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Three-dimensional finite element models are developed to simulate the behavior

of four fill-scale reinforced concrete beams. The beams are constructed with different

fiber-reinforced polymer (FRP) strengthening schemes, and are modeled using ANSYS,
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replicate the transverse beams of the Horsetail Creek Bridge, and were constructed and

tested at Oregon State University. The finite element models use a smeared cracking

approach for the concrete and three-dimensional layered elements to model the FRP

composites.

It was found that the finite element models could effectively simulate the

behavior of the full-scale beams. Results obtained from the finite element analysis are

presented and compared with the experimental data from the full-scale beam tests

through the linear and nonlinear ranges up to failure. Comparisons are made for load-

strain plots, load-deflection plots, first cracking loads, loads at failure, and crack
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patterns at failure. The results from the finite element analysis show good agreement

with those from the experimental data and support hand calculation predictions for the

experiment very well. The crack patterns at failure predicted by the finite element

program strongly corroborate the failure modes observed for the full-scale beam tests.

Recommendations for finite element modeling improvement are included.
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FINITE ELEMENT MODELING OF REINFORCED CONCRETE BEAMS
EXTERNALLY STRENGTHENED BY FRP COMPOSITES

I. INTRODUCTION

A large number of reinforced concrete bridges in the U.S. are structurally

deficient or obsolete. The main contributing factors are changes in their use, an

increase in load requirements or corrosion deterioration due to exposure to an

aggressive environment. In order to preserve those bridges, rehabilitation is often

considered essential to maintain their capability and to increase public safety (Seible et

al., 1995; Kachlakev, 1998).

In the last decade, fiber reinforced polymer (FRP) composites have been used

for strengthening structural members of reinforced concrete bridges. Many researchers

have found that FRP composites applied to those members provide efficiency,

reliability and cost effectiveness in rehabilitation (Marshall and Busel, 1996; Steiner

1996; Tedesco et al., 1996; Kachlakev, 1998). Currently in the U.S., ACI Committee

440 is working to establish design recommendations for FRP application to reinforced

concrete (ACT 440, 2000).

Since in many cases the currently available design and simplified analysis tools

cannot provide complete and accurate predictions, the Finite Element Method (FEM) is

employed in this study of the behavior of reinforced concrete members strengthened

with FRP composites. In this research, the ANSYS finite element program (ANSYS

5.5: ANSYS, Inc., 1998) is used to simulate the behavior of four full-scale reinforced

concrete beams tested at Oregon State University (Kachlakev and McCurry, 2000).



1.1. Transverse Beams of Horsetail Creek Bridge

Four full-scale reinforced concrete beams were fabricated at Oregon State

University. The beams replicated transverse members from the Horsetail Creek Bridge,

constructed in 1913. The bridge is in current use, located east of Portland, Oregon

along the Historic Columbia River Highway, and is a historic structure. Load rating of

the bridge revealed that the transverse beams were constructed without the presence of

shear reinforcement (Kachlakev and McCurry, 2000). Moreover, the load rating

showed that the beams were deficient both in shear and flexural capacity (CH2M HILL,

1997). The Oregon Department of Transportation (ODOT) resolved to utilize FRP

composites to reinforce the beams. Strengthening the beams with FRP composites was

considered advantageous due to the historic nature of the bridge, limited funding and

time restrictions. Two types of FRP composites, i.e. Glass Fiber Reinforced Polymer

(GFRP) and Carbon Fiber Reinforced Polymer (CFRP), have been used to reinforce the

beams. GFRP and CFRP composites were applied in different thicknesses and at

various locations depending upon the capacity needed for the beams. GFRP was

applied on the sides of the beams to provide increased shear strength, whereas CFRP

was added to the bottom of the beams for additional flexural strength.

1.2. Background

Typically, the behavior of reinforced concrete beams is studied by experimental

investigations on full-scale beams. The results are compared to theoretical calculations,

which estimate deflections and internal stress/strain distributions within the beams.
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Finite element analysis can also be used to model the behavior numerically and help to

confirm these calculations, as well as to provide a valuable supplement to the laboratory

investigations of behavior, particularly in parametric studies.

Modeling the complex behavior of reinforced concrete, which is both

nonhomogeneous and anisotropic, is one of the most difficult challenges in the finite

element analysis of civil engineering structures. Most early finite element models of

reinforced concrete included the effects of cracking based on a pre-defined crack pattern

(Ngo and Scordelis, 1967; Nilson, 1968). With this approach, changes in the topology

of the models were required as the load increased; therefore, the ease and speed of the

analysis were limited.

A smeared cracking approach was introduced using isoparametric formulations

to represent the cracked concrete as an orthotropic material (Rashid, 1968). In the

smeared cracking approach, cracking of the concrete occurs when the principal tensile

stress exceeds the ultimate tensile strength. The elastic modulus of the material is then

assumed to be zero in the direction parallel to the principal tensile stress direction

(Suidan and Schnobrich, 1973).

Only recently have researchers attempted to simulate the behavior of reinforced

concrete strengthened with FRP composites using the finite element method. A number

of reinforced concrete beams strengthened with FRP plates were tested in the

laboratory. Finite element analysis with the smeared cracking approach was used to

simulate the behavior and failure mechanisms of those experimental beams (Arduini et

al., 1997). Comparisons between the experimental data and the results from finite

element models showed good agreement, and the different failure mechanisms, from
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ductile to brittle, could be simulated. However, the FRP plates were modeled with two-

dimensional plate elements in this study, and the crack patterns of those beams were not

predicted by the finite element analysis. The two-dimensional plate elements are

surface-like elements, which have no actual thicknesses. Therefore, stress and strain

results at the actual surfaces of the FRP plates were estimated by theoretical

calculations.

In addition, an entire FRP strengthened reinforced concrete bridge was modeled

by finite element analysis (Tedesco et al., 1999). In this study, truss elements were used

to model the FRP composites. The results of the finite element analysis correlated well

with the field test data and indicated that the external bonding of FRP laminates to the

bridge girders reduced the average maximum deflections at midspan and reinforcing

steel stresses by 9% and 11%, respectively.

The current study presents results from the finite element analysis of the four

full-scale Horsetail Creek Bridge reinforced concrete beams. The finite element model

uses a smeared cracking approach and three-dimensional layered elements to model

FRP composites. Comparisons between finite element results and those from the

experimental beams are shown. Crack patterns obtained from the finite element

analysis are compared to those observed for the experimental beams.

1.3. Objectives

The objective of this study is to simulate and analyze the behavior of four full-

scale reinforced concrete beams by using the ANSYS finite element analysis program

(ANSYS 5.5: ANSYS, Inc., 1998) both before and after the application of FRP



composites. The beams replicate the transverse beams of the Horsetail Creek Bridge

tested at Oregon State University (Kachlakev and McCurry, 2000).

1.4. Scope

Four full-scale reinforced concrete beams (similar to the transverse beams of the

Horsetail Creek Bridge) were fabricated and tested at Oregon State University

(Kachlakev and McCurry, 2000). The four beams were constructed with different FRP

reinforcing schemes to compare the effects of each on behavior in the laboratory. The

beams were as follows: control, flexural strengthened, shear strengthened, and

flexural/shear strengthened beams. The control beam was a reinforced concrete beam

with no shear stirrups and no FRP reinforcement. The flexural strengthened beam was

a control beam with added CFRP reinforcing on the bottom of the beam. The shear

strengthened beam was a control beam with added GFRP reinforcing on the sides of the

beam. The flexural/shear strengthened beam was a control beam with added CFRP

reinforcing on the bottom and GFRP reinforcing on the sides of the beam. Finite

element models were developed to simulate the behaviors of each of the four

experimental beams from linear through nonlinear response and up to failure using the

ANSYS program (ANSYS 5.5: ANSYS, Inc., 1998). Results obtained from the finite

element models are presented and compared with the experimental data. Comparisons

are made for load-strain plots at selected locations on the beams; load-deflection plots at

midspan, first cracking loads; loads at failure; and crack patterns at failure. Conclusions

and recommendations for future research are also presented.



2. FINITE ELEMENT MODELING

The ANSYS finite element program (ANSYS 5.5: ANSYS, Inc., 1998)

operating on a UNIX system was used in this study to simulate the behavior of the four

experimental beams.

2.1. Element Types

2.1.1. Reinforced Concrete

An eight-node solid element, Solid65, is used to model the concrete. The solid

element has eight nodes with three degrees of freedom at each node, translations in the

nodal x, y, and z directions. The element is capable of plastic deformation, cracking in

three orthogonal directions, and crushing. The geometry and node locations for this

element type are shown in Figure 2.1.

Figure 2.1: Solid65 3-D Reinforced Concrete Solid (ANSYS, 1998)
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Figure 2.2: Link8 3-D Spar (ANSYS, 1998)

2.1.2. FRP Composites

A layered solid element, Solid46, is used to model the FRP composites. The

element allows for up to 100 different material layers with different orientations, and

orthotropic material properties in each layer. The element has three degrees of freedom

at each node, translations in the nodal x, y, and z directions. The geometry, node

locations, and the coordinate system are shown in Figure 2.3.

7

A Link8 element is used to model the steel reinforcement. Two nodes are

required for this element. Each node has three degrees of freedom, i.e., translations in

the nodal x, y, and z directions. The element is also capable of plastic deformation.

The geometry and node locations for this element type are shown in Figure 2.2.



Figure 2.3: Solid46 3-D Layered Structural Solid (ANSYS, 1998)

2.1.3. Steel Plates

An eight-node solid element, Solid45, is used for the steel plates in the model.

The element is defined with eight nodes having three degrees of freedom at each node,

translations in the nodal x, y, and z directions. The geometry and node locations for this

element type are shown in Figure 2.4.

Figure 2.4: Solid45 3-D Solid (ANSYS, 1998)

8



2.2. Material Properties

2.2.1. Concrete

Development of a model for the behavior of concrete is a challenging task.

Concrete is a quasi-brittle material and has different behavior in compression and

tension. The tensile strength of concrete is typically 8-15% of the compressive strength

(Shah et al., 1995). Figure 2.5 shows a typical stress-strain curve for normal weight

concrete (Bangash, 1989).

Tension
+47

/ peak corn ressive stress
T

/1 .E0

I softenin

Compression I

strain at m4imum stress

= maximum tensile strength of concrete

Figure 2.5: Typical Uniaxial Compressive and Tensile Stress-Strain Curve for
Concrete (Bangash, 1989)

9
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In compression, the stress-strain curve for concrete is linearly elastic up to about

30 percent of the maximum compressive strength. Above this point, the stress increases

gradually up to the maximum compressive strength. After it reaches the maximum

compressive strength cr , the curve descends into a softening region, and eventually

crushing failure occurs at an ultimate strain ec.. In tension, the stress-strain curve for

concrete is approximately linearly elastic up to the maximum tensile strength. After this

point, the concrete cracks and the strength decreases gradually to zero (Bangash, 1989).

2.2.1.1. FEM Input Data

A concrete material model, available in ANSYS, is used in this study. The

program requires input data for concrete material properties as follows:

Elastic modulus (Er).

Ultimate uniaxial compressive strength (fc).

Ultimate uniaxial tensile strength (Modulus of rupture, JO .

Poisson's ratio ( v).

Shear transfer coefficient (A).

Compressive uniaxial stress-strain relationship for concrete.

For the full-scale beam tests (Kachlakev and McCurry, 2000), an effort was

made to accurately estimate the actual elastic modulus of the beams using the ultrasonic

pulse velocity method (ASTM 1983,1994). A correlation was made between pulse

velocity and compressive elastic modulus following the ASTM standard methods.



(2-1)
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From this work, it was noted that each experimental beam had a slightly different elastic

modulus; therefore, these values are used in the finite element modeling.

From the elastic modulus obtained by the pulse velocity method, the ultimate

concrete compressive and tensile strengths for each beam model were calculated by

Equations 2-1, and 2-2, respectively (ACI 318, 1999).

f ( E, )2
c 57000)

f,, = 7.5.X (2-2)

where:

Ec = elastic modulus of concrete, psi

fc' = ultimate compressive strength, psi

Jr = ultimate tensile strength (modulus of rupture), psi

Poisson's ratio for concrete is assumed to be 0.2 (Bangash, 1989) and is used for

all four beams. The shear transfer coefficient, A represents conditions of the crack face.

The value of ranges from 0.0 to 1.0, with 0.0 representing a smooth crack (complete

loss of shear transfer) and 1.0 representing a rough crack (no loss of shear transfer)

(ANSYS, 1998). However, the value of $ used in many studies of reinforced concrete

structures varied between 0.05 and 0.25 (Bangash, 1989; Huyse et al., 1994; Hemmaty,

1998). The shear transfer coefficient used in this study is equal to 0.2. A summary of

the concrete properties used in this finite element modeling study is shown in Table 2.1.



Table 2.1: Summary of Material Properties for Concrete

*From pulse velocity measurements (Kachlakev and McCurry, 2000)

2.2.1.2. Compressive Uniaxial Stress-Strain Relationship for Concrete

The ANSYS program requires the uniaxial stress-strain relationship for concrete

in compression. Numerical expressions (Desayi and Krishnan, 1964), Equations 2-3

and 2-4, are used along with Equation 2-5 (Gere and Timoshenko, 1997) to construct

the uniaxial compressive stress-strain curve for concrete in this study.

where:

2f1,
so=

E .1
e

f = stress at any strain e, psi
g = strain at stress f
Ec= concrete elastic modulus, psi

go = strain at the ultimate compressive strength f,'

(2-3)

(2-4)

(2-5)
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Beam Ec (Icsi)* f",' (psi) f, (psi) v A

Control beam 2,806 2,423 369.2 0.2 0.2

Flexural beam 2,545 1,994 334.9 0.2 0.2

Shear beam 2,634 2,136 346.6 0.2 0.2

Flexural/Shear beam 2,477 1,889 325.9 0.2 0.2



0. 30f'.

E,

2/

4-

0 co

+ff

ultimate compressive strength

strain at ultimate strength
-E

Figure 2.6: Simplified Compressive Uniaxial Stress-Strain Curve for Concrete

The simplified stress-strain curve for each beam model is constructed from six

points connected by straight lines. The curve starts at zero stress and strain. Point

No.1, at 0.30 f'e, is calculated for the stress-strain relationship of the concrete in the

linear range (Equation 2-5). Points 2, 3, and 4 are obtained from Equation 2-3, in which

Eo is calculated from Equation 2-4. Point No. 5 is at so and f',. In this study, an

assumption of perfectly plastic behavior is made after point No.S.

An example is included here to demonstrate a calculation of the five points (1-5)

on the curve using the control beam model. The model has a concrete elastic modulus

of 2,806,000 psi. f', calculated by Equation 2-1 is equal to 2423 psi. For point No.1,

13

Figure 2.6 shows the simplified compressive uniaxial stress-strain relationship

that is used in this study.
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strain at a stress of 727 psi (0.3 f'e) is obtained for a linear stress-strain relationship for

concrete (Equation 2-5), and is 0.00026 in./in. Strain at the ultimate compressive

strength, so is calculated by Equation 2-4, and equals 0.00173 in./in. Points 2, 3, and 4

are calculated from Equation 2-3, which gives strains of 0.00060, 0.00095 and 0.00130

in./in., corresponding to stresses of 1502, 2046 and 2328 psi, respectively. Finally,

point No.5 is at the ultimate strength,fe of 2423 psi and so of 0.00173 in./in.

2.2.1.3. Failure Criteria for Concrete

The model is capable of predicting failure for concrete materials. Both cracking

and crushing failure modes are accounted for. The two input strength parameters, i.e.

ultimate uniaxial tensile and compressive strengths, are needed to define a failure

surface for the concrete. Consequently, a criterion for failure of the concrete due to a

multiaxial stress state can be calculated (William and Warnke, 1975). Note that the

concrete will crack if the principal tensile stress lies outside the failure surface, while

crushing will occur only if all principal stresses are compressive and lie outside the

failure surface.

A three-dimensional failure surface for concrete is shown in Figure 2.7. The

most significant nonzero principal stresses are in the x and y directions, represented by

0-xp and cryp, respectively. Three failure surfaces are shown as projections on the Crxp-ayp

plane. The mode of failure is a function of the sign of erzp (principal stress in the z

direction). For example, if oxp and ayp are both negative (compressive) and azp is

slightly positive (tensile), cracking would be predicted in a direction perpendicular to



Figure 2.7: 3-D Failure Surface for Concrete (ANSYS, 1998)

In a concrete element, cracking occurs when the principal tensile stress in any

direction lies outside the failure surface. After cracking, the elastic modulus of the

concrete element is set to zero in the direction parallel to the principal tensile stress

direction. Crushing occurs when all principal stresses are compressive and lie outside

15

CYzp. However, if azp is zero or slightly negative, the material is assumed to crush

(ANSYS, 1998).

ayp
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the failure surface, subsequently, the elastic modulus is set to zero in all directions

(ANSYS, 1998), and the element effectively disappears.

During this study, it was found that if the crushing capability of the concrete is

turned on, the finite element models fail prematurely. Crushing of the concrete started

to develop in elements located under the loads. Subsequently, adjacent concrete

elements crushed rapidly within several load steps. Soon after, the model showed a

large displacement, and the solution for the model diverged. A pure "compression"

failure of concrete is somewhat suspicious. In a compression test, the specimen is

subjected to a uniaxial compressive load. Secondary tensile strains induced by

Poisson's effect occur perpendicular to the load. Since concrete is relatively weak in

tension, these cause cracking and the failure (Mindess and Young, 1981; Shah et al.,

1995). Therefore, in this study, the crushing capability was turned off and cracking of

the concrete controls the failure of the finite element models.

2.2.2. Steel Reinforcement and Steel Plates

Steel reinforcement in the experimental beams was constructed with typical

Grade 60 steel reinforcing bars. Properties, i.e. elastic modulus and yield stress, for the

steel reinforcement used in this FEM study follow the design material properties used

for the experimental investigation (Kachlakev and McCurry, 2000). The steel for the

finite element models is assumed to be an elastic-perfectly plastic material and identical

in tension and compression. Poisson's ratio of 0.3 is used for the steel reinforcement in

this study (Gere and Timoshenko, 1997), Figure 2.8 shows the stress-strain relationship



Figure 2.8: Stress-Strain Curve for Steel Reinforcement

Steel plates are added at support locations in the finite element models to

provide a more even stress distribution over the support areas. An elastic modulus

equal to 29,000 ksi and Poisson's ratio of 0.3 are used for the plates (Gere and

Timoshenko, 1997). The steel plates are assumed to be linear elastic materials.

Compression

-FEA

Tension
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used in this study. Material properties for the steel reinforcement for all four models are

as follows:

Elastic modulus, E = 29,000 ksi

Yield stress, fy = 60,000 psi

Poisson's ratio, v = 0.3



2.2.3. FRP Composites

FRP composites are materials that consist of two constituents. The constituents

are combined at a macroscopic level and are not soluble in each other. One constituent

is called the reinforcing phase and the one in which it is embedded is called the matrix

(Kaw, 1997). The reinforcing phase material is in the form of fibers, i.e. carbon and

glass, which are typically stiffer and stronger. The matrix phase material or polymer is

generally continuous, less stiff and weaker. The FRP composites are anisotropic

materials, that is, their properties are not the same in all directions. Figure 2.9 shows a

schematic of the FRP composites.

)

Reinforcing fiber Polymer (binder)

Figure 2.9: Schematic of FRP Composites (Gibson, 1994; Kaw, 1997)

18
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As shown in Figure 2.9, the unidirectional lamina has three mutually orthogonal

planes of material properties (i.e., xy, xz, and yz planes). The xyz coordinate axes are

referred to as the principal material coordinates where the x direction is the same as the

fiber direction, and the y and z directions are perpendicular to the x direction. It is a so-

called specially orthotropic material (Gibson, 1994; Kaw, 1997). In this study, the

specially orthotropic material is also transversely isotropic, where the properties of the

FRP composites are nearly the same in any direction perpendicular to the fibers, thus

the properties in they direction are the same as those in the z direction.

Two types of FRP composites have been used to reinforce the four full-scale

beams (McCurry and Kachlakev, 2000). Glass Fiber Reinforced Polymer (GFRP) is

applied on the sides of the beams for increased shear strength, due to its superior strain

at failure. Carbon Fiber Reinforced Polymer (CFRP) is employed on the bottom of the

beams to provide added flexural strength, due to its high tensile strength. Linear elastic

properties of FRP composites are assumed throughout this study. Figure 2.10 shows

stress-strain curves for the FRP composites used in this study.

Input data needed for the FRP composites in the finite element models are as

follows:

Number of layers.

Thickness of each layer.

Orientation of the fiber direction for each layer.

Elastic modulus of the FRP composite in three directions (Ex, Ey, and Es).

Shear modulus of the FRP composite for three planes (Gxy, Gyz, and Gxz).

Major Poisson's ratio for three planes (vxy, vyz, and vx,).
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Figure 2.10: Stress-Strain Curves for Unidirectional FRP Composites Under
Uniaxial Tensile Load Along Fibers (Kachlakev and McCurry, 2000)

The properties of isotropic materials, such as elastic modulus and Poisson's

ratio, are identical in all directions, therefore no subscripts are required. This is not the

case with specially orthotropic materials. Subscripts are needed to define properties in

the various directions. For example, Ex # Ey and v v. Ex is the elastic modulus

in the fiber direction, and Ey is the elastic modulus in the y direction perpendicular to the

fiber direction. The use of Poisson's ratios for orthotropic materials often causes

confusion; therefore the orthotropic material data are supplied in the v,9, or major

Poisson's ratio format for the ANSYS program. The major Poisson's ratio is the ratio

of strain in the y direction to strain in the perpendicular x direction when the applied

20

Note that a local coordinate system for the FRP layered solid elements is defined

where the x direction is the same as the fiber direction, while they and z directions are

perpendicular to the x direction.

0.000 0.005 0.010 0.015 0.020
Strain (in/in.)

0.025 0.030 0.035



*(Kachlakev, 1998)

** G =
Ey or z

2(1+ yy, )

(2-6)
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stress is in the x direction. vyx is called a minor Poisson's ratio, and is smaller than vxy,

where Ex is larger than E. Equation 2-6 shows the relationship between v vyx

(Kaw, 1997).

Ey
V = - V

Yx E xYx

where:

v = Minor Poisson's ratio
Yx

E = Elastic modulus in the x direction (fiber direction)

Ey = Elastic modulus in the y direction

v = Major Poisson's ratio
xY

A summary of material properties used for the modeling of all four beams is

shown in Table 2.2.

Table 2.2: Summary of Material Properties for FRP Composites (Kachlakev and
McCurry, 2000)

FRP
composite

Elastic
modulus

(ksi)

Major
Poisson's

ratio

Tensile
strength

(ksi)

Shear
modulus

(ksi)

Thickness
of laminate

(in.)

CFRP Ex = 9000
Ey = 700.0*

mg,= 0.22
v,=0.22 139.0

G=474.0*
G=474.0* 0.04

Ez = 700.0* l=0.30* Gyz = 270.0**

GFRP
Ex = 3000
Ey= 1000*

v=0.26
v=0.26 87.00

G=220.0
G=220.0 0.05

E=1000* v=0.30* G=385.0**



2.3. Modeling Methodology

Finite element models of the four experimental beams, derived from the

transverse beams of the Horsetail Creek Bridge, were developed to investigate their

behavior under loading using the ANSYS program. The four experimental beams were

constructed and tested at Oregon State University. One beam was a control, whereas

the other three beams were constructed with different FRP reinforcing schemes

(McCurry and Kachlakev, 2000; Kachlakev and McCurry, 2000).

2.3.1. Geometry

A solid element, Solid65, is used for the concrete in the finite element models.

The dimensions of the experimental beams are 121n. x 2401n. x 30.25in. The span

between the two supports is 216 in. Figure 2.11 illustrates typical dimensions for all

four beams before FRP reinforcing. By taking advantage of the symmetry of the beams,

a quarter of the full beam is used for modeling. This approach reduces computational

time and computer disk space requirements significantly. The quarter of the entire

model is shown in Figure 2.12.

Figure 2.13 shows typical steel reinforcement locations for the experimental

beams. In the finite element models, 3-D spar elements, Link8, are employed to

represent the steel reinforcement, referred to here as link elements. The steel

reinforcement is simplified in the model by ignoring the inclined portions of the steel

bars present in the test beams. Figure 2.14 shows typical steel reinforcement for a

quarter beam model.
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Figure 2.13: Typical Steel Reinforcement Locations (not to scale)
(McCurry and Kachlakev, 2000)

Ideally, the bond strength between the concrete and steel reinforcement should

be considered. However, in this study, perfect bond between materials is assumed. To

provide the perfect bond, the link element for the steel reinforcing is connected between

nodes of each adjacent concrete solid element, so the two materials share the same

nodes. The same approach is adopted for FRP composites. Since the epoxy used to

attach FRP sheets to the experimental beams has a sufficiently high strength, this

supports the perfect bond assumption.

/ #5 Steel rebar

#7 Steel rebar
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Figure 2.14: Typical Steel Reinforcement for a Quarter Beam Model (not to scale)
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Concrete solid elements

Link element FRP layered solid element

Figure 2.15: Element Connectivity: (a) Concrete Solid and Link Elements; (b)
Concrete Solid and FRP Layered Solid Elements

Reinforcing schemes for the experimental strengthened beams are shown in

Figure 2.16. GFRP and CFRP composite laminates have various thicknesses depending

upon the capacities needed at various locations on the beams.
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In the finite element models, layered solid elements, Solid46, are used to model

the FRP composites. Nodes of the FRP layered solid elements are connected to those of

adjacent concrete solid elements in order to satisfy the perfect bond assumption. Figure

2.15 illustrates the element connectivity.

(a) (b)



4 layers
60"

114"
240"

(b)

30.25"

Unidirectional CFRI-
(see Fig. 2.16(a))
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Unidirectional GFRP (2layers)

Unidirectional GFRP
(see Fig. 2.16(b))

27

(a)

30.25"
2 .25"

240"

(c)

Figure 2.16: FRP Reinforcing Schemes (not to scale): (a) Flexural Strengthened
Beam; (b) Shear Strengthened Beam; (c) Flexural/Shear
Strengthened Beam (McCurry and Kachlakev, 2000)

The various thicknesses of the FRP composites create discontinuities, which are

not desirable for the finite element analysis. These may develop high stress
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concentrations at local areas on the models; consequently, when the model is run, the

solution may have difficulties in convergence. Therefore, a consistent thickness of FRP

composites is used in the models to avoid discontinuities, by compensating with

changes in the elastic and shear moduli in each layer. For example, if the thickness of

FRP laminates is doubled, the elastic and shear moduli are reduced by 50%. Note that

the relationship between elastic and shear moduli is linear. Equation 2-7 shows the

relationship between elastic and shear moduli (ANSYS, 1998).

EE
Gxy =

+ Ey + 2v xyEx

where:

G,= Shear modulus in the xy plane

= Elastic modulus in the x direction

Ey = Elastic modulus in the y direction

v13' = Major Poisson's ratio

For this study, minor modification of dimensions for the FRP reinforcing was

made due to geometric constraints from the other elements in the models, i.e. meshing

of concrete elements, steel rebar locations and required output locations. Figure 2.17

shows the modified dimensions of the FRP reinforcing schemes for the quarter beam

models.

(2-7)
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2.3.2. Meshing

As an initial step, a finite element analysis requires meshing on the model. In

other words, the model is divided into a number of small elements, and after loading,

stress and strain are calculated at integration points of these small elements (Bathe,

1996). An important step in finite element modeling is the selection of the mesh

density. A convergence of results is obtained with an adequate number of elements in a

model. This is practically achieved if when the mesh density increases, a negligible

effect on the results occurs (Adams and Askenazi, 1998). Therefore, in this finite

element modeling study, a convergence study was carried out to determine an

appropriate mesh density.

The convergence study employed a control beam model with four different

numbers of elements, i.e. 896, 1136, 1580 and 2264, to examine the convergence of the

results. Three parameters at different locations were used to see if the results

converged. The outputs were collected at the same applied load, and are as follows:

deflection at midspan; compressive stress in concrete at midspan at the center of the top

face of the beam models; and tensile stress in the main steel reinforcement at midspan.

Figure 2.18 shows the results from the convergence study.
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Figure 2.18 shows that the differences in the results are negligible when the

number of elements increases from 1580 to 2264. Therefore, the 1580 element model

was selected for the control beam model and used as the basis of the other three FRP

strengthened beam models as well.

Figure 2.19 shows meshing for the control beam model. A finer mesh near the

loading location is required in order to avoid problems of stress concentration.

Loading location

Figure 2.19: Meshing for a Quarter of Control Beam

FRP layered solid elements are connected to the surfaces of the concrete solid

elements of the control beam as shown in Figure 2.15(b). The dimensions for the FRP

reinforcing schemes are shown in Figure 2.17. Numbers of elements used in this study

are summarized in Table 2.3.



Table 2.3: Numbers of Elements Used for Finite Element Models

2.3.3. Loading and Boundary Conditions

The four experimental beams were tested in third point bending as shown in

Figure 2.20. The finite element models are loaded at the same locations as the

experimental beams. In the experiment, the loading and support dimensions were

measured to be approximately 2in. x 81n. and 41n. x 121n., respectively.

A quarter of the entire beam is used for the models in this study. Planes of

symmetry are required at the cut faces. At a plane of symmetry, the displacement in the

direction perpendicular to the plane must be equal to zero. Figure 2.21 shows loading

and boundary conditions for a typical finite element model. Rollers are used to show

the symmetry condition at the cut faces.
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Model
Number of elements

Concrete Steel
reinforcement

FRP
composites

Steel
plate Total

Control beam 1404 164 - 12 1580

Flexural beam 1404 164 222 12 1802

Shear beam 1404 164 490 12 2070

Flexural/Shear beam 1404 164 1062 12 2642
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Figure 2.20: Loading and Support Locations (not to scale)
(McCurry and Kachlakev, 2000)
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Figure 2.22: Steel Plate with Line Support

When the loaded beam starts to displace downward, rotation of the plate should

be permitted. Excessive cracking of the concrete elements above the steel plate was

found to develop if rotation of the steel plate is not permitted as shown in Figure

2.23(a).
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Locations for the loading and supports on the experimental beams are shown in

Figure 2.20. For the finite element models, each load is distributed over a small area as

for the experimental beams. A one-inch thick steel plate, modeled using Solid45

elements, is added at the support location in order to avoid stress concentration

problems. This provides a more even stress distribution over the support area.

Moreover, a single line support is placed under the centerline of the steel plate to allow

rotation of the plate. Figure 2.22 illustrates the steel plate at the support.



Concrete cracking (a) (b)

Figure 2.23: Displacements of Model: (a) Without Rotation of Steel Plate (b) With
Rotation of Steel Plate

2.3.4. Nonlinear Solution

In nonlinear analysis, the total load applied to a finite element model is divided

into a series of load increments called load steps. At the completion of each

incremental solution, the stiffness matrix of the model is adjusted to reflect nonlinear

changes in structural stiffness before proceeding to the next load increment. The

ANSYS program (ANSYS 5.5: ANSYS, Inc., 1998) uses Newton-Raphson equilibrium

iterations for updating the model stiffness.

Newton-Raphson equilibrium iterations provide convergence at the end of each

load increment within tolerance limits. Figure 2.24 shows the use of the Newton-

Raphson approach in a single degree of freedom nonlinear analysis.
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Converged solutions

Displacement

Figure 2.24: Newton-Raphson Iterative Solution (2 load increments)
(ANSYS, 1998)

Prior to each solution, the Newton-Raphson approach assesses the out-of-

balance load vector, which is the difference between the restoring forces (the loads

corresponding to the element stresses) and the applied loads. Subsequently, the

program carries out a linear solution, using the out-of-balance loads, and checks for

convergence. If convergence criteria are not satisfied, the out-of-balance load vector is

re-evaluated, the stiffness matrix is updated, and a new solution is attained. This

iterative procedure continues until the problem converges (ANSYS, 1998).

In this study, for the reinforced concrete solid elements, convergence criteria

were based on force and displacement convergence checking, and the convergence

tolerance limits were initially selected by the ANSYS program. It was found that
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convergence of solutions for the models was difficult to achieve due to the nonlinear

behaviors of reinforced concrete. Therefore, the convergence tolerance limits were

relaxed a maximum of 5 times the initially selected tolerance limits in order to obtain

convergence of the solutions.

2.3.5. Load Stepping and Failure Definition for FE Models

For the nonlinear analysis, automatic time stepping in the ANSYS program

predicts and controls load step sizes. Based on the previous solution history and the

physics of the models, if the convergence behavior is smooth, automatic time stepping

will increase the load increment up to a selected maximum load step size, whereas if the

convergence behavior is difficult, automatic time stepping will bisect or cut back the

load increment until it is equal to a selected minimum load step size. The maximum

and minimum load step sizes are required for the automatic time stepping.

In this study, the convergence behavior of the models depends on behavior of

the reinforced concrete. The flexural/shear strengthened beam model is used here as an

example to demonstrate the load stepping. Figure 2.25 shows the load-deflection plot

with reinforced concrete behaviors occurring in the beam model under loading.
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Figure 2.25: Reinforced Concrete Behavior in Flexural/Shear Strengthened Beam

Table 2.4 is a summary of the load step sizes used for the beam model. The load

step sizes are adjusted depending upon the behavior occurring in the model.

Table 2.4: Summary of Load Step Sizes for Flexural/Shear Strengthened Beam
Model

Failtsg_ ®
numerous cracks

steel yieding

first cracking0
zero load
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Reinforced concrete behavior
Load step sizes (lb)

Minimum Maximum

1 Zero load First cracking 1000 5000

2 First cracking Steel yielding 2 75

3 Steel yielding Numerous cracks 1 25

4 Numerous cracks Failure 1 5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

150

I:
75

50

25

0
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As shown in the table, the load step sizes do not need to be small in the linear

range (region 1). At the beginning of region 2, cracking of the concrete starts to occur,

so the loads are applied gradually with small load increments. A minimum load step

size of 2 lb is defined for the automatic time stepping within this region. As first

cracking occurs, the solution becomes difficult to converge. If a load applied on the

model is not small enough, the automatic time stepping will bisect the load until it is

equal to the minimum load step size. After the first cracking load, the solution becomes

easier to converge, therefore the automatic time stepping increases the load increment

up to the defined maximum load step size, which is 75 lb for this region. If the load

step size is too large, the solution either needs a large number of iterations to converge,

which increases computational time considerably, or diverges. In region 3, the solution

becomes more difficult to converge due to yielding of the steel. Therefore, the

maximum load step size is reduced to 25 lb. A minimum load step size of 1 lb is

defined to ensure that the solution will converge, even if a major crack occurs within

this region. Last, for region 4, a large number of cracks occur as the applied load

increases. The maximum load step size is defined to be 5 lb, and a 1 lb load increment

is specified for the minimum load step size for this region. For this study, a load step

size of 1 lb is generally small enough to obtain converged solutions for the models.

Failure for each of the models is defined when the solution for a 1 lb load

increment still does not converge. The program then gives a message specifying that

the models have a significantly large deflection exceeding the displacement limitation

of the ANSYS program.



3. RESULTS FROM FINITE ELEMENT ANALYSIS

Results from the ANSYS finite element analyses of the four full-scale beams are

compared with the experimental data (McCurry and Kachlakev, 2000). Comparisons

are made as follows: load-strain plots at selected locations; load-deflection plots at

midspan; first cracking loads; loads at failure; and crack patterns at failure. Moreover,

the evolutions of crack patterns, stress contours in the concrete for each beam model,

and summaries of the maximum stresses occurring in the FRP composites for the finite

element models are also presented. The data from the finite element analyses are

collected at the same locations as for the experimental beams.

3.1. Load-Strain Plots

Conventional 2.36 in. long resistive strain gauges were placed throughout the

experimental beams. The strain gauges were placed on concrete surfaces, FRP

surfaces, and inside the beams on the main steel reinforcing bars at midspan. The

locations of selected strain gauges used to compare with the finite element results are

shown in Figure 3.1.
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Figure 3.1: Selected Strain Gauge Locations (not to scale)

3.1.1. Tensile Strain in Main Steel Reinforcing

For the control, flexural strengthened, and shear strengthened beams,

experimental strain data (McCurry and Kachlakev, 2000) were collected from strain

gauges on the No.7 steel rebars at the midspan; for the flexural/shear strengthened

beam, strain data were collected from a strain gauge on the No.6 steel rebar at midspan.

Locations of the strain gauges are shown in Figure 3.1. Comparisons of the load-tensile

strain plots from the finite element analyses and the experimental data for the main steel

reinforcing at midspan for each beam are shown in Figures 3.2, 3.3, 3.4, and 3.5. Note

that the vertical axis shown in the figures represents the total load on the beams.

Figure 3.2 shows that before the strain reverses in the experimental control

beam, the trends of the finite element and the experimental results are similar.

Especially in the linear range the strains from the finite element analysis correlate well

with those from the experimental data. The finite element model then has lower strains

than the experimental beam at the same load. The reversing strain in the experimental

6"-

4 3

Section A-A
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Figure 3.2: Load-Tensile Strain Plot for #7 Steel Rebar in Control Beam

Figure 3.3 shows good agreement for the strains from the finite element analysis

and the experimental results for the flexural strengthened beam up to 110 kips. The

finite element model for the flexural strengthened beam then has higher strains than the

experimental beam at the same load. At 110 kips, the strain in the flexural strengthened

beam reverses, as for the experimental control beam. The steel yields at an applied load

of 138 kips for the model, whereas the steel in the experimental beam has not quite

yielded at failure of the beam.
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beam is possibly a local effect caused by the major cracks, which take place close to the

midspan. This behavior does not occur in the finite element model with a smeared

cracking approach. Last, the steel at midspan in the finite element model has not

yielded at failure for the control beam model, and this is also true for the steel in the

experimental beam.
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Figure 3.3: Load-Tensile Strain Plot for #7 Steel Rebar in Flexural Strengthened
Beam
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Figure 3.4: Load-Tensile Strain Plot for #7 Steel Rebar in Shear Strengthened
Beam

44

Figure 3.4 shows that the strain data from the finite element analysis and the

experimental data for the shear strengthened beam have similar trends. Similar to the
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Figure 3.5: Load-Tensile Strain Plot for #6 Steel Rebar in Flexural/Shear
Strengthened Beam (Experimental beam did not fail)

Figure 3.5 shows that the strains calculated by ANSYS agree well with those

from the experimental results for the flexural/shear strengthened beam. Similar to the

control, flexural and shear strengthened beams, the strains for the flexural/shear

strengthened beam from the finite element analysis correlate well with those from the

experimental data in the linear range. The comparison ends at the maximum

experimental applied load of 160 kips due to limitations in the capacity of the testing
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plots of strains in the steel for the flexural strengthened beam, the finite element model

for the shear strengthened beam has higher strains than the experimental beam at the

same load. The steel in the finite element model yields at an applied load of 108 kips,

whereas the steel in the experimental beam yields at approximately 126 kips, a

difference of 14%.
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machine. For the flexural/shear strengthened beam, the steel in the beam model yields

before failure, which supports calculations for the experiment (McCurry and

Kachlakev, 2000).

In general, the plots of load versus tensile strains in the main steel reinforcing

from the finite element analyses have similar trends to those from the experimental

results. In the linear range, the strains calculated by the finite element program are

nearly the same as those measured for the experimental beams. However, after

cracking of the concrete, an apparent inconsistency occurs in the comparisons of the

results from the finite element analyses and the experimental data. For the control

beam, ANSYS predicts that the strains occurring in the steel are lower than those in the

experimental beam, while the strains occurring for the other three models are higher

than those in the experimental beams.

In a reinforced concrete beam, at a sufficiently high load, the concrete fails to

resist tensile stresses only where the cracks are located as shown in Figure 3.6(a).

Between the cracks, the concrete resists moderate amounts of tension introduced by

bond stresses acting along the interface in the direction shown in Figure 3.6(b). This

reduces the tensile force in the steel, as illustrated by Figure 3.6(d) (Nilson, 1997).
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Figure 3.6: Variation of Steel Force for Reinforced Concrete Beam: (a) Typical
Actual Cracking; (b) Cracked Concrete Section; (c) Bond Stresses
Acting on Reinforcing Bar; (d) Variation of Tensile Force in Steel
(Nilson, 1997)

bond stresses on concrete
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Generally, strains in the steel reinforcement for the finite element models were

higher than those for the experimental beams after cracking of the concrete. Figure 3.7

shows the average steel force in the finite element models. In the smeared cracking

approach, the smeared cracks spread over the region where the principal tensile stresses

in the concrete elements exceed the ultimate tensile strength as shown in Figures 3.7(a)

and 3.7(b) rather than having discrete cracks. The stiffness of the cracked concrete

elements in the finite element model reduces to zero, so they cannot resist tension.

Therefore, the tension in the steel elements for the finite element model does not vary as

occurs in the real beam. The tensile force in the steel elements is constant across the

elements (Figure 3.7(c)). For this reason, strains calculated from the finite element

analyses could be higher than those from the experimental results. This could also

explain the difference in the steel yielding loads between the finite element and the

experimental results for the flexural and shear strengthened beams as shown in Figures

3.3 and 3.4, respectively.

The inconsistency in the comparisons of the strains between the control beam

and the other three FRP strengthened beams may be also explained by the variation of

the steel force in the actual beams. For the experimental control beam, a crack may

occur very close to the strain gauge, and could create additional tensile strains for the

control beam. For the finite element model, the tension force and strain in the steel

elements are constant across each element as shown in Figure 3.7(c).
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Figure 3.7: Average of Steel Force for Finite Element Models: (a) Typical Smeared
Cracking; (b) Cracked Concrete and Steel Rebar Elements;
(c) Average Tensile Force in Steel Element

3.1.2. Tensile Strain in FRP Composites

The locations of the strain gauges on the FRP reinforcing are shown in Figure

3.1. For the flexural and flexural/shear strengthened beams, experimental strain data

were collected at midspan and center of the bottom of the beam on the surfaces of the

steel tension

CL

average tensile force in steel element
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Figure 3.8: Load-Tensile Strain Plot for CFRP Composite in Flexural
Strengthened Beam

50

CFRP composites, whereas for the shear strengthened beam the strains were measured

on the surface of the GFRP composite at a location 59 inches from the end of the beam

and at the center of the width of the beam. Comparisons of the load-tensile strain plots

from the finite element analyses and the experimental data for the FRP strengthened

beams are shown in Figures 3.8, 3.9,and 3.10.

Figure 3.8 shows good agreement for the CFRP strains from the finite element

analysis and the experimental results for the flexural strengthened beam. The finite

element model for the flexural strengthened beam has higher strains than the

experimental beam at the same load. Recall that the strains in the steel from the finite

element analysis are higher than those from the experimental data for the flexural

strengthened beam. As the strains in the steel are higher, the strains in the CFRP

reinforcing could also be higher for similar reasons.
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Figure 3.9: Load-Tensile Strain Plot for GFRP Composite in Shear Strengthened
Beam

Figure 3.9 shows that the GFRP strain data from the finite element analysis and

the experimental data for the shear strengthened beam have similar trends initially.

Similar to the flexural strengthened beam, the strains calculated by the finite element

analysis for the shear strengthened beam are higher than those for the experimental

beam at the same load. However, after 50 kips the difference in strains between the

finite element model and the experimental beam increases more dramatically.

Figure 3.10 shows that the CFRP strain data from the finite element analysis and

the experimental data for the flexural/shear strengthened beam have good agreement up

to 160 kips. The CFRP strains in the finite element model are again higher than those

in the experimental beam, possibly for similar reasons as for the steel strains.
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3.1.3. Compressive Strain in Concrete

The load-compressive strain plots in concrete collected from the experiment are

compared with results from the finite element analysis. A strain gauge was placed at

midspan and center of the top face for all four beams as shown in Figure 3.1. Figures

3.11, 3.12, 3.13, and 3.14 are comparisons of the load-compressive strain plots for the

concrete for all four beams.

Figure 3.11 shows that the load-compressive strain plots for the concrete from

the finite element analysis and the experimental data have excellent agreement for the

control beam. Figure 3.12 shows that the load-compressive strain plots for the flexural

strengthened beam have a similar trend, however strains in the concrete calculated by

ANSYS are higher than those from the experimental results at the same load.

Experiment

ANSYS

2400 3200 4000 4800 5600 6400 7200 8000

Micros train (in/in.)

Figure 3.10: Load-Tensile Strain Plot for CFRP Composite in Flexural/Shear
Strengthened Beam (Experimental beam did not fail)
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Figure 3.11: Load-Compressive Strain Plot for Concrete in Control Beam
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Figure 3.12: Load-Compressive Strain Plot for Concrete in Flexural Strengthened
Beam
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Figure 3.13 shows the load-compressive strain plots for the shear strengthened

beam. For applied loads from 0 to 105 kips, the load-strain plots for the shear
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Figure 3.13: Load-Compressive Strain Plot for Concrete in Shear Strengthened
Beam
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strengthened beam from the finite element and experimental results do not correlate

well. As shown in the figure, the experimental beam shows nonlinear behavior. This

behavior should not happen at this load level. Either erroneous test data or local

material imperfections may cause the behavior. Cracks occurring at the interfaces

between the cement and aggregate due to their differences in elastic modulus, thermal

coefficient, and response to change in moisture content when the concrete is hardened

could be the source of the local material imperfections. At about 110 kips, large strains

occur for the finite element model, whereas at a load of 120 kips similar behavior takes

place for the experimental beam. These loads are close to the yielding loads of the steel

as shown in Figure 3.4. The yielding of the steel explains the large concrete strains.
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Figure 3.14: Load-Compressive Strain Plot for Concrete in Flexural/Shear
Strengthened Beam (Experimental beam did not fail)

Up to the maximum applied load of 160 kips in the experimental beam, Figure

3.14 shows the finite element model having larger strains at the same load compared to

the experimental beams.

In general, the strains in the concrete from the finite element analyses are higher

than those from the experimental data. It is possible that the material properties of the

concrete obtained from the experiment (pulse velocity measurements) may be

inaccurate.

3.2. Load-Deflection Plots

Direct current displacement transducers (DCDTs) were used to measure

deflections for the experimental beams at midspan at the center of the bottom face of

the beams. For ANSYS, deflections are measured at the same location as for the

55



160

140

120

100

80
at

.4 60

40

20

0

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Midspan deflection (in.)

Figure 3.15: Load-Deflection Plot for Control Beam

Experiment
ANSYS

1.20 1.35 1.50

56

experimental beams. Figures 3.15, 3.16, 3.17, and 3.18 show the load-deflection plots

from the finite element analyses and the experimental results for all four beams.

Figure 3.15 shows that the load-deflection plot for the control beam from the

finite element analysis agrees well with that from the experimental data. In the linear

range, the load-deflection plot from the finite element analysis is stiffer than that from

the experimental results by approximately 66%. The first cracking load for the finite

element analysis is 23.5 kips, which is higher than the load of 17.6 kips from the

experimental results by 34%. After first cracking, the finite element model is again

stiffer than the experimental beam by approximately 28%. At 90 kips, for the finite

element control beam model, yielding of the steel No.7 occurs at a location

approximately 70 inches from the end of the beam, resulting in the decreased stiffness

of the model. Last, the final load of 102 kips from the model is lower than the ultimate

load of 107 kips from the experimental data by only 5%.
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Figure 3.16: Load-Deflection Plot for Flexural Strengthened Beam

Figure 3.16 shows that the load-deflection plots for the flexural strengthened

beam from the experimental data and the finite element analysis are in reasonably good

agreement. Similar to the control beam, the finite element model is stiffer than the

experimental beam in the linear range by approximately 55%. The finite element model

cracks at 23.4 kips, which is higher than the experimental beam cracking load of 21.7

kips by 8%. After first cracking, the two plots have a similar trend, however, the finite

element model is again stiffer than the experimental beam by approximately 27%. The

final load for the model is 140 kips, which is less than the ultimate load of 155 kips for

the experimental beam by 10%.
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Figure 3.17: Load-Deflection Plot for Shear Strengthened Beam

As shown in Figure 3.17, the two load-deflection plots for the shear

strengthened beam correlate well with each other. The finite element model is stiffer

than the experimental beam in the linear range by approximately 52%. The first

cracking load for the finite element model is 21.6 kips, which is higher than the load of

19.7 kips from the experimental results by 10%. After first cracking, the finite element

model and the experimental beam have almost the same stiffness. However, large

deflections begin to occur in the finite element model at a load of 110 kips, whereas the

same behavior in the experimental beam is observed at about 120 kips. It is evident that

the yielding of the steel reinforcement creates the large deflections. The final load for

the finite element model is 118 kips, which is less than the ultimate load of 155 kips for

the experimental beam by 24%.
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Figure 3.18: Load-Deflection Plot for Flexural/Shear Strengthened Beam
(Experimental beam did not fail)

As shown in Figure 3.18, the two load-deflection plots for the flexural/shear

strengthened beam are compared up to a load of 160 kips, since experimental data are

available only up to this point. The load-deflection plot from the finite element analysis

agrees well with the experimental data. In the linear range, the load-deflection plot

from the finite element analysis is slightly stiffer than that from the experimental results

by about 12%. The first cracking load levels from the finite element analysis and the

experimental results are 22.9 kips and 21.6 kips, respectively, a difference of 6%. After

cracking, the stiffness for the finite element model is slightly higher than the

experimental data by approximately 14%. Above a load of 145 kips, the stiffness of the

finite element model reduces due to the yielding of the steel reinforcement in the beam

model, and the final load is 209 kips.
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In general, the load-deflection plots for all four beams from the finite element

analyses agree quite well with the experimental data. For the four beams, the finite

element load-deflection plots in the linear range are stiffer than the experimental plots

by 12%-66%. The first cracking loads for all four models from the finite element

analyses are higher than those from the experimental results by 6%-34%. After first

cracking, the stiffness of the finite element models is again higher than that of the

experimental beams by 14%-28%. There are several effects that may cause the higher

stiffnesses in the finite element models. First, microcracks are present in the concrete

for the experimental beams, and could be produced by drying shrinkage in the concrete

and/or handling of the beams. On the other hand, the finite element models do not

include the microcracks. The microcracks reduce the stiffness of the experimental

beams. Next, perfect bond between the concrete and steel reinforcing is assumed in the

finite element analyses, but the assumption would not be true for the experimental

beams. As bond slip occurs, the composite action between the concrete and steel

reinforcing is lost. Thus, the overall stiffness of the experimental beams is expected to

be lower than for the finite element models (which generally impose additional

constraints on behavior).

A combined load-deflection plot is used to show differences in behaviors for the

four beams. Figure 3.19 illustrates the load-deflection plots for the four experimental

beams, whereas Figure 3.20 shows the plots for the four finite element models.
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Figure 3.19: Load-Deflection Summary for Experimental Beams
(Beam No.4 did not fail) (Kachlakey and McCurry, 2000)
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Figure 3.20: Load-Deflection Summary for All ANSYS Finite Element Models
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The load-deflection plots from the finite element analyses and the experimental

data both show that the stiffnesses of the beams before and after applying FRP

strengthening are approximately the same in the linear range. After first cracking, the

stiffnesses of the FRP strengthened beams from the finite element analyses are higher

than for the control beam, which is consistent with the experimental results.

For the load-carrying capacity of the beams, the finite element models have the

same sequence as for the experimental beams. For the finite element models, the

flexural, shear, and flexural/shear strengthened beams have higher load carrying

capacities than the control beam by 37%, 16%, and 105%, respectively, whereas the

experimental FRP strengthened beams have capacities greater than the control beam by

45%, 45%, and 104%, respectively. Note that the capacity of the experimental

flexural/shear strengthened beam was estimated from hand calculations (Kachlakev and

McCurry, 2000).

3.3. First Cracking Loads

The first cracking load from the finite element analysis is the load step where

the first signs of cracking occur for concrete in the model. Loads at first cracking from

the model and the experimental results are compared in Table 3.1.



*(McCurry and Kachlakev, 2000)

The first cracking loads from the finite element analyses and the experimental

data are comparable, but the first cracking loads from ANSYS are generally somewhat

higher as seen in Table 3.1. This is possibly due to the relative homogeneity of the

finite element models when compared to the relative heterogeneity of the experimental

beams that contain a number of microcracks. The finite element results also support the

experimental observation that after applying the FRP composites, the FRP reinforcing

scheme for the shear strengthened beam results in the lowest first cracking load when

compared to the other two FRP strengthened beams.

3.4. Evolution of Crack Patterns

In ANSYS, outputs, i.e. stresses and strains, are calculated at integration points

of the concrete solid elements. Figure 3.21 shows integration points in a concrete solid

element. A cracking sign represented by a circle appears when a principal tensile stress
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Table 3.1: Comparisons Between Experimental and ANSYS First Cracking Loads

Beam First cracking load (kips) %Difference
Experiment* ANSYS

Control beam 17.6 23.5 34

Flexural beam 21.7 23.4 7.8

Shear beam 19.7 21.6 9.6

FlexurallShear beam 21.6 22.9 6.0



Figure 3.21: Integration Points in Concrete Solid Element (ANSYS, 1998)
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Figure 3.22: Cracking Sign (ANSYS, 1998)
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exceeds the ultimate tensile strength of the concrete. The cracking sign appears

perpendicular to the direction of the principal stress as illustrated in Figure 3.22.
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Figure 3.23: Coordinate System for Finite Element Models

Figure 3.23 shows the coordinate axes used in this finite element modeling

study, where x, y, and z correspond to the length, width, and height directions for the

beams, respectively. Figure 3.24 shows typical cracking signs in an ANSYS model. A

side face of a quarter beam model is used to demonstrate. As shown in Figure 3.24(a),

at midspan and at the bottom of the beam, principal tensile stresses occur mostly in the

x direction (longitudinally). When the principal stresses exceed the ultimate tensile

strength of the concrete, circles as cracking signs appear perpendicular to the principal

stresses in the x direction. Therefore the cracking signs shown in the figure appear as

vertical straight lines occurring at the integration points of the concrete solid elements.

Hereafter, these will be referred to as flexural cracks.

Figure 3.24(b) shows the type of cracking signs observed for concrete elements

underneath the loading locations. For a concrete structure subjected to uniaxial

compression, cracks propagate primarily parallel to the direction of the applied

compressive load, since the cracks result from tensile strains developed due to
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Poisson's effect (Mindess and Young, 1981; Shah et al., 1995). Similar behavior is

seen in the finite element analysis. Loads in the z direction result in tensile strains in

the y direction by Poisson's effect. Thus, circles appear perpendicular to the principal

tensile strains in the y direction at integration points in the concrete elements near the

loading location. These will be referred to as compressive cracks.

Figure 3.24: Typical Cracking Signs Occurring in Finite Element Models:
(a) Flexural Cracks; (b) Compressive Cracks; (c) Diagonal Tensile
Cracks

Figure 3.24(c) shows cracking signs where both normal and shear stresses act on

concrete elements. By using transformation equations, directions and magnitudes of the
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principal stresses can be obtained (Gere and Timoshenko, 1997). At the location

shown in the figure, normal tensile stresses generally develop in the x direction and

shear stresses occur in the xz plane. Consequently, the direction of tensile principal

stresses becomes inclined from the horizontal. Once the principal tensile stresses

exceed the ultimate tensile strength of the concrete, inclined circles appearing as

straight lines perpendicular to the directions of the principal stresses appear at

integration points of the concrete elements. Hereafter, these will be referred to as

diagonal tensile cracks.

The ANSYS program records a crack pattern at each applied load step. Figure

3.25 shows evolutions of crack patterns developing for each beam. In general, flexural

cracks occur early at midspan. When applied loads increase, vertical flexural cracks

spread horizontally from the midspan to the support. At a higher applied load, diagonal

tensile cracks appear. Increasing applied loads induces additional diagonal and flexural

cracks. Finally, compressive cracks appear at nearly the last applied load steps. The

cracks appear underneath the loading location on the control and flexural strengthened

beam models. For the shear strengthened beam model, there are no compressive cracks

underneath the loading location. On the flexural/shear strengthened beam model,

significant cracks appear at the top of the beam. The appearance of the cracks defines

the failure mode for the beams, which will be discussed in the failure crack pattern

section of this thesis.
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3.5. Loads at Failure

All four experimental beams were tested to the maximum achievable load. For

the control, flexural strengthened, and shear strengthened beams, the load was the

respective beam capacity. However, for the flexural/shear strengthened beam, the

maximum load was 160 kips, due to the capacity of the testing machine (McCurry and

Kachlakev, 2000).

The ultimate loads for the experimental beams are compared to the final loads

from the finite element simulations. As mentioned in Chapter 2, the final loads for all

four beams are the last converged load steps from ANSYS, with as small as 1 lb

increments. After the final loads, the beam models have very large deflections resulting

in unconverged solutions. This is the criterion used to define failure for the four models

in this study.

Moreover, the failures of the models are supported by the crack patterns. At the

final loads, cracking of the concrete has propagated through the beams from the bottom

face to the top face. Table 3.2 shows comparisons between the ultimate loads of the

experimental beams and the final loads of the four models from ANSYS.

The ultimate loads of the experimental beams and the final loads from the finite

element analyses are compared and show that ANSYS underestimates the strength of

the beams by 5%-24%. The comparisons show good agreement between the

experimental data and the finite element results. The final loads from the finite element

models were anticipated to be lower than the ultimate loads of the experimental beams.

The inclined portions of the steel reinforcement are excluded from the finite element
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*(McCurry and Kachlakev, 2000)
**This is not an ultimate load. The testing was limited by the testing machine capacity.

Toughening mechanisms at the crack faces may also slightly extend the failures

of the experimental beams before complete collapse. The finite element models do not

have these mechanisms. Some of these toughening mechanisms are shown in Figure

3.26 (Shah et al., 1995). The grain bridging process is shown in Figure 3.26(a).

Bridging occurs when the crack has advanced beyond an aggregate that continues to

transmit stresses across the crack. Figure 3.26(b) shows the interlock between the

cracked faces. This causes energy dissipation and load transfer through friction and

some bridging across the crack. Figure 3.26(c) shows the crack tip blunted by voids.

Additional energy is required to propagate the crack with a new blunt tip. Another

process is called crack branching as shown in Figure 3.26(d). The crack may propagate
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models, and this could be one of the reasons for the final loads from the finite element

analyses to be lower than those from the experimental data.

Table 3.2: Comparisons Between Experimental Ultimate Loads and ANSYS Final
Loads

Beam
Ultimate load

(kips) from
Experimental

results*

Final load
(kips) from

ANSYS

%Difference

Control beam 107 102 -5

Flexural beam 155 140 -10

Shear beam 155 118 -24

Flexural/Shear beam 160** 209 N/A



form new crack branches.

Friction between1
crack faces

(a) (b)

Secondary crack tip

(c) (d)

Figure 3.26: Toughening Mechanisms: (a) Aggregate Bridging; (b) Crack-Face
Friction; (c) Crack Tip Blunted by Void; (d) Crack Branching
(Shah et al., 1995)

Finally, the material properties assumed in this study may be imperfect. The

stress-strain curve for the steel used for the finite element beam models should be

obtained directly from material testing. The actual reinforcing steel has a different

Main crack tip
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into several braches due to heterogeneity of the concrete. More energy is consumed to
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stress-strain curve when compared to the idealized steel used for the finite element

modeling as shown in Figure 3.27. Therefore, this may help to produce the higher

ultimate load in the experimental beams. Moreover, the perfectly plastic stress-strain

relationship assumed for the concrete after the ultimate compressive stress might also

cause the lower failure load in the finite element models.

Ey
Strain Strain

(a) (b)

Figure 3.27: Stress-Strain Curve for Reinforcing Steel: (a) As Determined by
Tension Test; (b) Idealized (Spiegel and Limbrunner, 1998)

3.6. Crack Patterns at Failure

In the experiment, the failure modes for the four beams were as predicted. The

control and flexural strengthened beams failed in shear as anticipated. The shear

strengthened beam failed in flexure at the midspan, with yielding of the steel

reinforcing followed by a compression failure at the top of the beam. The
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flexural/shear strengthened beam was loaded up to the maximum load of 160 kips that

the testing machine was able to apply.

Crack patterns obtained from the finite element analyses at the last converged

load steps are presented and compared to failure photographs from the experimental

beams (Figure 3.28). Note that a photograph at failure of the flexural/shear

strengthened beam is not available. Figure 3.28(a) shows a comparison of crack

patterns at failure from the finite element analysis and the experimental results for the

control beam. The crack pattern from ANSYS and the photograph of the experimental

beam agree very well. For the finite element model, smeared cracks spread over the

high shear stress region and occur mostly from the support toward the loading area.

Figure 3.28(b) shows that the crack patterns for the flexural strengthened beam from

both the finite element analysis and the experiment are similar to those for the control

beam. The ANSYS program accurately predicts that both the control and the flexural

strengthened beam fail in shear, but the flexural strengthened beam fails at a higher

load.

Figure 3.28(c) shows good agreement between the crack pattern from ANSYS

and the photograph of the experimental shear strengthened beam. Numerous cracks

occur at midspan of the finite element model rather than underneath the loading

location. The crack pattern and steel yielding at the midspan (Figure 3.4) for the finite

element shear strengthened beam support the experimental results that the beam fails in

flexure.
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Calculations suggested that the experimental flexural/shear strengthened beam

would be limited by the crushing strength of the concrete and fail in flexure (McCurry

and Kachlakev, 2000). Figure 3.28(d) illustrates the final crack pattern for the

flexural/shear strengthened beam predicted by the ANSYS program. Numerous

compressive cracks occur at the top part of the beam, and many flexural cracks are

observed at midspan as well. Moreover, the steel at the midspan in the model yields as

shown in Figure 3.5. These observations support the conclusion that the beam would

fail in flexure.

3.7. Stress Contours in Concrete

Figure 3.29 shows stress contours in the concrete for the finite element beam

models. For each model, stress contours are shown at three different applied load steps;

at 15 kips (uncracked concrete), 50 kips (cracked concrete), and at the last load step for

each beam. Note that the time step (TIME) indicated in each plot represents the applied

load to the model, in which the units are lbs. The direction of the stresses (SX) is in the

x direction (along the length of the beams). The units for stress in each plot are lb/in2.

Negative values are compressive stresses, whereas positive values are tensile stresses.

As shown in the figure, the stress contours from the ANSYS program can

effectively display stresses that develop in the concrete for each model. After cracking

of the concrete, cracked concrete elements in the models result in discontinuities in the

stress contours.
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Figure 3.29: Stress Contours in Concrete: (a) Control Beam; (b) Flexural Strengthened Beam; (c) Shear
Strengthened Beam; (d) Flexural/Shear Strengthened Beam
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3.8. Maximum Stresses in FRP Composites

For the experimental flexural and shear strengthened beams, there was no

evidence that the FRP reinforcing failed before overall failure of the beams. The finite

element analyses provide stresses occurring at the integration points of FRP layered

solid elements. Maximum stresses are obtained at the last converged load step. Table

3.3 shows a summary of the maximum tensile stresses occurring in the FRP composites

for the FRP strengthened beams and the ultimate tensile strength of the FRP

composites. Figure 3.30 shows locations of the maximum stresses in the FRP

composites for the FRP strengthened beams.

Table 3.3: Summary of Maximum Stresses and Ultimate Tensile Strengths of FRP
Composites

* (Kachlakey and McCurry, 2000)
** (x, y, z) corresponds to (length, width, height) directions on the beams, and the origin

(0, 0, 0) is at a comer of the bottom face of the beams as shown in Figure 3.30(a).

Table 3.3 supports the experimental observations that the CFRP and GFRP on

the flexural and shear strengthened beams do not rupture before the overall failures of

the beams. The tensile stress (at the last converged load step) in the CFRP for the
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Beam
Maximum

tensile stress
(lisi)

Ultimate
tensile

strength (lisi)*

Location
(x, y, z)
(in.)**

Flexural beam (CFRP) 28.7 139 (66,6,0)

Shear beam (GFRP) 7.22 87.0 (114,4,0)

Flexural/Shear beam 71.8 (CFRP)
5.91 (GFRP)

139 (CFRP)
87.0 (GFRP)

(120,0,0)
(57,4,0)
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= maximum stress location
in each FRP composite
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flexural/shear strengthened model at midspan represents the maximum stress developed

in the composite laminate. Nonetheless, the stress is substantially less than the ultimate

tensile strength.

0 = maximum stress location
in each FRP composite

Figure 3.30: Locations of Maximum Stresses in FRP Composites for FRP
Strengthened Beams: (a) Flexural Strengthened Beam; (b) Shear
Strengthened Beam; (e) Flexural/Shear Strengthened Beam

(a) (b)

0



3.9. Comparisons to Parallel Research

A parallel research effort was accomplished at Oregon State University by

Chansawat (2000). Only two full-scale beams, i.e., the control beam and the

flexural/shear strengthened beam, were modeled also using the ANSYS finite element

program by Chansawat (2000).

The control beam models from this study and Chansawat (2000) have nearly the

same geometric configurations. However, one difference between the two control beam

models was the method of mesh generation. This study uses mesh generation based on

a solid modeling method, whereas the mesh generation of Chansawat's model was

based on a direct generation method. The load stepping defined for the analyses was

also different, especially the load step sizes close to failure. Chansawat used 0.1 lb as

the minimum load step size, whereas this study used a 1 lb load increment.

The flexural/shear strengthened beams from the two studies also have nearly the

same geometric configurations as for the control beam except for the number of

elements due to the different methods used in modeling the FRP composites. For

Chansawat's model, CFRP and GFRP composites were modeled as layers in one

element, whereas for this study each FRP composite is separately modeled. Mesh

generation and load stepping for the two studies are also different as for the control

beam.

Comparisons of the results from both studies showed that the stiffnesses of the

models are almost identical for both the control and flexural/shear strengthened beam

models. The crack patterns predicted by the ANSYS program from the two studies are

very similar. However, the load-carrying capacities of the models from the two studies
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are slightly different. The control beam modeled by Chansawat has a failure load

higher than the model from this study by 0.5%, and the failure load of the flexural/shear

strengthened beam modeled by Chansawat is higher than that from this study by 4%.

The differences in the FRP composite modeling and the load stepping between the two

analyses could cause these differences in the load-carrying capacities.



4. CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions

The finite element method using the ANSYS program can effectively

simulate the general behavior of reinforced concrete beams both before and after

applying FRP composites from the linear through nonlinear ranges and up to failure.

The general behaviors of the finite element models represented by the load-

deflection plots at midspan show good agreement with the experimental data provided

from the full-scale beam tests.

The load-deflection plots resulting from the finite element models show that

the finite element models are stiffer than the experimental beams in the linear range by

12%-66%. The first cracking loads for all four beams calculated by the finite element

program are higher than those from the experimental data by 6%-34%. After first

cracking of the concrete, overall stiffness of the finite element models is slightly higher

than the experimental beams by 14%-28%. The finite element models do not account

for microcracks occurring in the actual concrete; therefore, the finite element models are

stiffer than the experimental beams; and the effect of bond slip between the concrete

and steel reinforcing is not included in the finite element models (perfect bond is

assumed in the finite element analyses) and this also results in the stiffness of the finite

element models being higher than that for the experimental beams.

The load-strain plots showing local behavior at selected locations from the

finite element analysis show fair agreement to those from the experimental data.
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The final loads from the finite element analyses are lower than the ultimate

loads from the experimental results by 5%-24%, in part because inclined portions of the

steel reinforcement are not included; the effects of concrete toughening mechanisms are

ignored in the models; and the material properties assumed in the models may be

imperfect.

The load carrying capacity of the flexural/shear strengthened beam predicted

by the finite element analysis is higher than that of the control beam by 105%, which

agrees very well with hand calculations showing that the FRP strengthened beam has a

higher ultimate load than the control beam by 104%.

The crack patterns at the final loads from the finite element models

correspond well with the failure modes of the experimental beams, and the crack pattern

predicted by the finite element analysis for the flexural/strengthened beam agrees with

the hand calculations showing that the beam fails in flexure.

4.2. Recommendations for Modeling of FRP-Strengthened Reinforced Concrete
Beams

A stress-strain curve for the steel reinforcement obtained from material

testing may be used in the finite element modeling to obtain improved results.

Improvement in concrete modeling may be made by adding a descending

portion (strain softening) to the concrete stress-strain curve.

Taking advantage of the symmetry of structures reduces computational time

and computer disk space requirements, however boundary conditions must be properly

defined.
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Modeling the bond slip behavior between the steel reinforcement and the

concrete may improve results.

For the beam tests, a steel plate with a line support was needed at the support

locations. The steel plate provides a more even stress distribution over the support area

to avoid problems of stress concentration, and the line support allows rotation of the

steel plate to prevent excessive cracking of concrete elements at the support location.

A convergence study must be carried out to determine an adequate number

of elements for the models.

For nonlinear analysis of a reinforced concrete beam, the total load applied

to a model must be divided into a number of load steps. Sufficiently small load step

sizes are required particularly at changes in behavior of the reinforced concrete beam,

i.e. major cracking of concrete, yielding of steel, and approaching failure of the

reinforced concrete beam. Properly defining minimum and maximum sizes for each

load step depending upon the behavior of the reinforced concrete beam assists in

convergence of the solutions and reduces computer computational time.
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