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Low Power Scheduling Schemes that Consider Latency and Resource 
Constraints at Multiple Voltages 

 

1. INTRODUCTION 

 

Power consumption has become an important factor in electronic portable system 

design, where excess power dissipation may lead to less reliability. Also, the demand 

for personal computing devices and mobile communication equipment is increasing. 

More and more consumers use small mobile devices in their daily life. They may talk 

and surf the Internet using their smart phone, or use a Personal Digital Assistant (PDA) 

for watching movies or for car Global Positioning System (GPS) guidance. However, 

these electronic portable devices are extremely limited by battery performance. Unlike 

the desktop Personal Computer (PC), these handheld devices have limited resources 

because they are designed to require less power. They are still expected to maintain an 

acceptable performance. The rapid progress in semiconductor technology has also led 

to higher chip density and operating frequency, which makes these mobile devices 

more complex and power-consuming. Therefore, power consumption has become an 

important issue in circuit design for these mobile devices. Advances in silicon 

technology also enable entire systems to be integrated on a single chip, which is 

known as Systems-on-a-Chip (SoC). The development of low power devices, circuits, 

algorithms, architectures, and CAD tools are fundamental for the successful 

realization of SoC. 

 

Our work presented in this thesis focuses on the power optimization (minimize 

average and peak power) at the algorithm level. Transformations at the algorithm level 
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have been presented in [1]. In addition, research in reducing power consumption of 

functional units has been proposed in [2]-[5]. There has also been research done in low 

power design at the behavioral level, such as reducing the number of registers and 

switching activities in registers, as well as efficient register allocations [3]. The 

problem of latency-constrained scheduling with multiple voltages has also been 

addressed [6], which computes the voltage assignment of each node, and is more 

complex than our latency-constrained algorithm. It does not consider the power 

consumption of registers and level shifters. An optimal solution has been found for the 

latency-constrained scheduling problem under variable voltage [7]. However, it did 

not consider resource constraint. Other techniques do not consider the effect of 

registers, which may result in an unrealistic scheduling [8][9].  Some attempts to  

minimize the switching activity for various resources (registers and functional units) 

have been made, but only considering single voltage [10]-[12]. 

 

The proposed latency-constrained scheduling algorithm in this thesis is executed in 

polynomial time to target resources operating at multiple voltages (5, 3.3, 2.4, 2.2, 1.8, 

1.5, 1.2, and 1v). In addition, this thesis considers power consumption by the registers 

and level shifters operating at multiple cycles. The proposed heuristic latency and 

resource constrained scheduling algorithm also considers the power consumption of 

registers operating at multiple voltages. The concept of our latency and resource 

constrained scheduling algorithm is similar to [8]. However the authors of [8] did not 

consider the effects of registers. Disregarding registers may result in unrealistic low 

power optimization, since registers actually consume a large amount of power and 
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cause delay. We also propose a hybrid method which can reduce the number of 

iterations in latency and resource constrained scheduling.  

 

This thesis is organized as follows: In Chapter 1, we present some background about 

general synthesis flow and low power design at various levels of abstraction. In 

Chapter 2, we present background on High Level Synthesis, including Scheduling, 

Allocation, Binding, and power dissipation of CMOS circuits. We also explain 

multiple voltage scheduling. In Chapter 3, we propose our scheduling algorithms for 

latency-constrained scheduling and latency and resource constrained scheduling 

problems. We also illustrate our algorithms by simple examples. Experimental results 

for different multimedia kernels are shown in Chapter 4. Finally, we present the 

conclusions in Chapter 5.  

 

1.1 The General Synthesis Flow 

The hardware design flow can be divided into two typical flows. One is the 

full-customized design flow, and the other is the cell-based design flow. 

Full-customized design flow has advantages such as high performance and small area 

cost compared to cell-based design flow. However, to speed up designs for the market, 

the cell-based design approach has its significant advantages, especially with the aid of 

Electronic Design Automation (EDA) tools. The cell-based design flow is described in 

Figure 1, which shows a typical design flow and the levels of abstraction.  

 

The abstract description at the system level specifies the system behavior as a 

relationship between inputs and outputs in terms of function and timing requirements. 
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The algorithm level is characterized by a partitioned system description consisting of 

a netlist of architectural or algorithmic descriptions, each suitable for realization on a 

single chip. This partitioned description is then refined to an intermediate register 

transfer level (RTL) design, which describes the chip behavior in terms of Boolean 

equations and implicit register assignments. At the logic level, the design is 

represented with a detailed logic gate description and associated gate delays. Finally, 

the circuit level describes the physical layout-based timing information for gates. 

 

 

Figure 1. Design Flow and the Levels of Abstraction 

 

1.2 Low Power Design at Various Levels of Abstraction 

VLSI design flow takes into account all levels of design: system, behavior (algorithm), 

logic, circuit, and layout level. The process to design a low-power system has been 

Algorithm Level 
Description/Simulation 

Register Transfer Level 
Description/Simulation 

Logic/Gate Level 
Description/Simulation 

Circuit Level 
Simulation 

Layout Synthesis 

Post Layout 

Tape-out 

System Level 
Description/Simulation 
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established completely, which improves the power in all levels of design process [13]. 

Typically, low power design can be implemented in the following different levels. 

 

System Level 

The system level design deals with connecting the resources, setting up 

communication, and operating the resources in a functionally correct and efficient 

fashion. Because digital circuit designers are attuned to the challenges of low power 

design, software engineers are often less power-conscious. 

 

Behavior Level 

Design at the behavior level is made by a hardware description language such as 

Verilog HDL or VHDL. By the process of behavior synthesis, the design can be 

transformed into logic level. There are three common approaches to high level power 

minimization. One approach attempts to minimize the switching activity of the circuit. 

The second approach tries to minimize the capacitance of the design, but it must rely 

on behavior power estimation tools that provide accurate information on capacitance. 

The third approach is to reduce the supply voltage and the threshold voltage. 

 

Logic Level 

Logic level power estimation and optimization has been one of the most extensively 

researched areas in CAD systems. Many techniques are used to deal with the 

components of logic level descriptions, and these optimization techniques can be 

seamlessly integrated in a traditional synthesis-based design flow. Because they are 
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applied late in the design process, they will only reduce power consumption by 

relatively small amount. One way to eliminate this problem is to optimize power at a 

higher level of abstraction. 

 

Circuit Level 

Except for the technology scaling, reducing the supply voltage for a given technology 

results in significant power consumption reduction. However, voltage reduction comes 

at the expense of slower gate speeds. It has become apparent that the voltage scaling 

approach is insufficient by itself, so we have to focus on advanced design tools and 

methodologies which address these power issues. 

 

Layout Level 

A considerable number of studies have been done on low power CMOS design by 

adjusting the supply voltage and threshold voltage, which requires a tradeoff between 

power consumption and delay. The status of silicon-on-insulator approach to scaled 

CMOS shows potential for 3x saving in power. The performance improvement of 

silicon-on-insulator compared to bulk CMOS is due to the reduction of parasitic 

capacitances and body effect. 
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2. HIGH LEVEL SYNTHESIS BACKGROUND 

 

2.1 Introduction 

High Level Synthesis is also called Behavioral Level Synthesis. The benefits of High 

Level Synthesis to digital system design include: 

- Shortens design time to market.  

- Significantly lowers design cost. 

- Verifies the synthesis process so that fewer errors occur. 

- Explores the design space by considering different trade-offs. 

- Documents the process of design, and evaluates their effect. 

High Level Synthesis consists of the following three interrelated tasks. Because of the 

complexity of the problem, each task is usually researched separately. 

• Scheduling 

• Allocation 

• Binding 

 

2.2 Scheduling 

Scheduling contains information about the exact start time of each operation. This 

information is added to the initial behavioral description. Scheduling algorithms can 

be grouped into (1) transformational approaches and (2) iterative techniques. It can be 

also classified by its goals into (1) latency-constrained scheduling, (2) 

resource-constrained scheduling or (3) latency and resource constrained scheduling.  

 

During scheduling, the operations can be executed in one clock cycle or n clock cycles 
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(i.e., multi-cycle operations), where n is any integer number greater than 1. 

 

2.2.1 Transformational Approaches 

Transformational algorithms are used to obtain a new schedule from a default 

schedule by applying transformations. The fundamental transformations consist of 

moving operations or blocks executed serially into the same execution interval 

(parallel execution), or moving operations executed concurrently into subsequent time 

steps (serial execution). These approaches use Branch and Bound algorithms, ILP 

formulations, Trace and Percolation Algorithms, and Stochastic techniques. 

 

2.2.2 Iterative Techniques 

For iterative techniques, each operation is assigned consecutively until all operations 

are scheduled. The differentiation among these algorithms is the basis for deciding 

which operation will be scheduled next. The simplest algorithms are the As Soon As 

Possible (ASAP) algorithm and the As Late As Possible (ALAP) algorithm. Although 

both of these assume unlimited resources, their significance includes that they 

determine: (1) the fastest possible implementation, (2) the critical path, and (3) an 

upper bound on the number of required hardware resources. 

 

2.2.2.1 ASAP and ALAP 

ASAP scheduling places all the operations into the earliest possible control step and 

results in the shortest schedule. For this reason, the ASAP scheduling gives a lower 

bound on the schedule length. In addition, the ASAP schedule gives an upper bound 

on the number of required hardware resources. This upper bound is determined with 
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the maximum number of operations of a given type used in any control step. To 

obtain the ALAP schedule, we need to be given an execution time constraint. The 

schedule length is set to this constraint and all operations are assigned to the latest 

possible control step. 

 

2.2.3 Resource Constrained Scheduling 

The aim of resource-constrained scheduling is to assign operations to control steps 

such that execution time is minimized for a given number of functional units (adders, 

and multipliers). Some resource-constrained algorithms are: 

(1) List Scheduling: Places all operations whose inputs are available into a ready 

list, and then the list is sorted in a priority function. The operations in the 

sorted list are subsequently assigned until either all operations are scheduled 

or all hardware resources have been used [14]. 

(2) Force Directed List Scheduling: Similar to list scheduling, with the 

distinction that the selection of a candidate operation to be scheduled in a 

given time step is done by using the concept of force [15][16].  

(3) Integer Linear Programming (ILP): Provides the optimized solution for the 

scheduling, but the computation time is high for a large circuit. 

 

2.2.4 Latency (Time) Constrained Scheduling 

The aim of latency-constrained scheduling is to assign operations to control steps such 

that the number of functional modules is minimized for a given execution time. Some 

of the most important algorithms are: 

(1) Force Directed Scheduling: It considers the operations one at a time for 
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scheduling, in contrast to the strategy of considering each schedule step 

singly as done by list scheduling [15][16]. 

(2) Integer Linear Programming (ILP): It gives an exact solution but has the 

same disadvantage as ILP algorithm in resource-constrained scheduling, i.e., 

the computation time is high. 

 

2.2.5 Operation at Multiple Cycles  

In behavioral synthesis, multi-cycle techniques are widely used, which allow an 

operation to be executed during two or more control cycles. They can increase the 

performance or minimize the area. In Figure 2, we can see that Op1 is a single cycle 

operation; Op2 and Op3 are executed during two and three control cycles, which are 

multi-cycle operations. Multi-cycle functional units can also be employed to reduce 

the power consumption of digital designs in behavioral synthesis approaches [8] [17].  

 

 
     Figure 2. Operations at Multiple Cycles 

 

2.3 Allocation and Binding 

Allocation determines the quantity and type of resources used in the chip architecture. 

It also determines the clocking scheme, memory hierarchy and pipelining scheme [22]. 

Op1
Op2 

 

 
Op3 

Control Cycles 

1 

2 

3 
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It consists of the following different but interdependent tasks: 

- Module/Functional Unit Allocation: Determines the number of required 

arithmetic and logic units   

- Storage Allocation: Assigns the variables given in the behavioral description 

to the registers  

- Interconnect Allocation: Allocates buses and multiplexers in the datapath to 

connect the functional modules and registers. 

 

This decomposition frequently results in circuits that require more interconnections 

than necessary when executed independently.  

 

Binding maps operations to functional modules and variables to registers. This allows 

for the cost of the necessary interconnection structure to be minimal. It can be 

decomposed into: 

- Functional Unit Binding: Determines the exact mapping of the operations 

into the functional units 

- Storage Binding: Maps data carriers (constants or variable) in the behavioral 

description to storage elements (registers or memory) in the datapath 

- Interconnection Binding: Maximizes the sharing of interconnection units (i.e., 

minimizes the interconnection cost). 

 

The combination of allocation and binding is referred to as datapath allocation.  
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2.4 Power Dissipation of CMOS Circuit 

Because CMOS digital integrated circuits have the advantageous features of low 

power consumption, large noise margins, and ease of design, they have been widely 

used in recent years. CMOS can be divided into digital CMOS circuits and analog 

CMOS circuits. We will focus on digital CMOS in this thesis. The design of portable 

devices needs to consider the peak power consumption for reliability, and the dynamic 

power consumption for battery life. The average power consumption is also important 

for thermal considerations and environmental concerns.  

 

The average power dissipation P of a digital CMOS circuit is composed of two 

components: 

dynamic static P PP +=                (2.4.1) 

 

Static power consumption can be described as the following equation: 

 

VIP leakage static ×=       (2.4.2) 

 

where Ileakage is the leakage current, and V is the operating voltage. Pstatic characterizes 

circuits that have a constant source of current between the power supplies. Pstatic 

becomes significant when a transistor fault such as “stuck-at on” occurs in CMOS 

circuits. However, this power contribution is not an issue for properly designed CMOS 

circuits. 
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Pdynamic is the dominant part of the power dissipation in CMOS circuits, which can 

be decomposed into the following three terms: 

 

P dynamic = P switching + P short-circuit + P leakage                      (2.4.3)      

 

Pswitching is called switching power, which is a result of the charge and discharge of the 

capacitances associated with each node of the circuit. The power consumption of a 

CMOS gate is given as equation (2.4.4) while ignoring the internal capacitances. 

  

fVC
2
1P 2

ddLα=         (2.4.4) 

 

where α is the switching activity (i.e., the sum of the probabilities that a rising or 

falling transition occurs on the output in each clock cycle), CL is the load capacitance, 

Vdd is the supply voltage, and f is the operating frequency. The switching power 

dominates most of the total power consumption. Therefore, it is important to estimate 

and minimize this component for the electronic components. 

 

Pshort-circuit is called short-circuit power, which derives the short-circuit current from the 

supply voltage to the ground during output transitions. Finally, Pleakage is called leakage 

power, which is due to the leakage current. 

 

From equation (2.4.4), we know that power savings can be achieved by reducing the 

following parameters: 
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• Switching activity 

• Load capacitance 

• Supply voltage 

• Clock frequency 

 

These parameters are not mutually independent. It is essential in low power design to 

analyze the interactions and trade-offs among these parameters. For dynamic power 

consumption, we can lower the power consumption greatly by scaling down the 

operating voltage, and this will also reduce the leakage power consumption. However, 

scaling down operating voltage may also increase the delay time for operations. The 

following equations show the relationship between energy dissipation E(Vdd), 

execution time d(Vdd), and supply voltage Vdd. 

 

)E(V
V
V)E(V max

2

max

dd
dd 








=            (2.4.5) 

 

and       )d(V
)V -(VV
)V -(VV)d(V max2

tddmax

2
tmaxdd

dd =            (2.4.6) 

 

where Vmax is the maximum supply voltage, Vt is the threshold voltage, E(Vmax) and 

d(Vmax) are the energy dissipation and execution time at Vmax. By equation (2.4.5) and 

(2.4.6), we find it will reduce the power dissipation by lowering the supply voltage at 

the expense of increasing the delay time. 
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2.5 Multiple Voltages Scheduling 

Multiple voltage scheduling can be described as follows: assume that a designer 

knows the availability of low power functional units such as adders, multipliers, etc., 

and these functional units can be operated at different voltages. Supply voltages, delay, 

and power dissipation of these functional units are known. The designer can find out 

how to use the components from the given library, such that the whole design 

consumes the least power under a latency or resource constraint. 

 

For dual supply voltage, VL/VH can be used to minimize power dissipation of circuits. 

One theory to deal with the optimal VL/VH is described in [18]. The power reduction 

ratio R becomes a minimum value when VL is between 0.6VH and 0.7VL. In multiple 

power supplies {V1>V2>…Vn}, power dissipation is given by: 

 

}VCV)C-f{(CP 2
i

n

2i
i

2
1

n

2i
i1n ∑∑

==

+=       (2.5.1) 

 

where Ci is total capacitance of circuits and interconnections while operating at Vi, and 

f is the operating frequency. The ratio of power dissipation in the multiple power 

supplies, compared to that in a single power supply, is given by: 

 

∑
=

=
n

2

2

1

i

1

i

1

n }])
V
V(-{1

C
C[-1

P
P

i

              (2.5.2) 

 

From equation (2.5.2), we see that multiple voltages scheduling techniques can obtain 

higher power efficiency than using single supply voltage by using the slack time. 

Nevertheless, they may affect the IC layout in the following ways [19]: 
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• An area increase due to the routing of the supplies will occur. There will 

be a trade-off between lower energy dissipation and higher routing cost. 

• It may be necessary to partition the chip into separate regions, where 

operations in the same region operate at the same voltage. 

• Isolation will be necessary between regions operated at different voltages. 

• New design rules for routing may be needed to deal with signals at one 

voltage passing through a region of another voltage. 

 

Another problem will be the area and delay overhead of the required level shifters.  
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3. PROPOSED LOW POWER SCHEDULING 

 

3.1 Delay and Power Characteristics 

The delay and power characteristics of different functional units operating at different 

voltages are obtained from [4], where the author used Mentor Graphic’s Design 

Architect and Accusim to simulate these various units at different voltages (5v, 3.3v, 

2.4v, 2.2v, 1.8v, 1.5v, 1.2v, 1.0v). We use the results of power and delay from a 32-bit 

carry-ripple adder, a 32-bit carry-ripple multiplier, and a 32-bit register, which are laid 

out by TSMC 0.35μm technology for our simulation. Table 1 shows the delay values 

for resources operating at different voltages. 

 

Table 1. Delay for a 32-bit Carry-Ripple Adder, Multiplier, and Register [4] 

Volt (v) 5 3.3 2.4 2.2 1.8 1.5 1.2 1 

Adder 13.51 16.50 21.49 23.66 31.20 43.71 78.81 170.64 

Multiplier 33.22 40.57 52.85 58.19 76.72 107.47 193.79 419.59 

Register 3.67 4.50 5.63 6.44 8.12 11.27 20.01 43.95 

Delay (ns) 
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Figure 3. Delay for a 32-bit Carry-Ripple Adder, Multiplier, and Register 
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Table 2 shows the number of required cycles for resources operating at different 
voltages. Here we assume one cycle time is 10 ns. 
 
 

Table 2. The Number of Required Cycles Used for Different Logics 

Volt (v) 5 3.3 2.4 2.2 1.8 1.5 1.2 1 
Adder 2 2 3 3 4 5 8 18 

Multiplier 4 5 6 6 8 11 20 42 
Register 1 1 1 1 1 2 3 5 

Delay (cycle) 

 

Table 3 shows the power dissipation for resources operating at different voltages. In 

this table, we can find that the power dissipation of a register cannot be ignored 

because its power value is approximately equal to the power value of an adder. We 

should note that the multiplier is approximately three times slower than the adder 

(Figure 3), and consumes much more power compared to adders and registers (Figure 

4). 

 

Table 3. Power for a 32-bit Carry-Ripple Adder, Multiplier, and Register [4] 

Volt (v) 5 3.3 2.4 2.2 1.8 1.5 1.2 1 

Adder 9335.60 3984.48 2068.21 1835.20 986.25 402.57 121.41 15.54 

Multiplier 28431.00 12134.50 6298.60 5588.95 3003.56 1226.01 369.75 47.32 

Register 8390.60 3558.90 1897.33 778.81 526.89 358.80 73.19 11.41 

Power Characteristic (μW) 
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Figure 4. Power for a 32-bit Carry-Ripple Adder, Multiplier, and Register 

 

We also get the power values for level shifters, which are used for data flow at 

different operating voltages. They are taken from [20], where the values are expanded 

to support more voltages from a curve-fitting algorithm by the author in [4]. In Table 

4, we find that the power consumption of Vlow-to-high level shifter is less than Vhigh-to-low 

level shifter in two different stages. We ignore the delay of level shifters in this thesis 

because they are negligible, compared to that of other functional units. 

Table 4. Power for a Level Shifter (μW) 
To\From 1.0 1.2 1.5 1.8 2.2 2.4 3.3 5 

1.0 0 45 55 66 80 87 118 177 

1.2 32 0 59 70 95 92 125 187 

1.5 39 44 0 76 92 100 136 203 

1.8 46 52 62 0 96 108 146 220 

2.2 55 63 74 85 0 118 160 320 

2.4 60 68 80 92 108 0 167 253 

3.3 81 92 108 124 145 156 0 356 

5 121 137 160 184 220 234 260 0 



 20

3.2 Lagrange Multiplier Method 

From [8], we see that we can distribute the slack among the nodes in the critical path 

by using the Lagrange multiplier method. The delay of a resource is determined by the 

delay of the gates on the critical path. In order to minimize the total energy subject to 

the time constraint, we use the Lagrange multiplier method to determine the supply 

voltage of each node, and we can find the minimum total energy while the specific 

condition is satisfied in the critical path. The relationship between the voltages of the 

nodes in the critical path is derived in the descriptions that follow. 

 

We find that Etotal is minimized while the following condition is satisfied among the 

nodes in the critical path from [8]: 

 

)(
)(...........

)(
)(

n1

3

1

3
1111

tnC

tnnnn

tC

t

VVC
VVVC

VVC
VVVC

+
−

==
+
− αα            (3.2.1) 

 

where Cn is the total load capacitance of the resource n, and αn is its average switching 

activity. ncc represents the sum of the capacitances of the gates on the critical path of 

resource n. 

 

The above equation can be simplified while Vj>3Vt , and we can get equation (3.2.2): 
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The 
jC
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Cα  ratio is a constant for each resource, which is equal to 
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We let Vref be the reference voltage and we can get: 
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where En is the energy of resource n operating at Vn, and Dn is the corresponding delay. 

 

In order to minimize the total energy, we see that we should assign lower voltage 

resources to the nodes with high 





D
E  from equation (3.2.3). From Table 1 and 

Table 3, we conclude the following priority table (Table 5). We should note that the 

higher priority means the resource should be disabled earlier in low power 

scheduling. 

Table 5. Priority for Different Resources by E/D 
Priority Resource E/D value 

1 5v multiplier 861 
2 5v adder 691 
3 3.3v multiplier 299 
4 3.3v adder 241 
5 2.4v multiplier 119 
6 2.4v adder 96 
7 2.2v multiplier 96 
8 2.2v adder 77 

 

3.3 Register Effect 

Registers play an important role in all kinds of computer systems. They are necessary 

because they hold the values of variables, which are generated and consumed during 
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the execution of an operation. For mobile devices, registers are even more 

significant because of the power and timing requirements. In Table 3, we see that a 

single 32-bit register operating at 5v consumes power around 8,390μW, and its delay 

is around 3.67 ns. Although both power usage and delay of a single register is 

negligible, the amount of power they consume is still significant, and the operating 

time of the entire system is increased because they are constantly used. In Figure 5, 

we can see the role that registers play, and find surprise in the ratio of power 

consumption by registers in the operation. For the simple circuit, in which the OP is 

operating at 5v, the corresponding registers consume around 47% or 73% of the total 

power depending on the operating resource. Therefore, it is essential to consider the 

power consumption by registers in low power design. With multiple voltages and 

multi-cycle techniques, we can reduce the average power and peak power for 

functional units and registers. The significance of registers is also addressed in [21], 

which discusses the latency-constrained scheduling problems. 

 

 

 

 

 

 

 

 

Figure 5. Power Consumption by Registers 
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OP 
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Power for Registers: 25,170 uW 

 

1) OP = 5v multiplier (28,431 uW ) 
Register Power = 47% total Power  
 
2) OP = 5v adder (9,335 uW) 
Register Power = 73% total Power  

 

 A 
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3.4 Branches Determination 

For the Data Flow Graph (DFG) in Figure 6, the input edges and node categories are 

depicted in Table 6, and stored in the ready sets S, T, M, and A, respectively. We 

present a heuristic algorithm which is efficient in determining the required branches. 

The input edges of DFG are stored in the ready sets S and T, where a DFG is a 

directed acyclic graph whose nodes represent operations, and edges represent 

dependencies between the operations. We then distinguish the nodes (i.e., remove the 

redundant nodes) for both sets and put the results in Set(S1) and Set(T1), respectively. 

When comparing Set(S1) and Set(T1), the duplicate values are excluded in the 

updated starting node set. 

 

 

Figure 6. DFG for example 
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Table 6. Ready Sets S, T, M, and A 

S 1 2 3 4 11 5 6 7 8 9 13 

T 2 3 4 10 3 4 7 12 9 13 14 

          

M 1 2 4 5 6 7 9 11 14 

A 3 8 10 12 13 

         Node Categories: {M: multiplier, A: adder} 

 

 

For example, at the beginning, the Set(S) contains {1, 2, 3, 4, 11, 5, 6, 7, 8, 9, 13}, and 

Set(T) contains {2, 3, 4, 10, 3, 4, 7, 12, 9, 13, 14}, which refers to the corresponding 

edge (node1→node2), (node2→node3) ….. (node13→node14). After comparing 

Set(S1) and Set(T1), these nodes (2, 3, 4, 7, 9, 13) should be deleted in Set(S1). The 

remaining values in Set(S1) are updated to {1, 5, 6, 8, 11}, which are the starting 

nodes of these branches in the DFG. Then, we can find all branches by finding the 

sequenced nodes in Set(S) and Set(T). For instance, the starting node ‘1’ in Set(S) 

corresponds to ‘2’ in Set(T), backwards to ‘2’ in Set(S), and so on (i.e., the arrows in 

Set(S) and Set(T) in Figure 7). The first group in Set(S) and Set(T) consists of the 

nodes of 1, 2, 3, 4, 10, which makes up the branch P1.  
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S T S1 T1 
Starting 

Node 

1 2 1 2 1 

2 3 2 3 5 

3 4 3 4 6 

4 10 4 7 8 

11 3 5 9 11 

5 4 6 10  

6 7 7 12  

7 12 8 13  

8 9 9 14  

9 13 11   

13 14 13   

   Figure 7. Starting Nodes of the Prospected Branches. 
 
 
 
By this method, all the branches are finally obtained as follows: 
 

P1: {1, 2, 3, 4, 10};  
P2: {11, 3, 4, 10};  
P3: {5, 4, 10};  
P4: {6, 7, 12};  
P5: {8, 9, 13, 14} 

 

3.5 Latency Constrained Scheduling 

The input to a latency-constrained scheduling scheme is a DFG and a latency 

constraint. A latency constraint is a restriction for the maximum operating time in the 

scheduling of DFG. 
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3.5.1 Latency Constrained Scheduling Algorithm 

After we obtain all the branches in the DFG, we assign the highest voltage to all nodes 

in the DFG to determine the minimum latency. We compare the minimum latency of 

each branch to determine their priority. Then, we assume the adders and registers are 

operating at the highest voltages in order to determine the largest tolerance for the 

multipliers in the branch. To minimize the power consumption by observing Table 3, 

we should assign a voltage, which is as close to the desired voltage as possible for the 

nodes which are ready to be scheduled. For example, if we can assign 3.3v for two 

multipliers, it will be better than assigning 5v and 2.4v individually for them. Not only 

will the power consumption be less, but we will use less registers and resources. 

Additionally, because the power consumption of multipliers is much larger than that of 

adders, we assign low voltage for multipliers as often as we can (multipliers have 

higher priority than adders in latency-constrained scheduling). We should note that if 

some multipliers only connect to each other and are not interconnected with adders, 

we assign a lower voltage to the multiplier in the top and a higher voltage to the one in 

the bottom. This is because the power consumption of the low-to-high level shifter is 

less than the high-to-low in two different voltage stages from Table 4.  

 

After all the multipliers have been assigned their voltage, we update the tolerance for 

the adders in the branch. We use similar steps to assign the voltage for the adders. 

After all the adders in the branch have been assigned, we update the priority of 

branches and repeat the scheduling for the next branch. We show the 

latency-constrained scheduling algorithm in Figure 8, where the input is DFG, latency 

constraint L, and clock cycle time. 
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1. Determine the number of cycles used for different logics by the given clock cycle time. 

2. Find all branches in the DFG. 

3. Determine minimum required cycles (P) for every branch, where all nodes are operating at 5v. 

4. Computer the maximum tolerance(T) for every branch, where T=L(latency constraint)-P 

5. Determine the priority by the minimum required cycles (P) of every branch.  

6. For a branch, check the position for each multiplier ( k is the # of multipliers in the branch) 

For i=0, i++, i< (k+1) {    

If (the multiplier is the first or the last node of the branch) 

{T=T-1} 

If (the multiplier is connected with two other nodes, which they are not multipliers, in the 

branch) 

{T=T-2}                                } 

7. Determine the lowest voltage for multipliers by [ T/ # of multipliers ], and assign the voltage for 

multipliers by their tolerance.  

If  (the required cycles P’< L){   

                          Update T=L-P’ & go to Step8  } 

Else    { Repeat Step 7} 

8. Determine the lowest voltage for adders by [ T/ # of adders ], assign the voltage for adders, and 

update P’.  

If   (the required cycles P’< L) {   

                            Go to Step 9  } 

Else   { Repeat Step 8 } 

9. Assign voltage for the next branch by their priority. 

Figure 8. Latency Constrained Scheduling Algorithm 

 

3.5.2 Latency Constrained Scheduling Example 

 

3.5.2.1 Determine the Tolerance 

After we determine the branches in the previous example (Figure 6), the next step is 

to calculate the minimum required cycles for each branch, while the nodes thereof are 

assigned to 5v. For instance, the minimum required cycles for branch P1: 4 cycles 
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(node1 is a multiplier) + 4 cycles (node2 is a multiplier) + 2 cycles (node3 is an 

adder) + 4 cycles (node4 is a multiplier) + 2 cycles (node10 is an adder) + (5+1) 

(registers) = 22 cycles. The cycles for the registers are the number of nodes in the 

branch plus one because the register operating at 5v is one cycle. Here we assume the 

latency constraint L is equivalent to the maximum cycles among these branches in this 

example, hence L = 22 cycles. The tolerable cycles are calculated by the subtraction of 

the minimum required cycles and L. All the tolerable cycles of branches in this 

example are described in Table 7.  

 

Table 7. Tolerance for Each Branch (cycle) 

Branch Nodes Min Required Time Max Tolerance 

P1 1, 2, 3, 4, 10 22 0 

P2 11, 3, 4, 10 17 5 

P3 5, 4, 10 14 8 

P4 6, 7, 12 14 8 

P5 8, 9, 13, 14 17 5 

 

3.5.2.2 Voltage Assignments for Latency Constraint  

The next step is to assign the voltages based on the tolerable cycles of each branch. 

The following rules of our latency-constrained scheduling algorithm have to be known. 

The multipliers have higher priority than adders during the voltage assignments. 

Additionally, the position of the nodes has an effect on the voltage assignments. If the 

node is located on the top, on the bottom, or two like nodes are connected in a branch, 

the tolerable cycles are reduced by one, this is because the number of registers 

assigned to different voltages is increased by one when the voltage of registers is 
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higher than 1.5v. Note that the number of registers is increased by two or more if the 

voltage assigned on the node is equal to or less than 1.5v. On the other hand, if the 

node is located in the middle, or two like nodes are not connected in a branch, the 

tolerable cycles are reduced by two, this is because the number of registers assigned to 

different voltages is increased by two when the voltage of the registers is higher than 

1.5v. Note that the number of registers is increased by four or more if the voltage 

assigned on the node is equal to or less than 1.5v for the new configuration. The peak 

power minimization is also taken into account by reducing the number of required 

resources at the scheduling assignment. 

 

Table 8. The Number of Required Cycles for Choosing Resources in Lower Voltages 

Voltage (v) 5 3.3 2.4 2.2 1.8 1.5 1.2 1 
Dadder 0 0 1 1 2 3 6 16 

Dmultiplier 0 1 2 2 4 7 16 38 

 

For P1{1,2,3,4,10}, we assign 5v for each node in the branch because the tolerable 

cycle is zero in this example. Now, 5v node:{1,2,3,4,10} and the remaining nodes 

{5,6,7,8,9,11,12,13,14} are stored in Set(R). For P2{11,3,4,10}, the tolerable cycles 

are 5. Node3, node4, and node10 have been addressed, so these nodes should be 

ignored. The only node that needs to be processed is node11. Since node11 is located 

on the top of this branch, the tolerable cycles (slack time) for this operation are 4 

(tolerable cycles 5 – 1) as seen in Table 9. Because node11 has a 4 cycle tolerance, the 

next step is to find the desirable voltage in Table 8. Node11 is assigned to 1.8v, now 

R={5,6,7,8,9,12,13,14}. For P3{5,4,10}, the tolerable cycles are 8. Node4 and node10 
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have been addressed, so these nodes can be disregarded. The only node that has to 

be processed is node5. Since node5 is located on the top of this branch, the available 

tolerable cycles for this operation are 7 (tolerable cycles 8 – 1). We find the desirable 

voltage, 1.5v, which is fit to be assigned to node5. However, if node5 is assigned to 

1.5v, it will need two more cycles for registers, and this will cause the overall latency 

to be larger than the latency constraint. Therefore, we assign 1.8v to node5, so that 

R={6,7,8,9,12,13,14}. We should note that branch P3 can tolerate 3 more cycles, 

which can be used for the consideration on the reduction of the peak power and 

number of registers.  

 

For P4{6,7,12}, 8 cycles are tolerable. All nodes have to be processed because none 

have been addressed. The multiplier nodes have higher priority than the adders at the 

voltage assignment stage. Node6 and node7 are directly connected, so the number of 

tolerable cycles is reduced by one, and now the number of tolerable cycles is 7. The 

number of tolerable cycles for each multiplier is 7 divided by 2 (2 multipliers), and 

each multiplier has the slack (available) time for 3.5 cycles. The lowest voltage 

assignment on the two multipliers is 2.2v. After this assignment, the tolerable cycles 

are updated to leave 3 cycles (i.e., 7-2*2), which allows us to assign 1.5v on node12 

from Table 8. However, an overhead of assigning 1.5v to node12 will be that the time 

required for the register will be increased by 1 or more cycles, in which the overall 

cycles are larger than L. Therefore, we adjust this assignment and choose 1.8v for 

node12, and now R={8,9,13,14}. 
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Table 9. Tolerance for Multipliers in Each Branch (cycle) 

Path Node Latency Tolerance Minimal Interval 
P1 1,2,3,4,10 22 0 Tolerance=0 (the longest path.) 
P2 11,3,4,10 17 5 5 – 1(register cycle for node11)=4 
P3 5,4,10 14 8 8-1(register for node5,4) =7 
P4 6,7,12 14 8 8-1(register for node6,7) =7 
P5 8,9,13,14 17 5 5-(1+2)(register for node9,14 )=2 

 

 

For the last branch P5{8,9,13,14}, 5 cycles are tolerable. All the nodes have to be 

processed because none have yet been addressed. The multipliers have higher priority 

than the adders at the voltage assignment stage. Node9 and node14 are not directly 

connected, so the tolerable cycles are reduced by two for node9 and by one for node14, 

and the number of tolerable cycles becomes 2 (i.e., 5-3). The number of tolerable 

cycles for each multiplier is 2 divided by 2 because there are two multipliers. The 

lowest voltage assignment for the two multipliers is 3.3v by their 1 cycle slack time. 

After this assignment, the tolerable cycles of the branch are updated to leave 0 cycles, 

which leaves node8 and node13 assigned at 5v. Table 10 shows the progress of 

voltage assignment, and Table 11 shows the final voltage assignment for the nodes in 

the DFG. 

 
 
 
 
 

 



 32

Table 10. Latency in Different Voltage Assignments for the Branches; L=22 cycles 

Path Node Assignment Latency 
P1 All the nodes are 5v L= (4*3) + (2*2) + 6 = 22 (=L) 
P2 node 3,4,10 = 5v, node 11 = 1.8v L= 8 + (2*2) + 4 + 6= 22 (=L) 

P3 
node 4, 10 = 5v, node 5 = 1.5v 
Node 4, 10 = 5v, Node 5 = 1.8v 

L = 11 + 4 + 2 + 7= 24 (> L) 
L = 8 + 4 + 2 + 5 = 19 (< L) 

P4 

Node 6, 7 = 2.2v, Node 12 = 5v 
7-(2*2) = 3(assign them to Node 12) 
Node 6, 7 = 2.2v, Node 12 = 1.5v 
Node 6, 7 = 2.2v, Node 12 =1.8v 

L = (6*2) + 2 + 5 = 19 (< L) 
 
L = (6*2) + 5 + 7= 24 (> L) 
L = (6*2) + 5 + 5 = 21 (< L) 

P5 Node 8, 13 = 5v, Node 9,14 = 3.3v L = (5*2) + (2*2) + 8 = 22 (=L) 
   

Table 11. Final Voltage Assignment for the Example 
Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Property * * + * * * * + * + * + + * 

Volt (v) 5 5 5 5 1.8 2.2 2.2 5 3.3 5 1.8 1.8 5 3.3 

 

3.6 Latency and Resource Constrained Scheduling 

The input to a latency and resource constrained scheduling scheme is the DFG, the 

resource constraint, and the latency constraint. That is, we have the restriction on the 

number of each type resource such as adders and multipliers. Not only do we have the 

limit imposed on the resources, we also have the restriction in the latency (operating 

time).  

 

3.6.1 Iterative Method for Latency and Resource Constrained 
Scheduling  

In this section, we address the problem of scheduling under resource and latency 

constraints where the resources are operating at multiple voltages. The proposed 
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heuristic algorithm operates in two steps. At the first step, we consider the 

resource-constrained scheduling by using the highest available voltage resources to the 

nodes, which means it will take the minimum amount of time. At the second step, we 

reduce the power consumption by disabling the resources according to their priority 

(Table 5). The procedure is operated by an iterative method. For each iterative action, 

the resource with the highest E/D ratio is disabled. These iterations continue until 

there is a timing violation. We also propose a hybrid method, which combines the first 

and the second steps at the beginning of scheduling. It reduces the number of iterations 

and the computing time. 

 

3.6.1.1 First Step Scheduling 

In the first step scheduling, we only consider the resource constraint. The nodes in a 

ready set are prioritized based on their freedom, and the nodes with the lowest 

freedom are chosen among the ready nodes. The node with lower freedom should be 

assigned to a higher voltage, and the node with higher freedom should be assigned to a 

lower voltage. Finally, if the freedom of a node is greater than the delay of the 

resource to which it is assigned, the node can be re-scheduled to a lower voltage 

resource if available. 

 

3.6.1.2 Second Step Scheduling 

At the end of the first step scheduling, if the timing tolerance is larger than 0 (i.e., 

there is no timing violation), we can re-schedule the nodes by disabling the resources 

in the order of priority at this moment (the 5v multiplier will be disabled at first if 
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possible, then the 5v adder, then the 3.3v multiplier and so on). There will probably 

be a timing violation after some resources have been disabled. When the conflict 

occurs at the assignment for the last one or more nodes, we should re-assign the higher 

voltage to these nodes. For instance, if we have disabled the 5v adder resource, now 

the maximum voltage resource for the adder should be 3.3v. However, there is a 

timing violation now, which means there is not enough time for all the adders 

operating at 3.3v. Therefore, we assign 5v to the last adder to prevent the timing 

violation, even when the resource of 5v adder is disabled. We will discuss this in an 

illustrative example.  

 

3.6.1.3 Hybrid Method 

If the latency constraint is much larger than the minimum required operating time (i.e., 

all nodes are assigned to the highest voltage possible), it will take some time to finish 

the scheduling for large circuits. For example, we have to schedule all nodes from the 

resource with the highest voltage in the first step scheduling. Then, we disable the 

resource with the highest priority (i.e., 5v multiplier), and schedule them by the second 

step scheduling algorithm. We continue to do the procedure again after we disable the 

second highest priority resource (i.e., 5v adder). It will continue until the timing 

conflict occurs. To avoid this, we propose the hybrid method by implementing both 

the first step and the second step at the beginning of scheduling. We compute the 

average timing tolerance for each node in the critical branch (the branch with the 

lowest freedom). By the average timing tolerance, we can determine how many 

resources we can disable at the beginning of scheduling. We show the latency and 

resource constrained scheduling algorithm in Figure 9. 
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First step (resource-constrained scheduling part) 

1. Make or update the ready set, ASAP, and ALAP table for the minimum operating time 

without constraints. 

2. Start scheduling by assigning the lowest freedom node in ready sets to the available 

resource with the highest voltage. 

3. If the freedom of the scheduled node is larger than the delay of the resource, assign the 

node to the available lowest voltage resource. 

Second step (power reduction scheduling part) 

4. Disable the resource with the highest priority, and schedule all nodes in the DFG from 

Step (1). 

             If  (there is no timing violation){ 

                  repeat Step 4} 

        else {Assign the last one or more nodes to higher voltage resource (i.e., the 

resource has just been disabled), and complete the low power scheduling.} 

Hybrid method 

Computing the average timing tolerance for each node in the critical branch (the branch 

with the lowest freedom)  

           If  (the average timing tolerance>1){ 

           Determine what resources can be disabled. Disable them, and 

schedules the nodes in resource-constrained scheduling} 

        else { Schedule the nodes by regular procedures from first step.} 

Figure 9. Latency and Resource Constrained Scheduling Algorithm 

 

 

3.6.2 Example for Latency and Resource Constrained Scheduling 

We use the DFG in Figure 10 to explain our latency and resource constrained 

scheduling algorithm. The resource constraint and the delay for each resource are 

described in Table 12. For the DFG in Figure 10, we assume the latency constraint is 

L=18 (cycles).  
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Table 12. The Resource Constraint and the Delay for Each Resource 

 5v [Mult] 3.3v [Mult] 2.4v [Mult] 5v [Adder] 3.3v [Adder] 2.4v [Adder] 

# of resource 1 1 1 1 1 1 
# of delay (cycle) 4 5 6 2 2 3 

 

Figure 10. Illustrative Example DFG 
 

Table 13. ASAP and ALAP for illustrative DFG 

 ASAP ALAP 
Node1 2 2 
Node2 2 4 
Node3 7 7 
Node4 10 10 
Node5 2 5 
Node6 7 10 

 

First Step (resource-constrained scheduling part): 

1. In control cycle 2, the ready sets are M{node1, node5} and A{node2}. For ready 

set M, because node1 has lower freedom compared to node5, we assign it to 5v 

multiplier. As for node5, 3.3v multiplier is available now; therefore we assign it 

+ 
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to 3.3v multiplier. 

2. For node2, we should assign it to 5v adder at this moment. However, node3 will 

be available at control cycle 7 because the operation of node1; therefore we can 

assign node2 to 2.4v adder (2.4v adder is the available lowest voltage resource 

now) 

3. In control cycle 7, the ready set is A{node3}; we assign it to 5v adder. 

4. In control cycle 8, the ready set is M{node6}; we assign it to 5v multiplier. 

5. In control cycle 10, the ready set is M{node4}; we should assign it to 5v 

multiplier. However, the 5v multiplier resource is not available at this moment so 

we assign node4 to 3.3v multiplier. 

 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

5v  multiplier ® node1 ®  ® node6 ®    

3.3v multiplier ® node5 ®   ® node4 ® 

2.4v multiplier                 
5v   adder       node3 ®        

3.3v  adder                 

2.4v  adder ® node2 ®            

Figure 11. Scheduled Nodes after First Step 

 

For the first step scheduling, it takes 16 cycles to finish the minimum time 

resource-constrained scheduling. We denote Tlow the minimum time to finish the first 

step scheduling. Because the latency constraint is L=18, which is larger than Tlow, 

some resources can be disabled for power reduction in the second step scheduling. In 

Figure 11, the symbol “R” denotes the register for operations. In control cycle 6, there 
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is no symbol R in front of node3 because node1 and node3 are operating at the same 

voltage. 

 

Second Step (power reduction scheduling part): 

From the result of the first step, the 5v multiplier resource can be disabled because the 

timing tolerance is larger than 0, and 5v multiplier has the highest priority now. We 

re-schedule the DFG as follows. 

1. In control cycle 2, the ready sets are M{node1, node5} and A{node2}. For node1 

and node5, because node1 has lower freedom compared to node5, we assign 

node1 to 3.3v multiplier (the 5v multiplier resources have already been disabled). 

As for node5, now the 2.4v multiplier resource is available, so we assign node5 to 

2.4v. 

2. For node2, we should assign it 5v at this moment. However, node3 will be 

available at control cycle 8; therefore we assign node2 to 2.4v adder (2.4v adder 

is the available lowest voltage resource now). 

3. In control cycle 8, the ready set is A{node3}; we assign node3 to 5v adder. 

4. In control cycle 9, the ready set is M{node6}; we assign node6 to 3.3v multiplier. 

5. In control cycle 12, the ready set is M{node4}; we should assign node4 to 2.4v 

multiplier because 3.3v multiplier is not available now. However, if we assign 

node4 to 2.4v, it will violate the latency constraint (node3 is ending at control 

cycle 11, and if node4 starts at control cycle 12, 11+6(2.4v multiplier) 

+2(register)=19>L=18). Therefore, node4 should be assigned back to 5v, even the 

5v multiplier resource has been disabled at this moment. 
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

5v  multiplier Disabled node4 ® 
3.3v multiplier ® node1 ®  ® node6 ®  

2.4v multiplier ® node5 ®         

5v   adder        ® node3 ®      

3.3v  adder                 
2.4v  adder ® node2 ®            

Figure 12. Scheduled Nodes after Second Step 

 

Hybrid Method 

For the hybrid method, we can reduce the number of iteration and computing time by 

determining what resources can be disabled at the beginning of the scheduling. For 

example, the branch with the lowest freedom in Figure 10 is branch 

[node1-node3-node4]. We assume all nodes of this branch are operating at 5v in order 

to determine the minimum operating time, Tcrit=14 cycles [4*2+2+4(registers)=14]. 

The latency constraint is 18 cycles, so we know there are additional 33.1)
3

1418( =
−  

tolerable cycles available for each node in the branch. Because the average timing 

tolerance cycle is larger than one, we know some resources can be disabled from 

Table 8. In this case, the 5v multiplier resource can be disabled. We assign node1 to 

3.3v multiplier from the beginning of the resource-constrained scheduling, and we do 

not have to use all resources as with the previous algorithm. The other scheduling 

steps of the hybrid method in this case are similar to the second step scheduling in the 

previous example. Finally, we get the same scheduling result and voltage assignment 

as described in Figure 12.  
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4. RESULTS AND BENCHMARKS 

 

We present the results obtained by using our algorithms on some high-level synthesis 

benchmarks [4]. We compute several DFGs for benchmark, including the Differential 

Equation, AR Filter, 2nd Order Lattice Filter, 5th Order Elliptic Wave Filter, 8 Point 

FFT, etc. In each case, we tabulate the results for various factors and calculate the 

percentage of power reduction. 

 

4.1 Latency Constrained Scheduling 

The results of latency-constrained scheduling are summarized in Table 14 and Figure 

13. For these different DFGs, we get power reduction rate from 12.99% to 41.97% 

after considering the power consumption of level-shifters and registers. We should 

note that we use the T=Tcrit for these DFGs in this simulation (i.e., the latency 

constraint is equal to the minimum operating time, while all nodes of the critical 

branch are operating at 5v). If we increase the latency constraint, the power reduction 

rate will increase enormously. We can see the example from Diffeq in Table 15. 

Table 14. Power Reduction for Latency Constrained Scheduling 

Benchmark Power at 5V Power at Multi-Voltage Power Reduction Rate 

Diffeq 427029.0 247807.7 41.97 % 

AR Filter 1053578.0 814446.7 22.69 % 

EW Filter 1082687.4 900952.9 16.79 % 

Lattice Filter 443386.0 385772.9 12.99 % 

5th EW 1044496.6 836721.8 19.89 % 

8-Point FFT 1863277.6 1239272.6 33.49 % 

Fast DCT 1530780.6 924541.9 39.60 % 
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Figure 13. Power Reduction for Latency Constrained Scheduling 
 
 

Table 15. Power Reduction for Diffeq in Different Latency Constraints 

Latency Constraint Power (uW) Power Reduction Rate 

17 247,807 41.97 % 

20 107,884 74.74 % 

30 39,151 90.83 % 

40 16,632 96.11 % 

 

4.2 Latency and Resource Constrained Scheduling 

We present the results for the latency and resource constrained scheduling in this 

section. The latency constraint is equal to Tlow, 1.2Tcrit, 1.3Tcrit, and 1.4Tcrit, where Tlow 

represents the minimum operating time for DFG in resource-constrained scheduling, 

and Tcrit represents the time that all nodes in the critical branch are operating at 5v. The 

resource constraints of the multiplier and adder resources are operating at 5v, 3.3v, 

2.4v, 2.2v, and 1.8v for each. By using multiple voltages and multiple cycles for the 

operations, we can see the power reduction rate from 20.19~49.39% after the first step 
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scheduling. Some of our simulations in AR filter and 8 point FFT can not be 

scheduled because their latency constraint is less than Tlow.  

 

4.2.1 Differential Equation (Diffeq) 

The DFG of Diffeq consists of six multiplications, three subtractions, one addition and 

one comparison. In this simulation, we use the power and delay characteristics of an 

adder for the subtraction and comparison because of their similarity. Table 16 shows 

the power reduction rate, peak power, etc. We should note that Tcrit of Diffeq is equal 

to 17 cycles, and the power consumption of Diffeq is 427,029 uW while all 

components are operating at 5v.  

 

 

Table 16. Diffeq for Latency and Resource Constrained Scheduling 

Latency 

Constraint 

Power 

Reduction 

(%) 

Total Power 

(uW) 

Peak 

Power 

(uW) 

FU 

Power 

(uW) 

Register 

Power 

(uW) 

Latency 

(# of 

cycles) 

Tlow 31.94% 290,598 61,796 133,865 156,733 19 
1.2Tcrit 46.83% 227,048 37,030 91,684 135,364 20 
1.3Tcrit 63.90% 154,120 36,368 64,685 89,435 22 
1.4Tcrit 75.57% 104,300 18,883 47,802 56,498 23 
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Figure 14. Power and Peak Power of Diffeq in Latency and Resource Constrained 
Scheduling 

 

4.2.2 AR Filter 

Tcrit of AR filter is equal to 31 cycles, and the power consumption is 1,053,578 uW 

while all nodes are operating at 5v. The results of AR filter are listed in Table 17. We 

should note that some results are unobtainable because their latency is less than Tlow. 

(i.e., 1.2Tcrit= 37; 1.3Tcrit=40, they are both less than Tlow=42).   

  

Table 17. AR Filter for Latency and Resource Constrained Scheduling 

Latency 

Constraint 

Power 

Reduction 

(%) 

Total Power 

(uW) 

Peak 

Power 

(uW) 

FU 

Power 

(uW) 

Register 

Power 

(uW) 

Latency 

(# of 

cycles) 

Tlow 48.48% 542,749 60,708 277,747 265,002 42 

1.2Tcrit n/a n/a n/a n/a n/a 37 

1.3Tcrit n/a n/a n/a n/a n/a 40 

1.4Tcrit 56.38% 459,595 57,532 229,486 230,109 43 
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Figure 15. Power and Peak Power of AR Filter in Latency and Resource Constrained 
Scheduling 

 

4.2.3 2nd Order Lattice Filter 

The 2nd Order Lattice filter is usually used in data sampling. Tcrit of 2nd Order Lattice 

Filter is equal to 34 cycles, and the power consumption is 443,386 uW while all nodes 

are operating at 5v. We can observe that when the latency constraint increases, not 

only does the total power decrease, but the peak power decreases rapidly also.  

 

Table 18. 2nd Order Lattice Filter for Latency and Resource Constrained Scheduling 

Latency 

Constraint 

Power 

Reduction 

(%) 

Total Power 

(uW) 

Peak 

Power 

(uW) 

FU 

Power 

(uW) 

Register 

Power 

(uW) 

Latency 

(# of 

cycles) 

Tlow 20.19% 353,860 40,565 164,408 189,452 38 

1.2Tcrit 52.58% 210,222 40,565 131,814 78,408 40 

1.3Tcrit 71.40% 126,785 15,137 53,619 73,166 44 

1.4Tcrit 79.21% 92,178 11,896 44,868 47,310 47 
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Figure 16. Power and Peak Power of 2nd Order Lattice Filter in Latency and Resource 
Constrained Scheduling 

 

4.2.4 5th Order Elliptic Wave Filter 

The 5th Order Elliptic Wave Filter is also widely used in data sampling. In this 

simulation, Tcrit of 5th Order Elliptic Wave Filter is equal to 47 cycles, and the power 

consumption is 1,044,496 uW while all nodes are operating at 5v. 

 

Table 19. 5th Order EW Filter for Latency and Resource Constrained Scheduling 

Latency 

Constraint 

Power 

Reduction 

(%) 

Total Power 

(uW) 

Peak 

Power 

(uW) 

FU 

Power 

(uW) 

Register 

Power 

(uW) 

Latency 

(# of 

cycles) 

Tlow 44.92% 575,302 52,461 249,750 325,552 50 

1.2Tcrit 57.80% 440,804 31,751 174,096 266,708 56 

1.3Tcrit 71.02% 302,630 27,588 127,082 175,548 61 

1.4Tcrit 80.64% 202,250 27,033 95,307 106,943 65 
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Figure 17. Power and Peak Power of 5th Order EW Filter in Latency and Resource 
Constrained Scheduling 

 

4.2.5 8 Point Fast Fourier Transform ( FFT ) 

Fast Fourier Transform (FFT) is widely used for digital audio. The Tcrit of 8 Point Fast 

Fourier Transform is equal to 34 cycles, and the power consumption is 1,057,732 uW 

while all nodes are operating at 5v. Because their latency constraints (1.2Tcrit, 1.3Tcrit, 

and 1.4Tcrit) are less than Tlow, none of them can be scheduled. 

 

Table 20. 8 Point FFT for Latency and Resource Constrained Scheduling 

Latency 
Constraint 

Power 

Reduction 

(%) 

Total Power 

(uW) 

Peak 

Power 

(uW) 

FU 

Power 

(uW) 

Register 

Power 

(uW) 

Latency 

(# of 

cycles) 

Tlow 49.39% 942,857 69,783 378,089 564,768 50 

1.2Tcrit n/a n/a n/a n/a n/a 40 

1.3Tcrit n/a n/a n/a n/a n/a 44 

1.4Tcrit n/a n/a n/a n/a n/a 47 
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4.3 Power Consumption by Registers in Multiple Voltages Scheduling 

In this section, we show the ratio of power consumption by registers in 

latency-constrained scheduling, and the latency and resource constrained scheduling. 

 

4.3.1 Power Consumption by Registers in Latency Constrained Scheduling 
 

We show the ratio of power consumption by registers in latency-constrained 

scheduling in Figure 18. We can find that registers consume more than half of the 

total power in latency-constrained scheduling, whether they are operating at a single 

voltage (5v) or multiple voltages. 
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Figure 18. The Ratio of Power Consumption by Registers in Latency Constrained 
Scheduling 

 

4.3.2 Power Consumption by Registers in Latency and Resource 
Constrained Scheduling 

 

In Table 21, we tabulate the results for power consumption by registers in latency and 
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resource constrained scheduling. We find that registers consume over 50% total 

power in most benchmarks of our simulation. The ratio of power consumption by 

registers in latency and resource constrained scheduling is similar to that in 

latency-constrained scheduling. Both of the results imply that it is important to 

consider the power consumption of registers for low power design because they 

enormously affect the total power consumption. In Figure 19, we show the 

relationship between latency constraint and the ratio of power consumption by 

registers for three different DFGs. From our simulation results, the ratio is not 

correlated closely with the latency constraint. 

 

 
Table 21. The Ratio of Power Consumption by Registers in Latency and Resource 
Constrained Scheduling 
 

Diffeq AR Filter 2nd lattice Filter 5th Ew Filter 8 Point FFT 
 

Power Reg % Power Reg % Power Reg % Power Reg % Power Reg % 

Ptotal 290,598 542,749 353,860 575,302 942,857 

Tlow 

Preg 156,733 

53.93% 

265,002 

48.83% 

189,452 

53.54% 

325,552 

56.59% 

564,768 

59.90% 

Ptotal 227,048 n/a 210,222 440,804 n/a 

1.2Tcrit 

Preg 135,364 

59.62% 

n/a 

n/a 

78,408 

37.30% 

266,708 

60.50% 

n/a 

n/a 

Ptotal 154,120 n/a 126,785 302,630 n/a 

1.3Tcrit 

Preg 89,435 

58.03% 

n/a 

n/a 

73,166 

57.71% 

175,548 

58.01% 

n/a 

n/a 

Ptotal 104,300 459,595 92,178 202,250 n/a 

1.4Tcrit 

Preg 56,498 

54.17% 

230,109 

50.07% 

47,310 

51.32% 

106,943 

52.88% 

n/a 

n/a 
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Figure 19. Ratio of Power Consumption by Registers in Latency and Resource 
Constrained Scheduling 
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5. CONCLUSION 

 

We present the latency-constrained scheduling and latency and resource constrained 

scheduling when the resources and registers are operating at multiple voltages and 

multi-cycles. Our algorithms reduce the overall power consumption of the components, 

including the resources, registers, and level shifters. Using the schemes discussed, we 

assign as many nodes as possible to operate at lower voltages without violating the 

latency or resource constraints. We reduce the average power and peak power for these 

constrained schedulings. We also consider the power consumption of registers. This 

consideration provides more practical methods to achieve the low power design 

because registers enormously affect the power consumption in the various voltage 

supplies.  

 

In addition, our heuristic algorithms only have polynomial time complexity compared 

to ILP scheduling algorithms, which have exponential time complexity in the worst 

case. Some further work will be necessary in the future. For example, the number of 

register resource constraints has not yet been considered. 
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