Fn, >, D> is a net of functions mapping 

a topological space X to the reals which converges pointwise to 

G, then <F, - >, D> converges uniformly to G on every finite 

subset of X. 

Proof: For each xi in a finite set E _ {x1, , x } there 
P 

is an M. in D such that 
I 
Fn(xi) - G(x.) 

I 

< E if n > M.. 
i 

There is an N in D which is farther out in the order of 

D than any of the M . Thus I F (x.) - G(x.) I < E if n > N 
i n i i - 

for all x. in E. e i 

n i i - i 

I 
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Theorem 16: If <Fn, >, D> is a net of functions mapping a 

topological space X to a pseudometric space (Y, dY) which con- 

verges pointwise to G, then the net converges uniformly on every 

finite subset of X. 

Proof: For each xi in a finite set E _ {xl, , x 
P 

} there 

is an M. in D such that F (x.) is in B(G(xi ), E) if 
n i 

n > M.. There is an N in D which is farther out in the - 1 

ordering of D than any of the Mi. Thus, Fn(x.) is in 

B(G(x.),E) if n > N for all x. in E. 

Theorem 17: <Fn, >, D> is a net of functions mapping 

a topological space X to a uniform space (Y, U), and if the net 

is pointwise convergent to G in the uniformity U, then 

<Fn, >, D> is uniformly convergent to G on every finite subset 

of X in the uniformity of U. 

Proof: For each xi in E = {x1, ,x }, there is an 

M(u, xi) in D such that Fn(xi) is in u(G(xi)) if 

n > M(u,x.) in D. There is an N(u) in D such that 
- 1 

N(u) > M(u, xi) for all i = { 1, , n). Thus, Fn(xi) is 

in u(G(x.)) for all x. in E if n > N(u). 

Theorems 2, 6 and 12 do not survive this last generalization 

- 1 

If 

n 
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as the following example shows. 

Example 4: Let <F , >, D> be a net of functions. Let 
a 

D = X be the set of all ordinals less than the first uncountable 

ordinal. Let each F map this space into the reals as follows: 

0 if x <a 

1 if a<x . 

This net converges uniformly to zero on all countable subsets of X 

since for any countable subset E contained in X there exists an 

element y in X such that y > X for all X in E and such 

that Fß (x) = 0 for all x in E if ß > X.. This net, however, 

Fa (x) = 

does not converge uniformly on all of X for no matter what a in 

X one chooses, there is a ß > a such that Fß (ß) = 1. 

Since Theorems 2, 6 and 12 have no direct analog, the question 

arises under what added conditions some sort of an analog can be 

reached, 

Definition 12: If D is a directed set and the set E contained in 

D has the property that, for each m in D, there is a p in 

E such that p > m, then E is a cofinal subset of D (Kelley, 

1955). 

a 

a 
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Theorem 18: If <F , > D> is a net of functions mapping 

a topological space X to the uniform space (Y, U) where D 

has a countable cofinal subset E and if < F D> converges 

uniformly to G on every countable subset of X in the uniformity 

U, then <F , 
n 

>, D> converges uniformly to G on X in the 

uniformity U. 

Proof: If <Fn, >, D> were not convergent uniformly on 

X then there would exist a u in U for which every M 

in D has the following property: There exists an x in 

X for which Fn(x) is not in u(G(x)) for some n > M. - 
In particular choose an element xN in X for each N in 

E. Thus obtain a countable set { xN/ N in E } on which 

the convergence of <Fn, >, D> is not uniform, since for 

any M in D there is an N in E such that N > M 

and such that Fn(xN) is not in u(G(xN)) for some 

n>N>M. 

The last question discussed here is whether or not Theorem 13 

has an analog in this chapter. That is, if a net of functions 

<Fn, >, D> mapping a uniform space (X, U) to a uniform space 

(Y, W) converges uniformly to G on every Cauchy net of X in 

the uniformity U, does it converge uniformly on all of X in the 

uniformity U? The following example shows this is not the case. 

n 

>, 
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Example 5: Let X be the space of all ordinals less than the 

first uncountable ordinal. Take as the base for the uniformity the 

identity relation ix. This uniformity induces the discrete topology 

(Pervin, 1964). In a discrete space the only Cauchy nets are those 

which are eventually constant. 

Take a net of functions <FT, >, X >, each FT maps X 

to the reals and is defined by 

F,r( a ) = 

0 if a <T 

if T 4 a . 

This net converges uniformly on every Cauchy net E _ <x 
a 

>, X> 

where x 
a 

is in X and such that x 
a 

= y for all a > A for 

some A in X. Thus for all a > A, FT(xa) = FT(y), and 

<FT(y), >, X> converges to zero. However <FT, >, X> is 

not uniformly convergent since given any A in X, there is a 

T such that F,T(a) = 1 for a > T > A. 

1 
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