TESTING EMISSIONS FROM HEM-FIR LUMBER

Don Hejna
Potlatch
Bemidji, Minnesota

Lumber Kiln Emissions Testing

- Why test?
- Test program
- Results
- Summary

Why Test?

- MACT Rules: Hazardous air pollutants
 - plywood and composite wood products
 - boilers
- Thresholds
 - >10 tons/year of single HAP
 - >25 tons/year of all HAPs
- 189 HAPs- primarily six in wood products
- MACT Rules: Low risk subcategory
 - look up tables
 - site specific testing and modeling
- If low risk is demonstrated without control equipment, facility is in compliance with the rule
- What capacity mill needs to consider HAPs?
- 150-200 mm/bf/year depending upon
 - species
 - co-located operations including boilers
 - critical single HAP - methanol
 up to 90% of total

Why Not Use Emission Factors?

- Emission factors should be used first
 - May provide a large data base
- However,
 - May not be appropriate to your facility species
 product - e.g., bark from trees kept in saltwater; contaminated wood from demolition
- May not be accurate for your facility
Test Program

Team - See addendum for contact information

1. EPA -OAQPS-Gary McAlister
2. Geomatrix - Ken Richmond
3. Interpoll Laboratories - Dan Despen
4. NCASI - Dr. David Word
5. Oregon State University - Dr. Mike Milota
6. Potlatch Forest Products Corporation--Berne Wilmarth/Don Hejna

Alternatives

- Full scale kiln testing
 - Vents make it difficult, but possible
 - Stacks are easier
 - Kilns inherently leak - how much?
- Photographs
- Screen for presence of HAPs
 - Sample concentration inside kiln
- Small scale kiln test
 - Based on PCWP MACT low risk demonstration
 - Regulatory agencies may require different procedures for other purposes
FIGURE 1. Schematic of kiln and sampling system.
Test Program

- Purpose
 - Estimate HAPS from drying hem/fir
- Lumber Drying Test Plan based on
 - App C to Subpart DDDD of Part 63 – Considerations for a small-scale kiln emission testing program
- Test Plan reviewed by
 - NCASI - Dr. David Word
 - EPA-OAQPS - Gary McAlister - no formal approval

App C to Subpart DDDD of Part 63
Considerations for a Small-Scale Kiln Emission Testing Program

- Representative samples of lumber
- Kiln operating parameters, similar to full scale kilns (air flow, temperature, time)
- Emissions sampling
- Sample intervals (3 hrs) and runs (2)
- Reporting - graphs, numerical data, water balance, MDL, emissions rates
- Guidance - NCASI TB-845

Test Program - Reviews

- EPA issues addressed in Test Plan Review
 - Use of GC/MSD v. GC/FID in NCASI 99.02
 - Detection limits < 1 ppm
 - QA/QC spike trains - lab and field
 - Timber location/harvest date/time in log yard
- Post Test Review
 - Use of silica gel
 - One-hour sampling to avoid errors

Test Program - Stack Tester

- Criteria for selecting stack tester
 - Confidence
 - 30 year history with wood products
 - Pioneer work with HAPs, ethanol industry
 - QA/QC and detection capability
 - Truck mounted lab for immediate results
Test Program - Results, lb/mbf

<table>
<thead>
<tr>
<th>Emission</th>
<th>Kiln Run #1</th>
<th>Kiln Run #2</th>
<th>Average</th>
<th>PW/CP Table 2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>0.0424</td>
<td>0.0469</td>
<td>0.0461</td>
<td>0.065</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>0.0027</td>
<td>0.0028</td>
<td>0.0028</td>
<td>-</td>
</tr>
<tr>
<td>Acrolein</td>
<td>0.0028</td>
<td>0.0020</td>
<td>0.0019</td>
<td>0.009</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.1742</td>
<td>0.1743</td>
<td>0.1743</td>
<td>-</td>
</tr>
<tr>
<td>Phenol</td>
<td>0.0013</td>
<td>0.0008</td>
<td>0.0011</td>
<td>0.010</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.0042</td>
<td>0.0030</td>
<td>0.0040</td>
<td>0.004</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0007</td>
<td>0.0006</td>
<td>0.0006</td>
<td>NA</td>
</tr>
<tr>
<td>Total VOC as Carbon</td>
<td>0.2199</td>
<td>0.1842</td>
<td>0.2021</td>
<td>-</td>
</tr>
</tbody>
</table>

Test Results - Caveats

- Be careful of one test result
- Adjust to KD target moisture 17-19%
- As a minimum, correct with statistics, or add 50-100% safety factor
- Example
 - Acrolein test result - 0.002 lb/mbf
 - Acrolein - EPA table - 0.009 lb/mbf
 - Stack tester more comfortable with 0.009

Summary

- Small-scale kiln testing
 - Accepted by EPA for low risk determination
- Test plan
 - Follow guidance in App C to Subpart DDDD of Part 63 --
 Considerations for a small-scale kiln emission testing program
 - EPA Review - Resolve issues - No written approval
- Be wary of single test results
 - Add safety factor, at least statistical factor
- Stack testing program
 - Confidence in stack tester
 Detection limit capability for HAPs
 QA/QC
 On-site analysis v. Lab
Test Program Team

1. EPA - QAQPS - Gary McAlister
 919-541-1062 mcalister.gary@epamail.epa.gov
2. Geomatrix - Ken Richmond
 425-921-4014 krichmond@geomatrix.com
3. Interpoll Laboratories - Dan Despen
 763-786-6020 x46 dan.despen@interpoll-labs.com
4. NCASI - Dr. David Word
 352-331-1745 x 241 d_word@src-ncasi.org
5. Oregon State University - Dr. Mike Milota
 541-737-4210 mke.milota@oregonstate.edu
6. Potlatch Corporation - Bernie Wilmarth
 208-245-7517 bernie.wilmarth@potlatchcorp.com

Emission Factor References

2. June 9, 2000 letter to Mary Tom Kissle (EPA) from Katie Hanks, MRI (Docket),
 Subject: Emissions Estimates (OAR-2003-0048-0189)

 Fir, and Douglas Fir” report to Intermountain Forest Association

5. A comparative study of VOC emissions from small-scale and full scale lumber kiln

6. A small-scale kiln study on Method 25A measurements of volatile organic compound
 emissions from lumber drying, NCASI TB-718, July 1996.