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ABSTRACT

Theoretical breaking criteria for progressive surface gravity waves

are examined, and laboratory and field experiments concerned with breaking

waves are reviewed with respect to the testing of these breaking criteria.

The measurements of Komar and Simmons are presented here for the first

time. Only three theoretical breaking criteria have been proposed for

maximum steady waves in water of constant depth: (1) the kinematic breaking

criterion, in which the horizontal partical velocity at the crest just equals the

wave phase velocity, (2) the reversal of the vertical particle velocity near

the crest as the ratio of wave height to water depth, H/h, increases, and

(3) the reversal of the vertical pressure gradient beneath the crest as H/h

increases. Although most theoreticians have applied the kinematic breaking

criterion in conjunction with relatively simple wave theories (based on the

motion being inviscid, irrotational, incompressible, surface tension free, and

two dimensional), they do not always obtain identical results; for example,

theoretical estimates of the particle acceleration at the crest range from

zero to g, the gravitational acceleration. For shoaling waves, the kinematic

breaking criterion and the presence of a vertical surface are suggested as

breaking criteria. Unfortunately, these criteria were applied to the long wave

theory which is considered inadequate near the breaking position.

The re-examination of experiments on breaking waves shows that past

measurements are not sufficient for testing any of these breaking criteria. In

particular, the following improvements should be made: (1) standardize



definitions of wave and breaking parameters, (2) apply or design, if

necessary, more accurate techniques to measure water particle velocities

and accelerations, and (3) monitor the fluid motions from which the breakers

cannot be separated (e, g. backwash, solitons, reflected waves, edge waves

and rip currents). Studies specifically designed to obtain the necessary

measurements for testing the theoretical breaking criteria are needed.



BREAKING WAVES: A REVIEW OF
THEORY AND MEASUREMENTS

CHAPTER I

INTRODUCTION

During storms the phenomenon of wave breaking at the shore is

a spectacular event; large storm waves build to larger heights as they

approach shore until they crash over, producing a tremendous roar,

shaking the ground, and throwing up a great wall of white water which

rushes up the beach. Although the more usual, calmer wave condi-

tions which exist along the coast are not nearly so dramatic, these

smaller waves also steepen and finally break as they near the shore.

The importance of wave breaking along the coast is also

apparent during rough weather. The rapid erosion of valuable shore-

line and the destruction of structures along the beach are caused by

the large storm waves. Extreme changes may take place in only a

few hours time. Less obvious but just as important are the long term

changes in the coastline brought about by the calmer wave conditions.

In both cases, the breaking waves transfer their energy and momen-

tum to the nearshore zone. Currents are thus generated which may

cause sediment transport both in the on-off shore and along shore

directions.

Breaking waves along the coast are also of recreational



interest. Surfers are attacked by breakers which will give them an

exciting ride; these waves are steep and hollow, allowing the rider

just enough time to escape a folding section before it plunges over.

Breaking waves are not limited to the nearshore zone. Pri-

marily during storms, waves may also break far at sea. During

these occurrences, breaking is important because it limits the

growth of wind generated waves. Not only does breaking occur when

the wind bodily carries off the crests of waves, but natural breaking

also is present when steep local surface slopes cause water particles

to become unstable and break free of the surface. These steep local

slopes are due either to the rapid growth of individual waves or to

the addition of the many and varied passing waves.

The purpose of this study is to evaluate the present state of

knowledge of. breaking criteria for progressive surface gravity waves.

First, theoretical breaking criteria for waves in deep and in shallow

water will be reviewed. Next, both laboratory and ocean observa-

tions of shallow water breakers will be reviewed; the laboratory data

of breaking waves obtained by P. D. Komar and V. P. Simmons at

the Scripps Institute of Oceanography wave facility will be presented

here for the first time.
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CHAPTER II

SURFACE WATER WAVE THEORIES

In the chapters devoted to theoretical breaking criteria it is

necessary to refer to the equations of motion for each of the wave

theories being investigated. These equations of motion and other

pertinant information are summarized in Table 2-1. All of these

wave theories are derived from Euler's equations of motion for

incompressible, inviscid, irrotational flow given by

(2-1) Dv
Dt

1-Pv P

(2-2) V v =

(2-3) V x v 0

where v indicates a vector quantity. The variables are defined in

the List of Symbols. The appropriate boundary conditions at the

free surface defined by z rl (x, y, t), Figure 2-1, are

(2-4) p (x, Y,r1 't) = constant

where

(2-5 ) Dt I
II (x,y,t)

or

=0

(z- 6) ar1 + u JL- + v -%J - - w (x, Y, t) _ 0at ax ay

and, the Bernoulli equation on the free surface:

3
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Table 2-1. Nonlinear water wave equations.

1. Stokes

V2C = a2 `P

X2

(u2+w2
== f(t) Z = n

Z. Cnoidal - Solitary (L -)
au a w
ax a z

au aw

=0 - -2

at +V(2) _ -v P/ p

az a x - v
.

at x
. + u-

z
i

-n

3. Long

-2a +
at ax

(h+n) ) = 0

`d n + u an'' DE ax

Du @ u + r ' t'+"t + u _d_x
atd

4. Numerical Stream Function (Dean, 1968)
2

V 1= 0

w = o for z -h

=
vv

ax u-c for z = rI T 2 L
n=1

2'nx)L

5. Biesel (1952)

2
V 4 = 0

w-mh=0 for z= -h

az2

n F 2g
((u-c)2

+ for z = ri

' = L + N A(rr)
'inh(`, n( +

))r"

2

1 + = 0 fort Q
-12g

5

+

=

=0

=



z

Free Water
Surface

Rigid Bottom

Figure 2-1. Coordinate System
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(2-7) +?(u2+v2 +w2)+
P

p+gn =0.

The boundary condition at the fixed bottom defined by z = -h(x, y)

requires that there be no flow through the bottom

(2-8) u- h + v ah -h t) = 0- w(x ,Y, ,ax ay

For inviscid, incompressible flow, the wave equations are

often reformulated in terms of the complex velocity potential (which

is the complex formulation of the velocity potential, 0, and the

stream function, T ) in order to simplify their solution (Chappelear,

1959; Stokes, 1880; Davies, 1952; Michell, H93; Pa.ckham, 1952;

Lenau, 1966; and McCowan, 1894). The velocity potential 0 is

defined as

(2-9) u a_ ax v= . v, _
ay , az

so that equation (2-2) becomes LaPlace's equation

(2-10) o0 = 0.

Integration of the Euler equation, equation (2-1), along the compon-

ent directions results in the Bernoulli equation for constant density

(2-11)
at

+z(u2+v2+w2) + p p + g z F(t).

Since the fluid motion is affected only by pressure gradients, and the

gradients are not affected by F(t), then F(t) can be incorporated into-.

the definition of-the velocity potential. Equatj.on (2-11) then becomes



be defined as

at

i 2 2 2a(u +v +w) +

The stream function 'V , for the case of two dimensional motion, can

so that equation (2-3) becomes LaPlace's equation

(2-12)

(2-14) v2`Y 0.

The flow can now be represented by the complex velocity potential

as a function of the complex position v as

(2-15) r(v) ¢r+i

where

If a coordinate system moving with the wave propagation velocity is

used, the motion may become steady, and the free surface is then a

(2-17) q +u- iw

This also results in a complex velocity q given by

(2-16) v = x+iz

streamline. Identifying the free surface with `Y , n ) = c and the

bottom with ' (x, -h) = 0, the boundary condition for a horizontal

bottom is

(2-18) Im q(x, -h) =

where Im is the imaginary part, w(x, z, t), of the complex velocity.

In terms of the complex velocity the Bernoulli equation, (2-7), on

+ 1 p 0.

(2-13) u w

=

=

0



the free surface becomes

(2-19) Zlgl2 + gImv constant.

CHAPTER III

THEORETICAL DEEP WATER WAVE BREAKING CRITERIA

In order to review theoretical breaking criteria for deep water

waves, an examination of the properties of the 'highest' steady waves

is essential because these properties are upper limits to wave

growth. Theoretical attempts to predict the properties of the

'highest' wave are all based on the kinematic breaking criterion,

which is a limiting value of the water particle velocity at the crest
(Stokes, 1880; Michell, 1893; Havelock, 1918; Davies, 1952;

Yamada, 1957; Chappelear, 1959; Dean, 1968). These properties

include the wave steepness, the enclosed crest angle, and the water

particle acceleration at the crest. A review will oe made of the

mathematical techniques developed to derive the properties of the

'highest' wave, and comparisons will be made between the various

properties derived.

The Kinematic Breaking Criterion

There has been only one limiting value proposed for the water

particle velocity at the wave crest, the wave phase velocity. This
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criterion was first utilized by Rankine (1864). It is a plausible

criterion since if the particle velocity exceeds the phase velocity, the

particles at the crest will advance forward faster than the wave and

become separated from it.

In determining the properties of a wave so limited, all of the

studies reviewed employed a coordinate system which traveled with

the wave phase velocity so that the wave motion was steady or inde-

pendent of time. Viewed from this reference frame, the kinematic

criterion requires that the particle velocity at the .rest be zero.

Methods do differ in the way in which the kinematic breaking

criterion is satisfied. Descriptions of two of these methods applied

by Davies (1952) and Chappelear (1959) follow. These two methods

were chosen because each is an important contribution to the theory

of the 'highest' wave.

Davies (19 52) transforms the particle velocity components in

cartesian coordinates u,w to polar coordinates q', e', Figure 3-1,

and also introduces a new variable T defined by

(3-1) q' e
i e' = ce-C +i e'

where c is the wave phase velocity. Equation 3-1 determines the

relationship between q' and as

(3-2) q' e = ce =
T c eTeie

s o that
T

(3-3) q' = ce
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To summarize, Davies has transformed u, w according to

(Cartesian) q' e' (polar) - c, (polar).

In terms of the new variables T and e', the kinematic breaking

criterion requires that

(3-4) T * - 00 at the crest.

This simple change of variables is very important because it

enabled Davies to obtain a solution which satisfied a non-linear sur-

face boundary condition exactly. This non-linear boundary condition

is used as an approximation to the Bernoulli equation (equation 2-12)

on the free surface. It is obtained by differentiating the Bernoulli

equation with respect to arc length and substituting T and. 8' for

q' and z. The resulting boundary condition is

3-5)
aT 3 e

c

- 31 Sin e , tY = E

where 'P=E is the surface streamline.

The second important contribution is that of Chappelear (1959).

Chappelear, after studying the.functional form of the complex velo-

city given by finite amplitude wave theories, followed a suggestion

of Michell (1893) and chose the complex velocity given by (Figure

3-1)

(3-6) q(r) = a r) (
l+2ble-2e

Cos 2r+2b±.e-4e Cos 4 r +

2b3 e
6e Cos 6 r )

where
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3-7) 1' 0 + i T

and

(3-8) A ( r) = 1+ 2 E(-1)n a-.6n a Cos(2nr).
n=l

The satisfactory characteristic about this form of the complex velo-

city is that it is zero at the crest positions defined by ' = e

$ = n'r , and so satisfies the kinematic breaking criterion.

Chappelear's contribution is that the results are valid for the

'highest' wave in any depth of water.

These two examples illustrate two important theoretical con-

tributions to utilizing the kinematic breaking criterion.

Derived Breaking Criteria

A review of the derived wave properties of the kinematically

limited wave is desired because it will make readily available the

essential portions of the complex proofs found in the original papers.

It is hoped that workers who intend to use certain properties of the

limiting wave in their own studies may find this review helpful.

Crest Angle

One of the most widely quoted properties of the limiting wave

is that the enclosed crest angle is 120 degrees (Figure 3-2). Stokes

(1880) was the first to derive this value, and it has since been

00
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Figure 3-2. Enclosed crest angle for kinematically
limited wave.

+z
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verified theoretically by Michell (1893), Miche (1944), and

Chappelear (1959). Since Stokes omitted much of the detail of this

important derivation, it is presented here in full. Kinsman (1965,

page 272) gives a similar proof but one that is dependent on assigning

the special value of zero to the surface streamline.

There are three initial assumptions germane to this proof:

(1) the kinematic breaking criterion is satisfied, (2) the crest is

formed by two intersecting straight lines which are the tangents to

the real water surface curvature, and (3) the velocity potential in

the region of the crest can be approximated by

(3-9) O(r, 6 ) B rn
Sin(n 6)

where B and n are coefficients to be evaluated, and r and 0 are

polar coordinates (Figure 3-2). To evaluate n, the fact that the sur-

face is a streamline is used. Since the velocity is tangent to the

surface streamline, there is no velocity component normal to the

surface. This condition is

(3-10) uo _ - 1 aV ae

or

(3-11) Cos (ne ) 0.
0

For equation 3-11 to be zero, the argument of the cosine must be

Tr/ 2

3-12) n 6 = Tr /2.
0

r =0
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Assuming the pressure on the free surface is zero, the Bernoulli

equation (equation 2-7) near the crest is

(3-13) gz + 2(u2 + ue) = 0.

Calculating z, ur, and u0 according to

(3-14) z = -r Cos( 0
0

(3-15) ur - a/ar and

and substituting into equation (3-12), yields,--on the free surface,

! 2 2 2(n-1) 2 1 2 2 2(n-1)
(3-16) - grCos(0 0) + 2n B r Sin (n 00) + zn B r

Cos2(n0 ) 0
0

or

(3-17)
2n2B2r2(n-1

or

= grCos( 0
0

)

1 2 2 2 n-3(3-18) zn B r = gCos( 0 ) = constant.

Since the right-hand-side of equation (3-18) is ,a constant, the ex-

ponent of r must be zero. This gives

(3-19) 2n-3 = 0

or

(3-20) n = 3/2.

From equation 3-12, the enclosed crest angle 2 0
0

becomes

(3-21) 2 0 = 2 Tr/3
0

or 120 degrees. The coefficient B in equation (3-9) is determined by
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substitution of n into equation (3-17) and yields
1

(3-22) B 2 g2 /3.

For these values of n and B, the velocity potential of equation 3-9

becomes

i
(3-23) O(r, 6)

3

g2 r3/2
Sin (3/2 6 ).

The particle velocity components are

(3-24) u =- a _r ar
and

(3-25) a0
ae

g2 r2 Sin(3/2e

1

r2 Cos(3/2 6).

Thus the velocity components tend to zero as r approaches

zero, satisfying the kinematic breaking criterion. The second

assumption, that the crest is formed by two intersecting straight

lines, involved the identification of the free surface by the constant

polar angle e. -

Wave Steepness

Another commonly quoted property of the 'highest' wave is the

wave steepness, a wave height to length ratio of 0.142. Usually this

is expressed as "the wave height is one- seventh of the wave length."

When examining the values obtained theoretically (see Table 3-1) this

quote is observed to be very accurate. However, since nearly all of

these approaches utilized the kinematic breaking criterion and a

r

1
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sharp crested wave, the similarity of their results is not surprising.

This consistent result indicates that the essential ideas of this

'classical' approach may be acquired by examining just one of the

studies shown in Table 3-1. Since Chappelear (1959) was introduced

earlier in connection with the application of the kinematic breaking

criterion, his approach will also be reviewed here. A second reason

for continuing with Chappelear's derivation is that the results are

good for all water depths.

To determine the enclosed crest angle, it was seen that a

velocity potential valid only in the immediate vicinity of the crest

was sufficient. But now, to evaluate the wave steepness, a solution

is required over the entire wave length. Beginning with equation

(3-6) to represent the complex velocity, Chappelear utilized the

Bernoulli equation at the free surface (equation 2-19) to find the un-

known b,
t coefficients. The terms in equation (3-6) with these co-

efficients represent the first three terms of the Fourier series

expansion of the complex velocity along the bottom where the velocity

is real. The expansion variable is the complex velocity potential,

r = 0+i T.

First, the Bernoulli equation is transformed to the complex

form

(3-26) a
To I q(o+i y) I4 = 4gIm q($+i e )
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by taking the partial derivative of equation (2-19) with respect to the

velocity potential 0. Since this expression is being evaluated at the

free surface, the stream function'' is constant. Next, the left- and

right-hand sides of equation (3-26) are separately expanded in Fourier

series in terms of the velocity potential 0, and the coefficients of the

respective cosines with identical arguments are set equal and solved

for the bi,' s. Since these calculations are very lengthy, they are

omitted here..

The complex velocity is now completely evaluated, and hence,

the wave steepness can be calculated. For deep water, Chappelear

obtained a wave steepness to four decimal places as 0. 1428.

The only alternative approach to the 'classical' method of

evaluating the wave steepness for the highest wave was that carried

out by Dean (1968), employing a numerical solution for the stream

function. A wave steepness of 0. 1723 was obtained, twenty percent

higher than the commonly quoted value 0. 142. Dean formulates the

wave problem (see Table 2-1) in terms of a stream function, T

which must satisfy LaPlace's equation, and is given by
N

(3-27) 'y(x, z) = T z + E A(n) Sinh( 2Ln [h+z]
n=1

Cos 2 Lh

where the unknown coefficients L and A(n) are evaluated from the

boundary conditions. Since this formulation is applicable for all
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wave conditions, Dean solved for the coefficients numerically for a

constant wave period and water depth as a function of increasing wave

height. For a water depth of 1000 feet, a wave period of 10. 0

seconds, and a wave height of 105. 7 feet, Dean obtained a wave

length of 613. 8 feet for a wave whose particle velocity at the crest

is equal to 98. 5% of the wave phase velocity. The wave steepness is

then equal to 105.7/613.8 = 0. 1723.

In the following section on the water particle acceleration at

the crest, the disagreement between the 'classical' approach and the

numerical stream function approach arises again. A discussion on

the disagreement between the two approaches is included at the end of

this chapter.

Water Particle Acceleration

Theoretical estimates of the water particle acceleration near

the crest range from zero to g, the gravitational acceleration.

Kinsman (1965, page 273) states that for a wave with a crest angle of

120 degrees, the water particle acceleration is g. However, using

the water particle velocities (equations 3-24 and 3-25) developed

from the velocity potential for the wave with a 120 degree crest angle,

it will be shown that the water particle acceleration near the crest

is i
29.

The particle acceleration in polar coordinates is given by
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and

2
Du a u Du u a u ur r r 0 r 0

(3-28) ar = Dt = at +
ur

a + r a0 rr

Duo a u0 au0 u0 au0 uru0
(3-29) a0 fit at + ur ar + r a0 + r

Since the coordinate system is moving with the wave phase velocity,

the motion is steady, and the a ur
at

and a u9at terms are zero.

Using equations (3-24) and (3-25) to calculate the remaining terms of

equation (3-29) it is found that a = 0. Substituting for u and u e ,
0 r

a becomesr

or

2 3 3 2 3 2 3(3-30) ar = zg Sin (20) + 2 gCos (2 0) - g Cos (20

(3-31) ar = zgo

Thus, the particle acceleration near the crest is directed radially

downward from the crest with a magnitude zg. This result conforms

with that obtained by Longuet-Higgins (1963) who carried out a

similar calculation.

The numerical stream function approach (Dean, 1968) is again

in disagreement with the classical approach, yielding an estimate of

zero for the particle acceleration near the crest. Figure (3-3) shows

the particle velocity and acceleration near the crest as a function of

increasing wave height determined by the numerical approach. In

this example, the wave period is 10.0 seconds, and the water depth
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1.0

0. 5

0

h = 1, 000 feet water depth
T = 10 sec

,A
1

o'
'__o

0
Dw \
Dt
g

0 20 40 60 80 100

Wave Height, H (feet)

Figure 3-3. Particle velocity and acceleration near the
crest as a function of wave height. for a
deep water wave (Dean, 1968).
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is 1000 feet. As the wave height increases, the particle velocity

increases in an approximately linear fashion, while the vertical

particle acceleration shows a more complex behavior. First, the

acceleration increases to a maximum of about 4g at a wave height

of 65 feet and then decreases to zero at a wave height of 105 feet.

At the latter point, the horizontal particle velocity is nearly equal to

the wave phase velocity, the point at which the wave should break.

Other Properties of the 'Highest' Wave

Some properties of the highest wave which have not found much

application are the wave profile, the wave phase velocity, and the

kinetic to potential energy ratio. These properties are briefly

reviewed.

Figure 3-4 shows the deep water wave profile plotted from

tables of numerical values given in Chappelear (1959). This profile

is identical to that obtained by Michell (1893) who likewise used the

classical approach. Also shown in Figure 3-4 is the wave profile

obtained from the numerical stream function example discussed in

the previous section. This latter profile is steeper near the crest

indicating that it has a slightly smaller enclosed crest angle.

However, due to the scarcity of points in the crest region, it is not

possible to determine the enclosed crest angle accurately for either

wave profile.
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Table 3-1 contains several estimates of the ratio of the wave

phase velocity for the highest wave to the wave phase velocity for the

small amplitude wave. Using the expression for the square of the

wave phase velocity for a Stokes finite amplitude wave to third order

given by

(3-32) c2 = c2 ( 1 + ( TrH/L)2

and H/L equal to 0.142, Kinsman (1965) obtained c/cm = 1. 1, which

is in good agreement with the accepted estimates in Table 3-1.

As a sidenote, Michell (1893, page 437) made an error when

he stated that the ratio of the maximum wave speed to the small

amplitude wave speed was 1. 20; he meant the square of this ratio

was 1 20,

A final property of the kinematically limited wave is the ratio

of the kinetic to potential energy. Davies (1952) obtained a value of

1. 1 for this ratio. For comparison, this ratio is 1. 0 for the small

amplitude deep water wave, indicating that kinetic energy may

increase at a greater rate than potential energy as the wave

approaches its upper limit.

Discussion and Conclusions

Only one breaking criterion has been proposed for deep water

waves the kinematic breaking criterion in which the horizontal

particle velocity just exceeds the wave phase velocity. The



'classical' approach introduced by Rankine (1864) and Stokes (1880)

assumed that the highest steady wave had a sharp crest with the

horizontal particle velocity at the crest equal to the wave phase velo-

city. The only alternative approach is that of Dean (1968). Utilizing

a numerical stream function, Dean computed the horizontal particle

velocity and the vertical particle acceleration at the wave crest as a

function of increasing wave height to determine which attained a

limiting value first. The results were that the horizontal particle

velocity approaches the wave phase velocity, and the vertical particle

acceleration approaches zero as the wave height increases. Dean

concluded that the kinematic breaking criterion is a more suitable

breaking criterion than a limiting value of the vertical particle

acceleration at the crest.

Although these two approaches agree that the kinematic break-

ing criterion is appropriate for deep water waves, the derived wave

properties for the highest steady wave are not in agreement. The

derived value of the vertical particle acceleration at the crest was

ig for the classical approach and zero for the numerical stream

function approach. The derived wave steepness was 0. 14 for the

classical approach and 0. 17 for the numerical approach. The wave

profiles are compared in Figure 3-4.

The largest discrepancy of the two approaches is the different

estimates of the vertical particle acceleration at the crest. Dean

27
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968) explained this difference by examining the vertical particle

acceleration given by

(3-33) Dw (uc) aw + w aw
Dt ax az

At the crest, w is zero, and equation (3-32) becomes

(3-34) D (u-C) a x

At breaking (u-c) is zero and Dw/Dt must be zero unless

infinite.

aw
ax is

Dean stated that if the peak were assumed sharp crested

then the surface slope would be infinite at the crest and that a
w

ax
would also be infinite, accounting for the differing results.

Another explanation of this argument may be given. A particle on

the free surface must conform to the boundary condition that it stay

on the surface. This condition is given by

(3-35)

Solving for w

ax
w/(u-c) , z

(3-36) w (u-c) - -
ax

and substituting for w in equation (3-34) yields

(3-37) Dt au an 2 a2 r,

a x

For a sharp crest wave with an enclosed crest angle of 120 degrees,
2

must be infinite at the crest because a changes from

Dw

1 i
+(3)_2 to -(3)-2 . Hence, Dw/Dt may be non-zero at the crest of a

=

(u-c) x a x +
2



wave with a sharp peak.

Although it remains for observations to determine which

approach most closely approximates actual water waves, one comment

seems appropriate. Both of these approaches have neglected surface

tension forces which may become locally important if the surface

curvature is large. With a sharp crest, the curvature is very large,

so that it may not be neglected in the neighborhood of the crest. The

effect of the large surface tension forces would be to generate

capillary waves at the crest, as first shown theoretically by Longuet-

Higgins (1963). Thus, the highest steady wave with a sharp crest

may not be a physical possibility.

It is also apparent from this review that several aspects of

breaking waves in deep water have not been studied; (1) wave

breaking by a progressive wave, which overtakes and passes through

a second slower wave, (2) wave breaking in a random sea, and (3) the

details of the breaking process and the restabilization of the broken

wave.

29



30

CHAPTER IV

THEORETICAL SHALLOW WATER BREAKING CRITERIA

One of the conclusions of the preceding chapter, which reviewed

deep water wave breaking criteria, was that the theoretical breaking

criteria were based on the physical properties of the highest steady

wave, and that these criteria limited wave growth. For the shallow

water wave, where the bottom is important to the breaking process,

an additional class of wave breaking occurs. This class consists of

waves which deform as they shoal, eventually becoming unstable and

toppling forward.

For the case of the highest steady wave, the kinematic breaking

criterion, the limiting vertical particle velocity near the crest, and

the limiting vertical pressure gradient near the crest are reviewed

as factors limiting shallow water wave growth.

For waves which deform as they travel, the local surface slope

and the kinematic breaking criterion are reviewed as breaking

criteria for the theory of long waves.

The equations of motion for solitary, cnoidal, and Stokes wave

theories are given in Table 2-1. These equations are utilized

throughout this chapter.
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1. Theoretical Breaking Criteria

Kinematic Breaking Criterion

The kinematic breaking criterion has been applied to two types

of shallow water waves, (1) the highest steady wave in water of con-

stant depth, and (2) the shoaling wave which deforms as it travels into

water of decreasing depth. The mathematical techniques employed to

determine the properties of the highest steady wave in water of con-

stant but arbitrary depth do not depend on the depth; Chapter III

reviewed many of these techniques.. For the case of the shoaling

wave, the kinematic breaking criterion applies only at the instant

the horizontal particle velocity at the crest.is equal to the wave

phase velocity.

One unsteady wave theory to which the kinematic breaking

criterion has been applied is the long wave theory (Ayyar, 1970).

Long waves with positive amplitudes (i. e. , all the water surface is

above the still water level) which are propagating into quiescent

water are considered. To determine the breaking position, the con-

cept of a wave front is introduced. The wave front is defined to be

the position at which a discontinuity in the surface slope occurs,

with the surface slope zero ahead of the wave front and negative at

the wave front (Figure 4-la). Also, the surface elevation is zero

ahead of the wave front and positive behind the front.
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Defining rl as the vertical elevation of the free surface above

the still water level, u as the horizontal particle velocity (constant

with respect to depth), and x as the horizontal distance from the

origin in the direction of wave advance, Ayyar obtained the surface

slope at the wave front as

(4-1) an

aX
2

au/ g)(1 t(2 to mg))(lom
ax

where 1
0

is the horizontal distance from the position of the wave

front at t = 0 to the intersection of the still water level with the beach

slope, m the uniform beach slope, g the acceleration of gravity, and

t time. Here it is assumed that at time t = 0 the wave front passes

the position x = 0 (Figure 4-1 )

Integrating equation (4-1) with respect to x, the relation

(4-2) n(x,t) = (1 - t(2 1 /mg) )(l m/g)2u(x,t) + D(t).
0 0

is .obtained, where D(t) results from the integration, Ayyar (1970)

made use of the kinematic breaking criterion to substitute the wave

phase velocity c for the horizontal particle velocity u in equation

(4-2) yielding

(4.,3) n(x,t) = (1 - t(2 1
0
/mg)-1)(1

0
m/g)2c(x,t) + D(t),

This relationship is important because it represents the first

application of the kinematic breaking criterion to deforming waves.

In addition, Ayyar utilized this relationship and the geometry of a

plunging breaker to derive a limiting ratio of 2. 0 for the height of the



t=o

Figure 4-1a. Wave front at initial position.

SWL

Figure 4-lb. Wave front at breaking position.
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breaker crest above the bottom to the depth of breaking below the

still water level, Yb/hb (Figure 4-2). Unfortunately, he did not

present the derivation.

On the other hand, a significant limitation of Ayyar's approach

is the use of the long wave theory (Table 2-1). In the long wave

theory, the horizontal particle velocity is assumed constant along the

vertical, and it may be considered as a vertically averaged velocity.

This means that Ayyar has equated a mean horizontal particle velo-

city to the wave phase velocity as the criterion for breaking. From

observations it is known that the horizontal particle velocity is maxi-

mum at the surface. Thus, the limiting velocity will occur first at

the surface.

Vertical Surface Slope

Another assumed breaking criterion is that where the slope of

the water surface approaches a limiting value. Beyond this value,

the wave is unstable, and water particles along the steep surface

fall forward ahead of the wave. This breaking criterion has been

applied to the long wave theory (Table 2-1) in which the shoaling

wave is continually steepening on its shoreward face (Stoker, 1949,

1957; Greenspan, 1958; Burger, 1967). The limiting value of the

surface slope is assumed to be infinity; that is, the surface is

vertical.
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Figure 4-2. Sketch of breaking wave.
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Stoker (1957) proved that long waves with positive amplitudes

always attain this vertical slope even if the bottom is horizontal.

Although he did this by using the method of characteristics to

numerically solve for the surface elevation as a function of time and

horizontal position, the important physical concept of why the surface

slope becomes vertical is easily demonstrated. This is accomplished

by examining the expression of the local speed of propagation of

small disturbances relative to the moving stream given by Stoker

(1957) as

(4-4) c(x, t) = ( g(h + n ) )Z

where h is the still water depth and r, the height of the surface above

the still water level. According to equation (4-4), each small dis-

turbance travels at a speed depending on the square root of the

height of the water surface above the bottom. Since the crest is the

highest surface elevation, it moves faster than the wave trough ahead

of it. This causes the forward face of the crest to steepen, and

eventually the surface slope becomes vertical.

Stoker's numerical methods are seldom used because the

entire solution must be recalculated each time the initial conditions

are changed. Choosing to follow the changing surface slope at the

wave front as the wave advances, Greenspan (1958) and Burger

(1967) related the bottom slope and the initial surface slope at the

wave front to the horizontal distance the wave front travels until the
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surface slope is vertical at the wave front. These relationships are

reviewed in a following section.

Vertical Water Particle Velocity

Rather than use the kinematic criterion to determine the

properties of the highest steady wave in shallow water of constant

depth, Laitone (1963) analyzed series relationships for the vertical

velocity. For solitary wave theory, he obtained a value of the series

expansion parameter that yielded vertical velocities that could not

physically occur.

Using a coordinate system moving with the steady wave phase

velocity (Figure 4-3), Laitone derived the vertical velocity to be

(4-5) w(x, z) = 1-97 3(H/h) (1 + h) Sech2a X tanha X,

where

(4-6) aX = 3 H
4 h (1-8

h) h

Terms of order (H/h)2 and higher have been omitted on the assump-

tion that H/h is much less than unity. Equation (4-5) shows that the

vertical velocity increases with increasing z without limit, and that

there is no limiting height for a solitary wave to this order of H/h.

But to the next order of approximation 0 H/h) 3
( ( ), w(x, z) is given by

Laitone (1963) as

(4-7) w = H/h)3 (1 + h)(1 - 18 h)
tanh aX
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for IxI 0 z > 0

for the region near the wave crest. From equation (4-7), the verti-

cal velocity increases with increasing z only if H/h is less than 8/11.

If H/h = 8/11, the vertical velocity is zero for all z. When the

vertical velocity in the region near the crest ceases to be an in-

creasing function of z for constant H/h, the maximum value of H/h

is obtained. The physical meaning of this criterion may be under-

stood by investigating the water particle motion at a position fixed

relative to the crest as H/h is increased.

Figure 4-3 schematically shows the particle trajectories pro-

duced by the passage of solitary wave. As the solitary wave advances

into still water, the water particles rise to a maximum elevation at

the crest, and then, as the wave passes, the water particles fall

back to their initial horizontal level. Hence, for positions just in

front of the wave crest, the vertical particle velocity should be up-

ward, and for positions just behind the crest, the water particle velo-

city should be downward. If H/h is less than 8/11, the particle tra-

jectories will be correct. For H/h = 8/11, the veritcal velocity is

zero everywhere, and for H/h greater than 8/11, equation (4-7) pre-

dicts that the vertical velocity reverses its direction. Thus, a

particle just, in front of the advancing wave crest would have a down-

ward motion, a physical impossibility.

As a final estimate of the limiting value of H/h, Laitone solved

39
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).for the vertical velocity to the next higher order in H/h (0(H/h)4

To this order, w ceases to increase with increasing z when

(4-8) H/h = Y 3 -1 = 0.7321

which is close to the previous estimate of 8/11 (0.7272).

Laitone (1963) extended the vertical velocity criterion to the

cnoidal wave theory which is an oscillatory wave theory (Table 2-1).

Solving for the vertical velocity to order 0(H/h) 3
J.

he obtained the

maximum value of H/h to be

(4-9) H/h = 8 S
9s + 2

where i <g4 1. As' B approaches 1. 0, the cnoidal wave approaches

the solitary wave, and equation (4-9) gives (H/h)max 8/11, as it

should. As a decreases below 1.0, H/h from equation (4-9) also

decreases. As s approaches 2s it is not clear from Laitone if his

series relations are valid. (As S approaches zero, these expres-

sions for (H/h) are not meaningful because the cnoidal wavemax

becomes the small amplitude Airy wave.)

Vertical Pressure Gradient

Laitone (1963) also examined his series solutions for the

vertical pressure gradient, attempting to detect a limiting value of

H/h. The prediction of a vertical pressure gradient equal to zero

beneath the crest (x = 0) was chosen as the limiting physical



condition.

For cnoidal wave theory, the vertical pressure gradient

beneath the crest is given to order 0(H/h)3 by Laitone as

(4-10)

Near the crest, z is the same order as H, and the term (H/h) 2 (z/h)
3is of order (H/h) and must be omitted. Equation (4-10) becomes

(4-11) ap /8z = P g (-1 + (H/h)2(3/2$ )')
i

If H/h _ (2 a /3)2, the vertical pressure gradient is zero, and, if

H/h is greater than (2 S /3)2, the vertical pressure gradient reverses

its algebraic sign, which is physically impossible.

The maximum limiting wave height for cnoidal waves occurs

when S = 1. 0, and the cnoidal wave with its periodic wave form

becomes the solitary wave with the surface elevation approaching

the still water level very far from the crest. Equation (4-il) yields
1

H/h = (2/3)2 = 0. 812 for 1.0. This value of H/h differs signifi-

cantly from the estimates of (H/h)max(i. e. , 0. 7272 & 0. 7321) pre-

dicted from the vertical velocity criterion, but the cause of this

discrepancy could not be resolved by this writer.

2. Properties of Waves Limited by Theoretical
Breaking Criteria

41
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Vertical Water Particle Acceleration

In Chapter III, it was demonstrated that a discrepancy existed

between theoretical estimates of the vertical particle acceleration

near the crest for deep water waves. The 'classical' approach of

Stokes, which assumed the wave had a sharp crest, yielded a verti-

cal acceleration of i g. The numerical stream function approach of

Dean (1968) predicted a vertical particle acceleration of zero. In

both cases, the kinematic breaking criterion was the limiting physical

test. For steady state waves in shallow water of constant depth,

these same estimates are obtained. Thus, the discrepancy also

exists for the shallow water condition of constant depth.

Long Wave Breaker Properties

Using the breaking criterion of a vertical surface at the wave

front (wave front defined on page 31), Burger (1967) derived a general

relation for the horizontal distance the wave front propagates to reach

the breaking position. More explicitly, this horizontal distance is

the distance between the position where the initial (t = 0) surface

slope at the wave front is specified and the position where the surface

at the wave front is vertical. Figure 4-la shows the wave front for

t = 0, and Figure 4-lb shows the wave front at a later time at the

breaking position. Here it is assumed that at t = 0, the wave front
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passes the position x = 0.

For a variable beach slope, the horizontal distance to breaking,

xb, is given by Burger (1967) as

(4-12)

xb
h(x) -7/4 dx

2 hi
S h
0 b 3 s

in which s is the initial surface slope at the wave front, h, the initial

water depth, and hb the depth at the breaking position. For a con-

stant beach slope, m, h(x) = h,i-mx, and equation (4-12) becomes
h.

Zs(4-13) xb = ml (1 - s + m
4/3

J,

which is identical to the relation derived by Greenspan (1958) for this

particular case. As would be expected, equation (4-13) predicts that

xb increases with an increase in hi, a decrease in m, and a decrease

in s.

There are several limitations to Burger's and Greenspan's

theoretical calculations. First, since the changing surface slope

behind the wave front is not examined, a vertical surface may occur

earlier here than at the wave front, such as at the crest of the wave.

This will depend on the initial specification of the surface elevation.

Second, this approach does not predict the wave height at breaking,

an important breaker property. Finally, the long wave theory is not

strictly applicable for waves near the breaking position. A s Eras been

pointed out by Price (1971), Peregrine (1972) and others, the

)
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horizontal particle velocity cannot be assumed to be constant with

depth, nor can be the vertical pressure gradient be assumed to be

hydrostatic for breaking waves. Wave theories which account for

these complications are needed for a better prediction of breaker

properties,.

Limiting Wave Height to Depth Ratio

Table 4-1 shows the theoretical maximum wave height to depth

ratios estimated for several shallow water wave theories. The waves

being considered are the highest steady waves which can occur for the

criterion specified in Table 4-1. For the solitary wave limited by

the kinematic criterion, theoretical estimates of (H/h)max range

from 0.73 to 1.03. Although the cause of the varying estimates

probably lies in the approximate fits of the complex velocity potential

to the free surface boundary conditions, it was not possible to verify

this opinion. Additional causes of the variance in the estimates of

(H/h)max may be due to the numerical calculations which include

truncation of infinite series (e. g. , Laitone, 1963; etc.) necessary to

obtain each value.

Laitone estimated (H/h) for solitary waves using two newmax

physical criteria (page 37). These values are also within the range

noted above. In addition, he obtained the first theoretical estimates

of (H/h) for cnoidal waves. These values have the solitary wavemax



Table 4-1. Derived maximum ratio of wave height to water depth
for shallow water waves with specified limiting
condition.

Investigator (H/h)max

Bous sine sq 1871 0.73

Lord Rayleigh 1876 1.0

McGowan 1894 0.78

Gwyther 1900 0. 83

Packham 1952 1.03

Davies 1952 0. 83

Yamada 19 57 0.83

Lenau 19 66 0.83

Laitone 1963 0.73

Laitone 1963 80/(2+90).

Laitone 1963

<ss 1

0.81

Laitone 19 63 2 0 3,
i <05 1

Chappelear 1959 0.87

Dean 19 68 1.0

Limiting Wave Sharp
Condition Theory Crest

u c solitary ?

u = c solitary ?

u = c solitary yes

u = c solitary ?

u = c s olitary yes

u = c solitary yes

u = c solitary ye s

u = c s olitary ye s

w = 0 solitary no

w = 0 cnoidal no

Vzp solitary no
reversal

VZp cnoidal no
reversal

u = c Stckes yes

u = c stream f. no

45
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(H/h)max as upper limits, as would be expected.

The two estimates of (H/h)max
by Dean (1968) and Cahppelear

(1959) for oscillatory wave theory are also within the range given for

the solitary wave.

Limiting Wave Steepness

Maximum wave steepness (H/L) values have been derived for

oscillatory waves in water of constant but arbitrary depth limited by

the kinematic breaking criterion. Miche (1944) obtained numerical

estimates of (H/L) from theoretical considerations that are

approximated very well by the function

(4-14) (H/L)max = 0.14 tanh (2 L h)

although an error in Miche's derivation was recently discovered by

Madsen (1971). However, equation (4-14) also fits the theoretical

numerical results of Chappelear (1959) quite closely as shown in

Figure 4-4.

Wave Profile

Essentially two types of wave profiles occur in the theoretical

studies of the highest steady wave in shallow water of constant depth.

Figure 4-5 shows a representative profile for those derivations that

assumed a sharp crested wave. This particular profile was obtained
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from the table of numerical results given in Chappelear (1959) for

the Stokes oscillatory wave theory. In contrast, Figure 4-6 shows a

limiting solitary wave profile (Laitone, 1963) which does not have a

sharp crest. Laitone was of the opinion that, as was first pointed

out by Korteweq and deVries (1895), since a sharp crested solitary

wave did not conform to the Bousinesq profile in its first order

terms, it could not be steady state with respect to time in any

coordinate system.

For comparison to the symmetrical steady state wave profiles

described above, Figure 4-7 shows the details of a breaking wave

shoaling on a constant beach slope of 0. 10 (Biesel, 1952). Figure

4-7 was derived from first order wave theory using the velocity

potential (see Table 2-1), and Figure 4-8 was derived from second

order theory, in which particle velocity, wave height, and beach

slopes squared terms were retained. In the following chapter on

observations of breaking waves, it will be seen that Figure 4-7

resembles the plunging breaker type, and Figure 4-8 resembles the

spilling breaker type.

Discussion and Conclusions

In this chapter we have seen that theoretical shallow water

breaking criteria can be divided into two categories. One category

applies to the 'highest' steady waves which can exist in water of

49
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constant depth. These waves are assumed to be limited in their

growth by a certain physical condition. The other category of

breaking criteria applies to waves which are shoaling. These waves

are continually changing their shape and flow properties to conform

to the free surface and bottom boundary conditions.

For the highest steady wave, the theoretician is able to derive

additional pr pertie s of the wave. In all but one of the studies re-

viewed, the 'nematic criterion was assumed to limit wave growth.

The exceptio was Laitone (1963) who demonstrated that other

possible breaking criteria were the behavior of either the vertical

particle velo ity near the crest or the behavior of the vertical pres-

sure gradient beneath the crest.

Although the term 'highest' steady wave has been used to denote

the wave limited by these breaking criteria, the wave height (in the

form of the ratio of the wave height to wave length or the ratio of

wave height t water depth) was one of the derived wave properties.

Table 4-1, which shows the theoretical estimates of (H/h) max, is

evidence that (H/h)max extends over a rather wide range (0. 73 -

1.03) even if my one wave theory is considered. To obtain these

estimates of (H/h) max, the wave theories were extended to their

extreme limits, and, hence, the numerical approximations required

may be of the same order of magnitude as the variation between

estimates. addition, the convergence to a unique finite solution of4



the infinite power series representing solutions to the wave proper-

ties has not been proven in any of the studies reviewed.

There is as yet no a priori argument that identifies which of the

assumed criteria is the actual cause of limiting wave growth in

shallow water. Although the kinematic breaking criterion is probably

.not exceeded without the water particles at the crest separating from

the wave, this may be the result of flow conditions brought about in

the wave by the behavior of the vertical particle velocity or the verti-

cal pressure gradient. It is also possible that the kinematic criterion

is an extreme value for the horizontal particle velocity that is never

attained by even the highest wave. To determine the fundamental

breaking criterion limiting the highest steady wave, careful experi-

mental investigations of all of the flow properties within the wave

are needed.

Two physical conditions which have been assumed to denote the

breaking position of shoaling waves are the vertical surface and the

kinematic criterion, which were both applied to long wave theory.

The use of the kinematic criterion (Ayyar, 1970) seems inappro-

priate for long wave theory because of the assumption that the hori-

zontal particle velocity is constant with depth. Although the choice

of a vertical surface as a breaking criterion is appropriate for long

waves as shown by Stoker (1957), the applicability of the long wave

theory near the breaking point is doubtful due to the assumption of a

54
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hydrostatic pressure gradient beneath the crest. Thus, the vertical

surface crite ion may be appropriate for actual water waves but may

not be appropriate when used in conjunction with long wave theory.

In addition, the introduction of the wave front concept is also a

crucially limiting assumption because the possibility of prior breaking

behind the wave front is ignored. Figure 4-9, which shows the pro-

file of an actual plunging solitary breaker, points out the importance

of breaking behind the wave front. The vertical surface occurs at

the crest posi ion rather than at the wave front, whose approximate

location is indicated in this figure.
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Figure 4-9. Sketch of breaking wave.

surface at wave crest

wave



CHAPTER V

A REVIEW OF SHALLOW WATER BREAKER EXPERIMENTS

In the preceding chapter, theoretical breaking criteria for pro-

gressive surface shallow water waves were reviewed. The purpose

of this chapter is to review experimental procedures, techniques,

and equipment which are germane to the testing of these theoretical

breaking criteria. Since attempts have been made to test only some

of the theoretical breaking criteria, this review includes additional

experiments which contain methods relevant to measuring breaker

properties. These methods may be useful in experiments on the un-

tested breaking criteria. A review of the results of these experi-

ments is presented in Chapter VI.

This chapter is divided into four sections: (1) breaker types

and parameters, (2) wave tank and basin studies, (3) ocean studies,

and (4) problems encountered in the data reviewed,

1. Breaker Types and Parameters

Breaker Types

Laboratory studies (Galvin, 1968; Ippen and Kulin, 1955) have

shown that solitary and oscillatory breakers can be classified into

four principal types: (1) spilling, (2) plunging, (3) collapsing, and

57
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Frame

- 28

-- ---- ---- - ------------ 29
- ----- --_==--'---- - 34

--------- ---- --- 36
A. Spilling Breaker

B. Plunging Breaker

32

33

34

35

36

Figure 5-2. Solitary breaker transformations
(Ippen and Kulin, 1955).

35

==_- a.
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Table 5-1. Oscillatory breaker types on laboratory beaches.
(Galvin, 1968)

Code Type of Breaking Description

Spilling Bubbles and turbulent water spill down
front face of wave. The upper 25% of
the front face may become vertical
before breaking.

2 Well-developed Crest curls over a large air pocket.
plunging Smooth splash-up usually follows.

Plunging Crest curls less and air pocket
smaller than in 2.

4 Collapsing Breaking occurs over lower half of
wave. Minimal air pocket and usually
no splash-up. Bubbles and foam
present.

Wave slides up beach with little or no
bubble production. Water surface
remains almost plane except where
ripples may be produced on the beach
face during runback.

6 Plunging altered Small waves reflected from the pre-
by reflected wave ceding wave peak up the breaking

crest. Breaking otherwise unaffected.

7 Plunging altered Primary may ride in on secondary
by secondary wave immediately before it, or secondary

immediately behind rides in on pri-
mary in front. First kind difficult to
distinguish from 8.

8 Surging altered by Plunging secondary may break just in
secondary wave front of surging primary. Difficult to

distinguish from 7.
9 Secondary wave Runback from previous primary carries

washed out the secondary wave offshore, where it
may break out of field of view or just
disappear.
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Table 5-2. Transition values between oscillatory breaker types
for inshore and offshore parameters. (Calvin, 1968)

Parameter Surge-Plunge Plunge-Spill

Offshore HCO/Lcm2 0.09 4.8

Inshore Hb/(gmT2) 0.003 0.068

(H = deep water wave height, L. = deep water wave length,

m = beach slope, Hb = breaker height, T = wave period,

g = acceleration of gravity)
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parameters reported by each investigator.

1. Breaker point. The experimental breaker point denotes an

instant in the breaking process when the breaker is of a certain,

specified shape. The most accepted definitions are based on the

breaker type as follows.

a. Spilling breaker point. The point of the first appearance

of 'white water' at the crest (Iverson, 1952a). Also, the point of the

first appearance of a break or a curling over of the water surface

near the crest (Galvin, 1968).

b. Plunging and collapsing breaker points. The point where

some part of the shoreward face of the breaker first becomes vertical

(Galvin, 1968; Iversen, 1952a (plunging only) ).

c. Surging breaker point. The point in which a major por-

tion of the front face of the wave becomes unstable in a large scale

turbulent fashion (Iversen, 1952a); also, the point when the furthest

drawdown of the previous wave is halted by the advance of the next

wave (Galvin, 1968).

These instants or points in the breaking process are shown by

the arrows in Figure 5-1 (Galvin, 1968). Galvin reported that for

plunging breakers, the vertical segment of the shoreward face is

usually near the maximum elevation of the wave, and for collapsing

breakers it is relatively lower. The breaker point marks the

beginning of the rapid change in shape for plunging and collapsing
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breakers. It is near the beginning of a gradual change toward a bore-

like shape for spilling breakers, and it merely marks the reversal in

water motion for surging breakers (Galvin, 1968). From the defini-

tion of the surging breaker point of Iverson (1952a), it is likely that

his surging breaker is similar to Galvin's collapsing breaker.

One field study (Scripps Institute of Oceanography (SIO) Wave

Report Number 1, 1944) defined the breaker point as "the point where

the crest broke."

2. Breaker height, Hb. The breaker height for most oscilla-

tory laboratory breakers and ocean breakers was the vertical distance

between the crest at the breaker point and the spatially preceding

trough (Figure 5-4). For solitary breakers, the breaker height was

the distance between the crest at the breaker point and the still

water level (Figure 5-5). One oscillatory wave study (Galvin, 1968)

defined the breaker height as the difference between the maximum

and minimum water surface elevations at the breaker point during

one wave period. A comparison of Galvin's definition with the more

common definition given above has not been made.

3. Depth of breaking, hb The depth of breaking for most

laboratory studies was the vertical distance from the bottom to the

still water level at the breaker point (Figures 5-4 and 5-5). The one

exception was Galvin (1968) who defined hb as the vertical distance

from the bottom to the mean water level, where the mean water
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Figure 5-4. Oscillatory breaker position.

H
b

SWL

hb

Bottom

Figure 5-5. Solitary breaker position.
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level was defined as the time average of the water surface elevation

at the breaker point. Due to wave set-down (Bowen, Inman and

Simmons, 1968), this depth of breaking is about four percent less

than the depth of breaking measured to the still water level.

The SIO Wave Report Number 1 (1944) field study measured the

depth of breaking as the vertical distance from the bottom to the still

water level at the breaker point. Measurements of depth with

reference to mean lower low water were made each day of observa-

tions and corrected with the tidal record.

4. Breaker crest elevation, Yb The breaker crest elevation

is the vertical distance from the bottom to the crest at the breaker

point (Figure 5-4).

5. Wave period, T. The wave period was equated with the

period of the paddle oscillations in the laboratory studies. In an

ocean study (SIO Wave Report Number 1) the wave period was the

time difference between the crest under observation and the crest

spatially preceding it, measured with respect to a fixed location on

the adjacent pier.

6. Initial wave height, H., and initial water depth, h,. For
1 1

oscillatory waves, the initial wave height is the vertical distance

between the crest and the spatially preceding trough in the constant

depth section of the wave tank, For solitary waves, the initial

wave height is the vertical distance from the crest to the still water
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level in the constant depth section of the wave tank. The initial wave

height and depth in the SIO Wave Report Number 1 ocean study were

measured at the seaward end of a one thousand foot long pier in

approximately twenty-five feet of water. In this case, the initial

wave height was the vertical distance from the crest under observa-

tion to the trough spatially preceding it. In the laboratory study of

Galvin (1968), the initial wave height was the wave height predicted

theoretically from the linear theory for the given displacement of the

wave paddle. The measured initial wave heights were "generally

lower" than that predicted (Galvin and Eagleson, 1965).

7. Deep water wave height, H. , and deep water wave length,

Lao The deep water wave length was computed from the wave period

according to small amplitude wave theory by using the relation

( 5 - 1 ) L = gT / 2

The deep water wave height was calculated from small amplitude wave

theory by using the relations

(512) L./L = tanh (27r h./L. )00

and

(5-3) H/H = ((1 + 4Trhi/(LiSinh(4Trhi/Li))(tanh

(27r hi/Li))) 2

where L.i is the wave length in the constant depth portion of the wave

tank. Alternatively, the tables of Wiegel (1964) could be used.
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8. Breaker phase velocity, Cb. The wave phase velocity at

the breaker point was calculated by Iverson (1952a) using motion

picture film of the breaking waves. Iverson did not state how he

computed Cb, but three methods were possible: (1) he divided the

horizontal distance the crest moved between the frame of the crest

preceding the breaker point and the frame of the breaker point by

the time elapsed between frames; (2) he divided the horizontal

distance the crest moved between the frame of the breaker point and

the frame of the crest just following the breaker point by the time

elapsed between frames; or (3) he calculated the average of Cb

determined by methods (1) and (2).

9. Beach slope, m. The constant beach slope is reported

throughout this thesis as the tangent of the included angle. For

beach slopes up to 0. 10, the tangent of the included angle is very

nearly equal to the value of the angle in radians.

2. Review of Laboratory Studies

The laboratory oscillatory wave studies were not consistent

in the reporting of experimental parameters (Table 5-3). The beach

slope, breaker height, and wave period were the only parameters

common to all seven laboratory studies. The initial wave height

was used in three studies, while the remaining four studies published

either the calculated deep water wave height or the calculated deep



water wave steepness. Another frequently reported parameter was

the depth of breaking (five studies). Iversen (1952a) and Morison and

Crooke (1953) measured the breaker phase velocity, and Galvin (1968,

1969) included the breaker types.

All of the solitary wave investigations reported the beach slope,

ratio of initial wave height to still water depth, and the ratio of

breaker height to depth of breaking. Ippen and Kulin (1955) published

data on the breaker phase velocity and the particle velocity field at

the breaker point.

Number of Observations

In each study, for constant experimental conditions, measure-

ments were taken of the beach slope, still water depth in the constant

depth section of the tank, paddle frequency and displacement, initial

wave height, breaker height, and depth of breaking. This set of

measurements is defined to be an observation. The number of

observations in each experiment is a measure of the variety of

conditions that were tested. The breaker observations of Komar and

Simmons (1968), which are included in this report, and Galvin (1968,

1969) are the averages of ten consecutive waves, in which the indivi-

dual measurements varied considerably in some instances. The

remaining investigators did not published the number of waves which

were averaged to obtain the reported breaker heights and depths of

71
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breaking.

Table 5-3 contains a summary of the number of observations in

each investigation, and Appendix I is a tabulation of these measure-

ments. Since the solitary wave experiments presented results only

in graphical form, a list of these observations could not be prepared

and so is not included.

Wave Tanks

The dimensions of wave tanks ranged from 131 feet from wave

generator to beach by 1. 6 feet wide (Komar and Simmons, 1968) to

24 feet in length by 2.0 feet wide (Nicholsen, 1968).

Beach Slope

Beach slopes varied in magnitude and in degree of roughness

of the surface. Most beach slopes were in the range 0. 02 to 0. 20,

but some slopes were as small as 0.01 and as steep as vertical. Fig.

5-6 shows the actual slope which was identified in the Berkeley Wave

Tank study (SIO Wave Report Number 47, 1945) as a 0.009 slope.

The waves first encountered the short steep slope before proceeding

over the 0.009 slope.

Beach slopes were commonly constructed of smooth plywood

or concrete.. Two exceptions were the beaches of Camfield and

Street (1966, 1968) who used beaches roughened with sand glued on
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generator

0.009 slope
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f-- 4.6'--j
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Figure 5-6. Channel arrangement for 0.009 slope in
Berkeley wave tank data.
(SIO Wave Report No. 47, 1945)
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them, and Nicholsen (1968) who used beaches made entirely of sand

(median diameter either 0.42 or 2. 00 mm).

Wave Generation

Oscillatory waves were generated by paddle devices usually

driven through mechanical linkage by electrical motors. Galvin

(1968, 1969) used a vertical walled piston-type generator, and Komar

and Simmons (1968) employed a paddle hinged at the bottom and driven

at the top. Nicholsen (1968) used a pneumatic wave generator for

long period waves and a vertical plunger type for short period waves.

The remaining laboratory wave studies utilized a flap which could be

driven through top and bottom independently adjustable cranks to per-

mit a "closer approximation .of a shallow water wave at the wave

generator" (Iversen, 1952a).

Ippen and Kulin (1955) generated solitary waves by impounding

a volume of water behind a gate which could be raised suddenly. On

release, this volume of water pushed a movable piston along the tank,

displacing a certain amount of water in front of it within a definite

time. More recently, Camfield and Street (1966; 1968) also made use

of a vertical piston-type plate, but the motion of the wave plate was

controlled through a hydraulic- servoelectronic system.
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Measurements

Wave periods were measured by timing the oscillations of the

wave paddle. Wave periods were reported to 0. 01 seconds, where

the smallest period was 0. 80 seconds. The beach slope and the still

water depth in the wave tank were also accurately measured since

they are static quantities. The initial wave heights were measured

using resistance gages or point gages. Either of these instruments

can measure waves five centimeters high to within five percent

(Beach Erosion Board Technical Memorandum 10, 1965), and most

of the initial waves were higher than five centimeters. The breakers

were recorded on motion picture film (32 to 60 frames per second),

and the projected film image was used to measure the breaker height

and the depth of breaking. Due to the high rates of change of the

surface profile during the breaking process, Hb and hb were subject

to larger errors than H..

Water particle velocities within solitary waves were measured

(Ippen and Kulin, 1955) with an open shutter camera with illumination

provided by a strobe lamp. The strobe lamp was operated at twenty

flashes per second. To identify individual fluid particles, droplets

of colored solution with a specific gravity of unity were used for

particles beneath the surface, and 1/8 inch balsa cubes were used

for particles on the surface. The accuracy and precision of these
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techniques are not reported, but particle velocities are given to 0. 1

feet per second where 3. 5 feet per second is a typical value. Com-

parable measurements of the kinematics of the water motion in

oscillatory breakers were made by Iversen (1952a). A liquid mixture

of xylene and carbontetrachloride, with zinc oxide for coloring and a

specific gravity very near that of the water, were introduced near

the breaker region, and the resulting motion of these particles was

recorded on film. Similar values of the particle velocities were

obtained.

3. Review of Ocean Breaker Studies

For the ocean experiments, an observation is defined to be a

combination of measurements of beach profile, initial water depth,

initial wave height (wave height at the seaward end of the SIO pier),

wave period, breaker height, and depth of breaking. The ocean

studies include 112 observations; 74 are of Pacific Ocean waves at

the SIO pier and 38 are of Atlantic Ocean waves at Martha's Vineyard,

Mass. (Munk, 1949). Since the Woods Hole reports on the Atlantic

waves could not be obtained, only the SIO study is described herein.

Parameters common to all three field studies are the deep

water wave steepness, the breaker height to deep water wave height

ratio, and the breaker height to depth of breaking ratio. The SIO

reports also included the wave period, breaker height, depth of
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breaking, and the distance the wave traveled from the time it entered

very shallow water until it broke (very shallow water means those

depths where the ratio of the depth to the deep water wave length is

less than 0.05). Each of these values (see Appendix I for list) r

presents a measurement of only one wave; averages were not used.

Breaker heights ranged from 4. 0 to 11, 4 feet, and wave periods

ranged from 6. 5 to 13. 7 seconds. The two beach profiles are shown

schematically in Figure 5-7.

Measurements were obtained from a series of still photographs

of incoming waves taken near the SIO pier. Each photographic series

is a pictorial record of a single wave crest from the time it passed

the seaward end of the pier until it broke. The photographs were

taken at five second intervals from a shore location twenty-five feet

above the pier level and about eighty yards south of the pier, which

projects seaward to the west-northwest. The pier pilings were

scaled and referenced to mean lower low water so that water depths

and surface elevations could be measured.

The initial wave height is obtained from the photograph of the

wave when it is at the seaward end of the pier. From the depth of

water at this location, the wave period, and the initial wave height,

equation 5-3 was used to calculate the deep water wave height.

As discussed previously, the wave period is the time difference

between the crest under observation and the crest spatially preceding
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Type I 0. 04 Beach Slope

Constant or slightly increasing
death

Type II

Figure 5-7. Sketch of ocean beach slope types.
(SIO Wave Report No. 24, 1944)
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it, as measured with reference to a fixed point on the pier. When-

ever the two crests occupied exactly the same position on different

photographs, the interval of time between the photographs was used

as the wave period. If the two positions did not coincide a correction

based on the theoretically computed wave celerity, (gh)2, was used.

This correction amounted to ten percent of the final wave period in the

instances where the correction was published.

4. Problems Encountered in Analyzing the Data Reviewed

The preceding sections of this chapter have reviewed the

methods and procedures used in studies on breaking waves. This

section discusses possible sources of difficulties to achieving

accurate and consistent breaker measurements. When considering

a single experiment, the major problem is the likelihood of interfer-

ring fluid motions. Since these fluid motions may cause consider-

able variations in the measurements of the breaker parameters, they

should be monitored to evaluate their effect. Table 5-4 describes

the fluid motions which are known to occur during experiments on

breakers in wave tanks. These motions arise because the energy

and momentum of the generated waves are not completely dissipated

in the wave breaking and run-up processes. A closely related pro-

blem is the use of complex boundary conditions, specifically a

variable beach slope (Figures 5-6 and 5-7).
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Table 5-4. Fluid motions encountered in breaker measurements

Fluid Motion Definition or Explanation Studies Effected

(3)

Friction Due to bottom, side walls, or Oscillatory, soli-
internal tary, field

Backwash The return flow down the beach Oscillatory, field
slope from the previous breaker

Solitons Waves of temporary form that Oscillatory, soli-
develop when steep waves travel tary, field
into shallow water. The steep
initial wave deforms .into one
large wave (primary) and one
or more smaller waves
(solitons) (Figure 5-8).

Wave Re- Partial reflection of preceding Oscillatory, field
flection wave may inte r fe r with in-

coming wave

Wave Set-up A change in the mean water Oscillatory, field
or level due to the presence of

Set- down wave s

Edge Waves Waves (progressive or stand- Oscillatory, field
ing) which are constrained to
the edges of basins. Wave
crest perpendicular to shore,
wavelength parallel to shore
(Figure 5-9).

Rip Current Narrow currents flowing sea- Oscillatory, field
ward from the surf zone.
Part of near shore cell circula-
tion produced by the interaction
of edge waves and incoming
breakers

Seiching Standing waves long the Oscillatory
length of wave tank



81

A second problem arises when it is desired to compare the

results of two or more experiments. One important problem of this

type is the use of different definitions for an important parameter,

such as the breaker height.

Bottom and Side Wall Friction

Damping, or a decrease in wave height due to friction, is

important when breaker characteristics are related to the initial

wave conditions. Experimental measurements (Iversen, 1952b) of

oscillatory waves over horizontal bottoms in very narrow (1-3 inches)

wave tanks showed that the wave height was appreciably dampened

(Table 5-5). Studies within wave tanks of the same width (1-2 feet)

as those used in the breaker experiments could not be found.

Fortunately, the wave tanks of the seven oscillatory wave studies

were nearly of the same width (Table 5-3) so that friction probably

did not vary significantly from one experiment to another.

One solitary wave investigation reported the effect of 'bottom

roughness.' Ippen and Kulin (1955), using gravel 0. 013 feet in

diameter, found: (1) no appreciable effect on the breakers on a 0.06

beach slope, (2) a reduction of breaker height (up to ten percent) and

depth of breaking on a beach slope of 0. 023, and (3) a tendency to

induce spilling rather than plunging breakers.
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Table 5-5. Friction effects on oscillatory wave heights
(Iversen, 1952b).

Wave Data Tank Width

Wave period (sec.)

Still water depth (ft.

Wave height ratios'

H2/H1

H3/H1

H3/H2

1 Inch 3 Inches

1.15 1.15

2.04 2.04

0.65 0.86

0. 31 0.73

0.48 0.88

Subscript 1 denotes station 1 (first station encountered by wave)

Subscript 2 denotes station 2 (19. 53 feet from Sta. 1)

Subscript 3 denotes station 3 (42.97 feet from Sta. 1)
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Backwash

Iversen (1952a) obtained an estimate of the backwash velocity by

averaging all particle velocities in the region beneath the trough

spatially preceding the breaker crest. The backwash velocity was

nearly constant (0. 3 feet per second) with decreasing deep water wave

steepness for waves on the 0. 05 and 0. 02 beach slopes, but the back-

wash velocity increased with decreasing H. /L. for breakers on the

0. 10 beach slope. In addition, the backwash depth was nearly half of

that on the 0. 02 beach slope and increased with decreasing I-L /L ,

on all beach slopes. Qualitatively, he found that high backwash

velocities retard the base of the wave inducing plunging rather than

spilling breakers.

Solitons

Solitons (Table 5-4) were first reported by Morison and Crooke

(1953) who noted that extremely shallow water waves form a second

wave that travels at a slower speed than that of the original wave,

producing a nonpermanent wave profile. Galvin (1968) reported that

solitons occurred in 53 of 75 observations of breakers (Figure 5-8).

Galvin (1968) omitted wave observations if the phase difference

between the primary and soliton was such that the soliton interferred

with the breaking of the primary. More recently, Galvin (1972)
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published results of the breaking conditions of solitons. These

results are reviewed in Chapter VI.

Wave Reflection from the Beach Slope

Galvin (1968) noted two reflected wave types, one with a shorter

period than the incoming wave and one with the same period. The

shorter period reflected wave was more noticeable on steeper slopes

(0. 20), and it effected the incoming plunging breaker by causing a

sudden upward leap of the crest elevation. Although Galvin (1968)

did not report any change in the breaker measurements for these

plunging breakers, any variation in the breaker point on a steep

beach slope would significantly change the depth of breaking.

The longer period reflected waves were more difficult to ob-

serve, and Galvin (1968) concluded that they had no noticeable effect

on the breaker type. However, he found that once these waves were

re-reflected from the wave generator end of the wave tank, the

breaker type did change. These longer period reflected waves were

more common among the surging breakers on steep slopes. By using

appropriate initial wave conditions, Galvin was able to eliminate re-

flections on the 0. 05 slope but not on the steeper slopes.

Nicholsen (1968) reported that measurable reflected waves were

generated by the backwash flow of the previous breaker; the height of

the reflected wave relative to the incoming wave height varied

85
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inversely with the incident wave steepness. The ratio of the reflected

wave height to the initial wave height ranged from five percent to

forty percent, a considerable value.

Wave Set-Down at the Breaker Point

Wave set-down was defined in Table 5-4 as the decrease in the

mean water level at the breaker point due to the presence of an in-

coming wave train. Table 5-6 shows the percentage of wave set-down

relative to the still water depth at the breaker point for the labora-

tory data of Bown, Inman and Simmons (1968). This set-down,

averaging 3. 8% of the still water depth, was independent of the deep

water wave steepness over the range tested. Since only one beach

slope (0,082) was used, the dependence of this percentage on the beach

slope could not be examined.

Galvin (1969) reported that the percentage of the wave set-down

relative to the breaker height was 4. 0% on beach slopes of 0. 05 and

0. 10 and 8. 0% on a slope of 0. 20. For comparison, this percentage

was 3. 1 for the data of Bowen -et al. (19 68).

This evidence suggests that for beach slopes less than 0. 10

the mean water depth was 3. 0 to 4. 0% less than the still water depth

at the breaker point, and that this set-down tended to increase with

increasing beach slope. Because it includes the set-down at the

breaker point due to the presence of waves, the depth of breaking as
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Table 5-6. Wave set- down at the breaker point (Bowen et al. ,
1968).

Set-down/Still Water
Depth at

Breaker Point
Set-down/

Breaker Height
Experiment (%) { %) H /L

71 /3 4.1 3.9 0.034

71 /4 3. 5 3.2 0.049

'51 /4 3.8 2.9 0. 0 21

51/6 4.7 3.7 0.032

51 /8 4.8 4.4 0.044

35/7 3.0 2.3 0.010

35/10 3.7 2.6 0.014

35/12 2.7 2.3 0.017

35/15 4.4 3.3 0.021

24/17 3.4 2. 5 0.007

24/20 4.1 3.0 0.009

Wave tank dimensions: 131 feet long, 1.64 feet wide, 2. 46 feet deep
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Table 5-7. Observations of the longshore variations of breaker
height, incident wave period 5. 00 seconds
(Bowen and Inman, 1969).

Antinode Node Antinode
Rip No Rip

Longshore distance * (cm) 0 72 144 216 288

Breaker Height (cm) 2.05 2.22 2.41 2.93 3.18

Distance of breaker
from Still Water
Level intersection
with Beach Slope (cm) 34 34 34 37 40

Basin Dimensions: 50' x 60'

Working Section: 241 wide, bounded by smooth barriers that

extended seaward from the top of the beach

for 16'

* Distance from the right-hand barrier, facing seaward



In these cases, the measurements will contain the effects of either

the antinode-rip position or the antinode-no-rip position because an

antinode must be present at the wall. At the antinode-rip position,

the breaker height may be decreased by the lower effective wave

height, and/or premature breaking may be induced by the opposing,

seaward flowing rip currents. At the antinode-no-rip position the

effective breaker height is increased because the breaker and edge

wave are in phase (Figure 5-9). Komar (per communication, 1973)

has indicated that in the study of Komar and Simmons, edge waves

found across the wave tank presented considerable difficulties at

some wave periods, so much so, that the results had to be disre-

garded. With edge waves present a given wave crest would begin to

break at one side of the tank and progressively move across the tank

width. The crest may have moved 50 centimeters after the first

breaking occurred and before the entire wave crest was breaking.

The edge wave could also be observed in the run-up on the sloping

beach, but no true distinct rip current could be seen.

The possible occurrence of standing edge waves and rip cur-

rents has not been systematically investigated. Following Bowen and

Inman (1969), Table 5-8 shows the resonant periods for standing edge

waves in wave tanks with dimensions characteristic of those in

breaker studies. The standing edge wave period is given by
1

(5-4) T Z(7r b/(gm (2n+1) tans) )2

91
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Table 5-8. Resonant periods of standing edge waves in a specified
wave tank. (seconds) (After Bowen, 1969).

Tank Width (ft.) ------ 1.0 Beach Slope ------ 0.05

Longshore Modal Number m: 1

Offshore Modal Number n:

2.80

1.61

1.25

1.06

2 3 4

1.98 1.62 1.40

1.14 0.94 0.81

0.89 0.73 0.63

0.75

Tank Width (ft.) ------ 1 5 Beach Slope ---- 0.10

Longshore Modal Number m:

Offshore Modal Number n:

1.98 1.40 1.15

1.14 0.81 0.60

0.89 0.63 0. 52

0

1

3

1 2 3

2



where b is the wave tank width, tan a the beach slope, m the long

shore modal number, and n the offshore modal number. The long-

shore modal number, m, is a result of the solid barriers which run

perpendicular to the shoreline and restrict the possible longshore

wave lengths of the standing edge wave (Figure 5-9). The offshore

modal number, n, is one of the results of shallow water edge wave

theory (Eckart, 1951) and equals the number of zeros of the surface

elevation in the direction perpendicular to shore. Although the modal

numbers most likely to occur cannot be theoretically predicted,

Bowen and Inman found that a normally incident wave train excited a

longshore mode that had a resonance period near the incident wave

period. Since many of the resonant edge wave periods are nearly the

same as those of the generated waves, the possibility of generating

edge waves may be considerable.

Measurements of eleven successive breakers in the Beach

Erosion Board wave tank (SIO Wave Report 47, 1945) had an average

breaker height of 0. 275 feet with heights ranging from 0. 245 feet to

0. 296 feet. This variation was attributed by the investigators to

seiching or surging along the length of the tank. However, since none

of the more recent experiments report seiching effects, the signifi-

cance of the surging on breaker parameters remains unresolved.

93'
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Variable Beach Slope

One oscillatory wave experiment contains measurements of

waves that have traveled over a spatially varying beach slope in which

a steep slope was seaward of a gentler slope (Figure 5-6). This

change in slope with distance from the beach has been termed the

'reef effect' (SIO Wave Report 47, 1945). The Berkeley wave tank

data (Munk, 1949) reported a constant beach slope of 0.009, but this

slope actually followed 4. 6 feet of 0. 45 slope. The Type II beach

slope (Figure 5-7) that was present in the study of Pacific Ocean

breakers is also an example of the reef-type slope. When the depth

shoreward of the discontinuity in slope increases towards shore, an

offshore bar is indicated.

For the Berkeley wave tank experiment, all of the waves but

one broke within one foot of the upper end of the steep slope, indi-

cating that the reef effect may cause early breaking, and early

breaking means an increase in the depth of breaking. In addition,

some of these waves reformed and broke again further inshore. It

may be concluded that breaker data for reef-type beach slopes are

not representative of measurements which would be obtained for the

gentler beach slope alone. Chapter VI reviews the results of breaker

measurements taken over reef-slopes for the Pacific Ocean study at

Scripps pier.



Nonuniformity of Experimental Design

One problem in comparing the results of two or. more experi-

ments is the lack of data which have identical initial wave heights,

water depths, or H
i
/h

i
,. This problem is important because of the

practice of reporting the breaker measurements as a function of the

theoretical deep water wave steepness. Since Iversen (1952a) has

shown that the small amplitude theory does not accurately predict

the change in wave height with decreasing depth for waves on con-

stant beach slopes, this practice is not a good one.

If all of the studies had used the same initial relative depth

(hi/L. ), then the error due to the use, of the theoretical wave steep-

ness would be constant. But a wide range of relative depths were

used (Table 5-3), and each relative depth has an associated error in

back-predicting the deep water wave steepness. An estimate of the

error which this has on the deep water wave steepness may be ob-

tained from Iversen (1952a), in which deep water waves were

generated and followed shoreward. For a beach slope of 0.054, his

results show that at a relative depth of 0. 15, H/Hc measured was

12% less than H/H predicted by Airy wave theory. This was the

largest difference for the three cases Iversen tested.

Another problem with experimental design was the use of

different definitions for breaker parameters. Table 5-9 shows three

95
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Table 5-9. Parameters with more than one definition.

Initial Wave Height

1. Measured vertical distance from crest to trough. Iversen

(1952a), Komar and Simmons (1968).

2. Computed from linear theory for the given displacement of

the wave generator. Galvin (1968).

Breaker Height

1. Measured vertical distance from breaker crest to trough

preceding crest. Iversen (1952a), Komar and Simmons

(1968).

Measured vertical distance between the maximum and mini-

mum water surface elevations at the breaker point.

Galvin (19 68).

3. Measured vertical distance from breaker crest to still

water level. Nicholson (1968).

Breaker Depth

1. Measured vertical distance from the bottom to the still

water level at the breaker point. Iversen (1952a), Komar

and Simmons (1968).

2. Measured vertical distance from the bottom to the mean

water level. Galvin (1968).

2.
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parameters which were defined in two or more ways. Galvin (1968,

1969) reported that his definition of the initial wave height predicted

higher values than Iversen's (1952a) definition, but he did not quantify

this statement. Also, the three different definitions of breaker

height lead to considerable confusion in comparing the studies:

for example, Nicholsen's breaker height definition yields Hb values

that are 25% to 40% lower than the values obtained using the Iversen

definition when applied to the data of Komar and Simmons (1968).
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CHAPTER VI

RESULTS OF SHALLOW WATER BREAKER EXPERIMENTS

The preceding chapter examined experimental methods of

studies concerned with progressive water waves breaking in shallow

water, and in Chapter IV, theoretical breaking criteria for shallow

water waves were reviewed. With this information as background,

the results of experiments on breaking waves are presented. Soli-

tary and osciallatory wave investigations are reviewed separately.

The measurements of ocean waves breaking on sand beaches con-

stitute the final section.

Review of Solitary Breaker Measurements

Water of Constant Depth

In Chapter IV estimates of the maximum ratio of H/h for the

limiting steady solitary wave were based on one of the following

conditions: (1) the horizontal particle velocity at the crest just

equaling the wave phase velocity, (2) the vertical particle velocity

near (but not at) the crest approaching zero as the ratio H/h in-

creases, or (3) the vertical pressure gradient beneath the crest

approaching zero as H/h increases. These estimates of (H/h)max

are listed in Table 4-1.
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None of these limiting conditions has been tested experimentally

for solitary waves in water of constant depth. In addition, very few

studies designed to verify these (H/h)
max values have been conducted.

During an investigation whose primary purpose was to measure

solitary breakers over sloping beaches, Ippen and Kulin (1955) did

run some tests to determine the highest stable wave in the constant

depth section of the wave tank. The largest, stable solitary wave had

an (H/h)max value of 0. 72. Confirmation of this value was reported

in 1969 by Camfield and Street who found (H/h)
max = 0.73. However,

neither of these studies published further details on this part of their

experiment, making a discussion of the reliability of these estimates

impossible.

Constant Beach Slope

Although there are no theoretical breaking criteria for solitary

waves shoaling over constant beach slopes, several experiments

(Ippen and Kulin, 1955; Carnfield and Street, 1966, 1969; Kishi and

Saeki, 1966) have measured the breaker height and depth of breaking

(where both are referenced to the still water level). The results of

these experiments are summarized in Figure 6-1. The curves in

Figure 6-la are visual best fits to the actual data points. General

trends to these solitary breaker measurements are:

1. Hb/hb increases with increasing beach slope.
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. Figure 6-la. Relation of Hb/hb to Hi/hi on various slopes.

(Kishi & Saeki, 1966)
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Figure 6-lb. Relation of Hb/hb to Hi/h. and the beach slope
for solitary waves. (c amfield & Street, 1966)
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2. Hb/hb increases with decreasing Hi/hi.

3. Breaking does not occur for beach slopes steeper than 0.15.

One exception to these general statements is that Hb/hb behaved

irregularly for H./h, less than 0.15 for all beach slopes.

Since both Hb and hb vary with beach slope and H1, /h1., the

changes in Hb/hb depend on the relative changes in and the absolute

values of the numerator (Hb) and denominator (hb). Using the data

of Ippen and Kulin (1955), Figure 6-2 was prepared to examine the

changes in Hb/hb with these two parameters. The initial water depth

(h
1
.) was chosen as the common denominator for Hb and hb because

of the ease in visualizing the effects of a decrease in the initial wave

height as the initial water depth is held constant; this is the process

of generating lower and lower waves over the same initial depth. The

separate curves of Hb/hi and hb/hi each decrease as Hi/hi decreases.

This is to be expected since (1) lower initial waves will travel further

up the beach before breaking, which decreases hb, and (2) the lower

initial wave heights result in lower HI relative to the constant initial

water depth.

These curves qualitatively explain the variation in Hb/hb for

decreasing Hi/hi for each beach slope. The curves of Hb/hi and

h,i for the 0. 023 beach slope are parallel and lie very close to

one another with Hb/hl slightly larger; Hb/hb is approximately equal

to 1.2. As the beach slope increases (Figure 6-2b and c), the hb/hi

101
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curve lies at progressively lower values; Hb/hb increases with beach

slope. The increase of Hb/hb with increasing beach slope and de-

creasing H,i /h1
, is primarily due to the lower depths of breaking.

The lower depths of breaking are qualitatively explained by the slow

rate of change of the wave deformation relative to the rate of travel

of the wave up the steep beach slopes.

Although these studies were primarily concerned with the

measurements of breaker heights and depths of breaking, the experi-

ments of Ippen and Kulin (1955) did include some measurements of

the breaker phase velocity and water particle velocity at the breaking

position. For a beach slope of 0. 023 and H.
1
/h

1
, = 0. 48, they obtained

umax/cb 0.85, and for a beach slope of 0. 065 and H. /h. = 0. 64,
1 1

umax/cb = 0.84.

The major results of the solitary breaker experiments are:

1. Measurements of (H/h)max for solitary waves in water of

constant depth are in good agreement with the theoretical estimates

of (H/h)max for solitary waves in water of constant depth limited by

the conditions described above. Unfortunately, the experiments do

not provide conclusive evidence determining which of the three

suggested breaking criteria may be correct.

2. Marked disagreement is found between measurements of

for initially solitary waves which break on constant beach

slopes and theoretical estimates of (H/h)max for solitary waves in
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water of constant depth. This is clearly shown in Figure 6-lb where

the disagreement is seen to increase with increasing beach slope.

However, Hb/hb does approach the theoretical (H/h)max value as the

slope decreases.

2. Review of Oscillatory Breaker Measurements

Water of Constant Depth

Theoretical breaking criteria for oscillatory waves in water of

constant depth are: (1) the horizontal particle velocity just exceeding

the wave phase velocity, (2) the vertical particle velocity near (but

not at) the crest approaching zero as H/h increases, and (3) the verti-

cal pressure gradient beneath the crest approaching zero as H/h in-

creases. Measurements of the parameters of maximum steady

oscillatory waves in water of constant depth include: wave height,

water depth, wave length, wave phase velocity, and the particle velo-

city at the crest. With these measurements, tests of u /max

(H/h)max(H/L) max" and cmax/cairy can be made.

The measurements and calculated ratios for these tests of the

theoretical breaking criteria obtained by Morison and Crooke (1953)

are given in Figure 6-3 and Table 6-1 and those of Danel (195Z) in

Figure 6-3. From this data it may be concluded that none of the

theoretical breaking criteria have yet been confirmed experimentally.
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The largest value of u max/c is 0. 33, and the maximum (H/h)max _

0.47. Figure 6-3, which compares (H/L) max values to the

theoretical curve of Miche (1944), is evidence that the experimental

points are consistently lower than the theoretical values. The

limiting wave steepness data of Danel were not described in any de-

tail in that paper, making impossible a discussion of the possible

reasons for the experimental values being lower than the theoretical

values. As noted by LeMehaute (1968) these wave steepness data are

in better empirical agreement with the relation
7r h(6-1) (H/L)max

= 0.12 tank 2 )
L

Constant Beach Slope

Since there are no theoretical predictions of the breaking para-

meters which take into consideration the sloping beach, this section

is limited to examining only empirical results. Appendix I contains

a list of the breaker measurements for waves on sloping beaches.

Because the Iversen (1952a) data have been relied upon for

nearly two decades as the major laboratory study of breaking waves,

it is important to determine if his measurements are true representa-

tives of breaking wave data. For this purpose, the unpublished study

of Komar and Simmons (1968) is considered to be the best test for

three reasons: (1) they used the same definitions for the breaker
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parameters as Iversen, (2) they reported the initial wave height and

initial water depth, and (3) they generally attempted to use the same

methods as Iversen.

The breaker measurements of interest are Hb and hb. These

are presented in the customary format (i. e. , Hb/H. vs. H. /L .

and Hb/hb vs. I /L. ) because attempts by this author to relate Hb

and hb to the measured parameters U., hi, and T did not produce any

additional insight (these attempts were made difficult by the failure

of both studies to report the breaker type, leaving unknown the

breaker shape).

Figure 6-4 is a plot of Hb/H . versus HOO /L. for the data of

Iversen (1952a). There appears to be a systematic relationship

between Hb/H. and the beach slope; Hb/H. increases with increasing

beach slope. Figure 6-5 is a similar plot for the data of Komar and

Simmons, and, in this case, there does not appear to be a systematic

trend to Hb/H . with respect to changes in the beach slope.

The beach slopes used by Iversen were 0.020, 0. 033, 0.050,

and 0. 10. Since Figure 6-4 gives only a qualitative indication of

the correlation, Table 6-2 was constructed to further test this

dependence. The Hb/H values in this table are averages of the

individual values in each H. /L.0 interval. The wave steepness

range was divided into, uniform intervals to avoid excessive weighting

by many Hb/H values which fall within a narrow interval of H., /LO
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Table 6-2. Average values of Hb/hb and Hb/H as a function of

beach slope (m) and deep water wave steepness (H./L.).

I. Hb/H (Iversen, 1952a)

0.0076- 0.0177- 0.0277- 0 0377- 0 0477-H./L. :
0.0176 0.0276 0.0376

.

0.0476
,

0.0580

m=0. 020 1.35 1.01 0.97 0.94 0.86
m=0.033 1.53 1.22 0.99 none none

m=0.050 1.53 1.27 1.18 1.02 none

m=0. 100 1.65 1.55 1.25 none 1.03

II. Hb/hb

1. Iversen (1952a)

0.0076- 0 0177- 0277-0 0 0377- 0 0477-H /L
CO CO 0.0176

.

0.0276
.

0.0376
.

0.0476
.

0.0580

m=0.020 0.88 0.87 0.81 0.85 0.84
m=0.033 0.74 0.82 0.75 none none
m=0.050 0.90 0.86 0.90 0.79 none

m=0. 100 1.13 1.23 1.00 none 0.79

2. Komar and Simmons (1.968)

0.0066- 0.0197- 0.0329- 0.0457- 0 0587-H./L. :
0.0196 0.0326 0.0456 0.0586

.

0.0716

m=0.036 0.83 0.82 0.80 0.93 0. 69

m=0.070 1.06 0.95 0.94 none 0.78
m=0.086 1.02 0.99 0.97 none 0.79
m=0.105 0.99 0.98 0.94 none 0.88



112

The range of H /L (i. e. , 0. 0076-0.058) was chosen because it is

the widest range which is covered by all four beach slopes; some of

the beach slopes have data beyond these limits while others do not.

The results in Table 6-2 confirm the dependence for the Iversen

data between Hb/H and the beach slope. Computing the average

Hb/H for each of the two extreme beach slopes, we obtain (Hb/H. )

1, 05 for m 0.02 and (Hb/H ) = 1. 37 for m = 0. 10.

The dependence of Hb/H. on the deep water wave steepness

was recently re-examined by Komar and Gaughan (1973). Using

Hb/hb = a b as a critical similarity criterion but without reference

to the solitary wave theory, applying instead Airy wave theory, and

assuming conservation of energy flux, they obtained the relationship
2/5

(( b)2(6-2) H = g T Hb 1 4 Tr

When Hb versus l /5
15

g is plotted for the data of Komar and

Simmons, the linear relationship

(6-3) HL = 0.39 g,l/5 (T2 )2/5

fits this data well, with very little scatter. The Iversen data, the

field measurements presented in Munk (1949), and the Galvin (1968)

data are also in good agreement with equation (6-3). By using the

relationship L. gT2/ZTr between the deep water wave length L.

and the period T, equation (6-3) can be modified to the

(H?

=



dimensionless form

(6-4) Hl-%/H = 0. 56 / (H /L.)

This relationship is similar to that obtained by Munk (1949)

using solitary wave theory, the principal difference being that

H /L,, is to the -1 /5 power rather than to the -1 /3 power. It is

also very close to the empirical equation of LeMehaute and Koh (1967)

which gives H./L to the -1/4 power. Figure 6-6 is the well-known

graph of Hb/H,o versus H / L. from Munk (1949) showing the line

from solitary wave theory fitting the data best for low FL /L

values and a line at high wave slopes from regular Airy wave theory.

Connecting the two, at intermediate values is an empirical line

through the data. Superimposed on this graph is the line (solid)

corresponding to equations (6-3) and (6-4). It is seen that this curve

fits the data very well over the entire range of H. /L values,

nearly lying atop the.empirical curve of Munk.

Figures 6-7 and 6-8 are graphs of Hb/hb, respectively, for the

measurements of Iversen and Komar and Simmons. For the Iversen

data, Hb/hb for the steepest beach slope (0. 10) is consistently larger

than Hb/hb for the other beach slopes, and, for the Komar and

Simmons data, Hb/hb for the lowest beach. slope (0. 036) is con-

sistently lower than Hb/hb for the larger beach slopes. Using the

same wave steepness intervals as before, Table 6-2(11) shows the

1/5

113.
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average Hb/hb within these intervals for each of the beach slopes.

The trend of increasing Hb/hb with increasing beach slope is not as

obvious as the trend of increasing Hb/HC ; the data for the inter-

mediate beach slopes (i. e. , 0. 033 and 0. 050) do not substantiate the

trend indicated by the data for the two extreme slopes. The average

Hb/hb for the two extreme beach slopes are 0. 85 for m = 0. 0.2 and

1.04 for m = 0.10. Table 6-2(2) constructed from the data of Komar

and Simmons shows essentially the same results. Again, the results

for the intermediate beach slopes do not conform to the trend exhibited

by the extreme slopes.

Although these data were not from experiments designed to

accurately test or determine breaking criteria, they do indicate the

general trends of Hb/hb and Hb/H as the beach slope and deep

water wave steepness are varied. The omission of the reporting of

breaker type hinders making any conclusions regarding the relation-

ship between the changes in wave shape as the wave shoals and

possible breaking criteria. A secondary conclusion resulting from

the comparison of the Iversen and Komar and Simmons data is that

the two sets of data are in general agreement although differing in

some details and are therefore to be relied upon. One unexplained

discrepancy is the trend of increasing Hb/H with increasing beach

slope present in the Iversen measurements and not present in the

Komar and Simmons measurements.

117
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This discrepancy between Iversen and Komar and Simmons may

be partially resolved by comparing their results to a third set of data.

For this purpose, the data of Galvin (1968) is best suited because it

has the widest range of beach slopes (0, 05 - 0, 20). Table 6-3 shows

the average values of Hb/Hc within uniform intervals of deep water

wave steepness for this data. Although the measurements are not

uniformly spread over these intervals, the results indicate that

Galvin' s data, like that of Komar and Simmons, do not substantiate

the slope dependence found in the Iversen data.

Since Galvin utilized different definitions for the breaker height

(Hb), depth of breaking (hb), and initial wave height (Hi) (see Chapter

V), the absolute values of Hb/H. are not directly comparable to

either of the other two sets of data. One further point of interest is

the continued increase in Hb/Ho with decreasing H./L.0 values at

H /L nearly an order of magnitude lower than the H /L con-
00 00 00

tained in either the Iversen or Komar and Simmons data.

A few measurements of the horizontal particle velocity and the

wave phase velocity at the crest were obtained by Morison and

Crooke (1953). These measurements are shown in Table 6-4, With

only three measurements for each slope, the dependence of umax/cb

on H /LOO cannot be fully determined, However, an estimate of the

slope dependence may be made; the average value of umax/cb = 0.79

is obtained for m = 0. 10 and 0. 63 for m = 0. 02. These calculations
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Table 6..3. Average values of Hb/H. as a function of beach slope
(m) and deep water wave steepness (H /L.).

m = 0. 050

M = 0. 10

m = 0.20

1. Hb/H . (Galvin, 1968)

0.0007- 0. 0118. 0.0228- 0.0338- 0.0448-
0,0117 0.0227 0, 03 37 0,0447 0.0557

2,84 1.50 none none 1.94

2.08 1.25 none 1.07 0.89

1.91 none none 1.02 1.13

Table 6-.4. Measurements of breaking waves (Morison and
Crooke, 1953).

Slope
hb

H /L
Cb

Ct
umax

C /C u /Cft ft/sec ft/sec ft/sec b t max b

0.10 0. 252 0.0036 3,45 2.86 2.9 1,21 0. 84

0.10 0. 300 0.0206 4.65 3.12 3.9 1.49 0.84

0.10 0. 423 0.0797 3. 55 3.69 2.4 0.99 0.68

0.02 0. 297 0.0037 3.80 3.08 2.6 1.24 0.68

0.02 0. 330 0.0262 4.00 3.26 2.3 1.23 0. 58

0.02 0. 230 0.0778 3, 50 2. 70 2. 2 1.30 0. 63
-wn r --,. . -T --- RT -- -T -R RR ww

*Ct = (ghbja-
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suggest that there may be a tendency for umax/c
b

to increase with

increasing beach slope. Morison and Crooke did not report the size

of the water particles at the crest whose velocities were measured.

Since larger particles may have smaller velocities because more

fluid is involved, the low values of these umax/cb
calculations may

be due to this reason.

3. Review of Ocean Breaker Measurements

The only ocean breaker experiments were those designed to

obtain information useful to amphibious landing operations during

World War II (SIO Wave Report No, 24, SIO Wave Report No. 47,

1944). A s a result the data contain considerable scatter which was

attributed to the measuring techniques in the original reports.

Appendix I contains a list of these measurements.

When Hb/H. (or Hb/hb) is plotted as function of H
00

/L0

the amount of scatter present for a given wave steepness is very

great (Figure 6-6). For this reason, the data are presented without

the wave steepness dependence (Figure 6-9). Since the WHOI data

were only reported in terms of the ratio Hb/hb, they are not shown

in this plot. In Figure 6-9, the Type I symbol refers to waves

breaking over an approximately uniform 0. 04 beach slope, and the

Type II symbol refers to waves breaking after they have traveled

past the abrupt transition between the 0. 04 beach slope and the
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flatter slope inshore (see Chapter V). To provide a convenient

reference, a line with a slope of 0. 78 is drawn in Figure 6-9. This

line represents the theoretical (H/h)mar value derived by McCowan

for a solitary wave in water of constant depth limited by the kine-

matic criterion.

Although the ocean breaker measurements are approximately

uniformly scattered about the theoretical line, the Type II data fall

primarily below the line and the Type I data fall mostly above the

line. The average values of Hb/hb for Types I and II are,

respectively, 0. 82 and 0. 67. The lower Hb/hb value for the Type II

breakers has been shown (SIO Wave Report No. 47) to be due to the

increase in hb. Because the wave apparently deforms past an

irreversible shape on the outer steep beach, it continues to deform

and eventually break even though the beach suddenly flattens. If the

steep beach slope was continuous, then the same initial wave would

travel into much shallower water before reaching the breaking posi-

tion since the spatial rate of depth decrease would be greater.

The average Hb/hb for the WHOI data of Atlantic Ocean

breakers is 0. 96. Since no information is available on the experi-

mental methods of this study, it is impossible to determine why

Hb/hb is larger than the Pacific Ocean Hb/hb values.

These ocean breaker studies are not adequate for determining

the applicability of theoretical breaking criteria to ocean waves..
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Experiments which are both more accurate and more detailed are

needed. In addition, laboratory experiments designed to measure

the effect of variable beach slopes on breaker characteristics would

be helpful.



CHAPTER VII

CONCLUSIONS

The purpose of this thesis was to evaluate the present state of

knowledge of breaking criteria for progressive surface gravity waves.

The conclusions below are meant to be an appraisal of this know-

ledge based on the review of theory and measurements given in the

previous chapters.

Deep Water Wave Breaking Criteria

Only one limiting condition has been applied to deep water waves

as a breaking criterion, the kinematic breaking criterion, in which

the horizontal particle velocity at the crest just equals the wave phase

velocity. In addition, relatively simple wave theories (based on the

motion being inviscid, irrotational, incompressible, surface tension

free, and two-dimensional) have been employed. Even utilizing these

simple wave theories, the studies disagree on some of the derived

wave properties; for example, theoretical estimates of the vertical

particle acceleration at the wave crest range from zero to g, the

gravitational acceleration. Measurements of maximum height waves

in deep water may resolve some of these discrepancies. No such

measurements have been obtained to date. Important to the advance-

ment of knowledge of ocean waves is the theory and measurement of

124
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wave breaking in the presence of other waves, particularly wave

breaking in a random sea.

Shallow Water Wave Breaking Criteria

The conclusions regarding shallow water breaking criteria are

divided into three sections: (1) theoretical shallow water wave

breaking criteria (Chapter IV), (2) experimental methods of mea-

suring shallow water breaking waves (Chapter V), and (3) measure-

ments of shallow water breaking waves (Chapter VI).

1. Theoretical shallow water wave breaking criteria. Three

breaking criteria have been suggested for maximum height steady

waves in shallow water of constant depth; (1) the kinematic break-

ing criterion, (2) the reversal of the vertical water particle velocity

near the crest as the ratio of wave height to water depth, H/h, in-

creases, and (3) the reversal of the vertical pressure gradient

beneath the crest as H/h increases. Cnoidal, stokes, and solitary

wave theories were employed. Again, as was true for deep water

waves, there are disagreements between the values of the derived

wave properties from the numerical stream function approach

(Dean, 1968) and the 'classical' approach (Rankine, 1864; Stokes,

1880; Chappelear, 1959). Somewhat better agreement is found

between the several theoretical estimates of (H/h) for maximummax
height solitary waves; these values range from 0. 73 to 1. 03. There
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is as yet no apriori argument that identifies whether any of the

breaking criteria listed above is the actual cause of limiting wave

growth.

There are two breaking criteria which have been utilized for

shoaling waves; the kinematic breaking criterion and the presence

of a vertical surface. Unfortunately, the emphasis of these

theoretical studies has been placed on the unrealistic concept of a

wave front (defined on page 31) used in conjunction with the long wave

theory that is not considered adequate near the breaking position.

Experimental methods. Methods, procedures, and re-

porting of experiments on shallow water breaking waves must be

improved. A first step would be to standardize definitions of

important parameters such as the breaking position, initial wave

height (Hi), breaker height (Hb), and depth of breaking (hb) so that

results from different experiments may be compared. Since the

breaking phenomenon cannot be completely isolated from other fluid

motions (such as backwash, solitons, reflected waves, and edge

waves & rip currents), a second step would be to monitor these

possible interferences to determine their effect on the breaker

measurements. Two important improvements in the reporting of

breaker measurements would be to include the breaker type, which

is a measure of the breaker shape, and the individual breaker

measurements. The individual measurements are important

2.
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because they indicate the variability in relation to the time sequence

of breakers. Finally, more accurate and precise measuring techni-

ques need to be developed if the fundamental breaking criterion are

to be determined. In particular, a technique to measure water

particle velocities and accelerations accurately is required.

3. Measurements of shallow water breaking waves. Measure-

ments of the breaker height, Hb, and the depth of breaking, hb,

for solitary waves in water of constant depth yield H /hb values that

are in agreement with the range of theoretical estimates of

(H/h)
.

Experiments on shoaling solitary waves show that:max
(1) Hb/hb increases as the beach slope increases, the ratio being

higher than the theoretical (H/h)max, (2) Hb/hb increases as the

ratio of the initial wave height to water depth, H./h., decreases,

and (3) breaking does not occur on beach slopes steeper than 0. 15.

However, Hb/hb does smoothly approach the theoretical (H/h)max

as the beach slope decreases.

Measurements of oscillatory waves in water of constant depth

do not confirm any - of the theoretical breaking criteria; the

largest value of the ratio of the horizontal particle velocity at the

crest to the wave phase velocity is 0'. 33. The derived wave pro-

perties are, in general, greater than the values obtained from lab-

oratory experiments. Much needed improvements in the measuring

techniques may require a revision of these conclusions.
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Since there are no theoretical breaking criteria for shoaling

oscillatory waves, measurements have concentrated on describing

the general trends of the ratio of the breaker height to the small

amplitude deep water wave height, Hb/H., as a function of the deep

water wave steepness, H /Lo, and the beach slope (Chapter VI).0

The measurements of Iversen (1952a), Komar and Simmons, and

Galvin (1968) are considered adequate for this purpose. Once

theoretical breaking criteria and derived wave properties have been

developed for shoaling oscillatory waves, further experimentation

will be necessary to test the new theories.

Past measurements of ocean breakers are not sufficient to

determine the applicability of present theoretical breaking criteria

to shoaling ocean waves. More accurate and complete measure-

ments of all the breaking parameters are needed.
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APPENDIX I

Wave Data

Contained in this appendix are the oscillatory wave tank and

ocean measurements from the studies included in this review. The

symbols used in the headings are defined in Chapter V of the text.

The first table contains all of the wave tank experiments. The next

table contains all of the data from the field experiments.
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Wave parameters measured or computed
in wave tank experiments

T
hi

sec cm

Hi Hb swl hb H ./L.
cm cm cm cm

Komar and Simmons (1968)

0.036 1.14 30.63 6.36 7.38 5.89 9.25 0.034 1.06 0.798
0.036 1.65 30.63 6.36 8.27 7.21 10.85 0.0155 1.26 0.762
0.036 2.37 30.63 6.36 10.58 8.73 12.05 0.0066 1.82 0.878
0.036 1.14 30.63 9.00 9.14 7.15 12.46 0.049 0.93 0.734
0.036 1.14 30.63 13.1 12.24 9.31 17.73 0.071 0.86 0.690
0.036 1.65 30.63 9.0 11.59 9.54 13.33 0.022 1.24 0.869
0.036 1.65. 30.63 13.1 16.51 12.75 21.30 0.032 1.22 0.775
0.036 2.37 30.63 8.5 13.65 11.38 15.78 0.0089 1.75 0.865
0.036 1.65 30.63 13.1 16.55 12.75 21.20 0.032 1.22 0.781
0.036 2.37 30.63 8.5 13.65 11.38 15.78 0.0089 1.75 0.865

0.070 1.14 30.63 13.1 12.65 9.22 16.20 0.071 0.88 0.781
0.070 1.65 30.63 13.1 15.90 12.40 16.40 0.032 1.17 0.970
0.070 2.37 30.63 8.5 14.04 10.30 14.00 0.0089 1.80 1.003
0.070 0.81 30.63 6.36 5.82 4.58 7.75 0.067 0.87 0.751
0.070 0.81 30.63 3.03 3.40 2.64 3.95 0.031 1.06 0.861
0.070 1.14 30.63 6.36 6.91 5.24 7.39 0.034 0.99 0.935
0.070 1.14 30.63 3.03 4.07 3.23 3.89 0.016 1.23 1.046
0.070 1.65 30.63 6.36 9.60 7.70 8.86 0.0155 1.46 1.084
0.070 1.65 30.63 3.03 5.50 4.30 4.85 0.0074 1.75 1.134
0.070 2.37 30.63 6.36 11.34 8.45 10.94 ,0.0066 1.95 1.037
0.070 2.37 30.63 3.03 5.50 3.59 5.28 0.0032 1.98 1.042
0.070 2.37 30.63 9.00 9.52 7.24 11.00 0.0094 1.16 0.865
0.070 1.14 30.63 13.1 13.24 9.60 15.80 0.071 0.92 0.838
0.070 1.65 30.63 13.1 15.60 12.20 15.10 0.032 1.15 1.033

0.086 2.37 30.63. 6.36 9.64 6.67 9.77 0.0066 1.66 0.987
0.086 2.37 30.63 3.03 5.41 3.10 5.13 0.0032 1.95 1.055
0.086 2.37 30.63 8.50 14.15 10.00 13.00 0.0089 1.81 1.088
0.086 1.14 30.63 13.1 12.63 9.25 16.20 0.071 0.88 0.780
0.086 1.65 30.63 13.1 14.73 11.66 15.50 0.032 1.08 0.950
0.086 1.14 30.63 3.03 4.19 2.97 4.11 0.016 1.26 1.019
01086 1.65 30.63 6.36 8.96 6.37 9.01 0.0155 1.36 0.994
0.086 1.65 30.63 3.03 5.78 4.08 5.80 0.0074 1.84 0.997
0.086 0.81 30.63 6.36 5.94 4.49 7.44 0.066 0.89 0.798
0.086 0.81 30.63 3.03 3.43 2.48 3.43 0.031 1.07 1.000
0.086 1.14 30.63 6.36 7.74 5.87 7.95 0.034 1.11 0.974

H

m b

1.
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m T

sec cm

H.
1

cm cm cm

hb

cm

I /L.

1. Komar and Simmons, continued
0.105 1.65 30.63 6.36 8.91 6.07 8.40 0.0155 1.36 1.061
0.105 1.65 30.63 3.03 4.76 2.80 4.90 0.0074 1.52 0.971
0.105 1.14 30.63 6.36 7.56 5.34 8.03 0.034 1.09 0.941
0.105 0.81' 30.63 6.36 5.03 3.67 6.11 0.0665 0.75 0.823
0.105 0.81 30.63 3.03 3.53 2.36 3.64 0.031 1.10 0.970
0.105 2.37 30.63 6.36 9.27 4.96 9.72 0.0066 1.59 0.954
0.105 2.37 30.63 3.03 5.35 2.64 5.85 0.0032 1.92 0.915
0.105 1.14 30.63 13.1 14.27 10.20 15.20 0.071 0.99 0.93
0.105 1.65 ' 30.63 13.1 17.04 11.80 17.00 0.032 1.25 1.002

2. Iversen (1952a)

0.020 2.43 47.00 7.07 10.8 -- 0.0074 1.58 --
J.020 2.65 47.00 7.41 12.1 15.60 0.0065 1.70 0.780
0.020 1.00 47.00 10.60 9.24 12.29 0.0718 0.91 0.752
0.020 1.13 47.00 8.60 9.06 10.70 0.0465 0.98 0.850
0.020 1.17 47.00 7.40 8.36 9.78 0.0376 1.04 0.854
0.020 1.62 47.00 6.95 8.18 9.31 0.0190 1.05 0.876
0.020 1.74 47.,00 5.80 8.64 10.18 0.0130 1.41 0.847
0.020 2.65 47.;00 5.66 9.76 12.86 0.0049 1.82 0.758
0.020 0.81. 47.00 9.17 7.62 -- 0.0907 0.82 --
0.020 0.90 47.00 8.50 6.'17 9.94 0.0706 0.76 0.681
J.020 0.95 47.00 6.77 5.83 6.95 0.0504 0.82 0.839
0.020 1.00 47.00 7.01 6.65 -- 0.0474 0.90 --
0.020 1.00 47.00 5.55 5.64 -- 0.0376 0.96 --
0.020 1.30 47.00 7.35 7.56 10.00 0.0305 0.94 0.756
0.020 1.35 47.00 5.80 6.07 7.05 0.0223 0.96 0.861
0.020 2.60 47.00 5.49 6.34 6.76 0.0092 1.10 0.936
0.020 1.90 47.00 3.93 5.52 6.46 0.0074 1.32 0.854
0.020 2,25 47,00 5.12 6.62 -- 0.0065 1.29 --

0.033 1.05 50.30 10.85 10.70 14.64 0.0665 0.94 0.729
0.033 '2.37 50.0 7.00 12.70 15.55 0.0080 1.81 0.814
0.033 1.24 48.1 7.76 8.39 11.12 0.0353 0.99 0.754
0.033 1.46 47.2 6.52 8.69 10.67 0.0214 1.22 0.815
0.033 1.87 -45.7 5.15 7.99 11.37 0.0099 1.48 0.703
0.033 2.03 45.4' 5.27 7.71 10.20 0.0084 1.43 0.751
0.033 2.67 46.4 5.00 8.84 11.30 0.0043 1.85 0.785
0.033 1.49 43.9 4.39 6.86 .8.24 0.0138 1.44 0.834
0.033 1.60 42.6' 3.38 5.34 7.92 0.0093 1.44 0.674
0.033 1.79 42.6 3.50 5.49 7.92 0.0074 1.48 0.694

h.
--b
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m T hi Hi Hb

sec cm cm cm
Hb/hbswb hb H ./L Hb/H

00

cm cm

2. Iversen, continued

0.033 2.10 43.9 3.50 6.56 8.37 0.0052 1.83 0.782
0.033 2.29 43.5 3.54 7.01 8.55 0.0042 2.04 0.822
0.033 2.52 43.5 3.57 6.10 8.07 0.0035 1.76 0.755
0.033 2.52 43.2 2.84 5.79 7.00 0.0027 2.16 0.826
0.033 2.65 43.0 2.96 5.49 7.44 0.0025 2.00 0.737

0.050 1.40 54.9 10.07 12.8 16.14 0.0360 1.16 0.792
0.050 1.50 48.8 9.08 12.2 14.00 0.0280 1.24 0.870
0.050 1.59 48.8 7.80 12.2 14.63 0.0210 1.48 0.834
0.050 1.89 47.8 6.85 11.6 13.40 0.0130 1.60 0.864
0.050 2.24 47.8 5.88 11.0 11.90 0.0076 1.85 0.925
0.050 1.04 53.3 11.68 10.7 16.50 0.0730 0.87 0.649
0.050 1.15 48.8 9.30 9.45 11.90 0.0480 1.05 0.795
0.050 1.26 47.8 7.92 10.1 10.40 0.0350 1.16 0.971
0.050 1.33 48.8 7.25 9.14 10.40 0.0290 1.14 0.884
0.050 1.41 47.5 6.15 8.24 10.05 0.0220 1.20 0.819
0.050 1.67 46.0 5.43 8.24 8.84 0.0130 1.45 0.931
0.050 1.93 45.4 4.39 7.62 7.62 0.0079 1.66 1.000
0.050 0.74 47.2 6.52 5.79 8.84 0.0767 0.88 0.660
0.050 0.93 45.7 6.29 6.40 8.25 0.0480 0.99 0.780
0.050 1.03 45.7 5.65 5.49 7.62 0.0360 -- 0.720
0.050 1.12 45.7 5.03 5.79 7.02 0.0270 1.10 0.826
0.050 1.17 45.7 4.42 6.10 6.41 0.0220 1.30 0.953
0.050 1.34 45.7 3.35 4.27 4.87 0.0130 1.17 0.875
0.050 1.55 44.8 2.86 4.57 5.48. 0.0083 1.47 0.834

0.100 1.00 70.1 11.90 12.20 12.50 0.0774 1.01 0.976
0.100 1.00 70.1 11.90 12.20 12.50 0.0774 1.01 0.976
0.100 1.51 68.0 6.70 11.30 9.15 0.0206 1.55 1.231
0.100 1.73 68.5 7.04 11.00 9.75 0.0165 1.43 1.124
0.100 1.00 71.0 12.20 10.70 13.72 0.0797 1.86 0.778
0.100 0.92 68.0 7.64 7.90 10.05 0.0581 1.03 0.788
0.100 1.98 68.3 4.27 9.46 9.15 0.0076 2.04 1.031
0.100 1.98 68.0 3.99 $.84 7.92 0.0071 2.03 1.118
0.100 0.80 68.0 6.10 6.40 8.84 0.0614 1.05 0.725
0.100 1.11 68.0 5.12 6.70 6.71 0.0280 1.25 1.000
0.100 1.27 66.2 3.93 6.70 5.49 0.0167 1.60 1.223
0.100 1.26 66.2 3.48 5.80 4.89 0.0150 1.56 1.189
0.100 1.45 66.2 3.75 6.10 5.49 0.0125 1.49 1.112
0.100 1.26 65.5 2.59 4.90 4.27 0.0112 1.76 1.142
0.100 2.10 67.8 3.44 7.00 8.53 0.0054 1.88 0.822
0.100 2.50 68.0 3.38 7.30 7.32 0.0038 1.97 1.000
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Hb

m T hi
Hi

Hb
swl hb H./1& Hb/H. H

b
A

b
sec cm cm cm cm cm

3. Berkeley Wave Tank (Munk, 1949)

0.009 1.05 10.21 9.97 14.32 0.0590 0.98 0.698
0.009 1.09 9.60 9.75 14.29 0.0510 1.03 0.680
0.009 1.35 8.23 9.84 14.51 0.0290 1.23 0.675
0.009 1.50 6.77 9.39 14.45 0.0190 1.39 0.685
0.009 1.98 4.57 8.72 11.80 0.0070 1.91 0.740

0.054 0.86. 10.21 9.17 13.84 0.0880 0.89 0.685
0.054 0.96 9.69 9.11 11.06 0.0670 0.94 0.826
0.054 1.34 7.31 8.26 7.48 0.0260 1.13 1.111
0.054 1.50 6.25 7.92 7.48 0.0180 1.27 1.064
0.054 1.97 4.08 6.83 6.31 0.0070 1.67 1.088

0.072 0.09 10.70 9.88 12.56 0.0920 0.92 0.787
0.072 1.15 9.20 9.84 10.70 0.0450 1.07 0.918
0.072 1.22 8.66 9.94 9.51 0.0370 1.15 1.041
0.072 1.50 6.41. 9.45 8.23 0.0180 1.46 1.124
0.072 1.54 6.06 8.72 8.32 0.0160 1.44 1.052
0.072 1.97 4.48 8.23 7.13 0.0070 1.83 1.150

4. Beach Erosion Board (Munk, 1949)

0.030 1.03 3.62 4.27 6.10 0.0218 1.18 0.700
0.030 1.03 4.88 5.42 7.92 0.0296 1.11 0.685
0.630 0.85 3.05 3.26 4.57 0.0273 1.07 0.715
0.030 1.03 2.65 3.44 4.66 0.0159 1.13 0.741
0.030 1.03 5.49 5.06 8.14 0.0331 0.92 0.622
0.030 0.85 3.96 3.75 5.21 0.0354 0.95 0.719
0.030 0.75 3.05 3.29 5.12 0.0350 1.08 0.645
0.030 0.85 4.42 4.05 6.31 0.0403 0.92 0.642
0.030 0.75 4.27 3.08 4.30 0.0496 0.72 0.714

0.049 1.08 4.97 6.49 5.52 0.0271 1.31 1.178
0.049 1.08 3.81 5.12 4.33 0.0209 1.35 1.190
0.049 0.96 3.57 4.30 4.48 0.0249 1.21 0.962
0.049 1.08 5.70 6.64 8.08 0.0315 1.17 0.819
0.049 0.97 4.94 6.22 6.70 0.0352 1.26 0.926
0.049 1.08 7.31 8.38 10.45 0.0400 1.15 0.800
0.049 :0.95 6.52 6.89 8.84 0.0453 1.06 0.782
0.049 0.73 3.66 .4.36 5.36 0.0422 1.19 0.814
0.049 1.08 9.87 10.03 13.90 0.0540 1.02 0.725
0.049 0.97 7.31 7.89 9.75 0.0500 1.08 0.806



140

m T hi H. Hb
Hb

swl hb H,,./L,. I/IL Hb/hb
sec cm cm cm cm cm

4. Beach Erosion Board, continued

0.049 0.75 5.06 4.42 5.52 0.0566 0.87 0.80
0.049 0.74 5.03 4.75 6.28 0.0554 0.95 0.757
0.049 0.75 5.18 4.85 6.43 0.0576 0.94 0.752
0.049 1.08 12.25 13.04 18.65 0.0670 1.06 0.700
0.049 0.97 9.02 9.02 11.28 0.0652 0.95 0.800

0.159 0.97 3.26 3.53 4.84 0.0230 1.08 0.730
0.159 1.08 5.02 5.18 5.82 0.0284 1.03 0.894
0.159 1.08 3.75 4.30 4.36 0.0207 1,15 0.981
0.159 1.08 7.16 6.43 10.18 0.0394 0.90 0.633
0.159 1.08 5.85 5.12 8.23 0.0331 0.88 0.622
0.159 0.97 5.88. 5.45 8,23 0.0413 0.93 0.663
0.159 0.75 3.44 3.35 4.36 0.0402 0.97 0.769
0.159 0.74 3.87 3.93 5.33 0.0446 1.02 0.741
0.159 0.96 7.62 7.98 10.18 0.0529 1.05 0.787
0.159 0.74 5.18 4.85 5.82 0.0592 0.94 0.834
0.159 1.09 10.05 9.36 11.12 0.0546 0.93 0.840
0.159 0.97 9.11 9.48 12.59 0.0626 1.04 0.752
0.159 1.09 12.10 12.13 16.95 0.0651 1.00 0,714

5. Morison and Crooke (1953)

0.100 2.50 7.31 7.69 0.0036 0.952
0.100 1.51 11,30 9.15 0.0206 1.231
0.100 1.00 10..67 12.90 0.0797 0.827
0.020 2.62 8.05 9.05 0.0037 0.889
0.020 1.41 8.41 10.05 0.0262 0.837
0.020 0.78 5.58 7.00 0.0778 0.794

Galvin (1968)

0.050 1.00 30.5 7.44 7.2 0.0476 0.97
0.050 2.00 30.5 5.58 9,4 0.0089 1.68
0.050 4.00 30.5 4.01 11.30.0016 2.82
0.050 5.00 30.5 3,58 11.9 0.0009 3.32
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m T hi H. Hb sw1 hb H

00 00
/L }/H Hb/hb

sec cm cm cm cm cm

7. Galvin (1969)

0.050 2.00 30.5 9.4 10.20.92
0.050 4.00 30.5 11.3 10.11.12
0.050 5.00 30.5 11.9 10.9 1.07
0.050 4.00 38.1 17.7 16.21.09
0.050 5.00 38.1 15.9 14.5 1.09
0.050 6.00 38.1 13.6 13.4 1.01
0.050 6.00 35.0 14.0 18.20 0.77

0.200 1.00 22.9 6.2 6.2 1.00
0.200 1.00 30.5 9.2 8.0 1.14
0.200 1.00 38.1 9.0 8.1 1.11
0.200 2.00 38.1 6.9 6.3 1.10

0.100 1.00 22.9 6.52 6.10 1.07
0.100 2.00 22.9 3.84 3.94 0.98
0.100 5.00 22.9 14.20 8.85 1.60
0.100 6.00 22.9 10.01 7.75 1.31
0.100 1.00 30.5 7.16 6.19 1.16
0.100 2,00 30.5 4.33 4.00 1.08
0.100 2.00 30.5 11.79 9.02 1.30
0.100 5.00 30.5 14.90 10..00 1.50
0.100 2.00 38.14.52 4.51 1.00
0.100 2.00 38.19.35 11.42 0.82
0.100 4.00 38.1 14.50 10.40 1.38
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Wave parameter measured or computed
in field experiments (Munk, 1949)

T HM H
sec

Scripps i Leica Type I

13.7 123. 225. 225.5 0.0042 1.85 1.00
12.0 94. 146.3 161.5 0.0042 1.55 0.91
13.3 124. 164. 231.6 0.0045 1.35 0.77
12.7 128. 225.§ 277.4 0.0051 1.76 0,81
12.2 118. 195. 219.4 0.0051 1.64 0.88
10.2 83. 121. 155.4 0.0051 1.48 0.78
11.6 109. 213. 265.2 0.0052 1.95 0.81
12.0 119. 176. 228.6 0.0053 1.49 0.77
11.5 136. 231. 277.4 0.0066 1.46 0.83
10.0 128. 170, 201.2 0.0082 1.34 0.85
10.0 128. 201. 201.2 0.0082 1.57 1.00
10.0 131. 170. 198.1 0.0084 1.19 0.86
11.2 164. 201., 231.6 0.0084 1.22 0.87
9.2 111. 140.E 173.7 0.0084 1.28 0.81
9.0 107. 158. 222.5 0.0085 1.49 0.71

10.2 141. 201. 298.7 0.0087 1.44 0.67
10.5 155. 262. 313.9 0.0090 1.69 0.83
10.0 147. 201. 219.4 0.0094 1.37 0.92
9.5 132. 146. 216.4 0.0094 1.12 0.68
9.6 141. 213. 222.5 0.0098 1.71 0.96
9.5 144. 176. 201.2 0.0102 1.23 0.88
9.4 130. 195. 249.9 0.0107 1.33 0.79
9.5 154. 243. 298.7 0.0109 1.60 0.81
9.6 157. 219.4 286.5 0.0109 1.41 0.76

10.3 187. 243. 298.7 0.0113 1.31 0.82
10.5 196. 274.3 387.1 0.0114 1.41 0.71
10.5 200. 219.6 329.2 0.0116 1.22 0.67
9.6 171. 268.2 371.8 0.0119 1.57 0.72
9.8 183. 213.4 268.2 0.0122 1.17 0.79
8.1 127. 140.2 182.9 0.0124 1.12 0.77

10.3 206. 286.5 304.8 0.0124 1.40 0.94
9.0 167. 207.3 296.0 0.0132 1.26 0.70
9.4 190. 256.0 268.2 0.0138 1.36 0.95
9.0 191. 207.3 182.9 0.0139 1.19 1.14
7.7 130.' 152.4 240.8 0.0140 1.19 0.63
9.0 178. 298.7 335.3 0.0141 1.66 0.89
8.5 159. 182.9 240.8 0.0141 1.15 0.76
8.8 180. 237.7 246.9 0.0149 1.35 0.96
8.8 182. 219.4 256.0 0.0151 1.22 0.85

cm cm 11 cm
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T

sec

Hb hb H./L
00

Hb/H
00

Hb/hb

cm cm cm

Scripps Leica Type I, continued

10.0 236. 243.8 369.0 0.0151 1.29 0.66
8.0 153. 176.8 195.1 0.0153 1.18 0.91
7.2 128. 201.2 256.0 0.0158 1.61 0.79
9.0 216. 243.8 271.3 0.0171 1.13 0.90
8.0 175. 188.9 213.4 0.0175 1.12 0.88
9.2 232. 262.1 371.8 0.0176 1.13 0.70
8.8 216. 237.7 280.4 0.0179 1.11 0.85
8.5 204. 298.7 277.4. 0.0181 1.44 1.08
8.0 194. 219.4` 262.1 0.0194 1.14 0.83
7.5 173. 237.7 320.0 0.0197 1.37 0.74
9.0 252. 347.5 368.8 0.0200 1.39 0.94
8.2 246. 304.8 344.4 0.0235 1.25 0.88
7.5 210. 274.3 341.4 0.0239 1.34 0.81
7.2 193. 243.8 301.8 0.0239 1.29 0.81
8.0 242. 286.5 301.8 0.0243 1.18 0.95
6.5 187. 219.4 249.9 0.0284 1.01 0.88
7.8 300. 335.3 445.0 0.0316 1.12 0.75

Scripps Leica Type II

13.0 121. 177. 314. 0.0046 1.45 0.56
12.5 149. 195. 302. 0.0061 1.31 0.64
12.0 166. 232. 323. 0.0074 1.38 0.72
10.5 151. 220. 372. 0.0088 1.47 0.59
11.2 178. 250. 347. 0.0091 1.39 0.72
10.0 143. 183. 354. 0.0092 1.28 0.52
10.0 145. 183. 332. 0.0093 1.25 0.55
8.8 118. 128. 168. 0.0098 1.11 0.76
9.3 135. 238. 363. 0.0100 1.77 0.65
9.6 152. 256. 344. 0.0106 1.68 0.74

10.5 184. 232. 350. 0.0107 1.27 0.66
10.0 172. 210. 372. 0.0110 1.24 0.56
9.5 166. 238. 283. 0.0118 1.41 0.84
8.9 154. 250. 360. 0.0125 1.64 0.70
,9.0 163. 232. 335. 0.0129 1.43 0.72
9.0 173. 226. 317. 0.0137 1.32 0.72
8.0 191. 232. 344. 0.0191 1.25 0.67
7.0 199. 274. 332. 0.0260 1.38 0.83
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Woods Hole

HCO/LCO

0.0055 1.60 1.28
0.0072 1.37 0.81
0.0074 1.44 0.57
0.0082 1.66
0.0083 1.80
0.0083 1.45
0.0104 1.31 0.95
0.0110 1.77 1.19
0.0114 1.36 0.74
0.0114 1.28 1.16
0.0115 1.68 0.92
0.0116 1.55 0.98
0.0120 1.90
0.0120 1.75
0.0125 1.35
0.0126 1.00 1.02
0.0130 1.49
0.0130 1.29
0.0132 1.36
0.0135 1.18 0.72
0.0139 1.70 1.08
0.0144 1.30 0.78
0.0161 1.47
0.0161 1.17
0.0170 1.00
0.0170 0.97
0.0176 1.06 0.90
0.0188 1.47
0.0188 1.37
0.0188 1.33
0.0188 1.28
0.0188 1.25
0.0204 1.58 0.94
0.0210 1.55
0.0211 1.38
0.0214 1.17
0.0235 1.50 1.18
0.0284 0.97 1.00

b




