
AN ABSTRACT OF THE THESIS OF

Luis Serrano Cid for the degree of Doctor of Philosophy in
Statistics presented on June 10 1985.

Title: Estimation of Feedback Parameters on a ClosedLoop
System: A Geophysical Problem.

Abstract approved: Redacted for Privacy
Fred L. Ritsey

The presence of feedback in an inputoutput system

associated with an oceanographic phenomenon is determined. A

testing procedure to determine the presence of feedback is given.

The ordinary transfer function model is determined not to be

appropriate in modeling the system. The two and three stage least

squares methods are used to estimate the parameters of a system

of equations associated with the phenomenon. Computer simulation

is used to verify the adequacy of the model. It is shown that

without the inclusion of feedback parameters, the model fails to

represent the physical nature of events. Several other methods of

analysis are reviewed.



ESTIMATION OF THE FEEDBACK PARAMETERS IN A CLOSEDLOOP
SYSTEM: A GEOPHYSICAL PROBLEM

by

Luis Serrano Cid

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed June 10, 1985
Commencement June 1986



Approved :

Redacted for Privacy

Professor of Stat' ics in c ge of major

Redacted for Privacy
ChairMan of the Department of Statistid's

Redacted for Privacy

Dean o raduate Schll

Date thesis is presented June 10, 1985



AKNOWLEDGEMENTS

I would like to express my deepest gratitude to all the

people who, in one way or another, help me to obtain this degree.

To my major professor Dr. Fred Ramsey for believing in me

and for giving me the necessary guidance and support to achieve

my goal.

To Dr. David Enfield for introducing me into the fascinating

world of the ocean and for his patience with my ignorance.

To Dr. William Quinn for allowing me to use his invaluable

files and for many hours of enlightening conversation.

To Ron Stillinger for having the courage of debugging my

countless computer problems.

To my friends and comrades in the adventure, Mohamed Limam,

Abderrazak Garoui and Mostafa Aminzadeh, for their companionship

during endless weekends of hardwork and irreplaceable

discussions.

To my mother and brother for supporting me from the distance

and giving me all the encouragement so frequently needed.

To my daughters Maria A., Claudia and Marcela, for having

the patience of tolerating me and for being my joy and inspiration

during all this years.

To my loving wife Maruja for her companionship, tolerance,

care and love, only through her help this thesis became possible.

I dedicate this thesis to her.



TABLE OF CONTENTS

I. INTRODUCTION

II. REVIEW OF METHODOLOGY

1. DEFINITION OF BASIC CONCEPTS 6
2. IDENTIFICATION PROCEDURES 14

2.1 Estimation of the Order of an Autoregression 14
2.2 Identification of the Transfer Function 15
2.3 Testing for the Presence of Feedback 18

3. ESTIMATION OF THE PARAMETERS 21
3.1 Autoregressive Model 21
3.2 Impulse Response Faction 22
3.3 Feedback Parameters 24

3.3.1 Two Stage Least Squares 25
3.3.2 Three Stage Least Squares 28

4. MODEL DIAGNOSTIC 31

III. MODELING THE ENSO PHENOMENON 35

1. DESCRIPION OF THE PROBLEM 35
2. DESCRIPTION OF THE DATA 40
3. EXPLORATORY ANALYSIS 42
4. INPUT MODELING 57
5. IDENTIFICATION AND ESTIMATION OF A TRANSFER

FUNCTION MODEL 58
6. ESTIMATION OF THE PARAMETERS FOR THE CLOSEDLOOP

SYSTEM 64
7. PREDICTION 70
8. SIMULATION 72

IV. CONCLUSIONS AND DISCUSSION 75

1. TESTING FOR THE PRESENCE OF FEEDBACK 75
2. ESTIMATION OF THE PARAMETERS 79
3. SIMULATION 81
4. GENERAL COMMENTS 89

BIBLIOGRAPHY 91



LIST OF FIGURES

Figure Page,

la. Openloop system.
b. Closedloop system. 11

2. Location of meteorological stations. 41

3. Boxandwhiskers plot. 44

4. Cloxplot of TD series. 46

5. Cloxplot of EN series. 47

6. The 1982-1983 ENSO event. 49

7. The 1971-1972 ENSO event. 50

8a. Autocorrelation function for the TD series.
b. Partial autocorrelation function for the TD series. 52

9a. Autocorrelation fuction for the EN series.
b. Partial autocorrelation function for the EN series. 53

10a. Autocorrelation function for the TD series after
removing the monthly means.

b. Partial autocorrelation function for the TD after
removing the monthly means.

lla. Autocorrelation function for EN after removing
the monthly means.

b. Partial autocorrelation function for EN after removing
the monthly means.

54

55

12a. Autocorrelation at lag 1 for the TD series, by month
of the year.

b. Autocorrelation at lag 1 for the EN series, by month
of the year. 56

13. Crosscorrelation function TD EN. 59

14. Original input and output series (TD and EN) 82

15. Typical example of input and output series generated
by simulation using the closedloop model. 83



16. Typical example of input and output series generated
by simulation using the openloop system.

17. Crosscorrelation function of simulated input and
output series using the closedloop model.

18. Crosscorrelation function of simulated input and
output series using the openloop model.

84

86

87



LIST OF TABLES

Table

3.1 Loadings for the first principal component of the
SST series.

3.2 Estimates of the impulse response function

3.3 Estimated parameters for the transfer function
model

3.4 Estimated parameters from the 2SLS and 3SLS for
the closedloop system.

3.5 Estimated parameters from the 2SLS and 3SLS for
the openloop system.

Page

43

60

62

67

68



ESTIMATION OF FEEDBACK PARAMETERS IN A CLOSEDLOOP SYSTEM:

A GEOPHYSICAL PROBLEM.

I. INTRODUCTION

Every few years, a phenomenon of unusual intensity affects

the west coast of the Americas. Although originally defined as a

sudden warming of the surface waters along the coast of South

America, lately it has been described on a much larger scale,

being blamed for provoking changes in weather manifested as

intensified rains, stormier winters, stronger than usual wave

activity, etc. Its best known characteristic, the anomalous

increase of the sea surface temperature, alters the environment

of many fisheries along the coast of South and North America with

great damage to the economies of the countries involved.

The first symptom of the events is an anomalous increase of

the sea surface temperature along the coast of Peru, where the

phenomenon is called El NiWo (The Child), due to the fact that it

usually starts around Christmas time. But, it starts to develop

several thousand miles away in the central equatorial Pacific

Ocean as a relaxation of the easterly trade winds associated with

fluctuations of the atmospheric pressure. The relationships

between the atmosphere and the temperature of the surface of the

ocean can apparently be classified as the causeeffect type and

there are many oceanographers and atmospheric scientists involved

in the study of them. We do not intend to analyze the phenomenon
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from a physical perspective. Rather we intend to examine its

stochastic nature.

The causeeffect nature of the phenomenon requires the

identification of the causal processes and their distinction

from those associated with the effect. In what follows, we will

refer to these as the input and output processes respectively.

The search for the most adequate input series leads us to the

study of the Southern Oscillation (SO), which is a long term

atmospheric fluctuation associated with the atmospheric pressure

over the South Pacific and with the pattern of winds along the

central equatorial Pacific. A measure of these fluctuations is

obtained by calculating the difference in the sea level

atmospheric pressure between points located at the geographic

extremes of the atmospheric "seesaw", that is, one near the

center of the South Pacific anticyclone and the other within the

Indonesian equatorial low pressure region. The close

relationships between the El NA° and the SO have given the name

El NifioSouthern Oscillation (ENSO) to the entire phenomenon

(Quinn, 1984).

Although there is a general consensus on the nature of the

interaction, i.e., that changes in the atmosphere lead changes in

the ocean, there also exists evidence that ocean is able to

respond and itself induce subsequent atmospheric changes. For

example, warmer waters will produce an increase in the temperature

of the overlaying atmosphere which is in turn associated with
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a further decrease in atmospheric pressure. These changes

willbe more significant to the extent that the sea surface

temperature anomaly persists. Similarly, the in water temperature

along the equatorial band will persist insofar as the weather

anomalies in the zone are maintained. We can thus conclude that

there exists a potential for selfperpetuation of atmospheric and

oceanic anomalies due to the occurrence of positive feedback

airsea interaction processes.

Data records from selected weather stations have been made

available to us for use in modeling the type of interactions

described. They include sea level atmospheric pressure, sea

surface temperature, rainfall, and sea level height. These time

series are comprised of monthly mean values. The station

locations are shown in Figure 2.

Most of the current and past studies in this field have

involved frequency domain analysis based on sample spectra and

Fourier transformed time series (e.g., Enfield, 1980). Recently,

however, Chu and Katz (1984), have approached the problem by

using time domain analysis which is instead based on sample

autocorrelations. We believe that the time domain analysis is

a valid approach to the problem, without discarding the Fourier

methods which can also be used. We intend, however, to make use

of the Box and Jenkins (1970) ARMA models to describe the basic

processes involved.

The development of the model was motivated by the desire for



4

a description of the physical connections using time domain

analysis as a way to obtain results that are easier to interpret

and have at least the same validity as those that one can obtain

using frequency domain analysis. Accordingly, the goals of this

thesis are:

(1) To describe the time domain methodology for modeling

inputoutput systems.

(2) To find a method for estimating the feedback parameters

of a closedloop system of equations.

(3) To apply the estimation procedures toward obtaining a

model that represents the relationships between the

El NA() events and the Southern Oscillation. (ENSO)

(4) By using computer simulations, to compare the actual input and

output series with those generated from the estimated

parameters.

The second chapter will be dedicated to the analysis of the

transfer function models and their possible applicability to the

case of closedloop systems. A second method of estimation

will then be considered, namely the twostage least squares

procedure. It will be compared to its extension, the threestage

least squares method as a simultaneous approach of solving the

system of equations . It will be shown that in presence of

feedback the use of regular transfer function models is not

recommended.
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In the third chapter we will apply the methods studied in

Chapter two to the input and output series found to best

represent the nature of the phenomenon. In doing so we present a

modified version of the boxand whiskers plot (Tukey 1977), which

we consider is more appropriate to display data that follows a

yearly pattern. The transfer function model will be compared with

the one obtained from the twostage least squares method. Finally,

a simulation program will be used to generate series based on the

best model and they will be compared with the original series to

determine the validity of their estimates. Several methods for

the detection of feedback and the estimation of parameters will

be reviewed in the last chapter. They will be shown to be of

little use in the present context. A final section considers the

general form of a prediction model based on the proposed closed

loop model. The necessary steps to obtain the predicted values

are outlined, and a procedure to estimate the variance of the

predictors is discussed.
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II. REVIEW OF THE METHODOLOGY.

1. DEFINITION OF BASIC CONCEPTS.

A sequence of random variables Et, Et_l, Et_2, ..., which

is assumed to be normally distributed with mean zero and variance

a2 , is called a white noise sequence and it can be transformed

to a process [Yt] by the linear filter operation

Y
t
=u+E+pE +Et 1 t-1 p2 Et -2 '"

Y
t
= u + P(B)E

t
(2.1.1)

where B is the backshift operator such that ytBk = v

with k = 0, 1, 2, ...

P(B) = 1 + p1B + p2B2 +

is called the transfer function of the filtei and u is ordinarily

taken to be zero.

An autoregressive process of order p, is defined as a finite

linear aggregate of previous values of the process, plus a white

noise Et, i.e.

Yt = 01Yt-1 0217t-2 "' °pYtp Et

Yt = 0(B)Y
t
+ E

t

with transfer function 0(B):

0(B) = [1 01B 02B2 0 BP]-1

this process is denoted by AR(p).

(2.1.2)
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A moving average process, defines Yt as depending on a

finite number of previous E's, thus

Yt Et elEt-1 e2Et-2 eet-q

Yt = e(e)Et

where the moving average operator is defined by

e(B) = 1- A1B -A2B2- eqBq

(2.1.3)

This is called a moving average process of order q and it is

denoted by MA(q), q = 0, 1, 2, ...

A more flexible model is often necessary to adequately fit

a process under study. This is achieved by including both auto

regressive and moving average terms in the model obtaining:

Yt .0y +0y + "' +OY
t 1 t-1 2 t-2 p tp

+ Et elEt_i - e2Et_2 - - OciEt_ci , (2.1.4)

or equivalently:

Yt plYt-1 '" OYtp = E
t

0
1 "' 0

q
Etq

0(E)Yt = 0(B)Et (2.1.5)

where O(B) and e(B) are called the autoregressive and moving

average operators respectively. The process (2.4) is called

ARMA(p,q) process.

Consider now a second process ( %) that is related to the

process {Yt} by the expression:
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Y
t
=VOXt +VlXt-1 + V2Xt -2 +

= 0 + V1B + V2B2 +
t

= V(B) %t (2.1.6)

Here V(B) is a polynomial on B. This expression is also a linear

filter and V(B) is the corresponding transfer function. The

model is known as Transfer Function Model and the weights V0, V1,

V2, are called Impulse Response Function.

Henceforth, (Yd will be called the output and Old the

input of the Transfer Function Model.

Equation (2.1.5) is not very satisfactory because it

contains an infinite number of unknown parameters Vo,

To avoid this difficulty, a convenient way to parameterize the

model is to express the system as a difference equation

(1 d1B d2B2 ." dr Br)Y
t
=

(w0 w1B w2B2 "' wsBs)Xt
(2.1.7)

If we now specify that dr(B) = 1 (12B d2B2 drBr

and ws(B) = w0 w1B w2B2 wsBs we can write (2.1.7)

as:

dr(B)Yt = ws(B)Xt

for s = 0, 1, 2, ; r = 0, 1, ... (2.1.8)

So we can express the infinite order polynomial V(B) of

equation (2.1.6) as the ratio of two finite order polynomials



(w0
w2B2 wsBs)

Yt Xt and
(1 diB d2B2 ... drBr)

Yt = dr-1 (B) ws(B)Xt

9

(2.1.9)

Now comparing equation (2.1.6) with (2.1.9) we have that

V(B) = dr-1(B) ws(B) (2.1.10)

The output process Ott) will never exactly follow the

pattern dictated by the model (2.1.6), as in general there will

be other influences affecting the system. These disturbances, or

noise, could be caused by other variables not specifically

included in the model. If we denote this noise term by Nt

the model (2.1.6) may be written as

Y
t
= V(B)X

t
+ N

t

But N
t

itself can be represented by

Nt = Et + alEt_i + a2Et_2 + ."

N
t
= A(B)E

t

where (Et) is a white noise sequence and

A(B) = (1 + a1l3 + a2B2 + ...).

Now we can write (2.1.11) as

Y
t
= V(B)Xt + A(B)E

t

(2.1.11)

(2.1.12)

(2.1.13)
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Again we see that A(B) is a sequence of infinite terms that

can be reduced to a ratio of two finite polynomials by using the

same procedure as for equation (2.1.6), that is if Nt can be

modeled by an ARMA(p,q) process, then

O(B)N
t
= q (B)Et

N
t
= 0p 1(B)9q (B)E

t

that when related to (2.1.12) gives

A(B) = 0-1(w9 (B).

(2.1.14)

(2.1.15)

Replacing (2.1.10) and (2.1.15) in (2.1.13, we then obtain:

Yt = dr- 1 (B)w
s
(B)X

t
+ 0p

1 (B)0qEt (2.1.16)

Systems of the type defined by (2.1.13) are called openloop

systems (Figure 1). The procedures for analyzing data that can be

adequately fit by these models are in common use (Box and

Jenkins, 1970, Montgomery and Weatherby, 1980, Tiao and Box,

1981). Frequently we suspect the presence of feedback which

connects the output with the input. These are called closedloop

systems (Figure 2). They are represented by adding a second

equation to (2.1.13)

Xt gert g1Xt-1 g2Yt-2 "' Mt

%t = G(B)Y
t
+ M

t

where M
t

is an unobserved disturbance that can also be

represented as

(2.1.17)
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Mt = mt cimt-1 c2mt-2

Mt = C(B)mt

(mt} being a white noise sequence and C(B) = B° + c1B + c2B2 +

So the closedloop equations can now be represented as

Y
t
= V(B)X

t
+ A(B)Et

Xt = J(B)Yt + C(B)Mt

12

(2.1.18)

(2.1.19)

Equation (2.1.19) is known as the Feedback Equation (Caines

and Chan, 1975).

An alternative representation of the equations (2.1.18) and

(2.1.19) is

Y
t
= K(B)Y

t
+ L(B)X

t
+ E

t

X
t
= P(B)X

t
+ R(B)Y

t
+ M

t.

These are equivalent to

Yt ZaiYti YiXti Et
i=1 i=1

Xt = + O.Y . + Mtt
i=1 i=1

which in the absence of feedback become

(2.1.20)

(2.1.21)
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k p

Yt = E a.1Y t-1 . + Xt_i + Et
i=1

Xt = B iXt_i + Mt
i=1

The alternative representation displayed by the system of

equations (2.1.20-21), represents a parametrization that includes

both input and output parameters in both equations. This

characteristic is particularly useful because it allows the

identification of the feedback parameters 8i, i = 1, 2, ..., r.

This is useful when comparing systems with and without the

inclusion of the feedback parameters.
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2. IDENTIFICATION PROCEDURES

In this section we intend to describe briefly the procedures

generally used to identify the type of processes involved and the

type of model that, as a first approximation may be applied. The

identification procedures to be used are of two types: One is a

univariate approach, which is intended to determine the type of

ARMA process that best fits the data is associated with a

univariate time series. The second approach is bivariate and is

used to determine the type of model that best fits an input

output type of relationship between two time series. For the

univariate case, the identification of an autorregressive model

is described and for the bivariate case, the identification of a

transfer function model is discussed and associated with the

identification of a closedloop model.

2.1 Estimation of the Order of an Autoregression.

The main tools used in the process of identification of an

ARMA model are the autocorrelation and partial autocorrelation

functions, denoted ACF and PACF respectively and defined by the

sequences (pxx(k)) and (0t, tE z+), with Z being the set of all

integers and Z+ the set of all positive integers.

(2.2.1)



where yxx(k) = Eat Xt+k), yxx(0) = E(Xx2)

and °t °s,s+t '
S E Z and t Z+

°1 al
(1)

Pxx(1)

2 A
61 1 "1

k

°k+1 ak+1(k+1) (Pk+1 c_79(k) P10.1 j) / ak2
j=1

9(1+1) =
9(k) 0104 a(k) k+1j ; 3 = 1, 2, k

2 2(1 A2
uk+1 uk k+1) (2.2.2)

15

This method of obtaining the PACF is known as Durbin's procedure

(see, e.g. Ramsey, 1973).

A preliminary step toward the determination of the order

of an autoregressive model is the study of the structure of the

PACF. The results can be studied using the method proposed by

Hannan and Quinn (1979), who assign to the process the order k,

with I being such that it minimizes the expression

0(1) = In a2k + N11n(2k)C1n(lnN) ; C 1

where 6k2 is the estimate obtained in (2.2.2) above.

2.2 Identification of the Transfer Function Model.

(2.2.3)

Recall that the identification of univariate AR or MA models

requires the use of the ACF and PACF. Similarly, the



identification of transfer function models requires the use of

the crosscorrelation function

yxy (k)

Pxy (k)

[yxx(0) yyy(0)11/2

k = 0, 1, 2, ... (2.2.4)

where yxy(k) = E(XtYt +k) is the crosscovariance between Xt and

Yt at lag k, and yxx(0) and yyy(0) are the variances of the

input and output respectively.

The two processes, input and output, could have both

correlative structure within the processes as well as between the

processes. The withinprocess structure will frequently mask the

interrelationships between input and output and will tend also to

inflate the variances and covariances of the crosscorrelation

function estimates. These problems are simplified to a great

extent if the structure of the input is converted to that of a

white noise process. This is achieved by prewhitening the input

and transforming the output series. This procedure consists of

replacing the input series by its residuals after an adequate

ARMA model has been obtained for it. The transformation of

the output uses the same ARMA model parameters used for the

prewhitening of the input. Note that, in general, this will not

produce a prewhitening of the output series.

If we assume that (Xt) is a stationary process, that is,

for all s, t > 0 the processes ( %t) and (Xt+s) have the same

probability structure. In other words, if choosing any fixed

16
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point as the prigin, the ensuing process have the same

probability law. (If the process is not stationary, a stationary

derivative can often be obtained by a suitable differencing) and

we also assume that the input can be modeled as an ARMA process,

say

ex(B)Xt = Gx(B)at

where a
t

is white noise. Then the prewhitened input is

a
t

= -1(B)0 (B)X
t

(2.2.5)

If the same transformation is applied to the output series

Y
t
we obtain:

of ox-1(mox(B); (2.2.6)

then the transfer function model (2.1.11) can be written as

pt = V(B)at + Et (2.2.7)

where Et = ex-1 mo (B)N
t

is the transformed noise process.

If both sides of (2.2.7) are multiplied by at_k and we take

expectations, we obtain

Vk =

yao(k)

2
'aTax

Pap(k)
Gaa(0)

1/2

= 0, 1, 2, ... (2.2.8)

where yap(k) and pap(k) are the crosscovariance and cross

correlation of the transformed input and output, respectively.
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This procedure will produce estimates, adequate enough to

allow the specification of appropriate values of r and s for

the transfer function model (2.1.9), which then leads to

estimates of the noise Nt. The sample ACF and PACF will then be

used to produce an univariate ARMA model for the noise term Nt.

As a general rule rather simple ARMA models, usually of first or

second order, are adequate (Montgomery and Weatherby 1980).

2.3 Testing for the presence of feedback.

Under usual circumstances the presence of feedback is not

suspected unless one of the two following conditions (or both)

are present: 1) the nature of the phenomenon indicates the

possibility of feedback and 2) the crosscorrelation function

between input and output exhibits significant values of

crosscorrelation for negative values of k. In either, case a test

statistic must be obtained to verify the presence of feedback.

Let (Xt) and fly be the input and output processes

respectively and pxy(k) their crosscorrelation at lag k, where X

leads Y by k time periods. This crosscorrelation can be estimated by

xy(k) = rxy (k)
cxy (k)

(cxx(0)cyy(0))1/2

k = 0, 1, 2, ... (2.2.9)

where cxy (k) is the sample crosscovariance at lag k.
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Box and Jenkins (1970) derive the following expression for

the covariance between two sample crosscorrelations rxy (k)

and rxy(k+h) under the assumption of normality as

covErxy(k),rxy(k + h)} =

4-0D

(n k)-1 2 [Pxx(v) Pyy(v + h) + pxy(v)pxy(v + 2k + h)
v= co

+ Pxy(k)pxy(k+ h)(pxy2(v) + 1/2 Pxx2(v) + 1/2 pyy2(v)}

Pxy(k)(pxx(v)pxy(v + k+ h) + pxy(v)pyy(v + k+ h)}

Pxy(k+ h)(pxx(v)pxy(v + k) + pxy(v)pyy(v + k)}1

for lc = 0, 1, 2, ... ; h = 0, 1, 2, ... (2.2.10)

Under the further assumption that pxy(j) = 0 for j < 0,

(n k)cov(rxy(k),rxy(k+ h)) =

2k+h

Pyy(h) + E pxy(v)pxy(2k+ h v)

v=O

+0,

+ pxy(k)pxy(k+ h) fE pxx2(2) 3)

v=0

while by considering k<0 and 1+ h < 0,

(nk)cov(rxy(k),rxy(k+h)} = pyy(h) . (2.2.11)

If we further assume that 1) pxy(k) = 0 for j < 0, 2) (gt)

+=

is white noise, and 3) Yt = E fith Xt_h + Et, with (Xt}
h=0



independent of (Et)and (Et) being a ARMA process

(assumption of no feedback(), we can conclude that:

R=

ray ( -1)

ray ( -2)

ray ( m)

MVNm (0 E )

20

(2.2.12)

where the elements of the covariance matrix 2: are defined by

(2.2.11).

Now, from (2.2.11) we see that:

m
N rxy

2 (j) (m)
j=1

(2.2.13)

This expression can be used as a test statistics to determine

the presence of feedback.

An alternative method is suggested by Box and MacGregor

(1974). They propose detecting the presence of feedback by

testing for the presence of a significant crosscorrelation

between the prewhitened input and the transformed output at lag

k = 0.
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3. ESTIMATION OF THE PARAMETERS

Once the form of the models has been tentatively identified,

is necessary to estimate the parameters for both univariate and

bivariate cases. The estimation of the parameters for the

univariate ARMA models is required previous to the estimation of

the parameters for the transfer function and closedloop systems

since they will be used later in the process of prewhitening of

the original series.

3.1 Autoregressive Model.

Consider again the autoregressive model:

Xt = OiXt_i + 021(t_2 + + OpICt_p + Et

as defined in (2.1.2). After the tentative order p of the model

has been identified, we can obtain estimates for the parameters

Ok, k = 1, 2, ..., p. The most popular way of estimating these

parameters is by using the Yule Walker equations, which provide

approximations to the least squares and maximum likelihood

estimates.

The Yule Walker estimates are:

where



=

1 rXX (1) rXX (p-1)

rXX (1) 1 rxx(P-2)

rXX (p-1) rXX (p-2) 1

with for , k = 1, 2, ... , P.

and

cxx(k)
rxx(k)

cxx(°)

1 np
cxx(k) (Xt X)(Xt+k %)

n t=1

In particular for

AR (1) : = rxx(1)

rxx(1) (1rxx(2))
AR (2) : 01

;2

1 rxx(1)2

rx1(2) rx1(1)2

1 rxx(1)2

rxx(P)

(2.3.1)
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Estimates of the variances and covariances of Ok can be obtained

from

Var =n1 (1 ,Exxi) R1

3.2 Impulse Response Function.

As mentioned before, the primary tools for estimation of the

(2.3.2)
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impulse response function are the crosscorrelations between input

and output. By replacing the estimates (2.2.9) for the

prewhitened input ak and transformed output Ok into equation

(2.2.8), the following preliminary estimates of the impulse

response function can be obtained

/k = rap(k) (cop/caa) 1/2 ; k = 0, 1, 2, ... (2.3.3)

where caa and coo are estimate of yaa and ypo respectively.

Equation (2.3.2) yields rough estimates of the Vk's, But

from the pattern of these estimated values, one can guess the

appropriate values of r and s for the transfer function model

(2.1.9). Box and Jenkins (1970) present a table that examine the

models for all combination of r, s, < 2 for a given value of b,

along with the typical impulse response function for each model.

After the form of the transfer function has been tentatively

determined, the noise model must be considered. A simple estimate

of the noise series will be obtained from

Nt = y
t
V(B)x

t

Similarly we can use equation (2.3.3) to estimate d(B)and w(B)

from equation (2.1.10) so that the estimate of the noise series

becomes

Nt = yt d
=1

(B) w(B)

After N has been obtained, its sample autocorrelation can

be analyzed to produce an univariate ARMA model of the residuals



series. The preliminary model is now:

Y
t
= d 1(B)(B) w(B) X

t
/11

with

Nt = ;1(B) (B) E
t

(2.3.4)
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More efficient estimators can be obtained for the parameters

d, w, 0 and e by minimizing the conditional sum of squares:

So (d, w, 0, e) = Et2(d, w, 0, 9 /x0, yo, Ed (2.3.5)
t=1

Under the assumption of the normality of the E's and for

given initial values xo, yo and E0, this method will provide a

useful approximation to the maximum likelihood estimators of the

parameters.

The minimization procedure was carried out using computer

packages such as SAS (1982) which make use of the Marquardt non

linear estimation algorithm.

3.3 Feedback Parameters.

Once the presence of feedback has been determined, a method

of estimation of the parameters of the two equations in the

system (2.3.6) must be determined.

Consider then the closedloop system

Y
t
= A

1
(B)Y

t
+ C

1
(B)X

t
+ Elt

Xt = A2(B)Yt + C2(B)Xt + E2t

(2.3.6)
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The estimation of the parameters for simultaneous systems of

equations can be either singleequation methods based on serial

estimation of the parameters of one equation at the time, or

completesystem methods that consider the system as a whole. The

twostage least squares (2SLS) correspond to the first type and

the threestage least squares method (3SLS) to the second. We

will present briefly the foundations of each one:

3.3.1 Two StageLeast Squares.

Let Zt , Xt and Y
t'

be matrices such that

Z
t
= (Z(1)

'
Z(2))

%t
' t

(X(1) X(2))
t

y
t

- (y(t 1)
'

y(2))
t

Define also the matrices A(B), C, and Et as

A(B) = (A1(B), A2(B))

C(B) = (C1(B), C2(B))

E
t
_ (E(t 1)

' t
E(2))

So that the feedback model can be written as

Z
t
= A(B)Y

t
+ C(B)X

t
+ E

t
(2.3.7)

Each one of the equations in the system can be written now

in the form
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Z(i) = Ai(B)Y(t i) + Ci(B)X(t i) + E(i)
'

i = 1, 2 (2.3.8)

To simplify notation, from now on we will denote Zi for

Z(i)
' 1

for
t

X. for X(i)
' l t
Y. for Y(i)

'
E. for Eli), Ai for Ai(B), and Ci

for Ci(B), for i = 1, 2.

For our purposes, Zi is the n x 1 vector of observed outputs

(dependent) variables, Yi a n x gi matrix of observations on

the rest of the lagged dependent variables, Xi a n x ki matrix

of observations of the input variables, including a column of

ones if an intercept is desired, Ai a gi x 1 vector,

corresponding to the coefficients of Yi, Ci a ki x 1 vector of

the coefficients of Xi, and E. the vector of disturbances.

The essence of the 2SLS is the replacement of Yi by its

estimated and then performing ordinary least squares of Z.
1, 1

oniandX.1. Thematrixi.is computed in the first stage by

regressing each Yid, j = 1, 2, ..., gi on all Xi , i = 1, 2,

that is,

x (x'x )-1xY.
t tt ti (2.3.9)

In the second stage, Zi is regressed on Yi and Xi, which

yields the estimated equations

Y!Y
i

YiRi ai Yizi

(2.3.10)

giYi X
i
X i ci Xi Zi



were ai and ci are the estimates of Ai and Ci respectively.

An expression involving only the matrices of actual

observations is

Y. = Y. V.
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(2.3.11)

where 'Vi is the matrix of the residuals from the least squares

regressions of Yi on Xt. With this, equation (2.3.6) can now be

written as

Z.
1
= Y1Ai + X.C. + E. + V.A.

Or

Zi = WDi + (Ei + ViAi) (2.3.12)

A
where W = (Yi Xi) and Di =

C

Applying least squares to (2.3.10) gives the 2SLS estimator of

the form

d.

d.

and so the

s2(Wiwi)-1

s
2

=

ai

ci

D.
1

asymptotic

Y'X(X'X)

= (W!W.) 1WfZ.

= (W:W.)-1Z!E.

variancecovariance

-1X'Y. Yi X.

Xf1X.

matrix is:

1

(2.3.13)

(2.3.14)

where

s2 = (Z1 Y.a X ci)' (Z. Y.a. X.c.)/(ngik i
)
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3.3.2 ThreeStage Least Squares.

This is an estimation method proposed by Zellner and

Theil (1962), which takes account of all equations in the

model and which under certain circumstances could have greater

efficiency than the 2SLS. Consider again the system of equations

defined in the previous section and in particular lets us

consider again the ith equation (2.3.8)

Zi = YiAi + XiCi + Ei i= 1, 2 ,

which can be now rewritten, as for the 2SLS case,

Zi = WiDi + Ei ; i = 1, 2 (2.3.15)

If we now premultiply (2.3.13) by X', where X' = (Xi, Xi), we

obtain

X'Z.
1 1

X'W.D. + X'E. ; i = 1, 2 (2.3.16)

Note that in this equation, the error term X'Ei has variance

covariance matrix cr..2X'X which implies that the vector D.
1 1

should be estimated by generalized least squares

di = (Wi'X(X'X)-1X'W1)-1X'Z1 ,

which is just another way of writing the 2SLS estimator of

(2.3.12).

Let's now write the complete set of equations

(2.3.17)



X' %'W1 0 D
1

X'E
1

(2.3.18)

X'Z2 0 X'W
2

D
2

X'E
2

Then the variancecovariance matrix of the error vector is

V =

aliX'X a12X'X

a21" a22VX

all

a21 a22

and if we make =

29

and define the tensor product (Dof two matrices A and B, where

the elements of the matrix A are of the form aii, i = 1, 2, ... p

and j = 1, 2, ... q by

a11B
al2B a1pB

A (S) B = aBa
-21 22B a2pB

aniB aq2B a B
Pq

then V =E (%'X)

so that

v-1 =Z-1 (X'X)-1

Generalized least squares can be applied to (2.3.17)

Zellner and Theit suggest that aij should be estimated from
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disturbances calculated using (2.3.17) for each equation and then

replacing the estimated d's into equation (2.3.15) to yield a

calculated vector Ei from which estimates sib are calculated

The 3SLS estimator d is then

111 = d =

with W'X =

wix 0

0 W'
2

X'W
1

0

0 X'W
2

s
11

(X'X) 1

s 21 (X'X)-1

s11 (X'X)-1

s 21 (X'X) 1

1 /-

wix

s 12 (X'X)-1

s 22 (X'X) 1

VW,XV1X,WF1X,WflIVZ

wix

0 W'2 X

s 12 (X'X)

s22 (X'X)

0

0 W'2 X

X'z1

The variancecovariance for the estimates is then:

(2.3.19)

(2.3.20)

In comparing the two methods, there is only a gain in

asymptotic efficiency over the 2SLS method if the matrix is

not diagonal, that is if the error terms of both equations are

not independent.
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4. MODEL DIAGNOSTIC

Following the parameter estimation, the adequacy of the

models should be examined. The verification can be done by using

one or several goodness of fit tests. In the case of the system

under study, we focus on the residuals obtained from the ARMA

model for the univariate series and from the transfer function

model for the inputoutput process.

The tests for the adequacy of models of the type

i(B) yt = ii(B) Et

that has been fit according to the procedures already mentioned,

will consist basically in testing for white noise of the

estimated residuals

Et = et = O(B) yt

In this respect, the sample autocorrelations of the

residuals, rk(e), k=1, 2, ..., K, can provide useful information

concerning the lack of fit.

Box and Jenkins (1970), showed that

Q = NZ 11(et)'' X2 (kpq)
k=1

(2.4.1)

where p and q are the orders of the autoregressive and moving

average parts of an ARMA model respectively. This test allows us

to consider a number K of autocorrelations all together rather
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than one by one in testing for the adequacy of the model. A

modification of this test , proposed by Ljung and Box (1978) was

used for testing for goodness of fit. The modified expression is

Q = N(N+2) ri./(Nk)
k=1

(kpq)

nk
rk = E E / E2Et tk t

k=1 k=1

(2.4.2)

This formula has the advantage of yielding a better

approximation of the asymptotic Chisquare distribution.

The goodness of fit test for the transfer function model,

is based on similar test statistics but now incorporates cross

correlations involving model residuals. To clarify this point,

suppose that a transfer function model has been fitted so that it

can be written as

yt = 8-1(B) W(B)Xt + 0-1(B) 0(B) Et

yt = 1)(B) + *(B) Et

At this point, there are two possibilities of incorrect

fitting that need to be revised: One is the transfer function

itself, represented here by the impulse response functionl)(B),

and the other is the noise model Nk(B). The goodness of fit test

for the noise model will involve then the autocorrelation
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function of the residuals e
t.

The crosscorrelation function

between the residuals and the input series will be used in

testing the impulse response function.

The test for autocorrelation of the residuals is the same

that was described before in equation (2.5.2). The rejection rule

will be: If the autocorrelation function of the residuals shows

marked correlation patterns, there is evidence that the noise

model is inadequate. A similar test, but based on the cross

correlation function could be obtained to test for the adequacy

of the impulse response function. If the transfer function is

incorrect, and whether or not the noise model was correct, a

crosscorrelation analysis could indicate the type of modifications

needed in the transfer function. The test statistic to be used in

this case is

S = m Z re(k) X2(K+1 (r+s+1))
k=0

(2.4.3)

with r+s+1 being the number of parameters fitted in the transfer

function model and m = n u p, with u = max{r,s}, p, r, s

defined as in (2.1.16).

In general, the criteria to apply will be that, if the auto

correlation of the residuals exhibits structure, and the cross

correlation does not, then the noise model is incorrect and if

both exhibit structure, the the transfer function model is
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incorrect. The type of structure in the cross and autocorrelation

will indicate the kind of modifications needed in one or both.
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III. MODELING OF THE ENSO PHENOMENON.

1. DESCRIPTION OF THE PROBLEM.

The relationships between the atmospheric pressure over the

South Pacific and the climatic changes in certain parts of the

globe have been the subject of numerous studies, especially during

recent years (see Wyrtki, 1975, Chen, 1982, Rasmusson and

Carpenter, 1982, Quinn, 1984, Esbensen, 1984). The focus of most

of these investigations is the Southern Oscillation (SO) and its

associated short term climatic variations.

The SO is an irregular interannual and globalscale

atmospheric fluctuation reflecting a shift of atmospheric mass

between the Indonesian equatorial low pressure region and the

South Pacific subtropical anticyclone. The most interesting

consequence of the SO is the El Niiio phenomenon, an occasional

and rapid warming of the seasurface temperature (SST) off the

west coast of South America accompanied by alterations of several

other atmospheric and oceanic variables such as rainfall, air

temperature, sea level and wind along the tropical Pacific belt.

The El Nilo phenomenon has its earliest manifestations along

the west coast of South America, producing catastrophic effects

on the local fisheries and climate with great damage to the

economies of the countries involved, and although it originates

at a distance of several thousand kilometers to the west, the

physical connections during ENSO seem to be fairly clear.
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Changes in the SO are associated with a relaxation of the

easterly trade winds in the central and western equatorial

Pacific. This breaks the balance of forces between westward wind

stress and the eastward pressure gradient associated with the

surface topography of the equatorial ocean, which slopes downward

from west to east. This imbalance produces an oceanic internal

wave that travels eastward along the equator to split into

two parts upon arrival at the American west coast. One part

travels northward along the west coast of North America and the

other travels southward along the coast of Ecuador, Peru and

northern Chile (Enfield 1980, 1981a). Along the west coast of

South America, the depression of the isotherms associated with

the Kelvin wave implies that unusually warm water is upwelled

into the surface layers nearshore. The warmer water is generally

impoverished in the nutrients needed for biological activity,

so that the local fish stocks are forced to migrate in some cases

and suffer high mortality rates in others. Countries whose

economies depend to a great extent on these resources will suffer

considerable hardship. Almost as great as the fishery impact are

the setbacks imposed on agricultural activity and the interruption

of vital services, highways, etc. that accompany the abnormal

rainfall patterns resulting from El Nino. The ability to predict

the occurrence of ENSO events could help the South American

governments to implement policies that lessen the impacts of such

catastrophes.

Although the El Nino phenomenon is typically described mainly
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in terms of an anomalous rise in ocean surface temperature, it is

in fact rather complex and has a strong effect on rainfall, sea

level, surface atmospheric pressure and wave activity among others.

To obtain accurate information about the fluctuations of the

SO, it is necessary to consider both the wide area that it

affects and the numerous variables involved in the process. In

recent years, many indices have been obtained from different

meteorological variables from the tropical and subtropical

Pacific. Sea surface temperature, precipitation, sea level

atmospheric pressure and atmospheric thickness among others, have

been identified as useful in representing the SO (Chen, 1982 and

Quinn, 1984). Among these, the most frequently used is the sea

level atmospheric pressure (SLP).

Chen (1982) examined the ability of various SLP indices to

adequately represent the SO by analyzing the series obtained from

stations located at Easter Island ( 27°S, 109°W ), Rapa

( 28°, 144°W), Tahiti (17.5°S, 150°W) and Darwin

(12°S, 131°E). These stations are strategically located close to

the centers of Indonesian equatorial low pressure region (Darwin)

and to the South Pacific anticyclone (all others). The indices

used are calculated, in most of the cases, as the difference in

atmospheric pressure between stations located at each of these

two geographic extremes of the tropical Pacific (Rasmusson and

Carpenter, 1982). Quinn, (1979), provides an interesting comparison

of several indices obtained from some of the stations already
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mentioned. Trenberth, (1984) discuss the utility of using a

simple index based on the combination of sea level pressure data

from two stations (Tahiti and Darwin)

An analysis shows that when the value of the SO index is

high, we can expect the equatorial low to be deep and the

subtropical high to be strong. This condition is associated with

strong southeast trades and equatorial easterlies, which enhances

coastal and equatorial upwelling, causing isotherms to shoal and

lowering the sea surface temperature (SST). Along with this there

is a characteristic rain pattern for the region. Altogether,

these characterize the socalled antiEl Nino condition.

When the index falls from the antiEl Nino peaks toward the

ENSO low values, the equatorial low pressure region fills and

migrates eastward and the subtropical high weakens, the winds

relax and an El Nino type of situation sets in, the equatorial

upwelling decreases and the SST's rise, rainfall increases in the

central equatorial Pacific and northern South American coast,

while drought conditions set in along the central Andean highlands

and northeastern Brasil, and large anomalous rises occur in the

coastal ocean temperatures from ecuador to northern Chile.

Rasmasson and Carpenter (1982), Quinn (1979) and Chen (1982)

have shown that changes in the phase of the Southern Oscillation

Index (SOI) statistically lead changes in SST along the Peru

coast by several months. This added to the physical connection

already described suggests that the SOI may be very useful in
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predicting the variation of the SST if an adequate statistical

model is found. This is consistent with oftencited arguments

that the atmosphere usually leads (forces) the ocean (e.g., Davis

1976 and 1977).

The selection of the most adequate SOT to be used in the

context of this analysis was made based on Rasmusson and

Carpenter (1982) . They found that changes of the atmospheric

pressure at Tahiti lead changes at Darwin by about one month. The

lag between Rapa and Easter Island was also approximately one

month. Both Rapa and Easter were found to lead Tahiti by several

months. In general this means that changes in the surface

atmospheric pressure near the center of the South Pacific high

(Raps and Easter Island) lead those at lower latitudes in the

central Pacific (Tahiti) and also lead changes of the opposite

sign in the vicinity of the AustralianIndonesian low (Darwin).

Since Tahiti leads Darwin only by one month, it seems to be

more convenient to use SOT based on these two series to reduce

the time lag between the two regions. The index to be used then

is TahitiDarwin, which is also the index proposed by Trenberth

(1984) as the one that best represents the characteristics of the

southern oscilation. It must be understood that even when other

similar indices such as RapaDarwin may explain certain portions

of the variability somewhat more effectively, the proposed

TahitiDarwin is the one that best serves the purpose of this

study.
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2.DESCRIPTION OF THE DATA.

The following time series were made available to us by Drs.

David Enfield and William Quinn of the College of Oceanography at

Oregon State University. They are based on monthly mean

observations and, except for those of sea level pressure (SLP),

they all correspond to meteorological stations located along the

west coast of South America , mainly the coast of Peru and

Ecuador (Figure 2).

Sea Surface Temperature (SST): Puerto Chicama (1925-1983)
Talara (1956-1983)
San Juan (1958-1983)
Chimbote (1956-1983)
Don Martin (1952-1983)
La Punta (1950-1983)

Sea Level Pressure (SLP): Tahiti (1935-1983)
Rapa (1951-1983)
Easter (1935-1983)
Darwin (1882-1983)
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3. EXPLORATORY ANALYSIS.

The first stage of the analysis consists of a graphic study

of the time series available as an attempt to determine patterns

that can be used to characterize the occurrence of the ENSO

events in each of the series.

Since the SST series are of different lengths, and with the

purpose of using the maximum information available, the least

squares method was used to extend the series to the same length

starting from 1951. The longer series were used as predictors to

estimate the values of the shorter ones, e.g.: Puerto Chicama and

La Punta were used to estimate the year 1951 for the Don Martin

series.

Another complication that needs to be solved is the fact that

this type of data present in general a strong seasonality which

can significantly affect further analysis. To avoid any problem,

the seasonal factor was removed from all series by substracting

the corresponding climatic mean for each month (i.e., each

January minus the 24year climatic mean for January, etc.). For

the rest of the study, all series used will be deseasoned series.

The next step is to identify a single series that can

represent the characteristics of the ENSO events. The idea is

that if we use the SOT as the leading factor, it is necessary to

have a response variable that can, in some way, summarize what

is most characteristic of the ENSO event in the ocean. A natural
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choice for this so called response variable is the SST since it

is the oceanic variable most clearly related to El NiAo episodes

and the one that we have more information about. Since 6 records

of SST were made available to us, and because their correlations

are high, a principal components analysis was used to summarize

the information.

The first principal component explaines 88.92% of the

variability. With loadings approximately equal for all stations,

the first principal component represents the overall average SST

of the region (Table 3.1).

Table 3.1. Loadings for the First Principal component of
the SST series.

variable station loading

SST1 Puerto Chicama .952
SST2 Talara .928

SST3 San Juan .904
SST4 Chimbote .941
SSTS Don Martin .975
SST6 La Punta .956

This allows us to define the El Nilo series (EN) as follows:

EN = .952SST1 + .928SST2 + .904SST3 + .941SST4 +

.975SST5 + .956SST6

Note that since the loadings for the first principal component

are proximately the same, the mean value of the SST surface
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temperature over the six stations should also yield an adequate

representation for the El Niiio series.

The graphical representation of the series was done by using

a modified version of the boxandwhiskers plots (Tukey, 1977)

which are frequently used to determine the presence of outliers.

The modification of the standard boxandwhiskers plots is

introduced here as a method for better visualization of monthly

data by using a clocklike disposition of the months, with the

month of January on top of the array and continuing clockwise

with February, March, etc. Because of this disposition, the plot

is will be called "cloxplot".

The boxandwhiskers plots display several values that have

particular importance in detecting "far out" values (Figure 3).

i 0

OF IF Q
1

Q2 Q
3

IF OF

Figure 3. Boxandwhiskers plot.
OF = outer fence, IF = inner fence, Q1 = first
quartile, Q2 = median, Q3 = third quartile.

A useful algorithm for constructing the plots is:

H = Difference between third and first quartile.

Step = 1.5 times H.
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Inner fences = One step outside the quartiles.

Outer fences = Two steps outside the quartiles (and thus

one step outside inner fences)

The whiskers extend up to the last point within the

inner fences.

The values between the inner fence and neighboring outer

fence are said to be outside and are usually represented

by a dot.

The values beyond the outer fences are said to be far out

and are represented by a circle.

As mentioned before, these plots are particularly useful in

detecting outliers and can be used in the same manner to identify

individual ENSO events (see Figures 4 and 5). For the purpose of

this study we will replace the usual dots and circles by symbols

that allow the identification of the outliers as corresponding to

certain years (which coincide with the ENSO years). These are:

o for 1982-83

for 1971-72

for other events

In Figures 4 and 5, the inner circle represents the minimum

value of the series and the dashed circles represent the series

means, and the special symbols correspond to the points laying

beyond the inner or outer fences respectively. As expected, all

symbols correspond to some of the well known ENSO events.
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Figure 4. CloxPlot
Distances
the serie
values of

of the TD series.

from the inner circle (minimum value of
s) are proportional to the mean corrected
the TahitiDarwin SOI.
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0

Figure 5. Cloxplot of the EN series.
Distances from the inner circle (minimum value of
the series) are proportional to the mean corrected
values of the first principal component of the six
SST series.
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Using such plots we expect to obtain a preliminary

estimation of the magnitude of ENSO episodes as well as an

approximate date of onset and termination. By comparing series of

distinctive nature (e.g., SST vs. SOI) we also intend to

determine approximate lags for the onset phases that can be used

later as a basis for a predictive model (Figures 6 and 7).

The original data corresponding to the ENSO events was

compared with the newly defined EN series (based on the first

principal component) using the cloxplot. The same basic pattern

was found for all cases studied. This supports the representa

tiveness of the first principal component as the El Nino series.

Note, from Figures 4 and 5, that most of the "far out"

points correspond to the 1982-83 ENSO, which was an event of

unusual intensity (Quinn, 1984). Both the EN and SOI values for

this event have been plotted in Figure 6. Most of the other

events show a similar pattern (e.g. Figure 7 which displays the

EN and SOI values for the ENSO of 1971 1972).

The fact that the original series exhibit a strong

seasonality implies autocorrelation at nonzero lags with

repeating maxima at the annual harmonics (12, 24, ...). After

for both the EN and SOI series (Figure 8 and 9). Although after

removing the corresponding long term mean for each calendar

month, the strong seasonal pattern shown in Figure 8 and 9

practically disappeared (Figures 10 and 11), But since the SO is

considered an interannual fluctuation (Esbensen, 1984 and Quinn
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January 1982

a) EN series

January 1981

b) TD series

Figure 6. The 1982-1983 ENSO event.
a) Cloxplot displaying SST anomalies represented by

the EN series, starting January 1982.
b) Cloxplot displaying the SOI anomalies, represented

by the TD series, starting January 1981.
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0

April 1971

Figure 7. The 1971-1972 ENSO event.
a) Cloxplot displaying the EN series starting April

1971
b) Cloxplot displaying the TO series starting

October 1970
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and Neal, 1983), we expect to observe some traces of this non

annual peridocities in studying the bymonth interannual auto

correlations (i.e., deseasoned). None of them however, appeared

to be significant (Figure 12). In fact the autocorrelations for

lags of more that one year were also revised but none of them was

significant. A plausible explanation is that the occurrences of

the El Niiio events affect the patterns of the fluctuation so

strongly that the evidence of their presence can not be assessed.
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Figure 8a. Autocorrelation function for the TD series,
showing a strong recurrence of positive
correlation at lag intervals of 12 months
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Figure gb. Partial autocorrelation function for TO series
showing some recurrence of positive correlation
at intervals of 12 months.
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Figure 9a. Autocorrelation function for the EN series,
showing a strong recurrence of positive
correlation at lag inteervals of 12 months.
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Figure 9b. Partial autocorrelation function for the EN
showing series, showing some recurrence of
positive correlation at intervals of 12 months.
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Figure 10a. Autocorrelation function for the TD series,
after removing the monthly means, showing
significant positive values only up to lag k = 7.
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Figure 10b. Partial autocorrelation function for the TD
after removing the monthly means, showing a

strong indication of a possible AR(2) model for
the series.
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Figure lla. Autocorrelation function for the EN series,
after removing the monthly means, showing
significant positive values only up to lag k=6.
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Figure 11b. Partial autocorrelation function for the EN
after removing the monthly means showing series.
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Figure 12a. Autocorrelations at oneyear lag for the TD
series, by month of the year, with the climatic
annual cicle removed
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Figure 12b. Autocorrelations at oneyear lag for the EN
aeries, by month of the year, with the climatic
annual cicle removed
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4. INPUT MODELING

The objective is now to find an ARMA model to adequately fit

the input series. Chu and Katz (1984), working with normalized

monthly records of sea level pressure from 1935 until 1983,

proposed an ARMA(1,1) model and fitted the monthly SOI based on

TahitiDarwin. Using Hannan and Quinn's method to determine the

order of an autoregression, we fit an autoregressive model of

order 2 (AR(2))to the data. This model was compared with the

corresponding ARMA(1,1) proposed by Chu and Katz using the same

data. The first 25 lags of the residual autocorrelations were

used in both cases to test for the goodness of fit. The test

used here was the Ljung and Box statistics defined in Section

4 of Chapter II, where

For AR(2): Q = 27.86 (21 df), pvalue = .144, and for

ARMA(1,1): Q = 26.66 (21 df), pvalue = .182

Both pvalues are high enough to conclude that the

residuals from both models are only white noise which indicates

an adequate fitting. The decision to choose one of them was based

mainly on the simplicity of the parameter estimation and

interpretation. We decided to use the AR(2) model to describe

the input series. The estimated model is:

.07464 + .48464% 24486XXt =
t-1 + t-2 + Et

where E
t

is white noise.

(3.4.1)
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5. IDENTIFICATION AND ESTIMATION OF A TRANSFER FUNCTION MODEL.

After the model for the input series (TD) had been

conveniently identified and its parameters estimated, the series

was prewhitened using model (3.4.1). The output series (EN) was

transformed in the same manner. This allowed us to obtain an

estimate of the crosscorrelation function (Figure 13). The Ljung

and Box test for white noise applied to the crosscorrelation of

the transformed series was highly significant, with a pvalue of

less than .0001 for 24 degrees of freedom. It should be noted

that the values at negative lags are also significant. This fact,

as mentioned by Chatfield (1975) could be a clear indication of

the presence of feedback.

Since the presence of feedback is suspected, the standard

techniques of identification of the transfer function model may

not be adequately used for use here because they may yield

unrealistic results (Box and MacGregor, 1976). The first approach

in estimating these parameters will be the use of the ordinary

transfer function model estimation as defined before in equations

(2.3.4) and (2.3.5).

Consider the initial estimates of the impulse response

function obtained from:

Vk = ra8 (k) S p/8a ; k = ..., 3,-2, 1, 0, 1, 2, 3, ...

Note that we have included negative values of I. We expect that
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Figure 13. Crosscorrelation function for TD EN, showing
significative values of the crosscorrelation for
negative lags and the recurrence of positive
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this procedure will give us a rough approximation of the order of

the model. The estimates obtained are shown in Table 3.2.

Table 3.2

k

Estimates of the Impulse Response Function.

vk

4 .1067
3 .2237
2 .1941
1 .2321
0 .1218
1 .1390
2 .2871
3 .2776
4 .1907
5 .0462
6 .0402
7 .0164

8 .0526
9 .1797

This suggests a transfer function of the form (See Box and

Jenkins, 1970)

Y
t
= d1(B) w(B)X

t
+ N

t

with d(B) = 1 dB12

4

and w(B) Bj+12

j=-4 j

Preliminary estimates of the parameters for this model were

obtained by minimizing expression (2.3.5) using procedures from

the Statistical Analysis System (SAS) computer package.

After this preliminary phase of the identification was
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completed, equation (2.3.4) was used to obtain an expression for

the noise model

Nt = it Y

with Yt being determined by the expression

4

It Yt wjBj/d12B12 Xt
j=-3

when d
j

and w12 are the preliminary estimates of the parameters

of the transfer function model already defined.

The study of the autocorrelation of the estimated residuals

suggested once again the use of an AR(2) model for the noise

series. The corresponding transfer function model is

Yt

4

Bwk
k

k= 3

1 d12B
12

Xt + Nt

with Nt = aiNt_i + a
2Nt-2 + at , where a

t
is white noise.

Once again using SAS procedures, the following final estimates of

these parameters were obtained (Table 3.3)
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Table 3.3

Parameter

Estimated Parameters for the Transfer Function Model.

Estimate Std Error Estim/S.E.

al .99538 .05226 19.05

a2 -.20828 .05260 -3.96
w_3 .04825 .01260 3.83

w-2 .03954 .01408 2.81

w-1 .05994 .01431 4.19
w
o -.04122 .01374 -3.00

w1 .03223 .01376 2.34

w2 .07063 .01386 5.10
w3 .06998 .01380 5.07

w4 .04452 .01222 3.64
d 12 -.04116 .09348 -4.40

As indicated in Section 4 of Chapter II, after the estimates

of the parameters have been obtained, we have to test for the

adequacy of the model.

The goodness of fit test used here was the Ljung and

Box white noise test for the autocorrelations of the residuals.

The test showed that the residual series present no evidence of

autocorrelation. The test for significance of the crosscorrelation

between the prewhitened input and the transformed residuals gave

a value of Q = 19.04 which compared with the corresponding )(2

value with 15 degrees of freedom from the)(2 table, yields a

p-value > .212. Hence, we conclude that both the transfer function

and the noise model were adequate.

It must be noted that the negative lag parameters included

in the model described in Table 3.3, although significant, do

not configure the type transfer function model defined by Box and
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Jenkins (1970). The fact that future values of the input function

are needed to describe the present output constitutes an

unrealistic aspect of the model and implies that the model cannot

not be used for prediction purposes. Hence it is necessary to

look for a model that accounts for the significance of the

negative lag crosscorrelations and constitutes a valid

representation.



64

6. ESTIMATION OF THE PARAMETERS FOR THE CLOSEDLOOP SYSTEM.

For practical purposes, the transfer function model whose

parameters were estimated in the previous section, although they

appearing to be technically correct, cannot be used either for

description or for predictive purposes. The fact that it

includes significant parameters for negative lags, implies that

for representing the present or making any kind of prediction we

must know in advance at least three future values of the input

series. These facts lead us to look for a representation based

only on past values of the series. The equations that accomplish

this basic requirement are (2.1.20) and (2.1.21), i.e.

Y=
t aOrti Ti xt_i + Et

i=1 i=1

Xt egti Mt
i=1 i=1

(3.6.1)

(3.6.2)

As it will be shown later, the identification of the model

to be fitted cannot be based on the structure of the cross

correlation function (CCF) between the prewhitened input and the

transformed output. Doing so could lead us to select the wrong

model to be fitted. Instead, we will use as a basis the model

already fitted, using the usual techniques for estimating the

parameters of transfer function models. The rationale is that if

the parameters corresponding to negative lags are found to be
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significant for that model, we can find significant feedback

parameters at least up to lag 1, with possibilities of being of

even higher order. The rest of the parameters of the feedback

equation are presumably of order 2 since the input series was

already shown to be adequately modeled as an autoregression of

order (AR(2)). The order of the parameters for equation (3.6.1)

will be assumed to be of similar order. The general idea is to

initially overfit the model in such a way that we can obtain a

vague idea about the order of the rest of the parameters. The CCF

was considered in determining the number of the parameters for

the first equation. The following first tentative model was fitted

Yt alYt-1 a2yt-2 T3xt-3 T4xt-4 T5xt-5

xt 02xt-2 egt eYt-1 93t-2

(3.6.3)

(3.6.4)

Since we assume that in a closedloop system there is no

instantaneous response, we expect the parameter 00 to be equal to

zero.

Next, the twostage (2SLS) and threestage least squares

(3SLS) methods were used to estimate the parameters of the

system of equations. The two and threestage least squares

estimates for the parameters were obtained using SAS procedures

(see SAS 1982). The matrix setup used in both 2SLS and 3SLS was

as follows

Zt = (Yt, Xt)
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Y11)(B) = Y12)(B) (Yt-1' Yt-2)

41)(B) = (Xt-3' Xt-4, Xt-5 )

342)(B) = (14_1, Xt_2)

Al = (al, a2) , A2 = (01, 132)

C1 = (y3, y4, y5) , C2 = (01, 02)

The preliminary results show that testimates of the

parameters a2, a3, 74, 02 were not significant, but the analysis

of the residuals indicates the necessity of including additional

terms in the models. A fourth term was then added, namely Xt_6,

and found to be significant. The estimation was performed

simultaneously by the 2SLS and 3SLS methods, and the results are

shown in Table 3.4.
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Table 3.4: Estimated Parameters from 2SLS and 3SLS for the
Close-Loop system

2SLS 3SLS

Param Estim. Std. Err. Estim. Std. Err.

all .928559 .024540 .928124 .024543

715 .022990 .013678 .022524 .013692

716 .030254 .014214 .030184 .042127

.404812 .049871 .408820 .049419

°12 .175524 .049734 .182156 .049779

11 481644 .093272 -.47007 .093279

The variance-covariance matrices, correlation and mean square

error for the residuals for each of the methods are

2SLS:
It

E
l t1) 1.47342

E
lt
(2) -.019073

E (2)
It

019073

.127048

Correlation (Elt(1) '
Elt(2)) = -.04448

MSE for the System .078448.

3SLS: (Ell" Elt
2)

Ell" 1.47360 -.020327

17 () -.020327nt .12705

Correlation (Elt(1) Elt(2)) = -.046979
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MSE for the system = .0788365

As can be seen, both methods behave similarly, with the 2SLS

producing slightly better estimators, with smaller correlations

between the residuals for both equations. Since the 2SLS also

involves less calculations, it is advisable to adopt it for use.

To run comparative simulation studies, the feedback term was

removed from the second equation and the parameters were

estimated again using similar procedures. The results are shown

in Table 3.5

Table 3.5: Parameter Estimators using 2SLS and 3SLS for
OpenLoop system.

2SLS 3SLS

Param. Estim. Std. Err. Estim. .Std. Err.

a21 .928124 .024542 .927450 .024543

725 .022543 .013692 .022540 .013692

726 .030184 .014227 .030127 .049297

°21 .481562 .049279 .481201 .049278

022 .252110 .049298 .251315 .049297

The variancecovariance matrices for the residuals were



2SLS:

E
2t
(1)

E (2)2t

E2t(1) E2t(2)

1.57107 .003094

.003094 .127048

69

3SLS: E(1) E
2t2)

E2t(1) 1.57108 .003361

E
2t
(2) .003361 .127048

Since both methods have provided the same values for the

estimated parameters, the following system of equations is

considered to be the most adequate

Yt alYt-1 + T5Xt-5 + 76Xt-6 + Ell)

x =fix +fix +ex + E(2)
t 1 t-1 2 t-2 1 t-1 t
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7. PREDICTION

For a transfer function model of the type described by

equation (2.1.16) the predicted values are easily calculated

by direct use of the difference equation

Yt+h = d
r
-1 (B)w

s
Xt+h + 0-1 (B)0qEt+h

assuming that the input series Xt can be represented by an ARMA

model and assuming also that the noise component Et is

statistically independent of the input Xt. Expressions for the

variance of the predictions are described in detail in Box and

Jenkins (1976). This prediction process is also called "forecast

using leading indicators" with the leading factor being the input

series, which in our case corresponds to TD.

Since the regular transfer function was shown to be

inadequate in present context, the prediction equations are

based on the closedloop equations

Yt = alYt-1 Y5Xt-5 Yelt-6 + Ell)

Xt = BiXt_i + ft2xt_2 + OlYt_i + E12)

As an example let us consider first the predictive equations

for h=1

p (1)
Yt+1 alYt Y5Xt-4 Y5Xt-5 t+1

(

xt +1 01Xt 0211t-1 el; Et+1
2)
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These predicted values for Yt+1 can be used to obtain the

predicted value Yt+2* The same procedure can be repeated several

times to obtain further predictions.

Recall at this point that one of the main features of the

closedloop systems is that the noise terms are not independent

of the input variables (Akaike 1968). This problem constitutes a

serious difficulty for the calculation of an estimate of

the variance of the prediction. Further analysis of the nature of

the dependency needs to be conducted in order to obtain an

adequate estimate of the variance that allows us to

determine a confidence region for the predicted values.
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8. SIMULATION

As an improvement on the Box and Muller method, for

generating normally distributed random numbers,random

observations were generated from each of the two equations using

the random number generator described by Law and Kelton (1982),

known as the polar method. The algorithm allows for the

generation of a pair of two independent and identically

distributed (iid) Normal (0,1) random variables:

Step 1: Generate U1 and U2 as iid Uniform (0,1) and define

Vi = 2171 1 and V2 = 2172 1 and let W = Vi2 + V22

Step 2: If W > 1, go back to step 1. Otherwise, let

Y = ((-21n(W))/W) 1/2 , X1 = V1Y and X2 = V2Y.

Then, X1 and X2 are iid N(0,1) random variables.

For each simulation, a set of N pairs of independent normal

(0,1) random variables were generated. Each variable must be

multiplied by the standard error of the estimates obtained for

each of the equations, thus providing the appropriate sequence

of random errors to be fed into each equation of the system.

The simulation procedures used the two systems of

equations estimated in the previous section. The model to be

studied will use the estimates of the parameters obtained

from the 2SLS method which, as mentioned before, gives almost the

same results as the 3SLS approach, the model for the closedloop

system is
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(1)p
Yt = a11Yt-1 7151t-5 716Xt-6 + 1t

Xt = 011Xt-1 012Xt-2 ellYt-1 E112)

(where Eit i)
, (i = 1, 2), are two independent white noise series,

distributed N(0, 0.127048) and N(0, 1.4736), respectively, which

are generated according to the procedures described in previous

chapters. With the parameter values given in Table 3.4, for the

model for openloop system we have:

Y =aY +yX +X +E(1)
t 21 t-1 25 t-5 26 t-6 2t

X =ft
t 21

X +R
t-1

X
E212)

where E2t , i = 1, 2 are two independent white noise series

generated for the closedloop system. But this time their variances

have been set to .12705 and 1.57108, respectively, with parameters

given in Table 3.5.

There are two main steps to be considered during the

simulation of the processes. One is the analysis of the generated

input and output series which should be studied to determine

whether or not the model, with only the input of the generated

noise series already described plus a few initial values

obtained from the first six observations of the original series,

is able to reproduce the behavior of the system under study to an

acceptable degree. Figure 15 and Figure 16 show a typical

result of the simulated series with and without the inclusion of

the feedback term into the system respectively. Figure 17 and
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Figure 18 show the crosscorrelation functions obtained from the

simulated series, with and without the inclusion of the feedback,

term respectively.



75

TV. CONCLUSIONS AND DISCUSSION.

1. TESTING FOR THE PRESENCE OF FEEDBACK

The focus of this study was the use of nontraditional

closedloop system modeling procedures to estimate the

relationships between two time series classified as input and

output respectively. Although only two approaches were mentioned

in the search for the most adequate model, several other

methodologies were tried and some of them are discussed now.

When the presence of feedback is suspected, the first step-

prior to the identification of the model-- must be to

statistically determine whether or not feedback is present in the

system. At this stage several procedures were considered to test

for the presence of feedback. Some of them were shown not to be

adequate given the nature of the data.

Box and MacGregor (1974) suggest that if there is some doubt

as to the the type of data one has, a test for the presence of

feedback can be obtained by testing for the presence of a

significant crosscorrelation between the prewhitened input and

the transformed output at lag k = 0. Although this is valid

procedure to use (in the sense that if the test is significant we

can conclude that we are dealing with a closedloop system) it is

also true that the test is not conclusive in determining that the

system is feedbackfree.

Chatfield (1975) extends the Box and MacGregor procedure to
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testing for significant values of crosscorrelation at negative

lags. In fact, nearly significant crosscorrelation at lag k = 0,

accompanied by highly significant values for k < 0, will be a

strong indication of the presence of feedback in the system.

Considerable attention was given also to Caines and Chan

(1975). They analyze the feedback system:

y = Kx + Lv

x = My + NI

were K and M are the feedforward and the feedback transfer

functions of the system, and v and w are unobserved noise

sources. They use the maximum likelihood method to estimate the

parameters of the impulse response function corresponding to K

and M.

By expressing the previous model as in equations (2.1.20) and

(2.1.21), that is:

yt = K(B)yt + P(B)xt + ect(1)

xt = Q(B)xt + R(B)yt + ect (2)

we can define the matrix:

N
(0c)

{ect(1)}2 (1). (2)
e
ct ect

ect (1)ect
(2) fe (2))2

ct

We can now obtain an expression for the determinant:
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V(0c) = det{ gN(00)}

(ect(1) )2(ect(2) )2 (ect
(1)oct(2)}2 (4.1.3)

Following a similar procedure for the openloop model:

yt = K(B)yt + P(B)xt + eot(1)

xt = Q(B)xt + e ot(2)

we can obtain the following expression for the determinant V(0):

V(00) = det[r(00))

(eot(1) )2(eot(2) )2 (eot(1)eot(2))2 (4.1.4)

The next step is to obtain estimates of the parameter 0

that minimize the expression V(0). These estimates can be

obtained by using a IMSL minimization subroutine, provided

that initial values of the parameters were obtained by ordinary

least squares estimation applied to equations (4.1.1) and

(4.1.2).

If 0
c

and 0
o

are the parameter vectors having dimension nc

and n
o
respectively, then a likelihood ratio test can be used in

testing the hypothesis Ho : 0 = 00 versus

He : 0 = Oc. The likelihood ratio test is:

V(0c)

V(0o)

N/2

This expression is equivalent to



r

= 1 +

With t

nc no

N n
c

N n
c

nc no

t

V(00) V(0o)
F(no no, Nno)
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The statistic X provides the following decision rule for

testing the hypothesis of no feedback: If N is large enough to

justify some asymptotic assumptions over the previous test, we

can use the fact that 2100. is asymptotically )(2 distributed

with (no no) degrees of freedom. That is, we would accept the

hypothesis of feedbackfree model if 2100. < ya with Ta being

the 10Oce % point of the X2 distribution with no no degrees of

freedom.

Although the proposed method appeared to be very

interesting, it failed to provide reasonable statistics to

test for the presence of feedback, since the minimization of the

determinant V(0) systematically produced only a trivial solution

for the parameters being considered. Further studies of this

method are needed to obtain a reliable solution for the

estimation problem.
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2. ESTIMATION OF THE PARAMETERS

Hannan (1970) proposed estimating the parameters of the

system using a matrix approach that requires the inversion of

large matrices. Although the estimates obtained through his

methods appeared to be very close to the ones obtained by the

2SLS and 3SLs methods, the sizes of the matrices to be inverted

are so large that they induce a large cumulative roundoff error.

As a direct consequence of this, the standard errors for the

estimates are so big that the method fails to produce significant

estimates for any of the parameters.

Another approach used initially to determine the appropriate

model, was the fitting of a regular transfer function model and

the estimation of the corresponding impulse response function.

Although many of the estimated parameters were found to be

significant and the residual analysis showed no evidence of lack

of fit, there were some considerations that lead us to conclude

that the transfer function model is not a valid approach in the

present context.

In fact, let us assume that an appropriate identification

procedure has been utilized and that the parameters of the

impulse response function have been estimated. The inclusion

of both positive and negative lags implies that to use the model

for prediction purposes will require the knowledge of future

values of the input to predict the actual output, which is
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evidently entirely inappropriate (Akaike,1968). The fact that

the parameters corresponding to negative lags have been found

significant is nothing but a confirmation of the closedloop

structure of the system.
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3. SIMULATION

The simulation of the model for the closedloop system was

compared with a similar model generated without feedback

parameters. Two aspects of this comparison are to be discussed.

One is how well the models are able to reproduce the sample

relationships between the SOI and the SST. As we expected, using

the closedloop system model (Figure 15), the generated EN

appears to be responding to fluctuations of the simulated SOI

approximately in the same way as the observed series does

(Figure 14). When the index declines, it is immediately followed

by a rise of the SST. The magnitude of the anomalies are similar

to those exhibited by the original series (Figure 14) and the

elapsed times between the simulated events are similar to those

observed for the real events.

The nofeedback simulation (Figure 16), showed that the

generated EL Nilo series presents the same patterns as for the

feedback model with the only difference that this time there was

no apparent connection between the input series (SOI) and the

generated response (EN). We conclude that the inclusion of the

feedback parameter is crucial in reproducing the true

relationship between input and output.

A second and also important aspect to be considered in the

analysis is the pattern of crosscorrelations for the simulated

series. Recall from Figure 13 that a main feature of the CCF was
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Figure 14. Original input and output series (1D and EN)
after removing the annual monthly mean.
Shows the first 360 months, starting January 1951.
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Figure 15. Typical example of input and output series
generated by simulation using the closed-loop
model (with feedback).
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Figure 16. Typical example of input and output series
generated by simulation using the open-loop
model (no feedback).
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the presence of significant crosscorrelation at negative lags. In

this respect, when the feedback parameter is present in the

system of equations, the closedloop model is able to reproduce

almost exactly the CCF patterns observed for the original series

with only minor variations on the center of the peak of cross

correlation near lag zero. A measure of the crosscorrelation

function between simulated input and output series is presented

in Figure 17. It shows the mean values of the croscorrelations

for each lag. The average was obtained from a sample of 10

independent simulations. Again the similarities between this and

the original CCF (Figure 13) is evident. Although there are some

differences between the CCF of the original series and the mean

values, these discrepancies can be explained at least partially

by the fact that the same original AR(2) model was used for

prewhitening the input and output series prior to the calculation

of the CCF. The openloop model on the other hand, presents no

pattern with significant values of crosscorrelation in the

neighborhood of k = 0 as shown in Figure 18, which includes also

mean values of crosscorrelation between the simulated input and

output, based on a sample of 10 simulations. All cases were

highly consistent and crosscorrelation values were very similar.

These facts confirm the conclusions obtained from the analysis of

the simulated series, i.e. that the inclusion of feedback is

necessary to adequately reproduce the relationship between the

input and output.
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The crosscorrelation function obtained from the simulated

input and output provides the basis for an interesting point of

discussion. Why is the proposed model able to reproduce the CCF

patterns observed for the original series? And why is it that the

same results are not obtained from the nonfeedback model where

the generated output appears to be almost exactly the same for

both models? There are several possible explanations, among them

the fact that the output series generated using the openloop

(nonfeedback) model does not exhibit the physical connection

that one could expect for the type of atmospheric phenomenon

being studied. That is, we expect that a sudden decay of the

the index will induce a rapid increase of the SST. This

relationship shows up strongly and consistently for all simulated

El Nino events, every time the closedloop model is used in the

simulation.
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4. GENERAL COMMENTS

The use of the closedloop system model for prediction

purposes faces the problem of finding adequate estimates for the

variances of the predicted values, to be used in computing

confidence bands. Further studies need to be done to solve the

problem of obtaining estimates of the mean square error, given

that the noise term is not independent of the input variable of

equation (3.6.5). If such estimates are obtained, some of the

longer existing series (e.g. SST at Puerto Chicama) can be used

to test the efficiency of the model by considering observations

of the pre-1951 ENSO events and verifying how close the predicted

values are to the actual ones.

The inclusion of the feedback parameter in the model appears

to contradict certain studies that argue that the atmosphere

leads the ocean, and that the reaction of the atmosphere to the

ocean is negligible, (Davis 1976, 1977). In fact, we cannot

expect to use only the South American SST as a prediction tool to

forecast the future behavior of the atmosphere and in particular

of the SOI. It is also very unlikely that a narrow portion of

coastal waters located along the west coast of South America will

influence the atmosphere all over the Pacific ocean to the degree

of producing the Southern Oscillation fluctuations.

In the other hand, recent studies (Wright 1984,1985,

McCreary 1983) have shown some evidence that the physical

connection between ocean and atmosphere involves the presence of
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feedback which appears to be particularly strong in the equatorial

Pacific zone. During the months of July to December, the

proposed models include additional variables such as wind

between the eastern Pacific and the Australasia region, as well

as cloudiness and SST in the Indonesian region.

The problem of finding an adequate representation for the

ENSO events is far from being solved. The addition of new

information, in the form of time series of precipitation, sea

level, winds along the equatorial zone, atmospheric thickness

(which is a measurement of how the ocean feeds back into the

atmosphere) need to be included in a more complex model. This

might be accompanied by defining a new and more sophisticated El

Nigo series plus the addition of a variety of input series, under

the form of several Southern Oscillation indices, coming from

stations spread out over the South Pacific. After finding a

adequate model, to obtain a reasonable interpretation, we must

consider the El Nigo series as representing a larger scale

phenomenon with significant influence over the atmosphere.
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