THE UNIVERSITY OF RHODE ISLAND

COLLEGE OF THE ENVIRONMENT AND LIFE SCIENCES

Effect of Oyster Farm on Property Value in Rhode Island

Pratheesh O Sudhakaran, Gavino Puggioni, and Hiro Uchida

Introduction

- Bivalve shellfish aquaculture
 - Growing steadily in US and all over the world
 - 20% of total seafood production in US
 - More than 1,000 farms in East Coast
 - 60% Clams, 39% Oysters, and 1% Mussels
 - RI- 61% increase in 10 years (CRMC 2012)
 - Increasing trend after year 2000.

Introduction

- Support for shellfish aquaculture
 - Majority public support
 - Its least environmental degradation
 - Helps in productivity in water
- Recently received opposition
 - Marine Sanctuary at Poppanesset Island, MA
 - Discussion in public meeting in RI

WE DO"

THINK BIG

Introduction

- Devaluing housing value
 Directly affecting public
- Important to study the effect of farm on housing value
- Outcome- better strategy for leasing aquaculture site

Site of Study

- Site of Study Rhode Island
 - Rapid increase in oyster farm after 2000
 - Increased from 2 to 52 farms
 - RI working towards Shellfish Management Plan

Theoretical Model

Hedonic Price Model

- Housing price-three main characteristics
 - Structural Characteristics (eg: bedrooms, lot size)
 - Neighboring Characteristics (eg: Nearness to grocery, school)
 - Environmental Characteristics (eg: Ocean view, air quality, water quality, water view)
- It can be represented as:

 $P_j = P(Q_j, N_j, E_j)$

WE DO"

THINK BIG

Model

Difference-in-difference model

- Change in environmental characteristics over time.
- To measure the change we need to consider two time period: before and after the change
- DOD is appropriate

$$Y_{it} = \alpha + \beta T_{i1}t + \rho T_{i1} + \gamma t + \varepsilon_{it}$$

THINK BIG

Empirical Model

- Imply DOD in Hedonic price model
- Distance from farm is the treatment variable
 - More the distant house is, less impact on value
 - Created different distance bands
- Time variable is year of construction

Empirical Model

 $\ln P_i = \alpha + \beta D_i + \gamma C + \delta D_i * C + \sum H_{ij}$

$$+\sum_{k} N_{ik} + \mathcal{E}_{i}$$
 Difference-in-Difference
term

D_i = Distance band which property is located

- C_i = Year of Construction of nearby Oyster farm
- H_{ij} = Housing Characteristics j of property i
- N_{ik} = Neighboring Characteristic k of property i

Data

- Housing data
 - Housing sale transaction from 2000 to 2012
 - Selected only houses within 2 .5 km from oyster farm
- Oyster farm data
 - Collected from CRMC
 - Location, year built of the oyster farm

THE

Result

Summary Statistics of variables considered for the study

119 83	Bands of distance from Property to oyster farm (km)					
Variables	<0.75	0.75-1	1-1.25	1.25-1.5	1.5-2.5	Total
Price (,000s)	370.8	357.9	499.8	396.0	404.5	403.9
Lotsize (Acres)	0.36	0.33	0.44	0.35	0.50	0.45
Living Area	1.57	1.59	1.81	1.77	1.84	1.78
Bedrooms	2.66	2.72	2.81	2.72	2.95	2.86
Full Bathrooms	1.64	1.71	1.89	1.73	1.90	1.84
Half Bathrooms	0.44	0.42	0.52	0.57	0.53	0.52
Air Conditioner (1= Yes)	0.23	0.26	0.41	0.47	0.34	0.35
Dist to coastline(km)	0.20	0.24	0.31	0.35	0.66	0.51
Water View (1= Yes)	0.03	0.00	0.00	0.03	0.05	0.03

THINK BIG WE DO"

Result

- Construction of farm statistically insignificant influencing housing price
- None of distance band showed- statistical influence on housing price.
- The DOD coefficients- no influence on house price.
- All Structural characteristics were influencing positively
- Luxury house price was also not affected by construction of oyster farm.

Result

- Repeated Sales Analysis
 - Only houses with more than one transactions
 - Capture time invariant unobserved property attributes
- Result consistent with unrestricted model

 No statistical significance

Policy Relevance

- Effect of intensification aqua farm on housing price
 - Differentiated between cities based on intensity of aquaculture Operations.

THINK BIG

- More than 2 farms- Aquaculture intensive city
- No statistical evidence -value of houses decreased after farm construction.

Conclusion

- Oyster farm in neighborhood- not a factor affecting housing price
- People- consider factor directly linked to their daily life
 - Eg: Crime rate, presence of school.
 - Farm in neighborhood- not directly linked
- Care for environmental amenities sustainable and less harmful
 - Oyster farming is sustainable and help improving water quality.

Questions or Comments???

Thank You

