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DESIGNING AND BUILDING A BLUETOOTH CONTROLLED BLIMP WITH 

AUTONOMOUS CAPABILITIES

INTRODUCTION

Problem Background

Hewlett-Packard came up with the initial idea to design an inertial navigation 

blimp that would be semi-autonomous, capable of flying a pre-determined 3D route 

within a large structure or building. The blimp would consist of three, one-axis 

accelerometers capable of effective navigation. Our team of engineers, consisting of 

myself, Chris Stoddard, and Cyrus Heick, took this initial concept, expanding on it as 

well as focusing it to address a particular problem.

We wanted to develop a blimp that could be flown manually or autonomously, 

capable of maneuvering intelligently through the use of various sensors. While small 

helicopters can be used to successfully navigate the interior of a structure and achieve the 

same purpose, they consume a large amount of power and cannot be flown for sustained 

periods of time. However, a blimp outfitted with a proper propulsion system and sensors 

can stay in the air longer and cover a greater amount of territory, all while gathering 

useful data specific to a particular, separate application.

After the basic functionality was in place, we felt we could improve on the design 

by changing the manual control mechanism over to a typical video game controller. The 

controller would have to be connected to the same computer system monitoring the 

blimp’s activities, but would allow for natural, intuitive steering and control of the 
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blimp’s propulsion system. As autonomous navigation was one of the driving forces 

behind the project inception, we also documented our challenges with incorporating the 

Dead Reckoning system that governed the navigation system and proposed possible ideas 

for improvement.

Method

To solve the problem of designing a fully controllable and autonomous blimp, we 

broke the hardware and software into multiple sub-systems. The largest blocks consisted 

of the following: Power Supply, User Interface, Bluetooth Transceiver, Microcontroller 

hardware, Microcontroller code, Motor Controller, Motors, Navigation Sensor, Collision 

Sensor, Blimp, and Battery. For each block, we wrote up a plan of attack with an 

appropriate design and verified that the proposed solution would actually solve the 

problem at hand and meet the specifications we set up for ourselves. The exact system 

requirements that we wanted to meet are detailed in the next section. As a group, we 

approved the plans for each block before moving into the building stage.

While addressing the problem, we prioritized low cost and simplicity, as we 

wanted our results to be easily reproducible, and a high degree of flexibility and control 

in our user-friendly user interface, giving the user the utmost ease possible when 

programming and flying the blimp. We planned to build a single prototype, keeping a 

detailed BOM and documenting the build process as much as possible. The prototype was 

necessary to show that we successfully created a flying, autonomous device capable of 

gathering data and staying airborne for long periods of time. Once the prototype was 
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complete, we ran a series of tests, the results of which are included towards the end of 

this document.
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SYSTEM REQUIREMENTS

Specifications

In order to accurately and completely solve the problem, our group agreed upon a 

certain number of design specifications that we would force ourselves to meet. The 

specifications are summarized in the Table 1.

Specification Description
1. Autonomous Mode The blimp should also have the ability to independently fly a 

particular flight pattern that is programmed by the user. These 
pre-determined paths should include, but are not limited to, 
basic patterns or curves that can occupy 3D space while 
steering clear of walls and other large obstacles in the flight 
path. The blimp must be able to store up to 10 patterns, each 
allowing for a maximum of 100 meters of distance.

2. Blimp and 
Computer Data 
Transfer

The blimp must be capable of transmitting data over a 
wireless signal to a computer 100ft. away. The error rate in 
the data must be less than 0.2%.

3. Blimp Lift Capacity The blimp must have adequate lift so that it can stay buoyant 
and float without using any battery power. The blimp’s drift 
on a vertical axis must be less than 3 inches per second while 
carrying a load of approximately 10oz. that includes all 
electronics and motors required.

4. Collision Detection An automatic collision detection system should be built into 
the blimp’s hardware and software system so that it can 
override any programmed commands in order to avoid 
collisions with a wall or other sizeable objects. At maximum 
speed, the blimp should be able to stop or maneuver around an 
object in its path.

5. Exterior Scanning The blimp should contain basic built-in scanning features that 
enable it to detect physical objects up to 15ft away in all 
directions except directly behind the blimp. This leaves the 
directions of in front, to the left, to the right, above, and 
below. Distance between the blimp and the exterior object 
must be accurate to within 2ft. All scanned data should be 
transmitted to a computer in a form that allows for mapping of 
the blimp’s location as well as the location of objects around 
the blimp.

6. Flight time The blimp should have at least one hour of flight time when 
being run under worst case conditions (using a constant, 
maximal power draw).
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7. Remote Control At any time, up to 50ft away, the blimp can be controlled in 
manual mode by a remote control. The user should have full, 
intuitive control over the blimp’s movements, able to move 
the blimp up/down and forwards/backgrounds, as well as turn 
the blimp from left to right.

8. Usability At least 80% of users must find the controls and operational 
features “intuitive” and “easy to use”. The capabilities of the 
blimp should be transparent, and the user interface graphical 
in nature and simple to navigate.

Table 1: Project Specifications
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REVIEW OF CURRENT TECHNOLOGY 

Similar complete solutions

The YARB 1.0, developed by Surveyor corporation, was a development project in 

2008 that focused on autonomous flight through advanced computer vision algorithms by 

placing a camera on a blimp [1]. The design was based in part off ongoing SLAM 

(simultaneous localization and mapping) research. The camera contained a 500MHz 

Blackfin processor capable of transmitting video feed at 30 frames/second over an 

802.11g WiFi connection. All navigation and 3D mapping capabilities are based solely 

off the information gathered by the sophisticated camera. Manual control was available 

through a G1 Android phone, communicating on the same WiFi connection. The blimp 

bag is 66 inches in length, but cannot carry any additional hardware and only contains 

two small motors. The entire system sells for $875. 

In a very similar system to the YARB, a design by DIY Drones consisted of a 52 

inch blimp that used IR sensors and a homing beacon which allowed the blimp to travel 

out and find its way home [2]. Instead of using a camera, the blimp used ultrasonic 

rangefinders to “see” the environment. The electronics necessary to build this blimp are 

packaged in a “Blimpduino Kit” for $89.99 as in add-on to the YARB system.

On a more general scale, a commonly known autonomous, flying system is the 

Predator Drone which navigates using GPS, cameras, and IR. A typical drone has a 

wingspan of 48.7 feet and costs approximately $4.5 million [3].

There are also a number of grounded robots capable of navigation and 

surveillance such as the Mars rovers which are tasked with collecting data and taking 
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samples as they automatically traverse across potentially harsh terrain. A similar robot 

that is available on the market by Surveyor corporation is the SRV-1 Blackfin Mobile 

Robot. It is extremely small, no more than 5 inches long, and uses 2 laser pointers for 

object detection. It can be controlled manually over an 802.11b WiFi connection, comes 

fully programmable, and is sold for $525 [4].

Although there are more unmanned vehicles on the market, there are two that 

really seem to match our vision for our autonomous blimp- the YARB Robotic Blimp 

from the Surveyor Corp, and the Blimpduino blimp kit from DIY Drones. A common 

thread between these two blimps is the use of Maxbotics Ultrasonic Rangefinders. The 

Blimpduino takes a simplified approach, using only one unit to monitor the distance from 

the ground. The YARB implements a much more in depth system, using two rangefinders 

and a compass in order to perform object detection. One of the main reasons for the 

increased cost of the YARB is its data capabilities. Simply put, Surveyor's YARB is 

much more sophisticated in terms of its ability to capture visual and spatial data, and 

transmit it in real-time to a Java based computer console. It is also able to receive data 

from the Java console, yet perhaps its most exciting feature is its Android app. Surveyor 

Corp has provided an app that allows a user to control the blimp using the tilt-sensing 

features of the HTC Android G1. The Tier II MAE “Predator” drone is a military 

application that is an example of some of the reconnaissance capabilities we would like to 

implement. Although physically it differs greatly from our blimp, it serves as an example 

regarding data collection in real world/military situations. The drone is piloted remotely 

by a fully trained pilot and is capable of transmitting real-time video. This makes it ideal 

for surveillance in long distance situations. The main drawbacks to the Predator include 
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maneuverability, flight reliability and camera accuracy, but these are mainly obstacles to 

military operation and are beyond the standards of what we wish to accomplish. The 

SRV-1 Blackfin mobile robot is the much smaller (5” vs. 66”) ground-based counterpart 

to the YARB blimp from the same vendor (Surveyor). As such, it has many of the same 

capabilities but trades in the ability to fly in three dimensions for increased control and 

maneuverability on the ground. This makes it more ideal for surveillance in small spaces 

where the aerial blimp would be too large to navigate.

System Name YARB 1.0 Blimpduino 
Kit

Predator 
Drone

SRV-1 
Blackfin 
Mobile Robot

Cost $875.00 $89.99 $4.5 million $525.00
Vendor Surveyor Corp DIY Drones General 

Atomics
Surveyor Corp

Size 66 inches 52 inches 48.7 foot 
wingspan

5”x4”x3”

Object 
Detection

Ultrasonic 
range finder

Ultrasonic 
range finder

Camera/Infrared 2 laser pointers

User Interface Computer / 
Android phone

RC remote 
control

Fully trained 
pilot via 
UHF/SATCOM

RC remote 
control or 
remote console

Autonomous 
Capabilities

3D navigation 
in development

Homing with 
IR beacon

Unknown Fully 
programmable 
for 2D 
navigation

Data 
Transmission

802.11g None UHF/Satellite 802.11b

Vehicle Type Blimp Blimp Fixed-wing 
UAV

Tracked ground 
vehicle

Table 2: Examples of Similar Solutions

Autonomous methods

There are several methods of navigation that are typically used in today’s market. 

Navigation is critical when a robotic vehicle must travel from one point to another. Even 
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being given a simple command such as traveling 100 ft in a single direction is difficult 

without absolute navigation since the actual distance traveled would be highly dependent 

on the specific system. However, some systems still use these simple techniques. Cars, 

for example, typically track the number of miles traveled by only taking into account the 

absolute distance traveled. But in order for a car to independently travel from one city to 

another, it must keep track of its exact location at any time, even if the location is only 

relative to the vehicle’s starting point. To solve this problem, systems such as GPS or 

Dead Reckoning are used to continuously track position.

GPS (Global Positioning System) relies on satellites to continuously update a 

unit’s location in terms of coordinates on the earth’s surface. Each update is independent 

of the unit’s previous position. However, the electronics necessary for GPS are relatively 

complex, so adding a GPS system to a blimp would not be very cost effective, especially 

considering that the blimp would not be covering large distances during a single flight. 

Additionally, since GPS depends on a signal to orbiting satellites, the ideal operating 

environment would be outside. Since the blimp is intended to be used indoors, it could 

potentially lose its GPS connection if the blimp travels too far underground or into a 

shielded area.

Dead Reckoning varies significantly from a GPS solution. Dead Reckoning relies 

on accelerometers and a gyroscope or compass to continuously update a unit’s location 

relative to its pre-existing location. By integrating the accelerometers and using 

trigonometry to determine the direction of travel, a fast enough processor can 

successfully track the position of the device. Unlike GPS, the amount of error in the 

system is accumulative, since even a small error bias in the accelerometer measurements 
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would be incorrectly added over time to the unit’s location. For a blimp which is 

traveling in 3D space, a total of 3 one-axis accelerometers would be required, along with 

a gyroscope to know which way the blimp is facing. The gyroscope would allow the 

blimp to travel “forward” as witnessed by the user, and would compensate for the ever 

changing X and Y axes as the blimp makes lateral turns. The cost to implement Dead 

Reckoning is considerably less than GPS, which is why further research into Dead 

Reckoning systems is needed as a possible new means of navigation.

Wireless communication

In order to properly communicate with the blimp, the user would need some kind 

of wireless connection to both transmit commands to the blimp and receive any gathered 

sensor data back. There are a variety of methods of wireless communication ranging from 

IR to RF transmission. Here we explore a variety of RF protocols and compare them to a 

basic IR solution.

WLAN (wireless local area network) is commonly known as the method used by 

laptops to connect to a wireless access point, or router, in order to get access to the 

internet. There are a number of standards within WLAN that fall under the 802.11 

protocol. Typically these systems offer relatively high power solutions capable of 

transmitting up to 100ft, however the network cards necessary to implement WLAN are 

quite complex and can be difficult to setup. They are usually reserved for more 

sophisticated systems such as computers, and we had difficulty finding a cheap, elegant 

solution to building a basic transceiver capable of WLAN communication into an 

onboard circuit.
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Bluetooth and ZigBee are also wireless protocols that use a 2.4GHz frequency to 

communicate at short distances between devices. Most Bluetooth and ZigBee 

transceivers only operate around 30 – 50 feet, but they are relatively simple and can be 

easily incorporated into a microcontroller design to communicate wirelessly. Some 

transceivers are even built into microcontrollers, such as the AT86RF230 by Atmel [5]. 

Bluetooth and ZigBee can also be used to communicate with smart phones and other 

mobile applications without many modifications. The largest downside to Bluetooth and 

Zigbee is the reduced effective range. To be used in the blimp design, these protocols 

would require an atypical power boost to get up to the desired range assigned in our 

specifications. With Bluetooth for example, there are different classes that represent the 

range. The vast majority of Bluetooth devices fall into Class 2 which uses ~2.5mW 

(4dBm) of power for ~10 meters in any direction. By increasing the power output to 

100mW (20dBm), a Bluetooth transmission can go as far as 100 meters, as defined in 

Class 1. ZigBee units have similar statistics, but are intended to be slightly cheaper and 

simpler than Bluetooth.

Basic FM (Frequency Modulation) transmissions can be found in a typical radio, 

whether listening to music or using a walky-talky. While FM can be considered a lower 

level of data transmission, it is viewed here as a separate solution as one can build their 

own FM transmitter and receiver out of simple passive components and filters. FM would 

not have the embedded security and modulation/demodulation techniques that the Wi-Fi 

protocols contain, but it could be used to minimize power by sending the absolute 

minimum amount of data to a designated transceiver on the user side. A basic FM 
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solution particular to our problem may be optimal for a large scale project, but would 

require an impractical amount of work to obtain.

Finally, one of the other remaining techniques of wireless communication on the 

market is IR (Infrared) which is commonly found in TV remotes and other point and 

click devices. IR uses on/off infrared light to send a digital signal. The obvious downside 

to IR is it requires a visual line of sight between the transmitter and the receiver in order 

for the signal to be relayed. Even though IR is extremely easy to implement and quite 

cost effective, the blimp will need the ability to travel around objects and to the other side 

of walls without losing its connection to the user.

Some of the possible RF solutions are described in the table below.

System Name AT86RF230 
[6]

AT86RF212 
[7]

Custom Design 
[8]

CB-OEM
[9]

Cost $3.70 $4.00 $10.00 $68.55
Vendor Atmel Atmel Custom Connect Blue
Function Transceiver 

(ZigBee)
Transceiver 
(ZigBee)

Separate 
Transmitter and 
Receiver (FM)

Transceiver 
(Bluetooth)

Type of Design IC (excluding 
antenna, and 
crystal)

IC (excluding 
antenna, and 
crystal)

PCB Complete 
transceiver with 
pinout

Operation 
Frequency

2.4GHz 700-900MHz Customizable 2.4GHz

Voltage 1.8-3.6V 1.8-3.6V 9V 3.0-6.0V
Weight Light Light Heavy Heavy

Table 3: Examples of RF transceivers

Microcontroller

For the blimp design, we required a microcontroller capable of handling 

communication with the user, controlling the motors and servo in the propulsion system, 

interpreting the navigation data to determine location, and any additional environment 
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sensing. While there are many varieties of microcontrollers, some of the most common 

microcontrollers on the market are Atmel’s Atmega series and Texas Instrument’s MSP 

series. For example, the Atmega128 and MSP430 series both contain a sufficient amount 

of programming memory space, over a dozen IO ports for controlling the circuit, PWM 

outputs for the motor controller, UART communication capabilities to interface with the 

wireless transceiver, as well as ADC’s to read in analog measurements for the navigation 

system. These general purpose microcontrollers are perfect for our application in that 

they can read in the various sensors and sufficiently control the blimp. Processing speeds 

vary from 1MHz up to 500MHz, but for the sake of simplicity and cost we are targeting a 

microcontroller with an 8MHz processor.

The MSP430 micro processor from TI fits well into the desired requirements we 

specified. Running at 8MHz with 22 GPIO (general purpose input output) pins, 6 ADC 

(analog to digital converter) pins, and multiple serial communication connections all on 

an active current of less than 1mA and an extremely low standby current requirement of 

0.3uA, we felt it was well suited for our design. Using TI’s extensive user guides for their 

MSP430 series, we will quickly be able to configure the microcontroller settings to meet 

our needs. The MSP430 is also compatible with a simple JTAG programming device that 

can interface with any personal computer.
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DESIGN SOLUTION

We addressed the problem of designing an autonomous, Dead Reckoning blimp 

using a divide and conquer strategy, breaking up the required hardware and software 

components into 11 engineering design blocks. Each block focused on structural integrity 

or addressed a key function of the blimp. Here we describe each of the 11 blocks and 

demonstrate how they combine to form a self-navigating, or optionally wirelessly-

controlled blimp.

1. Power Supply

The device's power requirements are split into two categories. A high power, 5V, 

rail is designed specifically for a pair of motors in the propulsion system. A second, low 

current, 3.3V rail is designed for the MSP430 microcontroller as well as some of the 

sensors. A powerful yet rechargeable battery was chosen to supply power to these DC 

converters, and is described in further detail in a later section. For simplicities sake, the 

same buck converter was chosen for both the high and low power rails, dropping the 

voltage from the battery's 6.4V input to the specified output.

Figure 1: 5V Power Supply schematic diagram
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Figure 2: 3.3V Power Supply schematic diagram

The TPS5430 Buck Converter was chosen for its high efficiency and simplicity. 

The chip supports a maximum load of 3A with a large range of input and output voltages. 

The internal reference voltage is set to 1.221V, so the feedback resistors were chosen to 

drop the 5V or 3.3V respective outputs down to 1.221V. The internal PWM frequency is 

set internally to 500kHz. The minimum inductor size works out to 19.8uH, so a 22uH 

inductor was chosen. The 220uF capacitor fits with the 22uH inductor to create a stable, 

low noise output. The circuit was based off an application circuit in the TPS5430 

datasheet.

The battery's power is passed through a fuse and connected to the inputs of both 

TPS5430 packages. The step down converters are designed to take a voltage input of 

between 5.5V and 36V, so the power supplies should work properly as long as the battery 

maintains adequate voltage. A single trace connects the fused battery output to an ADC 

on the MSP430 after being scaled down by a large resistor voltage divider. This allows 

the software to record the current voltage and report to the user. As calculated in the 

battery design block, the battery can output enough current to keep the blimp running for 
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almost two hours. Design requirements only call for an hour minimum of flight time 

before the battery requires recharging.

2. User Interface

A Windows computer is used as the primary control system for programming, 

flying, and communicating with the blimp. A Graphical User Interface is provided that 

works on all Windows machines, Windows XP and later. The .NET framework 3.0+ will 

be required to run the program. The program itself will be developed in C#, using a 

variety of built in control techniques and higher level access to a Bluetooth transceiver. In 

order to properly access the blimp, the computer must either have a built-in, internal, 

Bluetooth transceiver or an external, plug-in Bluetooth module. It is recommended that 

the computer be able to support a Bluetooth transmission of 50 – 100m to match the 

signal strength on of the transmitter on the blimp.

Since the blimp operates in a variety of modes, the user will have the ability to 

assign the blimp to a particular mode of operation.

In Manual Mode, the user has complete control of the movements of the blimp, 

much like using a remote control. The user will have the option to use keyboard hotkeys 

or a PS3 controller to fly the blimp. They will have full control over X, Y, and Z axes in a 

custom control scheme. If the user prefers, an option will also be available to set the 

speed in each direction. Using the keyboard interface, the speed can be selected from 0 to 

100%. Using the PS3 controller, the left and right triggers will act as analog speed 

control, where the more the triggers are depressed, the faster the blimp will fly. The speed 

and direction of the blimp will show up on the user's screen to indicated current 
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movement. Also in Manual Mode, the user may initiate a scan of the blimp's 

surroundings and start graphing the scan's data. Graphs of the blimp's distance to objects 

in each directions will be graphed individually and show up in their corresponding 

locations around the image of a blimp on the GUI. If the user selects to view the 

navigation data instead of the scan data, an XYZ flight path will be mapped out that 

shows where the blimp started as well as its current location.

In Automatic Mode, the user will be able to create, save, load, and transmit flight 

paths to the blimp. The user can select from a list of shapes or paths. An entire flight path 

will consist of an array of destinations. The blimp will run through the flight path by 

reaching the next destination and continuing on until the final destination is reached. A 

flight path building program will be included in the GUI. Convenience features, such as a 

return to home command, will also be added to save time in building new flight patterns. 

The blimp will be able to run through the flight path as many times as the user prefers. 

Automatic mode will also provide the blimp with intelligent scanning capabilities, 

assuming it is within a building. For example, the collision detection system will 

automatically steer the blimp away from walls and large objects that get in the blimp’s 

way. By default, this option is selected to protect the blimp, and any flight paths will be 

overridden to prevent a collision. However, the blimp will try to successfully maneuver 

around the potential collision and resume the flight path if possible.

The overriding priority behind the user interface design is allowing the user to test 

the capabilities of the Dead Reckoning navigation system and push the blimp to its limits 

in terms of data collection as well as mobility. While much of the AI behind the blimp’s 
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autonomous abilities are embedded within the microcontroller’s C program, the user 

should feel like they are seeing the results of the blimp’s drone-like behavior first hand.

3. Bluetooth Transceiver

The blimp needs a Bluetooth transceiver that has a strong enough signal to 

reliably stay in contact with the connected computer system. For this reason we chose to 

go with a 'package' Bluetooth device made by ConnectBlue, OEMSPA331. It has all the 

necessary communication software already installed, but is also light weight compared to 

a standard USB Bluetooth module. The transceiver is also designed to be installed 

directly onto a PCB by soldering onto open solder pads. It is powered by the 3.3V rail 

power line and communicates with the microcontroller through the UART. Using only 

5mW, the Bluetooth transceiver is still classified as Class 1, meaning it has an operating 

range of 100 meters in open air space. We felt this was a good balance between excessive 

battery use, and maximum operating distance from the computer. A normal Bluetooth 

transceiver falls into class 2 or 3 with an operating range between only 1 and 10 meters.

The connection scheme between the transceiver and the MSP430 microcontroller 

is outlined below. The 100 ohm resistors on the Data Set Ready and UART Receive 

lines, pins 16 and 11, are necessary to drop the 3.3V output of the microcontroller down 

to the 3.0V maximum input voltage on the transceiver. These values were recommended 

in the Connect Blue datasheet. The incoming signal voltage does not need to be adjusted 

because the microcontroller can properly read the 3.0V output of the Bluetooth 

transceiver.
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Figure 3: Bluetooth transceiver schematic diagram

In order to keep up constant communication with the connected computer system, 

any incoming Bluetooth transmissions will be picked up by an interrupt signal on the 

microcontroller for an immediate response. In this manner, the user can exit the 

automatic mode of the blimp at any moment and take over with manual control or manual 

commands. Outgoing transmissions are sent out periodically as sensor data is collected.

4. Microcontroller

As stated during our microcontroller research, the Dead Reckoning blimp needs a 

microcontroller that has multiple UART/SPI buses to be able to communicate with our 
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sensors and Bluetooth transceiver. It also needs multiple ADC inputs and multiple PWM 

channels to control the motors and servo. After TI offered to help fund our project, we 

decided on the MSP430F2410, which was one of the controllers that had more than 

enough buses, I/O's, ADC's, and PWM's that runs with sufficient performance at minimal 

power. The two diagrams below show the high level microcontroller block with its 

various connections, as well as a low level connection diagram of the microcontroller and 

surrounding components in the same subsystem.

Figure 4: Microcontroller block diagram

The Code Download input is necessary for programming the microcontroller. The 

Signal Battery Level measures the battery voltage through an ADC. The four outgoing 

Motor Signals are used to control both propellers in the propulsion system. These are 

actually PWM lines that control motor speed by adjusting the duty cycle. The single 
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Servo Signal also uses a PWM output to turn a servo and adjust the direction of the 

propellers. The Collision Signal input and Sensor Switch lines represent the connection to 

the Ultrasonic sensors, which can map out an area and detect imminent collisions. The 

four Navigation Signals are connected to three one-axis accelerometers and one 

electronic gyroscope, making up the backbone of the Dead Reckoning navigation system. 

Finally, the User Blimp Communication two-way connection represents all 

communication with the Bluetooth transceiver, and therefore with the user. The more 

sophisticated diagram below includes four LED’s that are tied directly to the 

microcontroller. These were very useful in debugging the blimp’s internal systems and 

couple as status lights during normal operation.
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Figure 5: Microcontroller schematic diagram

5. Microcontroller Code

The microcontroller is responsible for controlling blimp movement and passing 

sensor data along through a Bluetooth output, all while managing the Dead Reckoning 

algorithm. An interrupt service will collect commands received via Bluetooth. The 

microcontroller will automatically respond by triggering the sensors or changing the 

motor speed conditions, all depending on the particular command received. Most sensors 
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will be continually polled for up-to-date data, including data from the accelerometers and 

the gyroscope. The current distances recorded by all the ultrasonic sensors will be on an 

interrupt service in order to detect collisions as quickly as possible. This data will be used 

to watch out for imminent collisions as well as scanning when required.

To control the movement of the blimp, five PWM signals are utilized. Two PWM 

signals per motor give the forward and backward speeds of that motor respectively. The 

fifth PWM signal controls a servo to tilt the motors up and down for movement in the Z 

axis.

Dead Reckoning is implemented by polling the most recent acceleration values in 

each of the X, Y, and Z axes, as well as the current direction the blimp is pointing from 

the gyroscope. The velocity of the blimp is constantly being updated by integrating the 

acceleration values. Likewise, the position of the blimp is calculated by integrating the 

velocity values. A custom algorithm that utilizes filtering and an exponentially weighted 

moving average helps reduce error over time. We found in our initial trials that an 

erroneous acceleration reading could significantly change the assumed velocity of the 

blimp. Over time, the incorrect velocity value would cause a dramatic drift in the blimp’s 

assumed position.

To implement the blimp’s automated functionality, we simply programmed an 

array of coordinate points along the appropriated path. When the blimp comes within a 

few feet of its current waypoint, the waypoint is replaced by the next coordinate point 

until the array is exhausted, at which point the final destination is reached. While the user 

interface on the personal computer is responsible for generating the coordinate point 
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array, the microcontroller stores and traverses the path by relying on the Dead Reckoning 

navigation system.

The diagram below represents the responsibilities of the microcontroller as well 

as the priority levels of each.

Figure 6: Microcontroller code operation priorities

6. Motor Controller

The motor controller block takes four PWM signals from the microcontroller and 

uses an H-bridge configuration to provide a bi-directional DC voltage to two separate 

motors. Two BD6211 motor controller chips from Rohm Semiconductor are used, where 
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each chip controls a separate motor. The supply voltage for both chips is 5V, requiring 

the second step-down converter in the power supply system. Each H-bridge uses two 

switching poles to vary the voltage between 0 and 5V in either polarity. Signal 

frequencies between 20 and 100kHz are supported. The full 5V of power is achieved by 

passing a PWM signal with a duty cycle of 98% or above, while a duty cycle of 

approximately 20% will result in no power being supplied to the motors at all. Two 

inputs per controller allow us to control the power to each motor in either direction, 

therefore controlling the speed of the propellers.

7. Propellers

Two propellers are mounted beneath the blimp, one on each side to provide 

stability, and the ability to turn laterally. The propeller blades are connected to small 

motors that run on 5V from the motor controller block. The blade and motor system 

weighs about one-third of an ounce per assembly. 

Figure 7: Blimp propeller

In order to connect the propellers to the blimp frame, we ran a small, light-weight 

carbon fiber beam through the control box holding the electronics. The motor assemblies 
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were super-glued to the beam and small electrical wires were run along the length of the 

beam connecting the motors to the circuit board housing the motor controllers. A gear 

was placed on the metal beam and connected directly to the servo. In this way, the servo 

could adjust the direction of the propellers by pivoting the entire beam up or down from 

horizontal. The servo handles up to 180 degrees of turning radius, allowing the propellers 

to point straight up or straight down. Along with the backwards and forwards motion of 

the motors, this allows for a full 360 degrees of movement.

The plastic propeller is 6 inches long in diameter and provides up to 1oz of thrust 

at maximum power. The microcontroller is setup to initiate a turn by dropping the speed 

of one propeller below the other. For example, a gentle left turn could be achieved by 

leaving the right propeller at 100% power, and decreasing the left propeller down to 70%. 

The motors were also placed beneath the center of mass of the blimp, allowing the blimp 

to roughly pivot on a dime by turning one motor to 100% power forward, and the other 

motor to 100% power backwards.

8. Navigation Sensor

The purpose of the navigation sensor is to provide data to the microcontroller 

regarding the acceleration and bearing of the blimp. The block will use three one-axis 

accelerometers to send an analog voltage signal corresponding to the acceleration 

experienced by the sensor. The sensor will output a voltage of 1.6V on each output signal 

if there is no acceleration, with approximately 172mV/g centered around the 1.6V. 

Capacitors were selected to provide a 0 to 500Hz bandwidth as recommended by the 

accelerometer data sheet. A sufficiently high frequency is required to pick up any small, 
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sudden acceleration. Ideally the frequency should match the processing capabilities of the 

microcontroller so that the integration can keep up with the incoming acceleration data. 

When the microcontroller reads in the accelerometer output voltage, the voltage level is 

immediately converted to meters per second squared and fed into the Dead Reckoning 

system.

The gyroscope will output a voltage corresponding to the rotational velocity of the 

blimp about the Z-axis. This signal will be used by the microcontroller to determine the 

bearing of the blimp. The sensor will output an analog voltage of 0.83mV/degree/second. 

When the blimp is initially powered up, its bearing is set to a relative 0 degrees. As the 

gyroscope output voltage is measured, it gets integrated to calculate the current bearing of 

the blimp. The direction the blimp is facing is important when programming it with a 

particular flight pattern. The pattern is based off the blimp’s current position, so if the 

blimp was told to fly in a circle, the waypoints can be placed in the blimp’s current 

direction of travel.

9. Collision Sensor

The collision sensor block consists of 5 Maxbotics LV-Maxsonar-EZ1 Ultrasonic 

sensors powered using the 3.3V power rail from the power supply. Each ultrasonic sensor 

communicates the distance between the sensor and the surrounding environment by 

outputting a digital signal representing the distance in inches. Because the ultrasonic 

sound wave produced by one sensor can easily interfere with a neighboring sensor, we 

needed a way to ensure that only one sensor would be active at a time. We also did not 

want to assign five serial ports on a microcontroller just to communicate with the five 
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ultrasonic sensors. Therefore, we pass all five sensors through a MUX, where we toggle 

one sensor on at a time, wait for a response, and move on to the next. In this manner, no 

interference takes place and only one serial port is required on the MSP430 

microcontroller. 

The purpose of the collision sensors is to detect objects in proximity to the blimp. 

The sensors are rated for object detection up to 254 inches, which will let us reliably 

“see” objects within twenty feet of the blimp. There will be five sensors placed on the 

blimp. They will be placed to monitor the front, left, right, top and bottom of the blimp. 

Although the sensors offer analog and PWM output as well, our system will utilize the 

asynchronous serial output from the sensors. The output signal is an ASCII capital "R" 

followed by three ASCII character digits representing the range up to 254 inches, 

followed by a carriage return.

The values returned by the ultrasonic sensors do not only have to be used for 

collision detection, but can be used for roughly mapping out the surrounding 

environment. We measure the distance from the sensors to the exact center of the blimp, 

and calibrate the sensors so that we are being fed the distances between the environment 

and the blimp in five different directions. The percentage error of the ultrasonic sensors 

turned out to be less than 5%, and they worked on almost all materials except for very 

soft, sound absorbent objects.

10. Blimp Bag

The blimp is what actually provides vertical lift to the system as a whole. The 

blimp should be light enough that the buoyant force renders it nearly stationary in relation 



29

to the ground. If anything, the blimp must be slightly heavier than the air it displaces, so 

that as a fail safe, it does not float away without motor power. The 7 foot long blimp bag 

is able to support up to 10 oz. of weight in addition to the weight of the bag itself. This 

sufficiently handles the approximate 9 oz. of electronic weight that makes up the control 

system. The table below shows the weight requirements of the design.

Component Weight (oz)
Propeller Assembly 0.6

Servo 0.2
4 cell battery 5.2

FR4 PCB 1.22
5 Ultrasonic Sensors 1.29

Bluetooth Transceiver 0.11
Gondola 0.2

Extra wiring 0.31
Total 9.13

Table 4: Weight distribution of blimp components

11. Rechargeable Battery

For mobility and reliability, a powerful yet rechargeable battery was chosen to 

supply power to the system. The Lithium-Ion battery supplies 6.4V with a maximum 

current of 18A. It is designed to run for 2400mAH even at a quick pace of a flat 8.4A. 

The battery can be recharged with a smart charger at a rate of 1.2A. A 4A fuse is 

connected between the battery and all device circuitry in the unlikely event of a short. 

The battery's supply is then input to two switching DC converters.

The battery for this device needed to be fairly powerful, rechargeable, and light 

weight all at the same time. We decided on a particular brand of Lithium-Ion batteries, a 

LiFePO4 18650 Battery, which uses 4 individual cells (2 parallel groups in series to make 
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4) to get 6.4V. Lithium-Ion batteries tend to be much lighter weight for the amount of 

energy density they offer. The battery includes a Polyswitch to prevent damage caused by 

shorts. Assuming a DC converter efficiency of 90% with the motors and sensors are 

running at full power, approximately 2A are running at 5V and another 0.2A are running 

at 3.3V, working out to 1.86A being drawn continuously from the battery. This works out 

to almost 1.5 hours of minimum battery life since the batteries current capacity increases 

when being used at a lower rate of discharge.
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FINDINGS

This thesis set out to design an autonomous blimp that could navigate using Dead 

Reckoning. To test the design, we ran numerous flight trials inside a large, enclosed 

atrium. Seemingly the most successful aspect of the design was the wireless, manual 

control system. The blimp correctly responded to all wireless commands up to 50 ft away 

from the windows laptop we were using as the control hub (most laptops contain only a 

class 2 Bluetooth transceiver, allowing an operating range of 10m). Flying the blimp 

around with a Six-Axis joystick system such as the PS3 controller was intuitive and easy 

to control. The collision detection system worked perfectly, reliably detecting objects 20 

feet away and veering away from them once it came within 4 feet of an imminent 

collision. 3D mapping was also a possibility with the distance data collected by the 

ultrasonic sensors, although we stuck to graphing one dimensional distances for the 

extent of this project.

The main focus of the thesis was solving the problem of whether or not Dead 

Reckoning is a viable solution for self-navigation. From a simple budget analysis and 

power performance review, it is easy to tell that the resources required for Dead 

Reckoning are much more manageable than those required for GPS; however the 

question at hand is how well the accuracy compares to GPS.

We quickly determined that the largest difficulty in Dead Reckoning is retaining 

accuracy over a long period of time. Unlike GPS, Dead Reckoning’s error quickly 

accumulates because even a single erroneous data value will offset the position until the 

system is reset. In GPS, an uplink with a satellite results in an entirely new position 

estimation each time. GPS might have a lower accuracy in the short run, but Dead 
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Reckoning can result in significant error build-up over time. The other major downside to 

Dead Reckoning is that the calculated position is only relative to its starting location, 

while GPS can give an absolute geographic coordinate. In this thesis, we focused on 

addressing the first problem of reducing error as much as possible.

Due to the sensitivity to error in Dead Reckoning, the electronic filtering applied 

to the accelerometers line as well as the processing speed of the microcontroller are 

extremely important. Dead Reckoning requires a high degree of processing power 

because on top of the double integration required to calculate position, a significant 

amount of trigonometry is needed. When the blimp turns laterally, the accelerometer’s X 

and Y axes are changed so the acceleration data being read in does not always align with 

the absolute X and Y scale. Therefore, the gyroscope is needed to readjust the 

acceleration data back to the original coordinate system. This means that on each 

navigational update, double integration as well as a trigonometry calculation is required, 

which can be very taxing on a microcontroller.

In the end, the highest degree of accuracy we could reliably achieve still 

contained approximately 8% error, where error is calculated in terms of how much the 

calculated distance covered deviated from the actual distance covered in any direction. 

For example, we ran multi-dimensional tests where we flew the blimp back and forth, 

measuring the actual amount of distance traveled in each axis of direction and compared 

it to the blimp’s calculated position. Running a total length of 2000cm over the course of 

15 seconds, including speed up time and slow down time, the blimp’s calculated position 

was usually off by no more than plus or minus 160cm. On average, the error rate was 

closer to 4%, only deviating by approximately 80cm from the target distance. After 
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running the test over 30 times, we found the sample deviation to be almost 100cm wide, 

explaining the full range from -160cm to +160cm.

In terms of navigating around, the blimp’s AI was able to figure out where it 

needed to go next based off the waypoint system we implemented for Dead Reckoning, 

however we underestimated the amount of momentum the blimp carries. When the 

blimp’s propellers are completely switched off, the blimp will still coast at almost the 

same speed for a long period of time. This prevented any tight flight paths with sharp 

turns and closely knit waypoints. Instead, we found the best results with long flight paths 

and wide turns. If the blimp failed to turn in time and missed a waypoint, it could take a 

while to get back on track.
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PROBLEMS ENCOUNTERED

Our design was not able to calculate the blimp’s location quickly enough to keep 

up with the incoming acceleration data, forcing a loss of acceleration information. We 

tried to mask the issue through increased averaging and error reduction algorithms, but 

our navigation accuracy was never strong enough to compete with that of GPS. Our 

8MHz microcontroller did not have the performance necessary for the required number of 

mathematical operations. When testing the blimp, we would start it moving from a 

stationary position, and stop it again after a few seconds. Even using slow, non-jerky 

movements, we found that the microcontroller would sometimes only pick up the positive 

acceleration or the negative acceleration, but not both reliably. If, for example, the blimp 

did not register its deceleration to the same degree that it measured acceleration, the 

blimp would believe it was still traveling forward when in reality the blimp had stopped 

moving. This results in dramatic error in position after only a short period of time.

One logical error we made in designing the blimp was not taking into account the 

slight rocking motion of the blimp from side to side as it flies in a straight line. While one 

gyroscope is used to make sure the X and Y axes are correctly updated when the blimp 

turns laterally, a second gyroscope is needed to correctly update the X and Z axes if the 

blimp rocks sideways (where the Y axis is assumed to be forward and backward motion). 

This is because as the blimp tilts to the side, the X axis is pointed slightly towards the 

ground while the Z axis is pointed slightly towards the side, causing the real acceleration 

affects to the X and Z directions to have a lesser affect on the blimp’s measurement 
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system. Fortunately, the blimp does not often rock from side to side unless it is subjected 

to a strong wind current.
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FURTHER IMPROVEMENTS

As noted previously, the most significant possible improvement would be a more 

powerful microcontroller that could process the Dead Reckoning data quickly enough to 

more accurately determine the blimp’s position. Plenty of microcontrollers can operate in 

the 100MHz range, and would be much more suitable for our application. Also, noise 

cancellation on the analog accelerometer lines should be an utmost priority in circuit 

design as even a single noise spike can completely throw off the system’s position for the 

entirety of its flight.

Furthermore, to help ensure that the blimp does not fly outside the operating 

Bluetooth transmission range, the signal strength should be taken into account. The 

operating system could then automatically steer the blimp back to home or at least send 

the user a warning when the blimp has almost flown outside the operating range. 

Currently, the blimp is programmed to fly straight down and hover four feet above the 

ground when it stops communicating with the user. In this manner, the blimp will not 

accidentally fly away if an error were to occur.
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CONCLUSION

With the correct amount of fine-tuning, Dead Reckoning is a viable alternative to 

GPS in autonomous devices, especially in applications that cover only a short distance or 

operate for short periods of time. However, for long term use, or environments that 

require a high degree of accuracy, Dead Reckoning requires careful design to be effective 

especially in scenarios that are subject to vibration or random, jerky movement. 

Compared to a GPS solution, Dead Reckoning is much more cost effective and requires 

only a small degree of power. 

As a wireless solution, Bluetooth Class 1 is an excellent tool for medium range 

transmissions and can be easily integrated into many computer and mobile applications. 

For an autonomous blimp, Bluetooth was extremely effective in giving the user the 

ability to manually control the blimp or communicate with it mid-flight. Our custom AI 

software that utilized a waypoint system to autonomously navigate around was simple 

and easy to program, although it required an upper-end micro-processor to operate 

correctly. Altogether, the blimp design was a success and an interesting look into the 

feasibility of Dead Reckoning for autonomous navigation.
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APPENDIX A: SCHEMATICS

Figure A-1: Schematic of the Power System
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Figure A-2: Schematic of the Microcontroller System



42

Figure A-3: Schematic of the X and Y Navigation System
(Z axis connected in the same manner)
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Figure A-4: Schematic of the Collision System
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Figure A-5: Schematic of the Motor Control System
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Figure A-6: Schematic of the Bluetooth System
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APPENDIX B: MICROCONTROLLER CODE

Main.c

/**
 * Thomas Shepherd
 * Cyrus Heick
 * Chris Stoddard
 * ECE 44X, Created: 1/22/11
 *
 * MSP430F2410 microController code
 */

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include "bluetooth.h"
#include "collision.h"
#include "leds.h"
#include "logic.h"
#include "navigation.h"
#include "propulsion.h"

void gatherUltraSonicData(void); //read the UltraSonicRange in interrupt only

static int navInt=0;
static int servoTimer = 0; //keeps track of timer counts for setting servo PWM

//Set up Navigation Variables, Used in navigation.c
extern volatile double zaccel;
extern volatile double zspeed;
extern volatile double zpos;
extern volatile double yaccel;
extern volatile double yspeed;
extern volatile double ypos;
extern volatile double xaccel;
extern volatile double xspeed;
extern volatile double xpos;
extern volatile double gspeed;
extern volatile double gpos;

extern volatile int servoPulse; //keeps track of duty cycle of servo PWM
extern volatile int ultraSonicReceived; //holds data returned by UltraSonic
extern volatile int ultraSonicNoData; //if ultraSonicNoData == 0, there is data

int main(void) {

    //-----SETUP INTERNAL CLOCK FREQUENCY-----//
    //Internal 16MHz
    BCSCTL1 = CALBC1_16MHZ; //Turns the internal oscillator to 16MHz
    DCOCTL = CALDCO_16MHZ; //Turns the internal oscillator to 16MHz

    //-----SETUP TIMERA PWM-----//
    //Up/Down Mode, Output Mode 6
    P1SEL |= 0xC0; //P1.6 - TimerA Out1 PWM selected
    P1DIR |= 0xC0;
    TACCTL0 = 0x0C00;
    TACCTL1 = 0x0CC0;
    TACCTL2 = 0x0CC0;
    TACCR0 = 0x0190;
    TACCR1 = 0x0000;
    TACCR2 = 0x0000;
    TACTL = 0x0230;

    //-----SETUP TIMERB PWM-----//
    //Up/Down Mode, Output Mode 6: Toggle/Set
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    P1DIR |= 0x20; //For the Servo output
    TBCCTL0= 0x38D0;
    TBCCTL1 = 0x38C0;
    TBCCTL2 = 0x38C0;
    P4SEL |= 0x02;
    P4DIR |= 0x03;
    TBCCR0= 0x0190;
    TBCCR1 = 0x0000;
    TBCCR2 = 0x0000;
    TBCTL = 0x0230;

    //-----SETUP UARTA0/Bluetooth IO Pins--------//
    P5REN |= 0x06; //0b00000110
    P5DIR |= 0x04; //0b00000100
    P5OUT |= 0x06; //0b00000110

    P3OUT  |= 0x08;  //Init output data of port3
    P3SEL  |= 0x30;  //Select port or module -function on port3
    P3DIR  |= 0x28;  //Init port direction register of port3

    UCA0CTL1 = 0xFF; // RST
    UCA0CTL0 = 0x00; // 0b00000000             
    UCA0CTL1 = 0xF0;   // 0b11110000 0xF4 if doesn't work...
    UCA0BR0 = 0x11; // 0b00010001
    UCA0BR1 = 0x00;   // 0b00000000
    UCA0MCTL = 0x61;   // 0b01100001
    IE2 |= 0x01; 

  
//-----SETUP UARTA1-----//

    //Also setup I/O pins for ultrasonic sensors and mux
    
    P5DIR |= 0xF8;
    P5OUT &= ~0xF8;
    P2DIR |= 0x70;
    P2OUT &= ~0x70;
    P3SEL |= 0x80;
    UCA1CTL1 = 0xFF;
    UCA1CTL0 = 0x00;
    UCA1CTL1 = 0xF0;   
    UCA1BR0 = 0x68;
    UCA1BR1 = 0x00;
    UCA1MCTL = 0x31;
    UC1IE = 0x01;

    //-----SETUP ADC12------//
    //ADC12CTL0 = 0x0C91;
   // ADC12CTL1 = 0x0202;

    
    //ADC12CTL0 = SHT0_2 + ADC12ON; // Set sampling time, turn on ADC12
    //ADC12CTL0 |= 0xFF80;
    //ADC12CTL1 = SHP; // Use sampling timer
    //ADC12CTL1 |= 0x2000;
    //ADC12CTL1 |= 0x02; //Set single sequence
    ADC12MCTL0 = 0x06; //Sample A6 (on P6.6) Zinput
    ADC12MCTL1 = 0x05; //Sample A5 (on P6.5) Yinput
    ADC12MCTL2 = 0x04; //Sample A4 (on P6.4) Xinput
    ADC12MCTL3 = 0x07; //Sample A7 (on P6.7) Gyro Input
    ADC12MCTL4 = 0x80; //Sample A0 (on P6.0) Battery Level
    ADC12CTL0 = 0x0C91;
    ADC12CTL1 = 0x0202;
    
    ADC12IE = 0x00; //Disable Interupts
    ADC12CTL0 |= ENC; // Conversion enabled
    P6SEL |= 0xF1; // Enable ports 0,4,5,6,7 for ADC

    //-----SETUP Watchdog Timer----//
    WDTCTL = WDTPW|WDTHOLD; // Init watchdog timer
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    //-----SETUP LED lights-----//
    P2REN |= 0x0F; //0b00001111
    P2DIR |= 0x0F;
    P2OUT &= ~0x0F;

    eint(); //turn on interrupts

    //turnOnUltraSonicSensor(0x1); //turn on one of the UltraSonic Sensors
    setServo(20);

turnOnLEDs(0x8);
//long cntLED = 0;

    while (1) {                         // main loop, never ends...

//blinkLEDs(0x8,cntLED);
//cntLED++;

if(getBTFlag())
{

BTFlagExecute();
}

if(getAModeFlag())
{

flyBlimp();
}

if(navInt==1)
{

updatePos();
}

                  
    //checkADC(); needed?

    }
}

//pulses every 50us
//Used to change servo duty ratio
interrupt(TIMERB0_VECTOR) wakeup TIMERB0_ISR (void)
{

if(servoTimer%20==0){
    navInt=1;
}
else{
     navInt=0;
     }

//P1OUT = 0x20;
if(servoTimer%400==0)
    {
    P1OUT |= 0x20;
    servoTimer = 0;
    }
    if(servoTimer>=servoPulse)
    {
    P1OUT &= ~0x20;
    }
    servoTimer++; 
   
}

interrupt(USCIAB1RX_VECTOR) USCIAB1RX_ISR (void)
{
    gatherUltraSonicData();
}
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interrupt(USCIAB0RX_VECTOR) USCIAB0RX_ISR (void)
{
    addBuf(UCA0RXBUF);
}

void gatherUltraSonicData()
{

int ultraSonicTemp = UCA1RXBUF;
        if((ultraSonicTemp==0x52) & (ultraSonicNoData==0))
        {

ultraSonicNoData = 1;
ultraSonicReceived = 0x00;

        }
else
{

int multiplier = 1;
switch(ultraSonicNoData)
{

case 1:
multiplier = 100;
break;

case 2:
multiplier = 10;
break;

case 3:
multiplier = 1;
break;

case 4: multiplier = 0;
break;

}
ultraSonicReceived += ((ultraSonicTemp - 0x30)*multiplier);
if(ultraSonicNoData>=4)
{

ultraSonicNoData = 0;
}
else ultraSonicNoData++;

}
}

Logic.c

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "leds.h"
#include "logic.h"
#include "bluetooth.h"
#include "navigation.h"
#include "propulsion.h"

int xcoor[500];
int ycoor[500];
int zcoor = 0;
int coorCnt =0;
int arrayLength = 0;
float pi = M_PI; //pi = 3.141592654;
int direction = 3;
int aMode = 0;

/*
Takes array passed by BlueTooth and calls correct functions.

*/
void readBufArray(char array[], int length)
{
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char send[50];
int sndCntr = 0;
int rad = 0;
int len = 0;
int wid = 0;
int success = 3;

switch(array[0])
{
case CIRCLE: 

rad = char2int(array[1],array[2],array[3],array[4]);
success = makeCircle(rad, array[5]-'0');
if(success == 1)
{

strcpy(send, "Success!");
sndCntr = 8;

}
else
{

if(success == 0)
{

strcpy(send, "Failure!");
sndCntr = 8;

}
else
{

strcpy(send, "ERROR!");
sndCntr = 6;

}
}
setAModeFlag();
break;

case SQUARE:
len = char2int(array[1],array[2],array[3],array[4]);
wid = char2int(array[5],array[6],array[7],array[8]);
success = makeSquare(len, wid, array[9]-'0');
if(success == 1)
{

strcpy(send, "Success!");
sndCntr = 8;

}
else
{

if(success == 0)
{

strcpy(send, "Failure!");
sndCntr = 8;

}
else
{

strcpy(send, "ERROR!");
sndCntr = 6;

}
}
setAModeFlag();
break;

case HOME:
strcpy(send, "ET GO HOME!!!");
sndCntr = 13;
setAModeFlag();
break;

case COLLDETECTON:
break;

case COLLDETECTOFF:
break;

case MANAULMODE:

setTask(array);
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manualMode();
clearAModeFlag();
break;

case CALIBRATE:
break;

case SCANNINGON:
break;

case SCANNINGOFF:
break;

default: 
strcpy(send, "No option selected.");
sndCntr = 19;
break;

}
sendDataBT(send, sndCntr);

}

/*
Makes a circle. radius is in cm, direction = 1 for Clockwise, 0 for counter-

clockwise.
*/
int makeCircle(int radius, int dir)
{

double angle = 0;
direction = dir;
for(int a=0; a<360; a++)
{

angle = a*(pi/180);
if(direction == 1)
{

xcoor[a] = (int)(-1*((cos(angle)*radius)-radius+getPos('x')+.5));
}
else
{

if(direction == 0)
{

xcoor[a] = (int)((cos(angle)*radius)-radius+getPos('x')+.5);
}
else
{

return 0;
}

}
ycoor[a] = (int)((sin(angle)*radius)+getPos('y')+.5);
}
zcoor = (int)(getPos('z')+.5);
arrayLength = 360;

return 1;
}

/*
Makes a square. length and width are in cm, direction = 1 for Clockwise, 0 for 

counter-clockwise.
*/
int makeSquare(int length, int width, int direction)
{

xcoor[0] = (int)(getPos('x')+.5);
xcoor[1] = (int)(getPos('x')+.5);
if(direction == 1)
{

xcoor[2] = width+(int)(getPos('x')+.5);
xcoor[3] = width+(int)(getPos('x')+.5);

}
else
{

if(direction == 0)
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{
xcoor[2] = -1*width+(int)(getPos('x')+.5);
xcoor[3] = -1*width+(int)(getPos('x')+.5);

}
else
{

return 0;
}

}
ycoor[0] = (int)(getPos('y')+.5);
ycoor[1] = length+(int)(getPos('y')+.5);
ycoor[2] = length+(int)(getPos('y')+.5);
ycoor[3] = (int)(getPos('y')+.5);

zcoor = (int)(getPos('z')+.5);

arrayLength = 4;

return 1;
} 

/*
Returns x coordinate for given counter value.

*/
int getXCoordinate(int deg)
{

return xcoor[deg];
}

/*
Returns y coordinate for given counter value.

*/
int getYCoordinate(int deg)
{

return ycoor[deg];
}

/*
Returns z coordinate for given counter value.

*/
int getZCoordinate(void)
{

return zcoor;
}

/*
Returns array length of coordinates.

*/
int getArrayLength(void)
{

return arrayLength;
}

/*
converts ascii char values to an int. If wanting to pass 0 value pass char '0'.

*/
int char2int(char num1000, char num100, char num10, char num1)
{

return ((num1000 - '0')*1000+(num100 - '0')*100+(num10 - '0')*10+(num1 - '0'));
}

void flyBlimp(void)
{

int absValue = 0;
int destx = 0; 
int desty = 0;
int destz = 0;
int destg = 0;

int currentx = (int)(getPos('x')+.5);
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int currenty = (int)(getPos('y')+.5);
int currentz = (int)(getPos('z')+.5);
double currentg = (getPos('g')+.5);

int nextx = getXCoordinate(coorCnt);
int nexty = getYCoordinate(coorCnt);
int nextz = getZCoordinate();
double nextg = 0;

absValue  =  (int)sqrt((float)(((currentx-nextx)^(2))  +  ((currenty-nexty)^(2))  + 
((currentz-nextz)^(2))));

if(absValue < 50)
coorCnt++;

if(coorCnt == getArrayLength())
coorCnt = 0;

nextx = getXCoordinate(coorCnt);
nexty = getYCoordinate(coorCnt);
nextz = getZCoordinate();

destx = nextx-currentx;
desty = nexty-currenty;
destz = nextz-currentz;

if(destx == 0)
return;

nextg = atan(desty/destx);

if(destx > 0 && desty > 0 && direction == 0)
{

destg = (nextg - currentg);
}
else
{

if(destx > 0 && desty > 0 && direction == 1)
{

destg = (pi + nextg - currentg);
}
else
{
if(destx > 0 && desty < 0 && direction == 0)
{

destg = ((2*pi) + nextg - currentg);
}
else
{
if(destx > 0 && desty < 0 && direction == 1)
{

destg = (pi + nextg - currentg);
}
else
{
if(destx < 0 && desty > 0 && direction == 0)
{

destg = (pi + nextg - currentg);
}
else
{

if(destx < 0 && desty > 0 && direction == 1)
{

destg = ((2*pi) + nextg - currentg);
}
else
{

if(destx < 0 && desty < 0 && direction == 0)
{

destg = (pi + nextg - currentg);
}
else
{
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if(destx < 0 && desty < 0 && direction == 1)
{

destg = (nextg - currentg);
}
else
{

sendDataBT("Error Flying!", 13);
}

}
}

}
}

}
}
}

if(abs(destg) >= (pi/2))
{

if(destg > 0)
{

hardTurn(0, 1);
}
else
{

if(destg < 0)
{

hardTurn(1, 0);
}
else
{

sendDataBT("Error Destination1!", 19);
}

}
}
else
{

if(abs(destg) < (pi/2))
{

calculateMotorSpeed(destg);
}
else
{

sendDataBT("Error Destination2!", 19);
}

}
}

void calculateMotorSpeed(double rad)
{

double multiplier = 3.2;
double percent = 63.662;
double engineSpeed = 0;

//Gives Int 0-320
engineSpeed = multiplier*(100-(percent*abs(rad)));

if(rad > 0)
{

leftForward(engineSpeed);
}
else
{

if(rad<0)
{

rightForward(engineSpeed);
}
else
{

sendDataBT("Error Motor Speed!", 18);
}

}



55

int q;
for(q=0; q<1000; q++)
{

delay(10000);
}

//leftForward(getDefaultSpeed());
//rightForward(getDefaultSpeed());

}

void hardTurn(int left, int right)
{

if(left == 0 && right == 1)
{

//leftReverse(getDefaultSpeed());
//rightForward(getDefaultSpeed());

}
else
{

if(left == 1 && right == 0)
{

//leftForward(getDefaultSpeed());
//rightReverse(getDefaultSpeed());

}
else
{

sendDataBT("Error Hard Turn!", 16);
}

}

int q;
for(q=0; q<1000; q++)
{

delay(10000);
}

//leftForward(getDefaultSpeed());
//rightForward(getDefaultSpeed());

}

void setAModeFlag(void)
{

aMode = 1;
}

int getAModeFlag(void)
{

return aMode;
}

void clearAModeFlag(void)
{

aMode = 0;
}

Collision.c

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include "collision.h"
#include "propulsion.h"

volatile int ultraSonicReceived = 0;
volatile int ultraSonicNoData = 0;
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volatile int range[5]; //Array where 0-255 ranges are stored

int getUltraSonicRange(void)
{
    while(ultraSonicNoData!=0);
    return ultraSonicReceived;
}

void turnOnUltraSonicSensor(int sensorNum)
{
    switch(sensorNum)
    {

case 0x1:
P5OUT &= ~0xF8; //turn off all sensors
P5OUT |= 0x08; //turn on sensor1
P2OUT &= ~0x70;
P2OUT |= 0x10; //pass sensor1 through MUX
break;

case 0x2:
P5OUT &= ~0xF8; //turn off all sensors
P5OUT |= 0x10; //turn on sensor1
P2OUT &= ~0x70;
P2OUT |= 0x20; //pass sensor1 through MUX
break;

case 0x3:
P5OUT &= ~0xF8; //turn off all sensors
P5OUT |= 0x20; //turn on sensor1
P2OUT &= ~0x70;
P2OUT |= 0x30; //pass sensor1 through MUX
break;

case 0x4:
P5OUT &= ~0xF8; //turn off all sensors
P5OUT |= 0x40; //turn on sensor1
P2OUT &= ~0x70;
P2OUT |= 0x40; //pass sensor1 through MUX
break;

case 0x5:
P5OUT &= ~0xF8; //turn off all sensors
P5OUT |= 0x80; //turn on sensor1
P2OUT &= ~0x70;
P2OUT |= 0x50; //pass sensor1 through MUX
break;

    }
}

/**
When an object is detected in front of the blimp, determine which side has more space and 
turn
until there is room to move forward again. 
**/
void collisionMode(void){
     //Copy distances to Array for each sensor
     for(int i=0;i<5;i++){
     turnOnUltraSonicSensor(i);
     range[i]=getUltraSonicRange();
     if(getRange(FRONTSENSOR)<75){
          stop();
               if(getRange(LEFTSENSOR)>getRange(RIGHTSENSOR)) //Determine which direction 
to turn
                    {
                      while(getRange(FRONTSENSOR)<150){ //Turn until there is space ahead
                           turnLeft();  
                      }
                    }
               else{
                         while(getRange(FRONTSENSOR)<150){
                            turnRight();
                         }
                    }
               stop();
          }
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     }
}

//Our sensor cannot measure fractions of cm's so i'm returning an int for processing ease
int getRange(int num){
     int distance=range[num]*2.54; //Return distance in cm
     return distance;
     }

Bluetooth.c

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include "bluetooth.h"
#include "leds.h"
#include "logic.h"

char ans[50];
int bufCnt = 0;
int ansLength = 0;
int EOT = 0x04;
int BTFlag = 0;

/*
Used to program the bluetooth in the case of a restore default settings.

*/
void programBT(void)
{

enterATMode();
char name[25] = "AT*AGLN=\"BLIMP\",1"; //17 Bytes - Names Blimp
char flow[25] = "AT*AMRS=8,1,1,1,2,0,1"; //21 Bytes - Sets Flow Control
char secKey[25] = "AT*AGFP=\"12w35tg7\",1"; //20 Bytes - Sets Fixed Security Key

sendATBT(name, 17);
sendATBT(flow, 21);
sendATBT(secKey, 20);

}

/*
Takes an array of ints and pass its to the buffer one at a time to be sent via 

bluetooth, while in data mode.
*/
void sendDataBT(char array[], int length)
{

int arrayCnt = 0;
while(arrayCnt < length)
{

sendBT(array[arrayCnt]);
arrayCnt++;

}
sendBT(0x04);

}

/*
Takes a char array and sends it to the bluetooth to edit settings. Size is of the 

array being passed in.
*/
void sendATBT(char array[], int size)
{

int arrayCnt = 0;
while(array[arrayCnt] < size)
{

while(!(IFG2 & BIT1));
UCA0TXBUF = array[arrayCnt];
arrayCnt++;

}
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while(!(IFG2 & BIT1));
sendBT(0x0D);

}

/*
Enters Data Mode in the bluetooth if in AT mode currently.

*/
void enterDataMode(void)
{

char data[7] = "AT*ADDM";
int p;
for(p=0; p<7; p++)
{

sendBT(data[p]);
}
sendBT(0x0D);

}

/*
Takes Bluetooth from Datamode to ATmode.

*/
void enterATMode(void)
{

char at = 0x2F;

int q;
for(q=0; q<1000; q++)
{

delay(10000);
}

int j;
for (j = 0; j<3;j++)
{

while(!(IFG2 & BIT1));
UCA0TXBUF = at; 

}

int p;
for(p=0; p<1000; p++)
{

delay(10000);
}

}

/*
Sends one byte to Bluetooth.

*/
void sendBT(char data)
{

while(!(IFG2 & BIT1));
UCA0TXBUF = data;

}

/*
Resets buffer Counter

*/
void bufCntReset(void)
{

ansLength = bufCnt;
bufCnt = 0;

}

/*
Called by the bluetooth interrupt, takes receive buffer and moves it into array.

*/
void addBuf(char var)
{

if (var == EOT)
{
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bufCntReset();
setBTFlag();
return;

}
ans[bufCnt] = var;
bufCnt++;

}

void BTFlagExecute(void)
{

readBufArray(ans, bufCnt);
BTFlag = 0;

}

void setBTFlag(void)
{

BTFlag = 1;
}

int getBTFlag(void)
{

return BTFlag;
}

Navigation.c

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include <stdlib.h>
#include "leds.h"
#include <math.h>
#include "navigation.h"

volatile double zaccel=0;
volatile double zspeed=0;
volatile double zpos=0;
volatile int zin=2075;
volatile double yaccel=0;
volatile double yspeed=0;
volatile double ypos=0;
volatile int yin=2028;
volatile double xaccel=0;
volatile double xspeed=0;
volatile double xpos=0;
volatile int xin=2028;
volatile int gin;
volatile double gpos=0;
volatile double gspeed=0;
volatile double battery;

double xstat=2028;
double ystat=2048;
double zstat=2260;
double gstat=2048;

static int batteryFlag; //Set to 1 if battery goes low.

int count=0; //Set speed and pos to 0 for a certain amount of iterations

void checkADC(void)
{
   ADC12CTL0 |= ADC12SC; //start new ADC conversions
   
     
   if(ADC12CTL1 & 0x01){
                turnOnLEDs(0xFF);
                }
                else{
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                     turnOffLEDs(0xFF);
                     }
                     
  // while((ADC12IFG & 0x1F)==0); //I think this is where my code is having issues. Only 
set to MEM0.
   
   zin=ADC12MEM0;
   yin=ADC12MEM1;
   xin=ADC12MEM2;
   gin=ADC12MEM3;
   battery=ADC12MEM4;
 
 //Delay the start of measurements
   if (count<20){
      xspeed=0;
      yspeed=0;
      zspeed=0;
      
      xpos=0;
      ypos=0;
      zpos=0;
      
      count++;
      }
      
  //If battery divider falls below 540mV    
   if(battery<670){
       setBatteryFlag(1);
       }
   
}

void updatePos(void) //Called every 1ms by main
{    
     //turnOnLEDs(0xF);
     //Constants for comparison

     
     gspeed=(gin-gstat);
    // gpos=gpos+(gspeed*0.00005);
    // heading=gpos/180*PI;
     
     
    // xvoltage=(xin/4096*3.3);
    // yvoltage=(yin/4096*3.3);
    // double zvoltage=(zin/4096*3.3);
    // gvoltage=(gin/4096*3.3);
     
     //22 units per (m/s^2)
     xaccel=(xin-xstat)*cos((double) gpos); 
     yaccel=(yin-ystat)*sin((double) gpos);
     zaccel=(zin-zstat);//22.02;
     
     //Velocity Measured in units/millisecond
     xspeed=xspeed+(xaccel);
     yspeed=yspeed+(yaccel);
     zspeed=zspeed+(zaccel);
     gspeed=gin;
     
     //Positioin Measured in units/millisecond
     xpos=xpos+(xspeed);
     ypos=ypos+(yspeed);
     zpos=zpos+(zspeed);
     gpos=gpos+(gspeed);
  /**  
    //Method to send up to 4 digits output to bluetooth
    char buf[4];
    int i;
    itoa((int) zpos, buf,10);
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    int length=arLen((int) zpos);
    char sendData[length];
    for(i=0; i<length; i++){
                 sendData[i]=buf[i];
                 }
                 sendDataBT(sendData, length);
                 
    **/ 
}

//Get array length for bluetooth send.
int arLen(int a){
    if(a>0){
        int b=a/10;
        return arLen(b)+1;
        }
    else if(a<0){
         a=abs(a);
         int b=a/10;
         return arLen(b)+2;
         }
    else{
        return 0;
        }

}

double getSpeed(char a){
       if(a=='x'){
                 return xspeed*2.2015;
                 }
       if(a=='y'){
                 return yspeed*2.2015;
                 }
       if(a=='z'){
                 return zspeed*2.2015;
                 }
       if(a=='g'){
                  return gspeed*59.026;
                  }
            return 0;
}

double getPos(char a){
       if(a=='x'){
                 return xpos*0.0022015;
                 }
       if(a=='y'){
                 return ypos*0.0022015;
                 }
       if(a=='z'){
                 return zpos*0.0022015;
                 }
       if(a=='g'){
                  return gpos*0.059026;
                  }
            return 0;
}

void calibrate(void){
     double i=0;
     double x=0;
     double y=0;
     double z=0;
     double g=0;
     for(i=0;i<10;i++){
          x=x+getPos('x');
          y=y+getPos('y');
          z=z+getPos('z');
          g=g+getPos('g');
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          }
     xstat=x/10;
     ystat=y/10;
     zstat=z/10;
     gstat=g/10;
}

void setBatteryFlag(int flag)
{
     batteryFlag=flag;
}

int getBatteryFlag(void)
{
     return batteryFlag;
}

Propulsion.c

#include <io.h>                         // msp430 defs
#include <msp430/iostructures.h>        // must be inlcuded after io.h!
#include <mspgcc/util.h>                // delay()
#include <signal.h>
#include <stdlib.h>
#include "logic.h"
#include "propulsion.h"

int motorSpeed=0x100;
int flat=90; // Constant for flat servo angle

volatile int servoPulse = 0; //Set the servo pulse according to angle

char task[8];
char pos[4];

//Basic Motor Controls
void leftForward(int speed)
{
     TACCR1=speed;
     TACCR2=0x0000;
}

void rightForward(int speed)
{
     int spd=0x0190-speed;
     TBCCR1=spd;
     TBCCR2=0x0000;
}

void leftReverse(int speed)
{
     //int spd=0x0190-speed;
     TACCR1= 0x0000;
     TACCR2= speed;
}

void rightReverse(int speed)
{
     //int spd=0x0190-speed;
     TBCCR1=speed;
     P4OUT |= 0x01;
}

//Advanced Motor Functions

void forward(void)
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{
     rightForward(motorSpeed);
     leftForward(motorSpeed);
}

void reverse(void)
{
     rightReverse(motorSpeed);
     leftReverse(motorSpeed);
}

void veerLeft(void)
{
     rightForward(motorSpeed);
     leftForward(motorSpeed/2);
}

void veerRight(void)
{
     leftForward(motorSpeed);
     rightForward(motorSpeed/2);
}

void turnLeft(void)
{
     rightForward(motorSpeed);
     leftReverse(motorSpeed);
}

void turnRight(void)
{
     leftForward(motorSpeed);
     rightReverse(motorSpeed);
}
     
void stop(void)
{
     rightForward(0);
     leftForward(0);
}     

void dive(int speed, int angle)
{
     rightForward(speed);
     leftForward(speed);
     setServo(angle);
}

//Set the servo angle
void setServo(int angle)
{
     servoPulse=((angle-1)/5)+12;
}

//Sets the bytes after 'M' into the task array
void setTask(char array[])
{
     int length;
     if(array[1]== SETSERVO){
          length=5;
          }
     else{
          length=1;
          }
     for(int i=0;i<length;i++){
             task[i]=array[i+1];
             }
}
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void manualMode(void)
{

     switch(task[0]){
          case FORWARD:
               forward();
               break;
          case REVERSE:
               reverse();
               break;
          case TURNLEFT:
               turnLeft();
               break;
          case TURNRIGHT:
               turnRight();
               break;
          case VEERLEFT:
               veerLeft();
               break;
          case VEERRIGHT:
               veerRight();
               break;
          case SETSERVO:
               for(int i=0;i<4;i++){
                       pos[i]=task[i+1];
                       }
               int ang=atoi(pos);
               setServo(ang);                 
               break;
          }
               
}
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APPENDIX  C:  PRODUCT  PHOTOS

Figure C-1: Blimp in storage
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Figure C-2: Gondola model

Figure C-3: Ultrasonic Sensor
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Figure C-4: Control System PCB
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Figure C-5: Control circuit layout
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Figure C-6: Host computer control GUI – Scanning Results tab
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Figure C-7: Host computer control GUI – Path Designer tab


