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INTRODUCT ION 

The subject of nwnerical integration is one of considerable inter- 

est today in the fields of physics, astronony, and ballistics. A].- 

though the foundation of such work is due to u1er, it ±s only rather 

recently that its developnient has gone forward to any great extent. 

In 1690 Picard established the method of successive approximations on 

sound bases. .Ainong others who have contribixted, one might mention Maul- 

ton whose work is largely in connection with celestial mechanics. 

Antedating the work of Moulton by a few years is the method of solu- 

tion devised by J. C. Adais. In 1694, Rme gave his method of sal- 

ixbion which was extended in 1901 by Kutta. Among recent publications 

are those of W. E. Mime, who has devised a method of solution applic- 

able to both first and second order equations. In his latest study he 

has given a solution for a special type of second order equation. 

Nystrom has given a very excellent review of some special forms of nui- 

erical integration and supplenonted it with his own work. Through the 

work of these and many others, the subject of ntmierical integration is 

erierging as a specialized field of mathematics of such a practical na- 

ture as to demand constantly increasing attention. 

The next few pages give a brief resume of a few of the methods men- 

tioned above and their application to some simple exaiples. The last 
pages of this paper are given to a discussion of a new method of into- 
gration for a special type of third order equation. It has been worked 

out in more detail than previously discussed methods as it represents 

the initial attack on this type of equation. It is hoped that lt will 

contribute its bit to the conmion cause--Numerical Integration. 



THE !THOD OF DIFFERENCES 

This method is dependent on the snminC of a rapidly converin 

series. It has tho advantage that it will approximate to any desired de 

gree of accuracy and is the easiest to perform when all the work is 

done by hand. It makes use of Ne;ton's interpolation formula, 

IL0 -t- S tsLl + s(s -IILñj0 
2! 

t ¿u0 + 
3! 

integrated over an interval and put in usable forni for backward dif- 

ferences. Thus it becomes 

(f) - u0-A2U -AU 
where h is the interval over which the integration is performed. This 

i_s khOvm as Gregory's Formula 

1. Let us look more in detail to its application to a first order 

equation. To begin we shall assi.mie we have four or five values of y 

and y'. This will give us a set of differences complete to the third 

or fourth. To facilitate rapid and easy calculation we shall arrange 

the work in colunms in the following scheme. 
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Besides the table of differences we mar v:ish to record other items of 

the work depending on the particular problem at hand. These may be 

placed in the colt at the right hand side. 

To continue vrith the computation, we first find a trial value of 

y'. To do this we shall assume for our next row of work that our high- 

est order difference is equal to the previous highest order difference 

ircnediately above. 7e shall now write in the trial values for y' and 

its differences making use of the equation, 
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(2) 

Our next sk;ep is to find a trial value of y by applying Gregoryts 

Formula (i) to these values. The value of y may now be found by using 

(2) where the prines are drooped. .7e should bear in mind at this point 

that all these values are dependent on the assnnption that our highest 

order differences are constant. 'n general this is not absolutely true, 

so we shall correct in the following manner. Using our new found value 

of y, let us solve the equation itself for y'. We may now if necessary 

correct our y' differences by applying (2) in the slightly modified 

form, 

( 

At this point we shall resort to Gregory's Formula again and continue 

until our values check. 

A few moments inspection of an example will make the work clear. As 

our equation let us take 

_j___ + '-t 1-I =-o 
a,: 

with the initial conditions that y 3.75 when x = -10. 'or the sake 

of simplicity we shall omit the work of starting and begin with the 

following row of work. 
- A -. ,. .' - 

I -(- 

-72 Z,i42j -z 

Let us choose h equal to .4 and our next value of x will be -6.8. We 

shall sot y' equal to -3 and using (2) we arrive at the following val- 

ue s; 
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Using (i) we find 4y equal to .09970 and y equal to 3.01528. Solving 

for x/y and ( y/2) + i we find them to be -2.25518 and 2.50764 respect- 

ively. Substituting in the equation we get a corrected y' equal to 

-.25246. VIe shall correct our y' differences with (2a) and continue 

imtil values check. Proceeding in this manner we secure the next few 

lines of work: 
4s_ 
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2. The method of differences villi apply equally vrell to equations of 

the second order The compiftation is, of course, somewhat more extend- 

ed. In working out this type of problem the solxion is best arranged 

in the saine manner as the first order equation with the addition of col- 

,ns to accorrnnodate ytt and its differences. Presuming we have the sol- 

ution started together with the necessary differences, we continue as be 

fore except that y, differences are attacked first. After we get y" and 

its differences, Gregory's Formula (1) gives a trial Lìy'. Formulas (2) 

and (2a) give y' and the other necessary differences of y'. From this 

point on the work is identical to that of the first order equation. 0f 

course each recheck must be carried completely through both rows of dif- 



5 

ferences. 

3. There are one or bo points that should be noted in addition to the 

ones of the tvo previous paragraphs. In the actual work the y differ- 

ences play little part except as a check. Any large fluctuation in the 

fourth order differences is usually indicative of an error. That is, 

they should vary fairly regularly. The scrno y be said for the y' 

differences. Another caution to observe is the rapid increase in y 

and y'. when the function curve becomes rather steep, accuracy falls 

off. The only remedy for this is to shorten the interval. Of course 

the -.:hole process fails at a point where a vertical t3ngent exists. 



THOD 0F. ORDINATES 

ihen a calculating machine is available the method of ordinates 

is a more elegant type of solution then the relatively clumsy method 

of differences. Two fornisare exhibited in the next three para- 

graphs. Types of equations which may be integrated by this scheme 

(&) 

j) 9pai 
-a; 

çe) 

where P and Q are constants or functions of x. The solithion of (b) is 

merely an extension of the method used for (a). Of course the last 

mentioned type is a particular form of (b) but to eliminate needless 

work a special method is employed. Both types of solution are char- 

acterized by neatness in execution. 

1. Lct us consider again Newton's interpolation formula, 

_t- o I) - A u -s- fs iç - 
I 3! 

If this is integrated over intervals of 2h and 4h, put in the form of 

backward differences, and simplified, we secure the two formulas, 

(A)a I higher differences, 
%* 1 -î-- 

J ' 
Fc)al( - + -- + higher differences. ¶2-o 

Reducing these to ordinate form and neglecting fourth and higher 

order differences we find 

= 1- a,i - 1 + 2- ) (3) 
1" Ï'- - - '-' I 

(4) ï 1- -- 
1 

The first of these is for prediction while the second is for check- 

ing. 

Suppose, for example, we have the equation, 
* See Bibliography 11(L) and II 
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with the initial condition that y equals one when x equals zero. Fur- 

ther, suppose we have the f irt four values of y and y' which we might 

get by one of several methods discussed later. If vie choose h equal 

.1 we get the following values: 

__________________________ L 

/ 0000 

I. 00S0 

I. O.202 

o o 00 

/ oc_ç- 

.2. û4O 

.3' 3g_ 

Applying (3) we find a trial value of the next y to be l.O83Owith this 

value of y the equation is satisfied for y' equal to .4332. Checking 

with (4) vro correct y to 1.0833. Substituted in the equation this 

gives y' equal to .4333. s further computation leaves these values un 

changed vie take them as correct. In similar manner we continue and ar- 

rive at the following results: 

- --__ --- v- ; 

i 
4 I: 03:3 . 

¿'003 ''-/333 

I . 5 I:j32 
o .7i'3 

(o I. 
f772 

-z ' 

.r i. 2--Y-77 

f.37/ ¡/0/7 

. f I. 

LO I. f7 o I. ¿"1S7 

The coltn adjoining y represents thc c-ane in y due to recalcul- 

ation. It provides a constant check on the accuracy of solution. The 

error due to the neglected fourth order differences in the use of (4) 



is approximately 1/29 of E . Consequently if increases to th point 

where /29 will effect rilue of y we should choose a snaller inter- 

val. 

2. The typo of solution of the preceding paragraph may be extended to 

equations of the second order. The only change necessary is the add- 

itional calculation of the 2econd derivative. Assitming we have four vai- 

ues of y, y', and y", the first approximation to y is given by 

:3 + 

This is of course formula (3) with a change of primes. Using this value 

of y', we atproximate y with (3). The equation is then solved for y". 

re change (4) to 

4) 4 + 

and cheek y'. Rechecking is continued until no corrections are necess- 

ary. The following illustrates a so1wion of this kind. Hero the first 

four values were determined by successive approximations. The initial 

evaluation of coth x was by the usual method of differentiating nimi- 

erator and denominator of /tanh x separately. Our example is 

- -s - öl - ô 

with the conditions that x,y,y' are respectively equal to zero, one, 

and zero. 



X y y' y" ( . ) cothx ';r 
.2 .992 .085 -.423 

.0 1.000 .000 -.425 .850 -.425 .850 

.2 .992 -.035 -.423 .861 -.431 .854 

.4 .966 -.169 -.418 .893 -.445 .363 

.6 .924 -.252 -.403 .944 -.469 .872 

.8 .866 -.330 -.378 1.010 -.497 .875 

1.0 .792 -.402 -.329 1.082 -.528 .857 

1.2 .706 -.459 -.238 1.117 -.551 .789 

1.4 .610 -.493 -.161 2.185 -.562 .723 

1.6 .508 -.519 -.022 1.158 -.563 .588 

1.8 .298 -.507 .133 1.010 -.535 .402 

2.0 .307 -.466 .283 .653 -.483 .200 

2.2 .24 -.393 .416 -.052 -.405 -.011 

2.4 .150 -.303 .505 -1.316 -.308 -.197 

2.6 .094 -.198 .526 -3.465 -.200 -.326 

2.8 .071 -.090 .588 -6.996 -.091 -.497 

3.0 .060 .041 .713 -12.664 .047 -.760 

3. 

Another equation of racher frequent occurence is (e); that is, the 

second order equation in which the first derivative is missing. Spec 

ial methods have been utilized in lbs solution to avola needless corapub 

ation and inherent errors. The formulas used are similar to (3) nnd 

(4) in some respects but have been developed from combinations of integ- 

rals of New±onts intero1ation formula over various intervals, grouped 

to eliminate desirable differences. In addition to this the terms cor, 



o 

responding to y' have been e1irinated. The fo11ow.ng formulas are used: 

(s) n 1M _ 
1:.3 

- - 

() n-' 
io + 

The first of these is for integrating ahead and the second for checking. 

There these fa5l to give desired accuracy a pair involving five ordin-. 

ates may be used. They are 

- 
- 2 a - 

+ 

- 

+ * 3Z 

+ I-T 

The solution following is obtained by the three-ordinate fornulas. 

Here the first six v&lues were coiriputed by a series. Our equation is 

± .Q- -f- 

with the initial conditions that x, , and y' are respectively eq- 

ua]. to zero, one, and zero. 

y y" 

.0 1.000 .072 

.2 1.001 .062 

.4 1.005 .035 

.6 1.010 .007 

.8 1.016 -.013 

1.0 1.021 -.023 

1.2 1.025 -.024 

1.4 1.028 -.022 

1.6 1.031 -.017 

1.8 1.032 -.013 

2.0 1.033 -.009 
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1THODS OF STARTING 

Practically every method of integrating ntierically is dependent up- 

on formulas which call for a few starting values of the variables. Con- 

sequently special devises must be pursued to start computation. 

1. One practice coionly used is that of series. The first necessary 

values of y are computed by a Taylor's Series: 

3 - 
I 

L, 1'(Lt) i&_Ç) ± 
1-I 

Th series usually converges very rapidly after two or three terms and 

gives a fairly good approximation for starting values. This method 

will fail when the function is infinite and in certain problems be- 

comes rather difficult to apply. In cases where x equals zero, the 

series becomes even simpler, reducing to a Maclaurin Series. This is 

probably the most satisfactory method of starting when the equation 

is not too involved. 

2. Another mode of starting which can be used quite readily in prob- 

lems solved by differences is merely an extension of this method to 

starting. That is, instead of asstning that fourth order differences 

are negligible we start by letting first order differences be dropped. 

From this we get the first estimated y arid we then calculate the first 

y' approximation. This gives our first difference for the second row of 

work. This is recorded and y is rechecked with Gregory's Formula (i) 

appli'ed to y' and Several recalculations are usually necessary 

especially at the start but there is the advantage of simplicity in 

principle to recommend this way of starting. At each stop we add, of 

course, one more difference so that after four or five rows of work wo 

have all the necessary orders to continue and the process has tighten- 

ed down to much loss labor. 

Let us look in some detail to an exomple of this method of start- 
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ing. simple problem to answer our purpose is 

with initial conditions that y equals t.10 when x equals zero. If we 

take h equal to .1 and carry the work to four decimal places we may 

start the table: 

X y ¿y Ly 3Y A1Y y' 2y' LY' LT' t' 

0.0 2.0000 0.0000 

0.1 2.0000 0.2000 .2OOY 

iho first value of y' is derived directly from the equation (7). If we 

bluntly assne that y' differences are negligible, y is also equal to 

two and is recorded above. his value of y substituted in (7) gives y' 

equal to .2000 which in turn provids our first "y' also equal to .2000. 

As we now have a y' and a first difference we may apply Gregory's 

i"oi-inula (i) to secure and check y . his gives y equal to .0100. 

It is obvious that this y necessitates a change in y which calls for 

correction of y' and ¿'y'. Making these necessary changes and re- 

checking until values are unchanged, we write out the table: 

X y A7 ty 'y ,.' Ly' tr' y' y' 

.0 2.0000 .0000 

.1 2.0000 ..0100 .2000 .2000 

(2.oloo)(.oloo (.2olo)(.2olo) 

The nixnber in p're'1Theses is the corrected value which replaces the num 

ber above. Proceeding in this manner we get the following table where 

only corrected values appear: 
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X y ¿y ¿Y L,Y AY Yt ¿Y' ¿yt ¿yt 

.0 2.0000 .0000 

.1 2.0100 .0100 

.2 2.0404 .0304 .0204 

.3 2.0921 .0517 .0213 .0009 

.2010 .2010 

.4081 .2071 .0061 

.6276 .2195 .0124 .0063 

.4 2.1665.0744 .0227 .0014 .0005.8666 .2395 .0200 .0076 .0013 

The computation has now reached the stage where it rims along rather 

smoothly. Differences of a hither order than the fourth are in general 

of little valuo to increase accuracy. 

slight modification of this method which works or very well with 

certain types of equations is that of working backiard as well as for- 

ward from our initial values. The work is practically the same except 

we have a more complete set of differences for the fore part of the 

problem. 

3. Another manner of coimiencing numerical integration whIch is often 

satisfactory is that of successivo approximetions. It gives us four 

values with which to continue. Here we assume 

y_=y.- hy 

y1 = y + hy' 

and y=y+2hy' 

Fron the differential equation we find values (trial) of y', yt , arid y' 

using the y values of these three formulas. The nec step is the check 

ing of , , and y with 

+ + 

î 
' . -1 ' 

l3: t3 - 

1o+1: 
t 
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'Te again turn to the differential equation rechecking for y , y,' , and 

y' , and continue mtil both y and y' values reiain unchanged. 



CHOICE OF flTERVAL 

The choice of interval in niaerical integration must be guided by 

two factors. The desired degree of accuracy is, of course, the item of 

prime importance. land in hand with this must be considered the nature 

of the firnction itself in various parts of the range of integration. 

If the function has a gradually increasing derivative, it is quite poss- 

ible that we nmy need a shorter interval to maintain accuracy. On the 

other hand, if the derivative decreases and remains sniall, work may be 

reduced by increasing the size fo the interval. We shall note briefly 

sinple ways of changing h to suit our needs in the next two paragraphs. 

1. Let us suppose for the monient that we have a problem imder way, and 

further, that y' decreased to such an extent that we wish to in- 

crease h. Thj5 is done by doubling and if necessary redoubling h. To 

accomplish this when using differences the following simple scheme nay 

be used. Taking only every other value of y and y' we may make a new 

set of differences which w.11 fit an interval of 2h. We are now ready 

to continue the solution with the new interval. This may be repeated 

to further enlarge the interval 

2. In the matter of shortening the interval it is often convenient to 

recalculate starting values. However, the various values may be secur- 

ed in this way. Taking ìevrton's interpolation formula in the symbolic 

form: 

low if we let and/h be the difference syrols for h and 2h respect. 

* 

ively, we have 

(t + A) J-c 

Thatis, 

(i 2- 
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From this quadratic, 

L\ - 

Continuing, we may comptrte by the binonial theoreri 

+.LA ---- -) 

- 

J\4 c 

These latter formulas may be used for halving h. It is to be expect- 

ed when a chenge is made in h that we very probably will need several 

rechecicings before our computation is running smooth again. 

!hen the method of ordinates is used, greater accuracy is achieved 

by shifting from the three to the five ordinate formulas. 7hen h must 

still be shortened in spite of this change, it is usually more conveni- 

ent to computo new starting values by series or succèssive approxima- 

tions. 



NTJIRICAL INTEGRATION OF THE THIRD ORDER EQUATION IN 1HI T1 

FIRST D SECOND DERIVATIVES ARE ABSENT 

The third order equation of the form, 

LU(X,L) 

requires considerable work in its niierica1 integration unless special 

methods are employed which provide for the omission of the calculation 

of the first and second derivatives. Another drawback to the usual 

methods of integration is the likelihood of magnifying errors through 

additional computation. An advantage in favor of the solution herein 

discussed is the rapidity with which it converges to the required de- 

gree of accuracy, and this necessitates a iuinim±m of recalculation. 

The principle involved in this type of approximation is rather sim- 

pie. It consists in the main of setting up a polynomial which is 

equal at regular intervals to the equation. The true solution of the 

equation is secured by integrating three times and hence the polynomial 

is integrated three times. The accuracy of the approximation is, 

of course, dependent on a ni.miber of factors, more important of which 

are the number of points of equality and the distance between them. 

1. As a basis we shall use 1ewton's interpolation formula, 

;:k) tL k sL:\u0 -- LJÇ ± ¿Lk -- -- --. 
z' o 

For convenience this must be put in the form for backward differences 

and integrated three times. If we define a set of functions Ajs), 

irhere i = O, 1, 2, etc., by the equations, 

A (s ( fs Jsj5 .(s) 
we shall reduce the work of integration to a minimum. 

In this notation, 

s = (x-x)/h, 

h x -x n '-% 
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dx hds 

The general expression for the approximating integral is 

g) z 

The following table gives a few of the values of 

s A(s) A1(s) Ais) A3(s) As(s) Ar(s) 

+1 +1 -1 7 -17 205 -731 

o o o o o o 

-1 -1 -1 3 -5 47 -139 

-2 -8 -16 16 -32 304 -896 

-3 -27 -8]. -81 -81 729 -2187 

-4 -64 -256 -768 -512 1280 -4096 

-5 -125 -625 

-____________________________________________________ 
-3125 -3125 -3125 -6875 

cormionde- 
nominator 6 24 240 720 10080 40320 

Let us now turn our attention to the difforentia]. equation: 

--- 

Integrating the first time, 

Setting x x,. gives C = y 

0ur equation now becones 

- I 
¿rXL J 'Q 

Integrating again and solving for C we find 
. 

: + 
()c) 

In similar manner we arrive at the general integral equation, 

(x-) F -(-) 
If we now replace the triple integral by its approximate va1ue from (8); 

I 
(x-) + A ( 

Let us set x = 
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and our equation becomes 

(_- + h' 

For k -1, 0, 1, 2, 3, 4, and 5, vie get a ninber of useful formulas: 

4 (q) 
L. 4' 

(IO) 
;j" 

(/1) A - ± il i: k' L ' () i 

f1__ _j\ ('i) L 

('3) : - 3k # « 4 (3) 
' . 2 

_4L ' 4 !V 
cr 

(, I - - I 

t .' A C- c ' ' 
'1k' 2.-. 

These equations ay be combined in various ways to eliminate y' and 

y?' Let us choose these so as to rid the series on the right of design- 

ated differenoed. Ij this case we select third order differences to 

vanish. 

If we select (9) 3(11) - (12) we find 

(1h) t_f_ 1-2 +L\j -4-/ 4 ;;L 
Again choosing -3(11) + 3(12) -(13) gives us 

Q1) 1-' - 1'-2 ±t-t +- 1_L_ L\4-21-0 

These two equations give us a formula for integrating ahead, (16), and 

a recalculation formula (17). Others may be found such as (9) + 2(12) 



-(13), both of which give rise to prediction formulas. The first is 

imdesirable because its large coefficients will introduce larGe errors. 

The latter is probably more accurate than (16) bu as we have no suit- 

able recalculation formulas to pair with it at present we shall pass it 

by. 

Returning to (16) and (17), let us plx'c them in ordinate form. Thus 

we write 

q - - u 1- F 1- + - L_ .'eS r' i 

(I?) - 

- 1'-'- 
I 

* t - ''-' 
The reirtarkable feature of these two formulas is, of course, their 

almost identical form. Then terms on the right of the parenthesis are 

neglected as they are in practice, they do become identca1. 

Let us look again at equations (9) to (15) and see what they offer 

in the way of more accurate five ordinate formulas. If we group 2(9) 

+ 3(14) - 2(15) and -2(11) 2(13) - (14) we find 

(2-o) 2Afr 3A * L[lO 4 

.iu., 
) - 

(a-') 
= h--' - 1- *-L.-t --- L 2- 

4- 
- - 

in which fifth order differences are lacking. As before recasting these 

in ordinate form we derive 

_3 I 
-t- -d-- -t- _ ()_ + S(r, L, -- t * (.2Z) i'- - - 1_* 1'-. L 

- 2 S& 4 ±--- 4 'Y r (o-f-o 
.2 3) 

z L1 - A - - ' 
+ _ì;, A' - 

These two provi a rathcr accurate means of numerical integration. 

As in the crse of (5) and (6) the recalculation formula (23) is in 

generni more accurate then (22). Dispensing with any proof of this 
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point at present, this fact is borne out roughly by the relativo sizes 

of the coefficients in the first neglected terms. As may be noted later 

the largest error in the applIcation of (22) and (23) is in the necess- 

ity of terminating our figures at a practical ntnìer of decin.l places. 

2. Let us turn our attention to the solution of an example by the var- 

ious formulas and see how well they adapt the.selves to practical work.. 

For the benefit of comparison let us integrate the same equation with 

both sets of formulas. If we choose an equation of such a nature that 

we may secure its ana1rtic solution we have a valuable check. For our 

equation thon let us select 

with the initial conditions: x,= O y, = 1; y,t = O; y' = 1. 

Choosing h .1 we proceed to calculate a few starting values by 

Llaclaurin's series. We record them in the table: 

X y u 

O. 1.0000000 1.0000000 

.1 1.0051668 1.0051668 

.2 1.0213361 1.0213361 

These are sufficient for (18) and 19). Predicting with (18) we find 

for x = .3, y3 1.0495213. This is entered inboth the y and u co1s 

as in the particular problem used y equals u. There is no checking 

formula to apply in this case as we recall that (18) and (19) are id- 

entical. Continuing in this way we find 

y C 

0. 1.0000000 

.1 1.0051668 

.2 1.0213361 
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X y C 

.3 1.3495213 

.4 1.0907578 

.5 1.1461157 

.6 1.2167134 

.7 1.3037323 

.3 1.4084326 

9 1.5321704 

1.0 1.6764160 1.6764164 

1.1 1.8427737 

1.2 2.0330031 

1.3 2.2490421 

1.4 2.4930317 

1.5 2.7673429 

1.6 3.0746059 

1.7 3.4177417 

1.8 3.7999964 

1.9 4.2249789 

2.0 4.39670l7 4.6967091 

11ere we have o3nitted the u column as needless repetition. The numbers 

in the C column represent the analytic solution for the values of x 

which they follow. 

To integrate (24) with (22) and (23' we shall need sx values of y. 

Computing them in the same way as before we find them to be 

X y 

0. 1.0000000 

.1 1.0051668 
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X y 

.2 1.0213361 

.3 1.0495213 

.4 1.0907577 

.5 1.1461156 

App1yin (22), we find equal to 1.2167132. Checking with (23) we 

find i should be 1.2167133. Besides recording this it is vieil to note 

the correction in y in a separate column. Rechecking leavIs this lat- 

ter value unchanged so vie proceed to y. rhe results cf the integration 

from zero to tw are given. The colurin headed y lists the correction 

in y in rechecking with (23) while C has the stirne function as before. 

X y Sy c 

0. 1.0000000 

.1 1.0051668 

.2 l.°21336]. 

.3 1.0907577 

.1 1.0907577 

.5 1.1461156 

1.2167133 .0000001 

.7 1.3O57323 o 

.8 1.4084327 0 

.9 1.5321707 -1 

1.0 1.6764165 0 1.3764164 

1.1 1.8427745 0 

1.2 2.0330042 0 

1.3 2.2490436 0 

1.1 2.4930336 0 
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_x y ¿y ________ C 

1.5 2.7673454 .0000001 

1.6 3.0746090 0 

1.7 3.4177456 0 

1.8 3.8000012 1 

1.9 4.2249849 1 

2.0 4.6967090 1 4.5967091 

In this compixa1ion Sy gives the correction of (23) on (22). In 

general tuis is rather snail and recheck is seldom necessary. The ac- 

curacy may be verified in colin C at two points as in the previous ex- 

ample. 



ACCURACY OF T PROCESS 

Let us consider the following function: 

2) )-1()_ ...... Çì) 
where u(x) and ? (x) are respectively the values of the right hand nom- 

ber of our differential ecation and the approximating polynoinìal. 

Then R(x_x0)(x_x)(x_x)...»x-x) gives us the remainder or error of 

in approximating u(x) at any point in the interval of integration. 

Now Q(x must vanish at nl points but we may choose R, an arbitrary 

constant, so that Q(x) will vanish at sorne one other point not coinci- 

ding with x, x , ...... X: 

Then Q(x) has at least n+2 zeros. Now if we asswie u(x) possesses 

continuous derivatives up to and including the (n+l)st, we may differ- 

entiate and find 

Q'Ç)L)- C() --)1' 
' () - P:c _ :V 

By Rolle's Theorem, Q(x) has at least n+l zeros and the ninnber of 

zeros decreases by unity at each differentiation. If we differentiate 

nl times, 
(ye) 

Q (QL) 

s P,(x) is a polynomial of decree n, it vanishes in this expression. 

Now 4'x) has as a minimtmi one zero at, let us say, . Therefore 

-r--) 
X - 0 - 

If we substitute in (25), we find 

L&) (- 
+ 

In general, this cives us, as z is a value of dependent on an arbi- 

trary R, 
+ 

. 

()I 
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Setting x-x= hs, we arrive at 
(r) 35) 

Let us designate 

E - 

arLd we may write 
I i 

(a') W X)r (-i(+2) ..... 
Vie must recall that E. is the error in one of the formulas (9) to 

(15). Formulas (18), (19), (22), and (23) are various combinations of 

these. The error of any of these latter formulas may be secured by in- 

tegrating (26) over the correct intervals. Final results are given by 

(18) and (23) so we shall examine them in some detail. The genéral ex- 

pression for the error of (18) is given by 

E 

where k i.ves the sien of the absolute values of each integral over sep- 

arate intervals of integration. If vie choose Mand lÇrospectively to 
('I) denote the absolute maxim values of u (x) and the triple integral, we 

see 

Ç.zi) E k 

Again choosing n = 5 and allowing M and N to be analogous items, we 

have the corresponding error of (23) to be 

(2g) E = 

?t2o 
It is evident that these are only errors over particular in inter- 

vals. As the error of either (is) or (23) is carried over into the 

coefficients of the formulas we see that it grows from interval to in- 

terval. If we consider only the maximi value of the error over one 

interval vie may conveniently represent its growth by the series, 
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for (18) 

1, 4, 10, 20, 35, 56, 84, 120, . 

where the terms are the respective coefficients of E throughout the ran 

range of integration. This is a recurring series of the third order 

whose generating ftmction is ( n+ 6n+ lin + 6)/6. Denoting the range 

of integration by r, we have 

r = nh, 

n = r/. 

The generating function is now by substitution 

( r+ 6rh + 11rh + 6h )/ 6h 

For an arbitrarily srn11 h this may be made to approach 

r3/6h 

And the error for air particular range, i, is 

r E 
'[e may now write the untrue equation 

E - __ 
! 

In final form this beconies 

E 
( 

q) (,okB 

where h, r, and M3are dependent on the particular problem. 

In a similar manner the error growth of (23) over a succession of 

intervals may be sho''m to be represented òy the series, 

1, 3, 7, 13, 22, 34, 50, 7C, 95, 125, 161, 203,........ 

This responds rather nicely to treatment if we break it up into tio 

series 

1,7,22,50,95, 161,............ 

3, 13, 34, 70, 125, 203, ......... 
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whose generating functions are ( 4i? + l5n+ 17n + 6 )/6 and ( 4n° + 2ln 

+35n + 18 )/6 restectively. As before n equ1s nh, and we see th 

either of these functions for an arbitrarily small h may be made to ap- 

proach 

Finally, we have from this expression and (28) 

NA-L9 
k" 

where the fraction in parenthesis gives the value of This on re- 

duction and substitution of an approximate value for the large fraction 

becomes 

- 
3t A/ 

(3ci) = 
Jt h 

It should be noted here that neither (29) or (30) give the exact 

error. They have been built upon the assumption of cunulative error 

on either the positive or negative side. '.e are interested primarily 

in the fact that the expression for the error involves h to a power. 

This fact guarantees preassigned accuracy for a suitable small h. In 

general it will be noted that the error introduced by dropping decimal 

places in the simpler equations may account for larger errors than 

those introduced by the approximating process. 
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