
Exact Learning of Unordered Tree Patterns From Queries

Thomas R. Amoth Paul Cull Prasad Tadepalli
amotht@cs.orst.edu, pc@cs.orst.edu, tadepall@cs.orst.edu

Department of Computer Science
Oregon State University

Corvallis, OR 97331
May 14, 1999

Abstract

We consider learning tree patterns from queries ex-
tending our preceding work[Amoth, Cull, & Tade-
palli, 1998]. The instances in this paper are un-
ordered trees with nodes labeled by constant iden-
tifiers. The concepts are tree patterns and unions
of tree patterns (unordered forests) with leaves la-
beled with constants or variables. A tree pattern
matches any tree with its variables replaced with
constant subtrees. A negative result for learning
with equivalence and membership/subset queries
is shown for unordered trees where a successful
match requires the number of children in the pat-
tern and instance to be the same. Unordered trees
and forests are shown to be learnable with an alter-
native matching semantics that allows an instance
to have extra children at each node.

1 INTRODUCTION

Many applications in mathematics and language processing
represent data more naturally as trees (or as unions of these)
than as vectors of features. Tree patterns also provide more
information than simple string patterns. Some mathematical
operations require the parts of the structures to be in a partic-
ular order, so the trees areordered. Other applications such
as mathematical functions which are commutative (add, mul-
tiply) allow their arguments in any order, making their trees
unordered.

We use the exact learning framework of Angluin with a
variety of queries[Angluin, 1988]. In this framework, the
teacher can pick any target concept in the concept class. The
learner is allowed to ask queries about the target. The num-
ber of queries asked by the learner must be bounded by a
polynomial function in the size of the target concept. The

learner has to exactly identify the target concept, i.e., find
a hypothesis which matches exactly the set of instances de-
noted by the target, in time polynomial in the size of the tar-
get and the size of the input to the learner (in the form of var-
ious responses to its queries). Unlike the PAC-predictability
model, we do not require that the hypothesis output by the
learner has a polynomial-time membership algorithm. In
all of our algorithms, the queried hypothesis is in the target
class.

Query oracles as introduced by Angluin[Angluin, 1988]
are used. AnEquivalence Query(EQ) is given a hypothesis
as an argument and returnstrue if that hypothesis is covers
the same set of instances as the target but otherwise returns
falseand returns a counterexample. AMembership Query
(MQ) is given a single instance and returnstrue iff the in-
stance is a member of the target. ASubset Query(SQ) is
given a possible hypothesis and returnstrue iff that hypothe-
sis is a subset of the target.

Ordered tree patterns with repeated variables have been
shown to be learnable with equivalence (EQ) and member-
ship (MQ) queries and either a bound on the number of trees
[Arimura, Ishizaka, & Shinohara, 1995] or an infinite alpha-
bet [Amoth, Cull, & Tadepalli, 1998]. In the previous work
we showed that unordered trees without repeated variables
are learnable from equivalence and membership queries and
that superset queries and equivalence queries are sufficient to
learn unordered trees with repeated variables. Here we show
that unordered trees with repeated variables are not learnable
with equivalence and subset queries (SQ).

Since learning unordered trees is hard without queries
more powerful than subset queries, an alternative model is
studied. The alternative “into” semantics allows extra chil-
dren in the instance at each matched node as long as each
subtree of the pattern matches a distinct child subtree. With
this semantics, unordered forests (UF) are shown to be learn-
able from EQ and SQ. Since SQ can be simulated by MQ in
this class (when EQ is available), they are also learnable from
EQ and MQ.

R

A A

E F DB C D

ACAC

(c) Into Matching

R

A A

D E FB D

ACA

(d) Not Match

R

A A A A

R

z y x w y

(a) Tree Pattern (b) Match (Both)

B D E F D

AC AC

Figure 1: Match Semantics Example

2 DEFINITIONS

The tree learning problemis to learn a tree pattern from ex-
ample tree instances. Atree instancehas a label (from the
infinite constant alphabet) at each node. Atree patternhas
constants at its internal nodes, but its leaves may bevariables
which will match any constant subtree.

Matching: The trees in Figure 1 could also be represented
in a parent(child . . . child) style notation asR(A(zy)A(xwy)
), etc. A tree pattern is a tree with the leaves labeled with
constants or variables. A constant matches the same constant
but a variable matches any constant subtree. Twounordered
treeinstancesf(r1 : : : rk) andg(s1 : : : sk), match according
to onto semantics iff = g and there is a one-to-oneonto
mapping or permutation� of 1 : : : k such that the child sub-
treeri matchess�(i), 1 � i � k. A constant node with no
children matches only itself.

The difficulty of learning with onto semantics suggests
exploration of an alternative semantics which only require
the mapping of the children of each node from pattern to in-
stance to be one-to-oneinto. The instance is allowed to have
extra, unmatched children; this semantics is closer but not
equivalent to that used for Horn-clause learning. Using the
above notation, tree patternf(r1 : : : rn) would match tree
instanceg(s1 : : : sm) if f = g and0 � n � m, and there
exists a one-to-oneinto mappingp such that for alli � n ri
matchessp(i).

For each variablev in a tree patternp, a substitutionre-
places all copies ofv with the same constant subtree. A tree
patternmatchesa tree instance if there exists a substitution
which makes the tree pattern match the instance (with the
corresponding semantics). The tree pattern (a) in Figure 1
matches instance (b) with both semantics, and instance (c)
only with “into”, but does not match (d) with either seman-

1 2

D
4

B C
GRAPH

3

A

1 2

y z
CLIQUE

[Complete

(Sub)Graph]

3

O

O O O u

x y x yz z

O

A B A C B C C D

TREE PATTERN CONSTANT TREE

CLIQUE as Unordered Tree

x

O O O

O

Figure 2:

tics.
The decision problem for matching is hard (and indepen-

dent of the learning problem):

Theorem 1 The problem of deciding whether a tree pattern
matches a tree instance with eitheronto or into semantics is
NP-Complete.
Proof: (CLIQUE�match): It is easy to see that the match-
ing problem is in NP. We now reduce the problem of deciding
whether a graph has a clique (complete subgraph) of sizek

to the matching problem of unordered tree patterns. A rep-
resentation of graphs in terms of unordered trees is chosen
with the following properties:

1. the entire graph is represented by a constant tree

2. the clique is represented by a tree pattern

3. both the tree example and the tree pattern have two lev-
els

4. the constant tree has a first-level subtree for each edge
of the graph

5. the pattern tree has a first-level subtree for each edge in
the clique

6. each such subtree has two children–the two vertices joined
by the edge

7. each variable name in the tree pattern corresponds to a
vertex in the clique

8. each constant label name in the example tree corresponds
to a vertex in the graph

9. for onto semantics, the pattern tree has enough extra
children in the form of single-variable subtrees so its
root has the same number of children as the root of the
constant tree.

(a) Instance

C

A B A A A A

(b) Pattern

x z z z y x

C

x: 1 1

y: 0 1

z: 2 1

B: 1 0

A: 2 3
C

C

C C

Figure 3: 2-Level Tree Instance, Pattern, Corresponding Ma-
trix Notations

Under these conditions, the problem of testing if a graph
has a CLIQUE (complete subgraph of a specified number
of vertices) can be recast as matching an unordered tree in-
stance by an unordered tree pattern (See Figure 2). UT match-
ing is therefore NP-Complete.2

Simpler trees can be matched in poly time as follows: OT
(ordered trees with repeated variables) can be matched while
caching the variable-value correspondences.�-UT (unordered
trees without repeated variables) can be matched using re-
cursion on the tree depth and a 2-D matching algorithm at
each tree level in each node to determine if all the children
at that node in a tree instance can match all the children of
the node in the tree pattern. (The latter operation is done in
such a way that each constant subtree and pattern subtree are
matched at most once.) Forest matching takes only polyno-
mially longer than tree matching. Matching of two subtrees
of thesametree pattern (or two constant trees) is polynomial
because the decision of whether a leaf in one tree matches a
leaf in the other tree is local. (The problem of determining
the correspondence between variables and constants makes
the pattern to instance matching problem NP-Complete.)

A tree patternrepresentsthe set of tree instances that
match it. Hence we say that these instances arein the pattern.
We consider learning tree patterns as well as finite unions
of tree patterns, which we call forests. Two major learning
problems based on the following two classes are considered:
unordered trees (UT), and unordered forests (UF).

We consider three different queries introduced by An-
gluin [Angluin, 1988]. An Equivalence Query(EQ) oracle
is given a hypothesis (tree or forest pattern), and returnstrue
if and only if the set of instances in the hypothesis are iden-
tical to those in the target. It also returns a counterexample
if the answer isfalse. A Membership Query(MQ) oracle is
given a single instance (a tree instance), and returnstrue iff
that instance is in the target and otherwisefalse. A Subset
Query(SQ) oracle is given a hypothesis (a tree or forest pat-
tern), and returns true iff the hypothesis represents a subset
of the target.

3 NEGATIVE RESULT FOR “ONTO” UT
WITH EQ AND SQ QUERIES

UF or UT is not learnable from EQ alone since the match
problem is NP-hard. (Any hard-to-compute class is hard to
PAC-predict by Theorem 7 of[Schapire, 1990].) In this sec-
tion we now prove that the concept class of unordered trees
with repeated variables (UT) is not learnable with both EQ
and SQ (equivalence and subset queries) Using a combinato-
rial argument. We use the proper exact learning framework
where the hypothesis given to EQ is required to be in the
target class.

3.1 EXAMPLE ILLUSTRATING THE PROOF FOR
3 SUBTREES

In this section, we introduce a subclass of UT called T2 that
is hard to learn. T2 consists of 2-level tree patterns withs

subtrees, each havingc children, and at most 3 variables. We
introduce a special notation to make the arguments concise.

The notation represents just the counts of each variable
in each subtree since the children of each such subtree can be
permuted. A matrix of numbers will be used with each col-
umn corresponding to one subtree and each row correspond-
ing to one variable in the target or one constant in an instance.
Figure 3 shows a sample tree instance and the corresponding
matrix to its left (with the rows labeled to help show this cor-
respondence). The left column containing 2 and 1 are the
number of leaves labeled byA’s andB’s in the left subtree.
Permuting the columns of a matrix permutes the subtrees of
a tree and produces an isomorphic tree. Permuting the rows
reassigns variable names or constants but otherwise creates
an identical tree. Changing a pair of numbers that were orig-
inally in the same column/row to no longer be in the same
column/row produce a non-equivalent tree.

Tree matching requires each instance row to be a sum of
rows of the pattern matrix with the columns permuted uni-
formly for all rows: in Figure 3,y matchesB andx andz
both matchA. With this assignment, swapping the two sub-
trees gives the instance in (a).

Consider the following example: let one possible target
havec=8 children per subtree ands = 3 subtrees/columns,
and v = 3 target variables (rows) (upper right3 � 3 ma-
trix of Figure 4). Exact learning requires an algorithm
to work even in the worst case and has the effect of making
EQ behave in an adversarial manner. Suppose EQ then gives
a learner an example with all the same constant (8 8 8 in ma-
trix notation). Then the learner could change the constant to
a variable and give the tree to EQ. EQ would then have to
give an instance with (at least) 2 variables (form the example
by adding the bottom two rows of the target). The learner
could repeat the process and EQ could return another two-
variable instance (by adding the top two rows of the target
as shown as the top two2� 3 matrices of the left column in
Figure 4). If the learner repeats the process with the last in-
stance, EQ could return the first two-constant instance. The
process could indefinitely cycle between these two instances.

0 3 6
8 5 2

8 7 6
0 1 2

0 3 6
8 4 0
0 1 2

7 6 8
1 2 0

0 3 6
7 3 2
1 2 0

6 8 7
2 0 1

0 3 6
6 5 1
2 0 1

7 8 6
1 0 2

0 3 6
7 5 0
1 0 2

6 7 8
2 1 0

0 3 6
6 4 2
2 1 0

8 6 7
0 2 1

0 3 6
8 3 1
0 2 1

Figure 4: First Example (top left), Permutations of 2nd Ex-
ample (left except top), Combine for Possible Targets (right)

It will be shown later that even with a polynomial number of
subset queries or equivalence queries with other patterns, the
target could still be missed.

The learner effectively has only two examples to work
with. These examples could have their columns permuted.
The seven2 � 3 matrices on the left represent the first 2-
variable example followed by permuted versions of the sec-
ond 2-variable example. Combining the two instances by
subtracting rows produces the potential targets shown on the
right. The middle rows of the results is of the most interest
and is obtained by subtracting the top row of the first exam-
ple from the top row of the permuted second example. Note
that the actual set of numbers changes, not just their permu-
tation. Each such result is one possible target. The learner
has no way to find the correct target other than by trying all
6 = 3! of these ways of combining the two examples.

3.2 UT NON-LEARNABILITY

Theorem 2 UT with onto semantics is not learnable with
EQ and SQ queries.

Proof: We generalize the above example which has 3 sub-
trees and therefore 3 columns in the matrix notation. Uses

subtrees (columns) withc children each and exactly 3 vari-
ables (rows) in the target. As noted above, exact learning
includes the worst case and therefore has the effect of mak-
ing the queries behave in an adversarial manner and give the
most uninformative answers allowed. As explained above,
the learner can at most force this adversary to return two 2-
constant examples. Let EQ return these two examples (called
E1 andE2):

0 s 2s : : : (s� 1)s
c c� s c� 2s : : : c� (s� 1)s

c c� 1 c� 2 : : : c� (s� 1)
0 1 2 : : : s� 1

The learner can try combining these two examples with-
out permuting their columns and generate the following re-
sult (which is one possible target). Combine these two exam-
ples to produce a possible target consistent with both by sub-
tracting the top row ofE1 from the top row ofE2 (possibly
after permuting the columns of the latter). Withc � s2 � 1,
this process will always produce a non-negative result (for
the middle row). IfE2 is not permuted, the result is:

0 s 2s : : : s(s� 1)
c c� s� 1 c� 2s� 2 : : : c� s2 + 1
0 1 2 : : : s� 1

But the adversary could say this is not the target. If the
two examples were combined with an arbitrary permutation,
a different result would be produced for each distinct (rela-
tive) permutation. To see this fact, first note that the resulting
middle row isc minus the sum of the numbers directly above
and below it. If the number above was taken from thei’th
column ofE1 (counting the columns from 0 tos � 1), then

its value would besi. Similarly, the number below would be
j if it came from thej’th column of the bottom row ofE2.
The result in the middle row would bec� si� j which will
have a different value for each distincti or j. The middle
row therefore uniquely identifies what permutation was used
implying each permutation produces a distinct target.

There are therefore exponentially many 3-variable tar-
gets consistent with the two 2-constant examples,E1 and
E2. Consider any EQ with 3 variables. EQ could play the
role of adversary, say that is not the target, and return as
the negative counterexample the queried pattern with each
variable replaced with a distinct constant. (Of course, if the
3-variable pattern given to EQ was inconsistent with either
E1 and/orE2, giveE1 or E2 as a positive counter exam-
ple.) For an SQ with�2 variables, return no if the pattern
is inconsistent with eitherE1 or E2. (Return yes if consis-
tent with both.) If astrongversion of SQ is used, meaning
it returns a negative counterexample if the pattern is not a
subset of the target, then return the same counterexamples as
for EQ above. If EQ (or SQ) is given a pattern with more
than 3 variables, return no with a counterexample formed by
converting the pattern variables to constants. EQ could not
be given a 2-variable pattern consistent with bothE1 and
E2 because these examples have different sets of numbers (0
throughs�1 vs. multiples ofs, etc.). All counts in an exam-
ple must be present in the pattern of the same number of rows
to allow matching–which is not possible for both examples.

Queries with 2-variable patterns therefore give no more
information while queries with 3 or more variables reduce
the number of potential targets consistent with the examples
by at most one. The learner can not force an adversary con-
trolling the queries to return a positive 3-constant example
in poly many attempts. The adversary could therefore keep
track of all potential targets that have not yet been tested by
the learner and assume one of these could still be the true
target . For any given learning algorithm, there is always
some target that cannot be learned in poly time.

There is still the need to show the rows can not be con-
fused; otherwise some combinations are duplicates of others
and there are less thans! total targets. The middle row of
the result is produced by expressions of the formc � si� j

and will not have values all lying within a range (maximum
minus minimum over the row) ofs � 1. Therefore it is not
interchangeable with the bottom row which ranges from 0
to s � 1. The elements of the middle row will all have dif-
ferent values modulos and therefore can’t be confused with
the top row, the differences between whose elements are all
multiples ofs.

Every possible way of combining the two examples will
therefore produce a distinct result for the combined 3-variable
result. Each call to SQ/MQ or EQ with a 3-variable argument
could only eliminate one of these possible targets regardless
of whether SQ was called before or after the last EQ. Calls
with 2-variable hypotheses will either have the same prob-
lem or just tell the learner what it already knows. Since there

functioninto-main() initialize: h = fg
while EQ(h) gives counterexamplet

%(which is positive)
repeat

t = prune(t) %local trimming
t = partition(t)

%partition repeated variable sets
t = simult-prune(t) %simultaneously

%prune identical subtrees
until no generalization change
h = h

S
t.

returnh

Figure 5: Into-Semantics Main Bottom-Up Algorithm

ares! possible targets, they cannot all be tried with polyno-
mially many queries.2

This proof can also be expressed in terms of the follow-
ing:

Lemma 3 (Angluin, 1988) Suppose the hypothesis space con-
tains a class of distinct setsL1 : : : LN , and there exists a set
L\ which is not a hypothesis, such that for any pair of dis-
tinct indicesi andj, Li \ Lj = L\

Then any algorithm that exactly identifies each of the
hypothesesLi using equivalence, membership, and subset
queries must make at leastN � 1 queries in the worst case.

Let L\ be the set consisting of the union of the two
2-constant examples (with the constants converted to vari-
ables). This set is not in the hypothesis space because the
latter allows only single trees. TheLi are thes! possible
targets consistent with those examples. To show the inter-
section of distinctLi andLj is L\, note that any example
matched byLi (which has 3 variables) can be generated by
mapping the variables onto constants. Since more than one
variable might map to the same constant, this operation has
the effect of partitioning the 3-element set of variables. Then
for each partition, substitute a (distinct) constant subtree for
all variables in that partition. The result will be either a tree
matched by a variablized (constants to variables) version of
one of the two examples or will isolate the variable corre-
sponding to the middle row. In the former case, the gener-
ated example is inL\. In the latter case, the example will not
be covered by any otherLj by the same argument as above
showing the middle row is different for each of thes! pos-
sible targets. Then Angluin’s lemma showss! � 1 queries
could be required to find the target.

procedureprune(t):
% perform local pruning of (example) treet
for each leaff of t

if f is a constant
changef to variable
if not SQ(t) undo the change

if f is a variable
cutf and its edge from the tree
if not SQ(t) undo the change

returnt

Figure 6: Into-Semantics Pruning Routine

4 BOTTOM-UP ALGORITHM FOR
“INTO” UF

This section describes the bottom-up algorithm for UF with
into semantics and gives a detailed analysis of the algorithm.

4.1 ALGORITHM DESCRIPTION

The main part of the learning algorithm for into-semantics
UF using EQ and SQ (equivalence and subset queries) is
based on a bottom-up-from-single-examplegeneralization ap-
proach and shown in Figure 5. All generalizations are tested
with SQ (subset query) and undone if not accepted. The al-
gorithm gets a new example tree from EQ, then tries three
different generalization techniques. These techniques could
potentially need to be used in any order; so the algorithm will
simply keep trying all three until no further generalization
occurs on that tree. The tree is then added to the hypothesis
and the process repeats until the target is covered.

Pruning Algorithm: The pruning subroutine is shown in
Figure 6. Pruning operates by changing each constant to a
variable, and trimming each variable leaf. Once all the chil-
dren of a node are pruned, that node becomes a leaf and is a
candidate for pruning. The process repeats as long as gener-
alization is possible.

A possible target isA(B(z) B(yx)) and single train-
ing example could beA(B(CD) B(EFG)). The pruning
bottom-up algorithm then attempts to generalize one leaf at
a time by either changing a constant into a variable or trim-
ming the leaf and its edge. First the algorithm tries to change
the leaf constants to (new) variables:A(B(wv) B(uts)).
Since the target leaves are all distinct variables, all of these
changes are accepted. Then each leaf and its corresponding
edge is pruned. Pruningw still gives a subset of the target.
But cutting leafv gives a tree pattern which matches some
tree instances not matched by the target (i.e., those with no
second-level children on one of its two subtrees) and must
be undone. A similar process determines that two children
are needed on the other subtree; at that point, the result is
equivalent to the target.

procedurepartition (t)
%generalize repeated variables in treet

for each distinct repeated constant int
turn all instances of that constant into

a new identical variable
if not SQ(t) undo that change

for each repeated variable (or constant)c in t

create a new variablev
partition-prune(t; c; v) %try partition set ofc’s

% used bypartition on scalars and
% simult-pruneon 1-level trees:

procedurepartition-prune (t; o; n):
%partition old by add new

designate the copies ofo aso1 : : : ok
for i = 1 to k

addni to the parent ofoi
flag = true %ensure delete at least onen and oneo
for i = 1 to k

if flag then %try deletingo’s until
deleteoi
if not SQ(t), then undo that change

else flag = false %succeed–then
deleteni
if not SQ(t), undo that change

else %deleten’s first
deleteni
if not SQ(t), undo that change
deleteoi
if not SQ(t), undo that change
%(do not eliminate all of one variable first)

returnt

Figure 7: Repeated Variable Partition Algorithm for Into Se-
mantics

Variable Partitioning Algorithm: The learner determines
if a hypothesis with repeated variables (or constants) is not
general enough by attempting to partition them into two dis-
tinct variables. Subroutinepartition-prune(Figure 7) is used
by routinepartition on individual constants and variables as
well as bysimult-prune(Figure 8) on identical 1-level trees
to perform the partitioning as follows. Each repeated vari-
able (or constant) is tested separately by creating another
(new) variable and putting the identical number of copies of
that new variable in each subtree as there are of the origi-
nal variable. (Fewer copies won’t always work.) The vari-
ables are eliminated one by one while checking that the re-
sult is still accepted by SQ. If all copies of one variable were
eliminated first, the result might be unchanged. Therefore
eliminationalternatesbetween the two sets of variables (or
variable and constant).

Let the target beA(A(xxx) A(xyy) A(xyz)). The
training example is assumed to be the same but with all sub-
stituted with the same constant, sayC, which are all changed
to the same variable (says).

Further steps in the example will be shown with just the 9
second-level children since the upper part of these trees is the
same. (The target and training example would be represented
asxxx xyy xyz andCCC CCC CCC in this notation.)

The variable duplication step would then producesssrrr

sssrrr sssrrr (3 subtrees but now with 6 children each).
The algorithm would then start on the first subtree and elim-
inate one variable at a time–first ans, then one of ther’s,
yielding ssrr sssrrr sssrrr. The first hypothesis subtree
is no longer matched by the first target subtree, but it can
still match the other two target subtrees. Then anothers is
eliminated, yieldingsrr sssrrr sssrrr. This first subtree
can still match either the second or third target subtrees, so
these hypotheses are all accepted by SQ. But further pruning
will result in rejection–at least 3 children are necessary in all
hypothesis subtrees to satisfy SQ.

Similar pruning of the second hypothesis subtree gives
srr srr sssrrr. Eliminating one of each variable from the
third subtree givessrr srr ssrr, but no subtree can match
the 3x’s. Backtracking and eliminatingr’s givessrr srr sss.
An attempt to further partitions gives an equivalent tree. Par-
titioning r givessrrww srrww sss for the duplication step.
Eliminating one of each givessrw srrww sss which is ac-
cepted showing this partition attempt was successful. Further
pruning eliminates one variable (sayr) in the second subtree,
giving the target. But further partitioning must be attempted
on any variable not already tested (justw).

Note that the code has a “flag” which causes it to first
eliminate the old/original children. Then once it has suc-
ceeded the code switches modes to try eliminating the new
child/variable first. This code is designed to avoid eliminat-
ing all of one variable even when it is possible to partition
the set of identical variables (e.g., for a target of the form
xxx yyy). (See the proof for further explanation.)

proceduresimult-prune(t):
for each set of multiple identical 1-level subtreess in t

%(i. e., leaves plus immediate parents identical)
for g = all possible minimal/1-step generalizations ofs

%(created by trim 1 leaf or
%convert 1 constant to a variable)

partition-prune(t; s; g) %try partition set ofs’s
%(if successful, then while loop tries generalize
%boths andg)

returnt

Figure 8: Bottom-Up Algorithm for Identical Subtrees

Simultaneous Pruning Algorithm: The above generaliza-
tion techniques are not sufficient to form a complete bottom-
up learning algorithm. A training example could have sev-
eral identical subtrees, and the target might require some
identical parts but not require the subtrees to be as deep as
in the example (e. g., identical variables matching the iden-
tical subtrees). The pruning algorithm would be unable to
make any change because it makes only local changes and
once the subtrees are no longer identical, the result will no
longer match the target. The variable-partition algorithm
only changes the leaves and will not trim identical subtrees.
An additional routine is necessary to generalize such sub-
trees.

For each set of identical subtrees and possible way to
generalize them,partition-pruneis called with both the sub-
tree and that generalization. Whenever a partition succeeds,
then the resulting sets of subtrees are simultaneously gener-
alized as much as possible. Then the other two generalization
routines are given a chance.

Note that the problem of locating identical subtrees within
the same tree is easy because the decision of whether two
variables or constants are the same is always local to that
part of the tree–unlike the matching problem in Theorem 1.

Let the target have 5 leaves with 2 distinct variables:
R(A(zzy) A(yy)). The single training example to be used
has the same subtree (B(CC)) in place of all 5 variables:
R(A(B(CC)B(CC)B(CC)) A(B(CC)B(CC))). The
bottom up algorithm therefore requires generalization of these
subtrees–previous techniques are inadequate.

The algorithm will then create generalized duplicates of
the subtrees–say by eliminating one of the C’s:R(A(B(C)
B (CC) B(C) B(CC) B(C) B(CC)) A(B(CC) B(C)
B(C C) B(C))). Using subroutinepartition-pruneon the
double-C and single-C versions of the bottom subtree gives
R(A(B(C) B(C)B(CC) A(B(CC)B(CC))). The
single-C subtrees can then be generalized simultaneously to
turn them into a variable which corresponds toz in the tar-
get. The double-C subtrees are simultaneously generalized,

yielding the target.

4.2 ANALYSIS OF ALGORITHM

We will now give a correctness proof of our algorithm. The
algorithm repeatedly tries several generalization techniques
while the hypothesis tree is a subset of a target tree until no
further progress can be made. The proof must therefore show
that all possible generalizations which keep a hypothesis tree
a subset of some target tree will be tried. The generaliza-
tions of a hypothesis tree that are possible while keeping that
tree a subset of the target will first be divided into two major
classes. Those generalizations which can be performed lo-
cally on the hypothesis tree without changing any other part
of the tree will be calledindependent. Those requiring si-
multaneous changes in multiple parts of the tree to keep that
hypothesis tree a subset of the target will be calleddepen-
dent.

Lemma 4 Routineprune will perform all independent gen-
eralizations of leaves.

Proof: Let s be a subtree of the hypothesis treet that is not
equilvalent to any tree in the target. Fors to be generalizable
without changing the rest oft, it must be either a constant
that can be changed to a variable or an extra child or a sub-
tree that can be trimmed. For the first possibility,prunewill
change the constant to a variable and still preservet � T
because the other children at all levels are still subsets of
corresponding children inT (or else extra). For the other
possibility,prunewill eliminate a leaf which is not needed
to maintaint � T . 2

Lemma 5 Routinepartition will perform all dependent gen-
eralizations of a leaf that matches a target variable.

Proof: If a leaf cannot be “locally” generalized (by chang-
ing it alone) but to a variable in the targetT , than that target
variable must be repeated. All copies of that repeated vari-
able must match identical leaves. If this leaf (say,s) in the
hypothesis treet can be generalized, then it is not a member
of a set of repeated variables int that corresponds to a set
of repeated variables in the target of the same size. There
are therefore the following two possibilities: First,s is one
of a set of identical constants all of which correspond to the
same variable inT . This generalization will be performed
by the first for loop inpartition. Second, more than one tar-
get variable matches the set of identical leaves of whichs

is a member. Routinepartition will create a new variablev
and pass it to subroutinepartition-prune. That routine will
perform a generalization (if possible) by splitting the set of
repeated variables containings into two sets as shown by
Lemma 6. 2

Lemma 6 Given a hypothesis treet, an “old” leaf or sub-
treeo in t and a “new” leaf or subtreen to replaceo, routine
partition-prune will partition or split the set of occurrences

of o’s into two sets witho andn, while keepingt a subset
of some target treeT , if it ispossible to do so. Otherwiset
remains unchanged.

Proof: Designate theo’s aso1 throughok. The follow-
ing major steps are needed: First use the flexibility of into
semantics to addni to the parent ofoi for eachi. Second,
prune oneo or n at a time while guaranteeing a mix ofo’s
andn’s will be left–if partitioning is possible. Third, guar-
antee all theo’s andn’s that could be eliminated will be.

First prove ifo does correspond to more than one target
variable, then routinepartition-prunewill eliminate at least
one copy ofo and at least one copy ofn. After adding the
n’s, the resulting treet is accepted by SQ since into seman-
tics allows extra children. Assumet is a subset of some target
tree with at least 2 variables (say,x andy) matchingo and
the match between these has the following correspondence:
Without loss of generality, useo with x andn with y. Then
there is at least some ordering (permutation of children at
each node) which produces a correspondence betweent and
the target, andpartition-prunewill perform a left-to-right
scan oft and try to eliminateo’s andn’s one at a time. Ano
can be successfully eliminated if the corresponding point in
the target has ay and ann will be successfully eliminated if
the corresponding point in the target has anx. Since “flag”
is set true initially,partition-prunewill first try to eliminate
oi before it tries to eliminateni. Assuming there is at least
oney in the target, it will succeed in eliminatingo from t in
the corresponding position. Either ann is eliminaed before
this point or since the flag is reset, the routine tries to elim-
inateni beforeoi from now on. Again assuming that there
is at least onex in the target, it will succeed in eliminatingn
from t in the corresponding position.

The result is guaranteed to eliminate at least oneo and
onen (the procedure avoids the possibility of eliminating all
of one variable when partitioning is possible). But that ifo’s
cannot be partitioned at all then all occurrences ofo will be
either unchanged or replaced with identical copies ofn.

Any children that can eventually be eliminated will be
when it is first tested because SQ will indicate if there is any
possible correspondence betweent and the target for which
the result a subset of the target.

A single (left to right) pruning pass throught is sufficient
by the following argument. Suppose not, i. e., a nodes can
be eliminated from the hypothesis treet aftter the first pass,
but not during the first pass. Let the hypothesis tree bet0

when this node is first considered for removal. Sincet �
s (t with nodes removed) is a subset of the target under
some permutation of nodes,t0 � s also should be a subset
of the target under some permutation of ndoes and removal
of extra subtrees (int0 but not in t). Hences should have
been removed formt0 when it was considered during the first
pass.

The partition algorithm as a whole will therefore locate
duplicate constant/variable leaves and partition them as needed
into sets corresponding to separate target variables (or even

target constants).2

Lemma 7 Routinesimult-prune will generalize a subtree
corresponding to a target variable when that generalization
is dependent on other parts of the tree.

Proof: If a leaf cannot be generalized without also chang-
ing other parts of the hypothesis treet and a target variable
corresponds not to that leaf alone but to a subtree containing
it, then that target variable must be repeated and corresponds
to identical subtrees int. Routinesimult-prunegeneralizes
the subtrees simultaneously and will therefore preserve the
match betweent and the target. This routine tries one level
of generalization of these subtrees at a time. Each possible
way of generalizing the identical, bottom 1-level subtrees is
tried (i. e., removal of a node or changing a constant to a vari-
able), and routinepartition-pruneis called witht, the old 1-
level subtree and this new generalization of that subtree. This
approach takes care of the case where identical subtrees are
matched to more than one target variable–possibly at differ-
ent levels (i.e., one variable matches a 2-level tree containing
a 1-level tree identical to one matched by another target vari-
able). 2

Theorem 8 UT with into semantics is learnable with equiv-
alence and subset queries.

Proof: The strategy is to first guarantee the algorithm can
generalize all possible trees. Given a partially generalized
hypothesis treeZ � the targetT , there exists some permuted
versionP of Z so each subtree ofP is either a subset of the
corresponding subtree ofT or is extra (as allowed by the
“into” mapping). This observation applies recursively. IfP
andT differ, there must be a node inP different fromT and
one of the following cases applies: If a difference between
these two trees is not identical to or otherwise dependent on
other parts of the trees, then Lemma 4 shows that routine
prunewill generalize it. IfT has identical leaf constants or
variables for which generalization of separate copies is de-
pendent, then lemma 5 shows that these nodes can be gener-
alized by subroutinepartition. If a variable inT corresponds
to identical, dependent subtrees inP , then Lemma 7 shows
routinesimult-prunewill generalizeP . Any part ofP must
be either independent of other parts of the tree or dependent
and either a single leaf or an identical subtree, and there are
only a finite number of waysP (as explained in the bounds
argument below). The main program (into-main) repeatedly
tries all three types of generalization until the tree canot be
generalized further. So this algorithm will learn any UT tar-
get with into semantics.

Bounds: define a metric for (hypothesis) tree complex-
ity as the total number of tree nodesn minus the number
of distinct variablesv plus e, the number of edges, giving
n� v + e. Each possible generalization must convert a con-
stant to a variable, partition a variable or eliminate an edge

with a distinct variable and thereby decrease this metric. The
total number ofgeneralizationsis therefore bounded by the
valuet of this metric for the example tree given to the algo-
rithm. The bound on the number of queries is dominated by
subroutinesimult-prunebecause of the extra work needed to
find each generalization. The total number of queries would
be bounded by the number of ways to generalize 1-level trees
times the number of nodes to be generalized. Each factor is
bounded byt, so the overall bound isO(t2). 2

Definition 1 A concept classC is compactiff for anyZ and
V1; : : : ;Vn 2 C, Z �

Sn

i=1 Vi) 9i such thatZ � Vi

Lemma 9 The class of into unordered tree patterns with an
infinite label alphabet is compact.

Proof: From the tree patternZ , form the tree instancee by
leaving each constant inZ alone and substituting a distinct
constant which does not appear in any of theVi for each dis-
tinct variable inZ . Since the label alphabet is infinite, there
will always be sufficient constants. Soe 2 Z �

Sn

i=1 Vi
and therefore someVi matchese. The only parts ofVi which
match the new constants introduced ine are variables. Those
constants ine can therefore be replaced by any subtree and
still be matched byVi. This observation implies that any tree
instance that matchesZ also matchesVi, soZ � Vi. 2

Corollary 10 UF with into semantics is learnable with equiv-
alence and subset queries.

Proof: By Lemma 9 this class is compact. Therefore in
the algorithm in Figure 5 each hypothesis tree that cannot be
further generalized will cover a single target tree rather than
merely covering parts of multiple target trees. Each target
tree is learned from a single example. EQ then supplies an-
other example not already in the hypothesis. This example is
then generalized to another hypothesis tree pattern–until the
entire target is covered.

The bounds are the sum of the bounds for the individ-
ual target trees (and derived from the corresponding example
trees). 2

Corollary 11 UF with into semantics is learnable with EQ
and MQ.

Proof: We can simulate SQ with MQ by using a unique
constant in place of each distinct variable. Either the simula-
tion is faithful or a constant conflicts with one in a target tree.
In the later case we get a negative counterexample from EQ
and we can restart the algorithm with constants not already
tried for this purpose[Amoth, Cull, & Tadepalli, 1998]. 2

This strategy of learning in a bottom-up fashion from one
example for each target tree is applicable under the following
condition. The number of possible minimal or 1-step gener-
alizations (those having no intermediate generalization) from

Concept Matching learn justifi-
Class Queries Semantics ? cation
UT EQ,SQ 1-1 onto N Theorem 2
UF EQ,SQ 1-1 onto N to appear
UT EQ,MQ 1-1into Y Theorem 8
UF EQ,MQ 1-1into Y Corollary 11
UF EQ,MQ many-1into Y see text

Figure 9: Unordered Tree Pattern Learnability Summary

any pattern must be polynomial. Equivalently, if the partial
ordering representing all generalizations is viewed as a di-
rected acyclic graph (dag) and undergoes a transitive reduc-
tion, then the out degree counting only the edges pointing
toward more general hypotheses must be polynomial. This
condition is not required to apply to the number of edges
pointing to more specific hypotheses (and indeed it does not
for UT since the label alphabet is infinite and the number
of children is unbounded). The depth of the dag will corre-
spond to the complexity of the training example used. The
learning time will therefore be polynomial in both this depth
and degree of the dag nodes. A bottom-up algorithm of this
general class was also used for�-UT (unordered tree pat-
terns using onto semantics but without repeated variables) in
[Amoth, Cull, & Tadepalli, 1998].

5 DISCUSSION/SUMMARY

Figure 9 summarizes the learnability results of the unordered
tree classes using EQ and MQ or SQ. The queries and seman-
tics for matching a tree to the instance tree are shown.

This paper proved the UT onto and UF into entries. But
the UT proof depends on the hypothesis set being limited and
therefore does not carry over to UF.

UF with many-to-one matching semantics which allows
many children variables in the pattern to match the same in-
stance child behaves like Horn-clause learning or learning
description logics. This class is therefore learnable from
EQ and MQ with the same algorithm using direct-product or
cartesian-product-style least-general generalization (lgg) fol-
lowed by pruning[Reddy & Tadepalli, 1999, Frazier & Pitt,
1996]. This type of algorithm will apparently not work for
one-to-oneinto semantics because of difficulties with pro-
ducing a true lgg.

These results show how the subtle changes in the match-
ing semantics for trees have an effect on learnability. In par-
ticular, tree patterns with one-to-one and onto semantics are
hard to learn from equivalence and membership queries. But
with one-to-one and into semantics, they are easy to learn.
Our negative result assumes that the learner is only allowed
to use equivalence queries with hypothesis in the target class.

Future Work: A nonlearnability proof for UF with one-
to-one onto semantics is under construction and is to be in-

cluded in the Ph.D. dissertation of T. Amoth. This result also
shows that UT is not learnable even when the learner is al-
lowed to use equivalence queries on hypotheses in the form
of forests.

Acknowledgments

This research was partially supported by NSF under grant
number IRI-9520243. We thank Dana Angluin, David Page,
Lisa Hellerstein, and Roni Khardon for interesting discus-
sions on the topic of this paper. We thank the reviewers for
many excellent suggestions on the paper.

References

[Amoth, Cull, & Tadepalli, 1998] Amoth, T. R.; Cull, P.;
and Tadepalli, P. 1998. Exact learning of tree patterns
from queries and counterexamples. InProceedings of the
Eleventh Annual Conference on Computational Learning
Theory, 175–186. ACM.

[Angluin, 1988] Angluin, D. 1988. Queries and concept
learning.Machine Learning2(4):319–342.

[Arimura, Ishizaka, & Shinohara, 1995] Arimura, H.;
Ishizaka, H.; and Shinohara, T. 1995. Learning unions of
tree patterns using queries. InProceedings of the 6th ALT
(Algorithmic Learning Theory), 66–79. Springer Verlag.
Lecture Notes in Artificial Intelligence 997.

[Frazier & Pitt, 1996] Frazier, M., and Pitt, L. 1996. Classic
learning.Machine Learning25:151–193.

[Reddy & Tadepalli, 1999] Reddy, C., and Tadepalli, P.
1999. Learning horn definitions: Theory and an applica-
tion to planning.New Generation Computing17(1):77–
98.

[Schapire, 1990] Schapire, R. E. 1990. The strength of weak
learnability.Machine Learning5:197–227.

