A NEW METHOD OF NUMERICAL INTEGRATION OF

DIFFERENTIAL EQUATIONS OF THE THIRD ORDER.

Submitted to the

OREGON STATE AGRICULTURAL COLLEGE

In partial fulfillment of
the requirements for the
Degree of
MASTER OF SCIENCE
BY
RALPH CORNELIUS CONRAD

MAY 1, 1933




APPROVED:

Redacted for privacy

g . <o o

Professor of Mathemgtics

In Charge of Ma jor

Redacted for privacy

- A ~

Chairman of Committee on Graduate Study.



I.

II.

III.

Ve

VI.

VII.

TABLE OF CONTENTS
Introduction

Method of Differences
l. The First Order Equation
2¢ The Second Order Equation

3« Remarks on the Method of Differences

Methods of Ordinates
ls The First Order Equation
2¢ The Second Order Equation

3« Special Solution of = u(x,y)

Methods of Starting
le Series
2 Extension of Method of Differences

3+ Approximating Formulas

Consideration of the Interval
le Choice of Imterval

2¢ Change of Interval

Integration of Third Order Equation:
l. Development of Formulas
2+ Application of Exemples

3¢ ‘Accuracy of the Process

Bibliography

o u(xSY)

12

12

12

14

- 16

16

16

18

22

26




INTRODUCT ION

The subject of numerical integration is one of considerable inter=
est today in the fields of physics, astronomy, and ballistics. Al-
though the foundation of such work is due to Euler, it is only rather
recently that its development has gone forward to any great extent.

In 1890 Picard established the method of successive approximations on
sound bases. Among others who have contributed, one might mention Moul-
ton whose work is largely in connection with celestial mechanics.
Antedating the work of Moulton by a few years is the method of solu-
tion devised by J. Ce Adams. In 1894, Runge gave his method of sol-
ution which was extended in 1961 by Kubta. Among recent publications
are those of W. E. Milne, who has devised a method of solution applice
able to both first and second order equations. In his latest study he
has given a solution for a special type of second order equatione
Nystrom has given a very excellent review of some special forms of nume
erical integration'and supplemented it with his own work. Through the
work of these and many others, the subject of numerical integration is
emerging as a specialized field of mathematics of such a practical na=
ture as to demand constantly inereasing attention.

The next few pages give a brief resume of a few of the methods men=
tioned above and their application to some simple examples. The last
pages of this paper are given to a discussion of a new method of inte-
gration for a special type of third ordér equation. It has been worked
out in more detail than previously discussed methods as it represents
the initial attack on this type of equation. It is hoped that it will

contribute its bit to the common cause--Numerical Integration.




THE METHOD OF DIFFERENCES
This method is dependent on the summing of a rapidly converging
series. It has the advantage that it will approximate to any desired de
gree of accuracy and is the easiest to perform when all the work is

done by hand. It makes use of Newton's interpolation formule,

B(x)=u, +SAU, + fiizL,QA"uo

+ 56-1X3-2) Ay, + ss)s=2X3-3) A%y, ...
3! At

integrated over an interval and put in usable form for backward dif-

ferences. Thus it becomes

) /QE @ de = l)[u, - FAu -8, - 58— ATy~ 3 A ]
wher;hh is the interval over which the integration is performed. This
is known as Gregory's Formulae

l. Let us look more in detail to its application to a first order
equation. To begin we shall assume we have four or five values of y
and y'e« This will give us a set of differences complete to the third

or fourth. To facilitate rapid and easy calculation we shall arraﬁge

the work in colums in the following scheme.

Besides the table of differences we may wish to record other items of
the work depending on the particular problem at hand. These may be
placed in the colum at the right hand side.

To continue with the computation, we first find a trial value of
y's To do this we shall assume for our next row of work that our high-
est order difference is equal to the previous highest order difference
immediately above. e shall now write in the trial values for y' and

its differences making use of the equation,




L ‘1' © ATy 0 BT

Our next step is to find a trial value of y by applying Gregory's
Formule (1) to these values. The value of y may now be found by using
(2) where the primes are dropped. We should bear in mind at this point
that all these values are dependent on the assumption that our highest
order differences are constant. In gemeral this is not absolutely true,
so we shall correct in the following memmer. Using our new found value
of y, let us solve the equation itself for y'. We may now if necessary
correct our y' differences by applying (2) in the slightly modified

form,

et \

(2a) AT Ay - DTy
At this point we shall resort to Gregory's Formula agein and continue
until our values check.
A few moments inspection of an example will make the work clear. As
our equation let us take
< P
Ax 9

with the initial conditions that y= 3.75 when x = -10. For the sake

S R s s
Z

of simplieity we shall omit the work of starting and begin with the

following row of work.
zl‘ Auac Su Agtf & q' ou’ o Mt A‘L' f_ , "(% ")
B.1149¢6 (Jﬂzl

U 0 =
Let us choose h equal to .4 and our next value of x will be -6.8. We

~72 ~-232, ~.246ob ~2.3042| -2 . SS74%

T T |
-£9¢ -38 ey , -3

shall set y' equal to -3 and using (2) we arrive at the following val=-

ues;
&
) e -
% y Ay A"».; A"-' L.\"..l 4 A\1|' A A’ull A".‘.‘ y (!i'* ‘)
1
-Tz | 3.1140¢ —77a1’~131 -t |~ 6 | _ 324606 -&9¢ ~3% | =u -3 |-2.31142|~2 55148

-L3 3o 528 -997.

~. 282850 - LbSse -S2 A -3
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Using (1) we find Ay equal to .09970 and y equal to 3.01528. Solving
for x/y end ( y/2) + 1 we f£ind them to be -2.25518 and 2.50764 respect-
ively. Substituting in the equation we get a corrected y' equal to
-«25246. We shall correct our y! differences with (2a) and continue

wntil values check. Proceeding in this manner we secure the next few

lines of work: ¢
3 4 ' ‘ P 3 g . A —(_‘rl)
% o Ay A‘:;' A Y Ay % ] By Sy Ay Ay Y z
72| siwee| -g720 | -22 | /e ’ -C | -2doe |59y |-o7 | -0 |0 |-z.zim2| -z sss
B |

_t$| 301527 | -9969 |-248 |-1¢ | o }—,25“244 -b38 | -t | 2 | ¢ |-2.285/F| -2.60763

a4 | 2.91293 |-10234 |-265 '/7‘ I |-2593C -692 (-5u |- |-z |-2.19710 | “2.4SEH6

_é.O 2,307'(0 -/ 0523 —2?7 24 ‘ ’7 -26437 -‘75/ (ol 7 7 —9._/367‘ '_Z‘Lf°37§’

-56! 2.69933 |-10831 | -3 |-25 l -1 ¢ARTSOT -F2 |-ty |-g | -1 |2.o7Hs] |-2.34966
=S4 | 258752 LIS -3 (g, | -g AP P05 |-g5 /e | -§ |-2.009e%|-2. 29376
‘, | : '
2 4177 < L : l |
43‘ 2 4T ?0 HISCZ 381/ —37 '7 —2,9‘7‘13 -100f i -G¢ 1 7 =p q‘/,z’_ -2.23595

= 2.35205 |-11985 |- S \ |
4.4 ‘/%7 Hz | -5 l—,30$'3L |~101F 118 |25 | =y 1. §F071 |2, 1T6 03

4o | 2. 22795 ‘—/211'60 475 | _s2 | -10
DI |2z |43 |28 | -3 -1 79578| -2 11372

by ]

2. The method of differences will apply equally well to equations of

the second orders The computation is, of course, somewhat more extend-
ed. In working out this type of problem the solution is best arranged
in the same menner as the first order equation with the addition of col-
ums to accommodate y" and its differences. Presuming we have the sol-
ution started together with the necessary differences, we continue as be
fore except that y" differences are attacked first. After we get y" and
its differences, Gregory's Formula (1) gives a trial A y'. Formulas (2)
and (2a) give y' and the other necessary differences of y'. From this
point on the work is identical to that of the first order equation. Of

course each recheck must be carried completely through both rows of dif-



ferences.

3. There are one or two points that should be noted in addition to the
ones of the two previous paragraphs. In the actual work the y differ-
ences play little part except as a check. Any large fluctuation in the
fourth order differences is usually indicative of an error. That is,
they should vary fairly regularly. The seme may be said for the y'
differences. Another caution to observe is the rapid increase in y
and y'.« When the funoﬁion curve becomes rather steep, accuracy falls
off. The only remedy for this is to shorten the interval. Of course

the whole process fails at a point where a vertical tangent exists.



METHOD OF . ORDINATES
When a celeulating machine is available the method of ordinates
is o more elegant type of solution then the relatively clumsy method
of differences. Two forms®are exhibited in the next three para-
graphs. Types of equations which may be integrated by this scheme

are

(a) ‘}I‘;: = LLL?L‘UP)

b) é‘%q,p% +@~\ -0,

@) 1{_ > wlx, ),

where P and Q are constants or functions of x. The solution of (b) is
merely an extension of the method used for (a). Of course the last
mentioned type is a particular form of (b) but to eliminate needless
work e special method is emplo&ed. Both types of solution are char-
acterized by neatness in execution.
1. Let us consider again Newton's interpolation formula,

TRl ., + DA, 560y stss P i, O

If this is integrated over 1nterva1s of 2h and 4h, put in the form of

backward differences, end simplified, we secure the two formulas,

g
I'

J ACHRUIN "Lgu +uy +uz} - “L‘TZAO% + higher differences,

j P.()dx g < :LLL'} + 1&1’}\7{_&% + higher differences.

Reduclng these to ordinate form and neglecting fourth and higher
order differences we find

@ 4o = e B 2g st ]

4) Yoo 2 Yoa ¥ J%-g ?L + Ax{nﬂ " WL'*}
The first of these is for prediction while the second is for check-
ing.

Suppose, for example, we have the egumation, %§j="1
*x See Bibliography II(L) and II(Z2).




with the initial condition that y equals one when x equals zero. Fur-
ther, suppose we have the first four values of y and y' which we might
get by one of several methods discussed later. If we choose h equal

el we get the following values:

X o < /

Y
0 / 0/000 -00000
7 /| 0080 . HoasT
52, /. 0202 -2 o4-0
i /. 04Go 313§

Applying (3) we find a trial value of the next y to be 1.0830, with this
value of y the equation is satisfied for y' equal to .4332. Checking
with (4) we correct y to 1.0833. Substituted in the equation this
gives y' equal to .4333. As further computation leaves these values un
changed we take them as correct. In similar manner we continue end ar-

rive at the following results:

e (}{ & Aq
7 | /
4 L 0g33 s i “333
4 ! s¢ it
¥ 1 332 ;
1253
¢ B 4 0 ’ 7
\ §9 4+
e 2777 £ } 7
g 1.4 79¢ / 1. 3498
.o ). HTT o /. 6487

The colum adjoining y represents the chonge in y due to recalcul=-
ation. It provides a constant check on the accuracy of solution. The

error due to the neglected fourth order differences in the use of (4)
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is approximately 1/%9 of € + Consequently if & inoreases to the point
where é/'29 will effect the walue of y we should choose a smaller inter-
val.

2. The type of solution of the preceding paragraph may be extended to
equations of the second order. The only change necessary is the add-
jtional calculation of the second derivative. Assuming we have four val
ues of y, y', and y", the first approximation to y'! is given by

(32) xa;_ A 11.' + ‘%&m,\'; - »‘&: + 7_11,"1
This is of course formula (3) with a change of primes. Using this value
of y', we approximate y with (3)e¢ The equation is then solved for y".

We change (4) %o

G e = 3LE ey e yl)
end check y'. Rechecking is continued until no correctiomns are necess=
ary. The following illustrates a solution of this kind. Here the first
four values were determined by successive approximations. The initial

evaluation of coth x %trwas by the usual method of differentiating num-

erator and denominator of ;%/%anh x separately. Our example is
4 i
Ay + cotlh « % _\_sz\n A —-7_3-5’003'4 -~ -\’.0’151»‘ =

dyr

with the conditions that x ,y ,y'! are respectively equal to zero, onme,

and zeroe.
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x -y ¥y y" Uvss nee ) GRNHE (cosecons)y
o2 «992 085 -.423
.0 1.000 .000 =-.425 «850 =425 «850
2 <992 -.085 -.423 .861 -.431 «854
oL «966 ~+169 -.418 «893 -o445 . 3863
«6 «924 -+252 =-+403 944 -. 469 «872
.8 « 866 =-+330 -+ 378 1.010 -+497 «875
1.0 «792 -.402 -.329 1.082 -.528 «857
1.2 + 706 =-.459 -+238 1.117 -.551 .789
l.4 .610 =-.498 -.161 1.185 -.562 « 723
1.6 ‘ «508 =519 -.022 1.158 -.583 «588
1.8 .298 -.507 «133 1.010 =-.535 «402
2.0 « 307 -.466 «283 «653 -.483 «200
242 214 -.393 416 - =.052 -.405 -.011
2.4 «150 -+303 «505 ~1.316 -.308 -.197
2.6 .094 -.198 «526 =3465 =-.200 -.326
2.8 o07i -.090 «588 -6.996 -.091 -.497

3.0 .060 .041 $ 713 -12.664 047 -+760

Se

Another equatiom of rather frequent occurence is (c); that is, the
second order equation in which the first derivative is missing. Spec-
ial methods have been utilized in its solution ‘o avoid needless comput-
ation and inherent errors. The formulas used are similer to (33 and
(4) in some respects but have been developed from combinations of integ
rals of Newbton's interpolation formula over various intervals, grouped

to eliminate desirable differences. In addition to this the terms core
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responding to y' have been eliminated. The following formulas are used:

5) Yner * ‘-a.. + U‘.\_z = Ywes * L{{Eu, 2l 4S5 u__“_ai'
(é) (‘l-n :1?,‘_‘ +2,l1“_" -‘—\L‘;gu\flo u'\-l + Lkh—x%.

The first of these is for integrating ahead and the second for checking.
VWhere these fail to give desired accuracy a pair involving five ordin-

ates may be used. They are

I"‘)\vl v ‘1“ 3 l«"'* ¥ L‘h-s +4% gg’( bL“ - 8“«"_' + 1222 LL“_’_—?LL.,\_!"’ L-'u'v\-ql

)

L

ﬂ"‘ 3 “k“_‘ ; L‘“_a K L‘“w Y nAD g'—’ W, + 232 u“""\ GaR S LA’*\-1-+131““-5
4 b L,L,VA_%

The solution following is obtained by the three-ordinate formulas.

Here the first six values were computed by a series. Our equation is

t—li + %ec\’\LfX—‘j—.OTl + 216 {QY\hL’X-}L‘ = O,
o

with the initial conditions that x , y , and y' are respectively eq-

uvel to zero, one, and zero.

x J Y
.0 1.000 «072
o2 1.001 ; «062
o4 1.005 «035
.6 1.010 .007
+8 1.016 ~-+013
1.0 1.021 -.023
1.2 1.025 -.024
l.4 1.028 -.022
1.6 1.631 -.017
1.8 1.032 -.013
2.0 1.033 -.009




-.OO?
-+005
-+.003
-.003
-.002
-.001
-.001

+.000




METHODS OF STARTING
Practically every method of integrafing numerically is dependent up-
on formulas which call for a few starting values of the variables. Con-
sequently special devises must be pursued to start coméutation.

1. One practice commonly used is that of series. The first necessary

values of y are computed by a Taylor's Series:
& + ¥ 3

PR e SO o FC0g R
The series usually converges very rapidly after two or three terms and
gives a fairly good approximation for starting values. This method
will fail when the function is infinite and in certain problems be=
comes rather difficult to apply. In cases where x equals zero, the
series becomes even simpler, reducing to a Maclaurin Series. This is
probably the most satisfactory method of starting when the egquation
is not too involved.

2. Another mode of starting which can be used quite readily in prob-
lems solved by differences is merely an extension of this method to
starting. That is, instead of assuming that fourth order differences
are negligible we start by letting first ordér differences be dropped.
From this we get the first estimated y and we then calculate the first
y' approximation. This gives our first difference for the second row of
worke This is recorded and y is rechecked with Gregory's Formula (1)
applied to y' eand Ay'. Several recalcﬁlations are usually necessary
especially at the start but there is the advantage of simplicity in
principle to recommend this way of starting. At each step we add, of
course, one more difference so that after four or five rows of work we
have all the'nécessary orders to continue and the process has tighten-
ed down to much less labor.

Let us look in some detail to an example of this method of start-

A
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ing. A simple problem to answer our purpose is
(1) ﬁ%":%ﬂ

with initial conditions that y equals two when x equals zero. If we
taeke h equal to .1 and carry the work to four decimal places we may
start the table:

= Y Ay Ny ooy Ry oyt At e Rt

0.0 2.0000 0.0000

0.1 2.0000 © 0.2000 .20000

The first value of y' is derived directly from the equation (7). if we
blumtly assumb that y' differences are negligible, y is also equal to
two and is recorded above. ~‘his value of y substituted in (7) gives y'
equal to .2000 which in turn provids our first Ay' also equal to .2000.

As we now have a y' and a first difference we may apply Gregory's
Formula (1) to secure Ay and check y . This gives Ay equal to .0100.
It is obvious that this Ay necessitates a change in y which calls for
& correction of y' and Ay'. Making these nécessary changes and re=-

checking until values are unchanged, we write out the table:

)

x F_ Ay Ay - Ay n¥ s G~ DN APt 2

«0  '2.0000 .0000
¢l 2.0000 .+0100 «20000. +2000
(2.0100)(.0100 (.2010)(.2010)

The number in porentheses is the corrected value which replaces the num
ber above. Proceeding in this manner we get the following table where

only corrected values appear:
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7.

x y Ay A&y Ay AY y' Ayt Ay Ayt Ay

——

.0 2.0000 «0000

1 2.0100 .0100 «2010 .2010

«2 240404 .0304 .0204 .4081 .2071 .0061

«3 2.0921 .0517 .0213 .0009 «6276 .2195 .0124 .0063

4 241665 0744 ,0227 .0014 .0005.8666 +2395 .0200 +0076 ,O013

The computation has now reached the stage where it rums along rather
smoothlye. Difrerences of a higher order than the fourth are in general
of little value to increase accuracy.

A slight modification of this method which works out very well with
certain types of equetions is that of working backward as well as for-
werd from our initial values. The work is practically the same except
we have a more complete set of differences for the fore part of the
problem.

3. Another mamner of commencing numerical integration which is often
satisfactory is that of successive approximetions. It gives us four
values with which to continue. Here we assume

Y= ¥, = hy!

i R
end Y, =Y + 2hy'
From the differential equation we find values (trial) of y', y' , snd y'
using the y values of these three formulas. The next step is the check

ing of ¥,, ¥ , end y with

St ity by,
R e

e A




We again turn to the differential equation rechecking for y! , y' , and

yl' , end continuwe until both y and y' values remain unchanged.



CHOICE OF INTERVAL
The choice of interval in mumerical integration must be guided by
two factors. The desired degree of accuracy is, of course, the item of
prime importance. Fand in hand with this must be considered the nature
of the function itself in various parts of the range of integration.

If the function has a gradually increasing derivative, it is quite poss=-
ible that we may neéed a shorter interval to maintain éccuracy. On the
other hand, if the derivative decreases and remeins small, work may be
reduced by increasing the size fo the interval. We shall note briefly
simple ways of changing h to suit our needs in the next two paragraphs.

1. Let us suppose for the moment that we have a problem under way, and
further, that y' has decreased to such an extent that we wish to in-
crease he This is done by doubling and if necessary redoubling h. To
accomplish this when using differences the following simple scheme may
be used. Taking only every other value of y and y' we mey make a new
set of differences ﬁhich will fit an interval of 2h. We are now ready
to continue the solution with the new interval. This may be repeated
to further enlarge the interwval,

2. In the matter of shortening the interwval it is often convenient to
recalculate starting values. However, the various values may be secur-
ed in this way. Teking Newton's interpolation formula in the symbolic
form: !

—Pn(") - +/‘\> W, where t = (x-x)
h
Now if we let/\ and/\ be the difference symbols for h and 2h respect~
ively, we have

% ¢
(1 + &) R

That is,

3 AT e




17
From this quadratic,

Ak ) NG o

Continuing, we may compute by the binomial theorem

3% 2

f‘) = .ll_, L2\ = %—A T l—lL& T i ‘)
3

N A TR S iat

& LA -t L

R LI T S

@ %

= oL ) (. M
B foat Ao

These latter formulas may be used for halving h. It is to be expect-
ed when a change is made in h that we very probably will need several
recheckings before our computation is running smooth again.

When the method of ordinates is used, greater accuracy is achleved
by shifting from the three to the five ordinate formulas. When h must
still be shortened in spite of this change, it is usually more conveni=-

ent to compute new starting values by series or succéssive approxime=-

tions.




NUMERICAL INTEGRATION OF THE THIRD ORDER EQUATION IN WHICH THE
FIRST AND SECOND DERIVATIVES ARE ABSENT

The third order equation of the form,

é;ﬁ% = uu(Jﬁ,‘&)

requires considerable work in its numerical integration unless special
methods are employed which provide for the omission of the calculation
of the first and second derivatives. Another drawback to the usual
methods of integration is the likelihood of magnifying errors through
additional computation. An advantage in favor of the solution herein
discussed is the rapidity with which it converges to the required de-
gree of accuracy, and this necessitates a minimim of recalculation.

The principle involved in this type of approximation is rather sim-
ple. It consists in the main of setting up a polynomial which is
equal at regular intervals to the equation. The true solution of the
equation is secured by integrating three times and hence the polynomial
is }ntegrgted three times. The accuracy of the approximation is,
of course, dependent on a number of factors, more important of which
are the number of points of equality and the distance between them.

1. As a basis we shall use Newton's interpolation formule,
Peo -« i, + SBu, + S(S_Z—") O, + LoD oy 4o
For convenience this must be put ih the form for béckward differences
end integrated three times. Ir we define a set of functions Aé(s),
where i = 0, 1, 2, etc., by the equations,
A () = (vt)i/"d_sfsdsjj 5(_5’113_‘*1%—;;1?—?‘—'-')&%

we shall reduce the work of integration to a minimum.
In this notation,

8 = (x-xn)/h,

h = X, =X,
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dx = hds.
The general expression for the approximating integral is
@)'jM/M[WM LZALmAu-

The following table gives a few of the velues of A, (8):

s A(s) A (s) Afs) A (s) A (s) A (s)
+1 +1 -1 7 -17 205 -731

0 0 0 0 0 0 0
-1 A | -1 3 -5 47 -139
-2 -8 -16 16 -32 304 -896
-3 -27 -81 -81 -81 729 -2187
-4 -64 =256 - =768 -512 1280 -4096
-5 - 125 -625 -3125 -3125 -3125 -6875

common de-

nominator . 6 24 240 720 10080 40320

Let us now turn our attention to the differential equation:

é_?_ﬁ_ - Mo gy
fe 'y (%

Integrating the first time,

%L :I‘iu(’xlup&qc +Q‘.

Setting x = x_ gives C = y" .

Our equation now becomes a3

e wie y)de + Y.
A L C ’7) ‘ L(\

Integrating again and solving for C, we find

g‘l (,J La (2= %) f}“OL')l 51;&—(&,?)&1-

In similar manner we arrive at the general integral equation,

l 2 * (% LS
7, ,,}n+ l?"(x-x,\) + ju ('x-xu) e be.’dﬁ(/l&t}(»&h
/ /x
If we now replace the triple integral hy its approxim:ate vzilue from (8);

)

\3:. u, * u,;,' (x=x,) ﬂ—‘:%vt(w__x“) +\'\ Z_ A (s\ ALL“.

Let us set Avm g e
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and our equation becomes
t&w_\‘ = '1“ + L{_ (e k) a:('x_“_K -x,\)"+ h’ Z_ A (_‘ﬁ) AL\L"

For ¥k = -1, 0, 1, 2, 3, 4, and 5, we get a number of useful formulas:
' LR n o e R ¢
<) y Lo “a» +L\1,\ +J):h b h LALQ-H) A u,

(70) A/s“: l,ah)
) 'ah-(‘ "(jn-l’“i +—L\ o A (")A'L)

(2) 7.4,1 ? Ldb = a."\ha‘n + l\'\tut“ rh Z_AL(~2.)AL v,
(/\3) V) s ‘aw - 31\(1‘“ + q;: k"‘ ‘1: + h Z_A,_ ("3) JAN “‘»\,)

_ahy, +%f1:+k‘ZA;bﬂAum

4 ’11_4 = L&"‘
By - S D SR ALLIEG,

These equations may be combined in various ways to eliminste y' and
y". Let us choose these so as to rid the series on the right of design-
ated differences. In This case we select third order differences to
vanish.
If we select (9) + 3(11) - (12) we find
T R R O +V\[ LA 4 LN - \Q,OA ]“‘“'
Again choosing -3(11) + 3(12) -(13) gives us

an Law = 3&6‘“' - BL,AM_L-Q- b&"hs +\—\3{ + D A_ 4 \ A 4——“—0 q—L—}nguA{'\k‘

These two equations give us a formula for integrating ahead, (16), and

a recalculation formule (17). Others may be found such as (9) + 2(12)
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-(13), both of which give rise to prediction formulas. The first is
undesirable because its large coefficients will introduce large errors.
The latter is probably more accurate than (16) but as we have no suite
able recalculation formulas to pair with it‘at present we shall pass it
by.

Returning to (16) and (17), let us put them in ordinate form. Thus
we write

\-\’5

3 4 ) .
(/%) -a,.\,,_, = BAaM = 31"’”" + bd""' +£\£ il&w-r 2 ol + i;_o- Au,“ 4‘\-3\-« cl-%unccs.

240

3 o alh aver Aiffavenese
v la“' & 3"&«-. - 341“_'_ + Haes +E\;_ (u—w_‘ fu-m_L}a-_L‘_ AN, + Nighe % i
The remarkeble feature of these two formulas is, of course, their
almost identical form. When terms on the right of the parenthesis are
neglected as they are in practice, they do become identicale
Let us look again at equations (9) to (15) and see what they offer
in the way of more accurate five ordinate formulas. If we group 2(9)

+ 3(14) - 2(15) and -2(11) + 2(13) - (14) we find

¥ s * B e
(%0) Zthonri = 3‘6» = 3"’&\«-9 i 7"1.\-; +h [|o+ 200 + B2 A+ 12 422

%63 bt - o
iy ihle S AN D ..
Gotw
27 B (g : *‘\'\3Y?—TL+A#S_ N +iN 4+
(#7) = ~ Lol Oy T o ;& > i70
TLIL £ SNe
+3ov+oA'""""“‘w,

in which fifth order differences are lacking. As before recasting these

in ordinate form we derive

3
(,QL) 2'7%_“ = ?:uaw -3 L«t“_q‘ o+ 751.3“_; -\"\.’_‘L‘_ {154,% + sb6 u, _, +7T18 Wtls -\—Sbu‘q

463 o
+1§M—...,;} + L_&*—;‘-’ SN k\%\»\e_-g &;Wq_tenc.e,s,

(23) ¥ 0 3
- i e w "
7-& j-'.-. 2. g 41,.\_* 1-‘!;0_. {u_, + S e A W o sbu“-s = """"%

+—\';—“-° A"u., + L\\gker &\(‘\qtev\e.e,s_
These two provi&% a rather accurate means of numerical integration.

As in the case of (5) and (6) the recalculation formula (23) is in

general more accurate then (22). Dispensing with any proof of this
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point at present, this fact is borne out roughly by the relative sizes
of the coefficients in the first neglected terms. As may be noted later
the largest error in the application of (22) and (23) is in the necess-
ity of terminating our figures at a practical number of decimal places.

2+ Let us turn our attention to the solution of an example by the var=-
ious formulas and see how well they adapt themselves to practical work..
For the benefit of comparison let us integrate the same equation with
both sets of formulas. If we choose an equation of such a nature that
we mey secure its analytic solution we have a valuable checke For our
equation then let us select

(24) i—;—ii = 1

with the initial conditioms: x,=0; y,=1; y!' = 0; y" = 1.

Choosing h = 1 we proceed to calculate a few starting values by

Maclaurint's seriese We record them in the table:

x y u
0. 1.0000000 1.0000000
ol 1.0051668 1.0051668
o2 | 1.0213361 1.0213361

These are sufficient for (18) and 19). Predicting with (18) we find
for x = .3, S 140495213, This is entered inboth the y end u colums
as in the perticular problem used y equals u. There is no checking
formula to apply in this case as we recall that (18) and (19) are id-

entical. Continuing in this way we find

x vy C
0. 1.0000000
o1 1.0051668

o2 1.0213361




3

4

5

o6

o7

«8

o9

1.0

1.1

1.2

1.3

l.4

1e5

1.6

1.7

1.8

149
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23

¥
1.0495213
1.0907578
1.1461157
1.2167134
1.3037323
1.4084326
1.5321704
1.6764160
1.8427737
2.0330051
2.2490421
2.4930317
2.7673429

340746059

- 34177417

3.7999964

4.2249789

4.,6967017

1.6764164

4.6967091

Here we have omitted the u colum as needless repetition.
in the C column represent the analytic solution for the values of x
which they follow.

To integrate (24) with (22) and (23’ we shall need six values of y.

Computing them in the same way as before we find them to be

X

bf

O.

.1

1.0000000

1.0051668

The numbers
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3

o1

o5

24

y
1.0213361

1.0495213
1.0907577

1.1461156

Applying (22), we find y, equal to 1.2167132. Checking with (23) we

find it should be 1.2167133.

the correction in y in a separate colum.

ter value unchanged so we proceed to y.

from zero te two are given.

in y in rechecking with (23) while C has the same function as before.

Besides recording this it is well to note

Rechecking leaves this lat-
The results af the integration

The colum headed.éy’lists the correction

x ¥ Sy c
0. 1.0060000
ol 1.0051668
2 1.0213361
3 10907577
4 1.0907577
.5 1.1461156
-6 1.2167133 «0000001
T 1.3037523 0
.8 1.,4084327° 0
9 1.5321707 -1
1.0 1.6764165 0 1.6764164
141 1.8427745 0
1;2 2.0330042 0
1.3 242490436 0
1.4 244930336 0
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X y Jy C

1.5 2.7673454 «0000001

1.6 30746090 0

1.7 344177456 0

1.8 348000012 1

1.9 402249849 1

240 4.6967090 1 4.6967091

In this computation Sy gives the correction of (23) on (22). Inm

general this is rather small and recheck is seldom necessary. The ac-

curacy may be verified in columm C at two points as in the previous ex-

amplee.



ACCURACY OF THE PROCESS

Let us consider the following fumction:
(25)+ Oy~ 1B A TR ey = [ a T T e o SR
where u(x) and P, (x) are respectively the values of the right hand mem-
ber of our differentiasl equation and the approximating polymomial.
Then R(x—xo)(x-x)(x-xl)....\x-xh) gives us the remainder or error of
P“(x) in approximating u(x) at any point in the interval of integration.
How Q(x¥ must venish at n+l points but we may choose R, an arbitrary
constant, so that Q(x) will venish at some one other point not coinci-
ding witﬁ X, s X, gevoeeeXe

Then Q(x) has at least n+2 zeros. Now if we assume u(x) possesses

continuvous derivatives up to and including the (n+l)st, we may differ-

entiate and find

Ql(x) - &) - Dr: ) - &%;(Rbk-x;ﬂx-)g'). Lol -()c—xh)]’
(;5 Gy LLTQK)~__ ¥i:(3\3 £ s%;IKEZ‘Qxa;x;&f\-)a()..., (gL-XA:gk,

By Rolle's Theorem, @(x) has at least n+l zeros and the number of
gzeros decreases by unity at each differentiation. If we differentiate

n+l times,

C3n+‘)gx) g Lir+4)qxd - (v\+'3[

As P(x) is a polynomial of degree n, it vanishes in this expression.

WA
Now Q (x) has as a minimum one zero at, let us say, z. Therefore

—F) AA}"VI) r oz
\ = =) xo L_,: Z < X
(n+) !

If we substitute in (25), we find
&Y 2 Bizye el ey ST R

(n+)!

o

In general, this gives us, as z is a value of =z dependent on an arbi-

trary R, St

pgeyoe R e ) W R Gk (X=X X X=%) - - - (X=%).
(VH-()',
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Setting x-x = hs, we arrive at

}-L(X)f PV\Q;Q = __(__?—l'-‘—“ﬂsL'o*\XS*'l) (30,

(vw—\)'
Let us designate

€= ul) - B o

and we may write

(vn- D) pit 7

26) € = UC)I"\ sl senig+2) =00 .(s+n)_

We must recall that e is the error in one of the formulas (9) %o
(15). Formulas (18), (19), (22), and (23) are various combinations of
theses The error of any of these latter formulas may be secur.ed by in=-
tegrating (26) over the correct intervals. Final results are given by
(18) and (23) so we shall examine them in some detail. The genéral ex=
pression i‘or the error of (18) is given by

fds[o\s e Q"Jh s(s+-)(5+1.151-3)<3-s
where k vives the sum of the absolute values of each integrel over sep~-
arate intervals of integration. If we choose M,and N, respectively to
denote the absolute maxmum values of ﬁ”(x) and the triple integral, we

e L e A
3‘4.

see
@0 3
Again choosing n = 5 and ellowing M and N to be analogous items, we

have the corresponding error of (23) to be

q
(29) E. = h MNs
T20
It is evident that these-are only errors over particular in inter=

vals. As the error of either (18) or (23) is carried over into the
coefficients of the formulas we see that it grows from interval to ine-
tervale If we consider only the maximmn value of the error over one

interval we may conveniently represent its growth by the series,
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for (18)
1, 4, 10, 20, 35, 56, 84, 120, scccccsccscecans

where the terms are the respective coefficients of E throﬁghout the ran
renge of integration. This is a recurring series of the third order
whose generating function is ( n°+ 6n”+ 1ln + 6)/6. Denoting the range
of integration by r, we have

r = nh,

n=r/,
The generating function is now by substitution

( £+ 6fh + 11rH + 6k )/ 63
For an arbitrarily small h this may be made to approach
rs/%hﬁ .

And the error for any particular range, i, is

3

r

éh?

We may now write the umtrue equation

ot o et
¥

13

E,.

In finel form this becomes

G E. = (:%;'% N, CL:
where h, r, and M are dependent on the particular problem.

In a similar mammer the error growth of (23) over a succession of
intervals may be showm to be represented by the seriess

1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203,eesccces

This responds rather nicely to treatment if we break it up into two
series

TR AR B0 B 18l s e ik

3’ 13’ 34, 70, 125, 203,0-..-0.0..
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whose generating functions are ( 4r° + 15n™+ 17n + 6 )/6 and ( 4n®+ 21n*
#35n + 18 )/% respectively. As before n equals r/h, end we see that
either of these functions for an arbitrarily small h may be made to ap=

proach

it
3h3

Finally, we have from this expression and (28)

S
- 2K g,l_'r_:tf.‘} d
En_s ETS_ FORESO N\b‘\)

where the fraction in parenthesis gives the value of N, This on re-
duction and substitution of an apéroximate value for the large fraction
becomes e

(30) £ 7 €}6 h™ M.

It should be noted here that neither (29) or (30) give the exact
error. They have been built upon the assumption of cumulative error
on either the positive or negative side. We are interested primarily
in the fact that the expression for the error involves h to a power.
This fact guarantees preassigned accuracy for a suitable small he In
general it will be noted that the error introduced by dropping decimal

places in the simpler equations may account for larger errors than

those introduced by the approximating process.
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