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Chapter 1 �Introduction

1.1 Background and Motivation

For more than four decades there has been a steady progression in the techniques used to design

integrated high-speed electronic circuits: What at one time required the manipulation of slide rules,

log tables, countless pages of hand calculations and many lab prototypes has changed to be performed

on desktop computers using sophisticated circuit simulation software with an expectation of "�rst

pass" success in silicon. Of course, the de�nition of "high-speed" has changed markedly as well:

Over forty years ago in the early 1960s, Tektronix in Beaverton, Oregon produced the �rst 1GHz

bandwidth oscilloscope �the model 519 �spurred on by the U. S. government�s desire for high-speed

measurements in nuclear detonation experiments. At the time, no circuit simulation software was

available �SPICE, the �rst "killer application" for circuit simulation, wouldn�t be readily available

for over a decade! The next few decades saw rapid development in automated circuit synthesis

techniques, with a realization early-on that accurate component models were needed to produce

better and faster designs.

Results were impressive: By the late-1980s 20GHz sampling oscilloscopes made the model 519

looks as obsolete as a Ford model T automobile. The turn of the century saw CPU clock speeds

routinely exceeding 1GHz while utilizing over 10 million transistors, and by 2006 18GHz real-time

oscilloscopes could be purchased and the fastest sampling heads available exceeded 70GHz band-

width. Such cutting-edge designs are extraordinarily complex, requiring very accurate models and

simulations to complete.

Such impressive technological advances have made for a tighter, more-connected, ever-shrinking

world that grows more complex every day. Similarly, in high-speed design ever-increasing clock

frequencies and analog bandwidths have made even the simplest of passive component�s or inter-

connect�s behavior more complex, while parasitic reactances and losses create signi�cant frequency

dependences. Physical structures can no longer be considered entirely "lumped" (electrically small)

but are instead best modeled by some uncertain mixture of lumped and distributed e¤ects. Even

seemingly trivial items such as vias and bond wires now must use sophisticated models if multi-

GHz simulations are to produce accurate results. Circuit modeling has come to the forefront of

high-speed design in the 2000s!

Historically, circuit models were created from mathematically ideal circuit components such as

resistors, capacitors, inductors, and transmission lines by an expert modeler who would compare the

"equivalent circuit model" (ECM) to direct measurement data or �more recently �that obtained
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from a high-precision �eld solver simulations; such tabulated data are typically provided in the form

of frequency-dependent S-, Z- or similar network parameters. This method has several advantages:

Firstly, the model can be directly inserted into a SPICE-type simulator, which is ubiquitous in

mixed-signal design. Furthermore, the model is typically e¢ cient to simulate, as the modeler

will only include elements necessary for a design�s intended frequency of operation and accuracy.

Finally, when properly constructed, the model is "physically based," in that components in the

model correspond to physically identi�able entities in the actual component, such as bond wire

partial inductance, package capacitance, etc.; this provides the designer with valuable insight into

the object�s behavior, and can suggest possible changes in the design to meet speci�ed performance

requirements. The primary drawback of this approach is that the time required to develop a high-

quality, physically-based model can be substantial, and that expert modelers are a rare commodity.

Developing a fully-automated means of creating mathematical circuit models has been studied for

decades with modest success. These approaches are commonly known by a variety of names, includ-

ing "macromodeling," "black-box" modeling, "behavioral" modeling, and "reduced-order" modeling.

As the names suggest, no e¤ort is made to model the underlying physics of the object being modeled,

but rather the goal is to create a mathematically accurate and computationally e¢ cient model that

will provide accurate responses within a circuit simulator. As such, there is no need to use idealized

circuit elements in the model: any mathematical construct supported by the simulator can be used

(and many have been tried!). In fact, the most straightforward approach for including frequency-

domain data in a time-domain simulator is to �rst compute the inverse Fourier1-transform of the

data and then apply convolution at each time step to obtain the desired output [1,2]. Unfortunately,

this is computationally expensive as obtaining the output at each time step t requires computing

the convolution sum "all the way" back to t = 02 . Instead then, a more common approach is to

�t the data to a set of basis functions with a known, easily-computed time-domain response [3, 4].

Rational functions are commonly used due to their simple time-domain response when the function

is expressed as a partial-fraction expansion (i.e., a pole-residue formulation).

The precise choice of basis functions and how their coe¢ cients are �tted to the data is a wide �eld

of study with no single "best" solution; proper application of system modeling includes signi�cant

evaluation of solution existence, uniqueness, and accuracy. Popular engineering methods include

the "vector �tting" approach [5], state-space approaches [6�8], and relatively "direct" application

1Jean Baptiste Joseph Fourier, March 1768-May 1830, was a French mathematician and physicist. After an early
life torn between choosing a religious or mathematical pursuit, Fourier�s political beliefs led to involvement in the
French Revolution (1789-1799). During these years he alternated between teaching, performing military service,
being imprisoned, and researching. It was his research into heat propagation whereupon Fourier came up with the
ingenious (but highly controversial) insight that arbitrary functions might be described as a summation of sinusoids
with various magnitudes and phases. While some of the details were incorrect (e.g., he believed that all functions
could be described by such summations), he had di¢ culty convincing Laplace, Lagrange, and other contemporaries
that even the fundamentals were plausible. Many decades passed before his genius was fully understood and accepted.

2Or at least some point t� � where the impulse response h(t) may be assumed to be zero for t > � . In the general
case this point may be di¢ cult to ascertain.
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of least-squares �tting methods [9�11]. The choice is in�uenced by the circuit simulator under

consideration: Contemporary SPICE simulators natively accept circuit "elements" that implement

prescribed transfer functions in the Laplace domain, i.e., f(s). Of course, Cauer or related synthesis

methods [12�14] may be used to decompose most Laplace domain transfer functions into standard

circuit elements such as resistors, capacitors, transformers, etc., but this approach is primarily useful

for research or teaching purposes, as directly evaluating f(s) will typically be faster. Regardless

of the representation chosen, there are a number of constraints that the �nal model must satisfy

including passivity, causality, and stability. Of these, passivity is the most di¢ cult, and methods

that enforce passivity typically compromise model accuracy as the trade-o¤ [15�19].

The motivation for this work is to combine the initial "information" and physical intuition of

a hand-crafted model while leveraging the inherent accuracy and speed of development of "black

box" modeling: we attempt to obtain the "best of both worlds." This new modeling methodology is

termed the Circuit Augmentation Method, or CAM. The method starts with an equivalent circuit
model designed to give the user physical insight into the object being modeled. Next, the "golden"

data from measurement or an electromagnetic �eld solver (known generically as "measurement

data," abbreviated MD or Meas) is compared with that of the ECM. The "logical di¤erence"

(e.g., subtraction of Y parameters for a model and ECM placed in parallel �this is detailed later) is

then �t to a low-order rational function; this result is known as the augmentation (abbreviatedAug).
The overall model �subscripted as CAM �consists of the ECM combined with the augmentation

and should compare favorably in accuracy with the measurement data.

Implementing this conceptually simple approach exposes various di¢ culties. For instance, while

ECMs are presumed to be accurate over some restricted frequency range (typically low frequencies

or some narrow bandpass set of frequencies), the ECM�s poles and zeros a¤ect a CAM model (the

logical addition of an ECM and an augmentation) over all frequencies �the e¤ects falling o¤ as the

inverse of the distance between the physical frequency on the j! axis and the pole or zero�s location

in the s-plane. To compensate for these inaccuracies, a signi�cant aspect of CAM is that it is

perturbational. That is, as part of the "CAM process," parameters of the ECM such as component

values, transmission line lengths, etc. are modi�ed to provide the best CAM model possible. CAM

uses an iterative process, alternating between modifying ECM attributes and augmenting pole-zero

locations to achieve this result.

1.2 Organization of This Work

This thesis presents a complete report on the theoretical background and practical implement aspects

of CAM. Research was purposely restricted to passive components to limit the scope of the problem

while still addressing a signi�cant industry need in circuit modeling.

Chapter two begins with an expanded discussion of circuit modeling background and the appli-
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cation of SPICE-like circuit simulators, as well as providing the necessary mathematical background

related to modeling. Details are provided on rational function approximations, pole-zero modeling,

stability, and passivity. Chapter three details the "core" of CAM: Circuit augmentation. Some

of the more straightforward topologies used are analyzed with an eye towards utility. Included is

discussion of the necessary addition to circuit augmentation to achieve higher accuracy: component

value perturbation. A brief background of global optimization and CAM�s use of it is provided.

Chapter four provides a quick "guided tour" through the MATLAB software developed for CAM,

while Chapter �ve examines various results obtained during the research stages of CAM. Chapter

six contains insights on possible future research e¤orts as well as CAM�s overall usability. Finally, a

thorough appendix is provided that provides concrete �if not always particularly rigorous �deriva-

tions of many of the mathematical methods used internally by CAM. Also provided are additional

details on circuit simulator history, circuit analysis, and a few other items that don�t dovetail directly

with the main work.

One brief word on notation: Except as noted, italicized quantities refer to scalars (e.g., x, g(z; t),

etc.) Lower-case letters in bold such as f or x refer to vectors, which are generally interpreted as

column vectors with transposes added as needed (e.g., fT ) for clarity. Upper-case letters in bold

such as A or S are matrices.
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Chapter 2 �Circuit Modeling

2.1 The Need for Circuit Models

Figure 2.1: The Circuit Modeling Design Hierarchy. Arrows point to model examples.

The job of a design engineer generally boils down to designing one or more levels of the "design

hierarchy" shown in Fig. 2.1 in response to the need to build some electronic "widget." For instance,

a design engineer (or an entire team of engineers) might be tasked with developing the system-level

speci�cations for a WiMax radio system, while another engineer (or team) might be tasked with

designing a mixer circuit for that system, while others work on the transistors to be used in the mixer

based on a process that a team of process engineers constantly attempt to improve and shrink.1

System level design is often performed based on "high-level" component speci�cations, such

as the 1dB compression point of an ampli�er or the IP3 intercept point of a mixer; system level

simulators excel at taking such high-level descriptions of components, a speci�ed input source (often

a complex waveform, such as a complete WiMax packet), and propagating the various imperfections

in the components through the system, at which point one can examine, e.g., power loss, spectral

mask margins, etc.

1For those curious, the system level model in Fig. 2.1 is that of a QPSK demodulator while the circuit level model
is a "Cascomp" ampli�er (patented by Tektronix). Both device and process level models are of transistors.
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The speci�ed components are themselves typically designed and simulated in a circuit-level simu-

lator, with SPICE being the most well-known. "Generic" versions of SPICE perform DC operating

point analysis, small-signal AC simulation, and transient simulation, while contemporary versions

have considerably more complex functionality as discussed later. While SPICE is perhaps the most

familiar tool to the "traditional" integrated-circuit (IC) designer, historically linear alternating-

current (AC) simulators such as those found within Agilent�s ADS and Genesys, AWR�s Microwave

O¢ ce, or Ansoft�s Designer tool were used by those with a "microwave" or "hard RF" backgrounds.

The major di¤erence was that the former generally dealt with "lumped" circuit elements and plotted

simple linear, linear-log, or log-log rectangular graphs while the latter seamlessly dealt with multi-

port-based data �les (e.g., S/Y/Z/ABCD parameters) and could graphically display Smith chart

and other specialized plots such as ampli�er stability circles. Today, most SPICE-type simulators

contain much of this same functionality.

The devices used in circuit simulation are themselves based on various "device" models, such as

the well-known Ebers-Moll transistor model based on algebraic expressions, or the table-based IBIS

(Input/output Bu¤er Information Speci�cation). Finally, the devices themselves assume a certain
physical model, which is typically the semiconductor substrates used in IC manufacturing, but can

also be a higher-level construct such as the �berglass- and epoxy binder-based materials in a printed

circuit board wherein a pad is being modeled. Exact simulation of the process requires working

with Maxwell�s equations for macroscopic objects such as circuit boards and hole-electron di¤usion

and energy equations for microscopic objects including transistors, diodes, and so on.

Hierarchical Level Common Software Tools Typical Model Implementations
System Simulink, SystemVue Parameterized behavioral models

Circuit SPICE, ADS, SPICE netlists, Laplace blocks,
Genesys, MWO S parameters

Device SEDAN, PISCES, Ebers-Moll, Gummel-Poon models,
MINIMOS, GALENA BSIM, IBIS

Process SUPREM, SAMPLE, Di¤usion & implantation equations,
SPEEDIE Maxwell�s equations

Table 2.1: Typical software tools and the means by which models are implemented for various levels
of the circuit modeling design hierarchy.

A summary of some of the more common software tools and modeling methodologies used while

tackling circuit design problems in shown in Table 2.1. As one can surmise, the reason for using

di¤erent modeling "formats" at di¤erent levels of the hierarchy is to provide a balance between the

simulator�s execution time and the accuracy of results: It doesn�t make sense to simulate a simple

capacitor using a full-wave electromagnetic �eld solver when one is simply in need of a 1MHz RF

coupling capacitor, just as it doesn�t make sense to try to model a 10mm bond wire as a simple L-C
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pair at 10GHz. Those who insist on doing so anyway may end up with excessively long simulation

times, inaccurate results, or prolonged graduation! Each higher level of the design hierarchy is a

generalization of the one below, wherein certain assumptions are made about the problem to keep

the problem tractable: Maxwell�s equations can be derived from quantum electrodynamics given the

assumption that macroscopic behavior is being observed, Ohm�s and Kircho¤�s laws come directly

from Maxwell�s equations based on the simplifying assumption that behavior is being measured over

a distance that is a negligible fraction of a wavelength at the frequencies of interest2 and thus the

elements may be considered "lumped," etc.

As previously discussed, one goal of CAM is to provide an increase in circuit-level �SPICE-like

�simulator performance. This challenge may be addressed via improved simulation techniques or

improved modeling techniques. The former can become quite complicated, and various approaches

are mentioned in the historical overview of circuit simulation in Appendix A. On the other hand,

improved modeling techniques �while potentially quite complex in derivation as well �are typically

implemented in simulators in one of three ways. These are:

� Table-based Models. While linear RF simulators have been using Touchstone and similar

tabulated (table-based) network parameter formats for decades, more recent developments

include (Intel�s) IBIS and (AWR�s) "Xmodels." Such models provide one or more sets of

voltages, current, impedances and so on at the device�s ports. Besides speeding up simulation,

such models provide the means to protect proprietary I/O ring design techniques and avoid

revealing various process parameters that may be of interest to competitors (IBIS models in

particular tout this ability). Table-based models are straightforward to simulate, with some

complexity involved in generating robust numerical interpolation, extrapolation, integration,

and di¤erentiation routines. While simulation with table-based models is fast, the obvious

drawback is that the table must include data corresponding to the user�s expected operation.

Even for seemingly "simple" devices such as gigahertz-range RF power transistors, high-quality

large-signal models may be di¢ cult to obtain.

� Physical Models. Physical models are any models described by algebraic equations represent-
ing the underlying physics of the device. This type of model include most "classical" work

such as the Ebers-Moll or Gummel-Poon transistor models or BSIM (Berkeley Short-channel
IGFET Models). Unless a new algebraic model could be "built" as a sub-circuit of exist-

ing SPICE components, traditionally the addition of new algebraic models required writing

FORTRAN or C code implementing the speci�ed algebraic equations and, often-times, their

integrals and/or derivatives; contemporary simulators allow for the straightforward inclusion

of new algebraic models with the simulator having the ability to symbolically calculate inte-

2An alternative explanation is that the speed of light is in�nite and thus everything is lumped, although this is
arguably a more whimisical than practical interpretation.
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grals and derivatives. Physical models have the signi�cant advantage of providing accurate

results over a much wider range of operation than table-based or empirical models typically do;

the drawback is that simulation time is often the slowest of the three. Even parameterizing

physical models may be quite challenging: a BSIM4 transistor model has over 200 parameters!

� Empirical Models. Empirical models are produced by curve-�tting a set of basis functions to
measurement or simulation data. This technique is quite common whenever the underlying

physical model is not readily expressible in closed form �the impedance of a microstrip as a

function of its width and height above a ground plane is a good example, as are some FET

model parameters such as inversion layer width. While typically being fast to simulate and

requiring less storage space than table-based models, empirical models have the same draw-

backs as table-based models in that they must have included data over the intended operating

points. (A classical example of limitations to empirical models is the set of formulas presented

in the 1971 edition of the Motorola MECL System Design Handbook for the impedance of a

microstrip: By the 1990�s, PCB manufacturing technology allowed for narrower microstrips on

thinner boards, but using the 1971 equations predicted negative impedances!)

CAM is a hybrid technique, attempting to preserve some of the physical insight provided by

a (relatively simple) physical model (the ECM) while providing the speed and accuracy available

from an empirical model (the augmentation). The choice of rational functions to represent the

augmentation is driven by the ease of integration with a typical SPICE simulator, while providing

su¢ cient accuracy for most circuit-level devices. Simulator analysis is straightforward: For DC

operating point calculations the rational function is evaluated with s = 0, whereas for small-signal

AC simulation it is evaluated with s = j!. For transient simulation, the partial-fraction expansion

of a rational function becomes a simple time-domain expression involving exponentially damped

sinusoids (or various degenerations thereof �this is detailed further in Section 2.3), which lends itself

to fast simulation. The next section provides more details on the behavior of rational functions as

applied to CAM.

As an aside, the preceding discussion has assumed one intends to use a computer to simulate their

system, circuit, device or process. Obviously this hasn�t always been possible: in decades past, one

would physically build the item in question, measure the results, and iterate as necessary to obtain

a solution; this "cut and try" method was used for decades prior to the widespread availability of

PCs. Even today, those armed with experience and intuition can design and debug certain circuits

such as 1st- and 2nd-order matching networks more quickly using such methods rather than using

a simulator: the computer is still no substitute for thinking! (A major problem with simulators is

that new users tend to believe the output, without question, with its 10+ digits of precision, when

an experienced designer could quickly ascertain that the results have very few digits of accuracy.)

Of course, such "old school" approaches are of less use at the process and system levels than at the
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circuit level due to the expenses involved with each "cut and try" iteration.

2.2 Rational Function Approximations

Although CAM circuit models usually come in the form of schematic diagrams, from a mathematical

perspective these are thought of as generic linear networks that simply provide some number of poles

and zeros. In the Laplace domain, such networks are mathematically matrices that are a function

of s, and these functions may be expressed as rational functions, sums of poles and residues, etc.

To be useful, circuit models are expected to be stable and passive, and this has speci�c implications

as to the form of the function describing them. We �rst motivate the use of rational functions to

model circuits, and move on to consider the implications of stability and passivity.

The representation of a set of data or a given function in terms of a polynomial is termed a

Taylor Series (or Maclurin Series when the expansion for f(x) is about x = 0). Various methods

exist for computing the coe¢ cients in a Taylor Series [20], and its application and limitations are

well understood. Unfortunately, polynomials are not well suited for modeling electrical circuits; see

Appendix B for a discussion. Slightly more sophisticated, a representation for a set of data or a

given function in terms of a quotient of rational polynomials is termed a Padé Approximation. This

representation for an arbitrary function h(s) is as follows

h(s) =

PP
m=0

ams
m

QP
n=0

bnsn
(2.1)

(Note that the am�s and bn�s in Eq. (2.1) are generally unique only within a multiplicative constant.

Some authors de�ne b0 or another coe¢ cient as one to remove this ambiguity.) Computing coe¢ -

cients for Padé Approximations is a signi�cantly more challenging problem than computing those for

a Taylor Series, although it has been studied for hundreds of years: the great French mathematician

Cauchy published a paper on the topic in 1821 [21]! ( [22] provides a more contemporary �and

English language �description of the technique, although for those who can read French, Cauchy�s

collected works are readily available.) Cauchy�s paper provides a speci�c means for determining

the rational functions�s coe¢ cients, which might be termed "Cauchy�s Method," although this term

seems to be somewhat abused to refer to various di¤erent methods by which the coe¢ cients are

obtained. A popular "general purpose" approach is the Epsilon Algorithm [23], but this method is

di¢ cult to extend to vector data in a straightforward manner [24]. Early CAM research included

attempts at developing robust rational function �tting routines, it quickly became evident that doing
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so was beyond the intended scope of the research3 . As such, CAM uses third-party routines for

curve �tting: The "minimum Eigenvalue" approach described in [25] (this approach is roughly the

same as Cauchy�s Method), and the markedly robust Vector Fitting method developed in [5].

Eq. (2.1) is sometimes used in other, mathematically equivalent forms. The most common of

these is a pole-residue form, which results from a partial-fraction expansion of (2.1). This form is

h(s) =

QX
i=1

ki
s� pi

+ d+ se (2.2)

where Q is equal to that in (2.1); if d and e are non-zero, this implies that P = Q + 1 in (2.1).

Other values of d and e in (2.2) change P and Q in (2.1) self-evidently; the representation shown is

used due to the fact that all immittance and transfer functions for passive circuits can be expressed

without any additional terms in s; this is proven in Appendix D.2.

To be useful in a simulation, a rational function representing an admittance �or a matrix of such

entities representing a linear multi-port network �needs to be used in a manner that results in a

circuit that is both stable and passive. We make a distinction here that, while a network may consist

of multiple objects (e.g., in CAM this would typically be an augmentation network in the form of

a rational function combined with schematic-based equivalent circuit model) and while the overall

network must be stable and passive, individual objects within it need not be: A trivial example

would be a "user model" consisting of a -5
 resistor in series with an "augmentation impedance"

of h(s) = 20 + 3s (
), resulting in an overall network representing a 15
 resistor in series with a

478mH inductor, which is obviously stable and passive. Although highly degenerative, this example

is not entirely contrived: Embedding negative elements into a model may be used to de-embed the

e¤ects of test �xtures and cables. The point here is that enforcing passivity (and thus stability)

on every object within a model obviates the question of the model�s overall passivity; however, such

a restriction is overly constraining and thus not always useful. In any case, tests for stability and

passivity are needed with CAM, and these are discussed below.

2.3 Stability

Stability in circuit modeling uses the familiar "bounded input/bounded output" criteria common

in system modeling. Speci�cally, when a non-zero, �nite-energy signal is presented to the system,

the output must not become unbounded (that is, asymptotically approach in�nity at any time) in a

manner that indicates in�nite energy is produced or consumed. Examining Eq. (2.2), it is clear that

obtaining a time-domain response is a simple matter of performing the inverse Laplace transform.

For the constant term d, the time-domain function is simply d � �(t) (where �(t) is the standard
3This is a euphemisn for, "we failed." In retrospect, it has become clear that the problem was largely a lack of

su¢ cient mathematical background.
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Dirac delta function), which contains �nite energy by de�nition. Similarly, the proportional term

(e) is bounded, and while a non-zero value for e is physically meaningful for immittances (e.g., the

impedance of an inductor or the admittance of a capacitor), for transfer functions it is generally

taken as zero since a non-zero value would imply a source with, e.g., in�nite voltage or current

output potential, which is non-physical. On the other hand, most rational function curve-�tting

routines retain the ability to calculate a (non-zero) value for e, since it may provide some utility in

modeling, even with the knowledge that the result cannot be valid as ! !1:
Dealing with the partial fractions in Eq. (2.2) is straightforward. First, since the roots of a

polynomial with real coe¢ cients can only be real or occur in complex conjugate pairs, it follows that

the ki�s and pi�s in Eq. (2.2) must also be real or come in complex-conjugate pairs; for convenience

we set ki+1 = k�i and pi+1 = p
�
i . When the pole and residue are real, we have the simple expression

ki
s� pi

L, kie
pitu(t)

which can be seen to be bounded so long as pi is negative, or �as it is commonly stated �in the

left-half of the complex plane. Additionally, note that this response is causal due to the inclusion

of the unit step response, u(t). For the complex conjugate case, we have

ki
s� pi

+
ki+1

s� pi+1
=

ki
s� pi

+
k�i

s� p�i
L,
�
kie

pit + k�i e
p�i t
�
u(t)

Expanding the right-hand side into real and imaginary parts, collecting common terms, and equating

complex-conjugate exponential sums with sines and cosines produces�
kie

pit + k�i e
p�i t
�
u(t) = 2epretfkre cos(pimt)� kim sin(pimt)gu(t) (2.3)

where pre = <(pi), pim = =(pi), kre = <(ki), and kim = =(ki). Next, using the trigonometric

identity

a sin(x) + b cos(x) =
p
a2 + b2 cos(x� �)

where � = tan�1(a=b), Eq. (2.3) can be rewritten as

2 jkij epre cos(pimt+ arg(ki))u(t)

(where arg(x) represents the angle of the complex number x with respect to the real axis) which is

seen to be an exponentially decaying sinusoid �assuming pre is negative �with an amplitude set by

the magnitude of the residue, the phase o¤set controlled by the residue�s angle, and the sinusoid�s

frequency and exponential decay rate set by the pole�s o¤set from the j! and � axes, respectively.

Again, the result is causal and bounded so long as the pole remains in the left-half plane (LHP).
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In curve-�tting (or, more generally, constraint-�tting) routines, enforcing the requirement that

all poles are located in the left-half plane may be performed as a "post-processing" step after all the

coe¢ cients are calculated. Known techniques for dealing with poles in the right-half plane include

simply removing the poles [25], as well as "�ipping" the pole symmetrically about the j! axis back

into the left-half plane [5]; in both of these rather heuristical methods, the residues are updated

accordingly.

2.4 Passivity

Passivity implies that an object can create no more energy than what is put into it. Although

this de�nition is simple enough, dealing with passivity can be challenging due to the di¢ culty

in quantifying the de�nition when applied to a multi-port circuit. It is important to clarify the

di¤erence between stability and passivity: While a stable but non-passive network in isolation cannot

produce an unstable output for a bounded input, the addition of other, passive elements to such

a network may cause the overall system to become unstable. A concrete example is an oscillator

circuit where the feedback connection has been brought out to a port and remains disconnected from

the circuit�s output port: In isolation, any circuit excitation will produce a �nite energy output.

However, upon closing the feedback path, the circuit begins to oscillate and is unstable. (Real

oscillators are unstable upon start-up, but become stable due to decreasing forward path gain as

a function of output voltage, limiting devices such as Zener diodes in the output path, or simply

"hitting the [power supply] rails" at the output. These are all non-linear behaviors.)

Note that passivity in no way implies a lack of voltage or current gain (or even both at the same

time, so long as their phases are far enough apart): The obvious example is the ideal transformer

�a passive device, yet one that clearly provides voltage or current gain. Less-intuitive examples

include RC �lters that provide voltage gain [26], and highly-lossy transmission lines that provide

re�ection coe¢ cients with magnitudes greater than one [27]. All passive systems are stable and,

as such, there�s no need to check the stability of a network if it is known to be passive (indeed, in

early papers the primary reason to check the stability of a network seems to be its ease relative to

checking its passivity! �for more contemporary papers, however, it appears that enforcing stability

alone followed by enforcing passivity tends to result in less model accuracy degradation than simple

enforcing passivity for a model that�s known to be inherently unstable).

The mathematical conditions necessary for passivity can be formulated as follows: For a one-port

network (the trivial case such as a single resistor), the power absorbed by the network is (using phasor

notation) V �eff � Ieff , with Ieff having the standard reference of being positive when conventional
current �ows into the network4 . In this case, if the real power absorbed by the network is positive

4The "e¤" subscripts indicates the use of the "e¤ective" or RMS values of the voltage and current; most test
equipment utilizes such values, as the formula is then applicable regardless of the exact shape of the waveform
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(= <(V �I)), the network is passive. If negative, power is instead �owing from the network towards

the source, and hence the network is acting as a generator and is not passive. (If zero, the network

is completely reactive and also passive, but this is not a physically likely scenario �all real networks

have some loss, even if it is quite small.) Another way to interpret this scenario is to simply look

at the phase di¤erence between voltage and current: If it is between 270� (purely capacitive) and

90� (purely inductive), power �ows into the network; between 90� and 270�, power �ows out of the

network. For n-port networks, the idea is to simply sum the power absorbed at all the ports and

verify that the real power is greater than zero. Using admittance parameters we compute

PAbsorbed = <(vH � i)

=
1

2

�
vH i+ vT i�

�
=

1

2

�
vH i+ iHv

�
=

1

2

�
vHYv + (Yv)

H
v
�

= vH

 
Y +YH

2

!
v (2.4)

(where XT represents the transpose of X and XH represents the complex-conjugate transpose or

Hermitian of X).

The appearance of the last line in 2.4 is a quadratic form, since
�
Y +YH

�
is Hermitian (see

Appendix C.6 for more information regarding quadratic forms and their relationship to positiveness

de�niteness.) As such, Eq. (2.4) will be greater than zero when [20]

eigi

�
YH(j!) +Y(j!)

2

�
> 0 (2.5)

for all eigenvalues i. This is the form commonly seen in literature, although

eig(<(Y)) > 0

is perhaps a little clearer.

While Eq. (2.5) provides a passivity test for any arbitrary network represented by admittance

parameters, in this work all components were assumed to be reciprocal, implying that Y = YT :

Admittance matrices obtained from measurement data were checked to insure this was the case

before proceeding � for small asymmetries due to measurement errors, a common technique to

involved. For circuit analysis purposes, sinusoidal waveforms are often assumed, with Veff =
p
2
2
Vm, where Vm is

the magnitude of the sinusoidal voltage; the resultant formula is then P = 1
2
<(VmI�m). Except as noted, e¤ective

voltages and currents are used throughout.
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enforce symmetry is to average the two halves (upper and lower triangular regions) of the matrix

together.

For impedance parameters, it should come as no surprise that the requirement for passivity is

eigi

�
ZH(j!) + Z(j!)

2

�
> 0

The derivation follows an identical outline to that used above for admittance parameters. The

results for scattering parameters are slightly di¤erent, although we begin the same way by noting that

the total incident power must be greater than the total re�ected power: PInc > PRef . Assuming

identical real port impedances5 , mathematically this is [28]

v+Hv+ > v�Hv�

where the "+" and "-" superscripts indicate the voltages associated with the forward or backwards

traveling wave, respectively. Substituting v� = Sv+ and rearranging terms provides

v+Hv+ > (Sv+)H(Sv+)

v+Hv+ > v+HSHSv+

v+H(I� SHS)v+ > 0 (2.6)

For the case of a lossless network (PInc = PRef ) we see the well-known result that SHS need

be unitary (physically a rare occurrence, but for the sake of analysis often a useful approximation).

For the (lossy) passive case we again have a quadratic form, and the expression (2.6) will be true so

long as I� SHS �known as the dissipation matrix [29]�is positive de�nite. Since I and SHS are
both Hermitian, so is their di¤erence, and hence an eigenvalue check su¢ ces to guarantee positive

de�niteness6 :

eig(I� SHS) >0

Using the result that

eig(�kS
K + �k�1S

K�1 + � � �+ �1S+ �0) = �k eig(S)K + �k�1 eig(S)K�1 + � � �+ �1 eig(S) + �0

(where the eigenvalue on both sides must refer to the same eigenvalue, of course) this is equivalent

5 In the case of complex port impedances, the power to the load is no longer generally v+Hv+ � v�Hv�, and
therefore the analysis becomes more complicated; see [66] for the results.

6Since I is positive de�nite and SHS is positive semide�nite, their sum I+ SHS would also automatically be
positive semide�nite. I� SHS may or may not be, however �the subtraction makes all the �di¤erence!�
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to

1� eig(SHS) > 0

eig(SHS) < 1 (2.7)

Finally, since SHS is positive semide�nite, its eigenvalues will be greater than or equal to zero,

and hence may be expressed as the square of some numbers �i, known as the singular values of S.

That is

�i =
q
eigi(S

HS)

and therefore a network described by scattering parameters S is passive at a given frequency j! if

all of S�s singular values are less than one:

�(j!) < 1

While Eq. (2.7) is quite workable and the introduction of singular values appears to do little but

muddy the waters, it is the form commonly seen in literature.

It is surprisingly common to �nd that a rational function curve �tting routine will calculate

coe¢ cients that lead to immittance matrices that are not passive. The result �a stable but non-

passive network connected to a passive network can create an unstable system �has already been

discussed; reference [3] provides some more examples. This should not be too surprising, as the

non-passive network represents an energy source, and thus can easily function as an ampli�er for

the passive network�s resonant modes, causing oscillations that quickly grow out of control. Even

in system design, the unwary may inadvertently start calling for non-passive devices: [30] discusses

naive attempts at "waveform engineering" (precisely de�ning the voltage and current phases through

a transistor, to minimize its power dissipation) in RF power ampli�ers that leads to calculated

e¢ ciencies greater than 100%. The devil in the details turns out to be the requirement for a

non-passive load!

An obvious drawback to Eq. (2.5) is that it applies at only one frequency point. For a device

model intended to be used over a given frequency range, how many frequencies within that range

need be checked for passivity? How about frequencies outside this range? While enough discrete

frequency checks may provide enough con�dence in a model to make it usable, clearly it�s desirable

to instead �nd an "algebraic" passivity test for transfer functions that would guarantee passivity

over all frequencies starting with a rational function.

Such a test does exist, albeit with some limitations. [19] details the derivation, which is based

on a result from [31] (also available in [32]); its usage is summarized here7 . First, the transfer

7Those looking to con�rm the derivations will need a healthy dose of linear algebra and state-space modeling
background.
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function must be converted to a minimum "state-space" representation8 :

x0(t) = Ax(t) +Bu(t) (2.8)

y(t) = Cx(t) +Du(t)

Here A is the system matrix, relating how the current state x a¤ects "itself," B is the control matrix

which determines how the current input u a¤ects the current state, C is the output matrix which

translates the current state into an output vector y, and D is the feed-forward matrix, that allows

the input to directly in�uence the output regardless of the state. For a given system, state matrices

are not unique, since various permutations of rows and scaling of matrix entries can be made to

"cancel out." However, once a state matrix is constructed (by, e.g., the MATLAB "ss" command

as used by CAM or any other means) the following statements hold [33]:

� Solving the �rst line of (2.8) (in the Laplace domain, with sx(s) replacing x0(t)) and substitut-
ing it into the second line allows one to directly calculate the transfer function matrix H(s),

where y(s) = H(s)u(s), as H(s) = C(sI�A)�1B+D. This may be equated directly to, e.g.,
Y, Z, or S parameter matrix.

� lim!!1H(j!) = D, as can be seen from the form of H(s): This has signi�cant implications

as will be seen shortly: If H(s) represents, e.g., the impedance of a single-port network that

becomes a short circuit as ! ! 1, D (a scalar in the one-port case) will be zero. (If H(s)

represents the scattering parameters of such a network, D!!1 = �1.)

� For a system representing immittance parameters, the system is stable if the real part of A�s

eigenvalues are all negative. Other methods such as the Routh-Hurwitz criteria can also check

for stability (and require less mathematical e¤ort to compute).

� For a system representing immittance parameters, the system is passive if H(s) +H�(s) > 0

for all <(s) > 0; this a more general version of (2.5).

The algebraic passivity test is as follows. First, construct the appropriate Hamiltonian matrix

(see Appendix C.5 for more information regarding Hamiltonian matrices) P depending on whether

the state space system represents immittance parameters or scattering parameters. For immittance

8State-space representations cannot represent distributed networks such as those containing transmission lines.
While such systems can have valid Laplace transforms (e.g., e��s for an ideal transmission line with time delay �),
they cannot be represented with rational-polynomial functions of �nite order. Since this fact stops no one from
approximating systems using such functions, it won�t stop us from using state-space representations for them either.
Yes, circuit modelers do live on the edge!
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parameters we have

Q
4
=D+DT

P =

"
A�BQ�1C �BQ�1BT

CTQ�1C �AT +CTQ�1BT

#

whereas for scattering parameters we compute

R
4
=I�DTD

S
4
=I�DDT

P =

"
A+BR�1DTC BR�1BT

�CTS�1C �AT�CTDR�1BT

#

(These di¤erences are due to the passivity criteria di¤erences seen in Eq. (2.5) and (2.7); what the

test actually "does" is to provide the frequencies at which the eigenvalues of a given linear matrix

inequality become true.) Next, the eigenvalues of P are computed. If any of these eigenvalues

are purely imaginary, the system changes, at some frequency, from being passive to non-passive or

vice versa, and therefore the system must be non-passive. Now, the detection of "purely imaginary"

eigenvalues begs the question of what to do with small real components calculated due to round-o¤

error; [34] discusses this problem in detail and �given that the eigenvalues are from a Hamiltonian

matrix �uses a "structured eigenvalue solver based on symplectic URV decomposition"9 to obtain

more accurate results. In any case, the magnitude of each pure imaginary eigenvalue provides the

frequency at which the passivity "violations" occurred; more sophisticated expressions for P provide

a means of calculating the frequencies at which the system becomes "arbitrarily close" to being

non-passive; this may be used as the start of a passivity enforcement routine [19].

There are limitations to the algebraic passivity test: First, since the imaginary eigenvalues indi-

cate changes in passivity over all frequencies, one needs to use at least one "single frequency point"

test to ascertain that the system isn�t non-passive for all frequencies (! = 1 is a good choice).

Secondly, the requirement to invert Q or R and S, respectively, is not possible when the system has

ports that approach lossless conditions as ! ! 1 �this implies that D = 0 (immittances) or �1
(scattering parameters). Such systems arise more commonly than might be suspected: An example

is an ECM�s ideal series inductors preventing a port containing various reactances from "seeing" its

termination impedance, resulting in a low-pass behavior. In such cases a small amount of arti�cial

loss (or an asymptotic match to the port reference impedance) at high frequencies may be added [35]

to avoid ill-conditioning in P; this is acceptable from a physics viewpoint since all physical devices

become lossy as ! !1:

9Such techniques are well beyond the scope of this work.
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Chapter 3 �The Circuit Augmentation Method

3.1 Direct Augmentation

"Direct" augmentation is the process whereby a user-provided "equivalent circuit" has a circuit net-

work logically interposed to create a "hybrid" combination that, overall, exhibits behavior closer to

that of the provided measurement data than the ECM does alone. "Equivalent Circuits," in the

sense used here, are simply hand-crafted circuit models that attempt to reasonably approximate the

network behavior of an arbitrary circuit object, for instance, a spiral inductor on silicon. Although

the model itself is usually created in the form of a schematic utilizing ideal basic circuits elements

(e.g., R, L, G, C, lossless transmission lines, etc.), conceivably it could be generated using other

techniques such as system model diagrams employing (perhaps) time delays, integrators, di¤eren-

tiators, loads, etc. From the CAM perspective equivalent circuit models simply provide a means

to generate "predicted" network behavior for comparison with "measurement data," which may be

tabulated measurement data obtained from, e.g., a network analyzer, curve tracer, etc., or may be

from a high-accuracy simulator such as a �eld solver. The data set itself is represented via standard

network parameters such as scattering (S or T), immittance (Y/Z), "chain" (ABCD), or "hybrid"

(G/H) hybrid parameters. For instance, a spiral inductor�s measurement data could be represented

as

YMeas(!n) =

"
Y11(!n) Y12(!n)

Y21(!n) Y22(!n)

#
where a �eld solver has calculated the network parameters of the "input" and "output" sides of the

inductor (relative to a common ground) at N discrete frequency points !n, n = 1 : : : N . These data

are then compared to data at those same frequency points from the equivalent circuit model (ECM).

The logical "di¤erence" between these two data sets is used to construct an augmentation network,

which is combined with the user-provided ECM to create a "hybrid" model whose behavior should

accurately match the measurement data; this concept is illustrated in Fig. 3.1. It is this means

of generating the hybrid that is referred to as the Circuit Augmentation Method, or CAM, and the

parameters associated with the hybrid model as subscripted CAM.

One might question how, exactly, the "di¤erence data" are computed: The answer requires the

adoption of a particular network topology, from which the mathematics follows in short order. The

most obvious topologies are "network parallel" and "network cascade" setups, along with � and tee

"branch" networks; these are detailed below. However �as will be seen in the examples �CAM

is a relatively general method, and "variations on the theme" can sometimes be used to advantage



19

when some additional knowledge of the underlying physical structure is available. Despite the ease

with which various augmentation topologies can be derived, it is not always obvious which should

be chosen: While experienced modeling engineers may have an intuitive feel for the best choice, less

experienced individuals may not. However, CAM models seldom require more than a second or so

to generate, and therefore various alternatives can be explored until intuition is gleaned.

Figure 3.1: The concept of equivalent circuit model augmentation.

3.1.1 Branch Topologies

Branch topology-based augmentations take advantage of the exact equivalences between any recipro-

cal two-port network and simple �- and tee-networks de�ned with three impedance (or admittance)

"legs," denoted "left," "center," and "right," as shown in Fig. 3.2:

The elements in the tee network are impedances, whereas those in the � network are admittances.

For a �-network "decomposition," measurement data are set equal to that provided by the CAM

model, which consists of three "augmentation" admittances in parallel with those provided by three

ECM admittances, as shown in Fig. 3.3. In this case,

YCAM (s)
4
=YMD(s) = YECM (s) + YAug(s)

YAug(s) = YMD(s)� YECM (s)264 Y AugLeft(s)

Y AugCenter(s)

Y AugRight(s)

375 =

264 YMD
11 (s) + YMD

12 (s)

�YMD
12 (s)

YMD
22 (s) + YMD

12 (s)

375�
264 Y ECM11 (s) + Y ECM12 (s)

�Y ECM12 (s)

Y ECM22 (s) + Y ECM12 (s)

375
After the augmentation data (Y AugLeft, Y

Aug
Center. and Y

Aug
Right) are calculated, rational functions are

"curve �t" to each branch.

Similarly, for a tee-network decomposition, measurement data are set equal to that provided by
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Figure 3.2: Two-port reciprocal network equivalences to tee- and �-topology circuit networks (Z12 =
Z21 and Y12 = Y21).

Figure 3.3: Parallel (admittance) augmentation using �-network decomposition.
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the CAM model consisting of three augmentation impedances in series with those provided by three

ECM impedances, as shown in Fig. 3.4. In this case,

ZCAM (s)
4
=ZMD(s) = ZECM (s) + ZAug(s)

ZAug(s) = ZMD(s)� ZECM (s)264 ZAugLeft(s)

ZAugCenter(s)

ZAugRight(s)

375 =

264 ZMD
11 (s)� ZMD

12 (s)

ZMD
12 (s)

ZMD
22 (s)� ZMD

12 (s)

375�
264 ZECM11 (s)� ZECM12 (s)

ZECM12 (s)

ZECM22 (s)� ZECM12 (s)

375

Figure 3.4: Series (impedance) augmentation using tee-network decomposition.

After the augmentation data (ZAugLeft, Z
Aug
Center. and Z

Aug
Right) are calculated, rational functions are

"curve �t" to each branch.

For each branch in either decomposition, a series impedance or parallel admittance could be

used, providing 8 di¤erent models. Using the most straightforward choice (all elements taken

as admittances for �-networks and as impedances for tee-networks) has generally been found to

perform as well as any other selection; scenarios where large di¤erences are seen may be indicative

of poor-quality ECMs.

3.1.2 Network Topologies

Augmentation using "network" parameters, such as Y/Z/S/ABCD parameters, involves constructing

two networks and calculating the unknown augmentation network�s values based on the known
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measurement data and ECM data sets (which � if need be � are readily converted to a network

representation from, e.g., a SPICE or linear RF simulator). CAM software currently supports two

network augmentation strategies, "network parallel" and "network cascade." Network parallel is

shown in Fig. 3.5. An advantage of network parallel augmentation is that computation of YAug
is trivial, regardless of the number of ports in the network: By inspection, YAug(s) = YMD(s) �
YECM (s); a rational function is �t to this data.

Figure 3.5: "Network Parallel" augmentation topology.

The other network topology supported by CAM, network cascade, is shown in Fig. 3.6. Al-

though drawn using T parameters, mathematically ABCD parameters work identically, although

T parameters may be preferable in that the implicit (�xed) port reference impedances may make

them easier to de-embed and more accurate when converted from S parameters. Additionally, while

ABCD parameters can be extended beyond two-port networks � "full di¤erential," or four-port

ABCD parameters are not uncommon �T parameters o¤er a more natural representation for many-

port networks. As with the network parallel case, inspection provides TAug(s) = T
�1
ECM (s) �TMD(s);

a rational function is �t to this data.

Figure 3.6: "Network Cascade" augmentation topology. This topology is mathematically identical
with ABCD parameters:

Other "variations on the theme" � such as hybrid series/parallel network topologies that di-
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rectly support G and H parameters �could be constructed. While this has not been thoroughly

investigated, it is not expected to provide signi�cantly better results than the simply parallel and

cascade topologies. On the other hand, signi�cant changes in the "divide" between the ECM and

the augmentation can be quite bene�cial, as demonstrated in Section 4.4.

3.2 Augmentation with Perturbation

3.2.1 Requirement for Perturbation

A di¢ culty that arises in the direct application of the methods described in Section 3.1 is evident if

one considers how hand-crafted ECMs are typically created: They are usually constructed to provide

low-frequency and, often, DC-accurate responses, using a relatively small number of poles. Obtain-

ing accurate high-frequency responses generally requires more poles, as small reactances become

sizable with respect to the low-frequency impedances observed. Yet, adding these poles with a view

towards maximizing high-frequency accuracy inherently degrades low-frequency response, since the

high-frequency poles a¤ect all frequencies, their in�uence decaying as the inverse of the distance in

the complex plane between the pole and any given frequency on the j! axis. Hence, in order to

obtain a wideband-accurate result, low-frequency poles must be perturbed as high-frequency poles are

added. (Using the "latex sheet" model of the Laplace s-plane, it�s clear that introducing a pole will

generally modify the response along the j! axis.) In fact, if the low-frequency accurate ECM is not

perturbed during an augmentation, obtaining accurate results may require a high-order augmenta-

tion that �rst "cancels out" the low-frequency ECM poles (via pole-zero cancellation) before adding

its own low-frequency poles back in, e¤ectively turning CAM into a simple "black box" modeling

routine! This result increases overall simulation time, and is contrary to the CAM philosophy.

ECM perturbation often translates into small component value changes on an ECM represented

by a schematic; such perturbations will generally change the ECM�s poles. Consider the simple

scenario of a single-port network represented via admittance data withQMeas poles. The admittance

function, YMeas(s) can then be expressed as

YMeas(s) =

QMeasX
i=1

ki
s� pi

+ dMeas (3.1)

The corresponding CAM model using a parallel admittance for augmentation is then

YCAM (s) =

QECMX
i=1

~ki
s� ~pi

+ ~d| {z }
ECM

+

QAugX
i=1

k̂i
s� p̂i

+ d̂| {z }
Augmentation
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We expect that QECM < QMeas (if this isn�t the case, something is generally wrong with the ECM

or the measurement data). The best �t of the CAM model to the measurement data occurs when

QECM + QAug = QMeas, implying that the ECM poles identically match some of those in the

measurement data. However, in most cases such an ECM would not be particularly desirable,

since its low-frequency accuracy may be poor �a much likelier scenario is that the ECM has low-

frequency poles that are approximately the same as those in an ideal model. As such, merely adding

the augmentation poles, p̂i to a low-frequency accurate ECM will disturb the overall response of the

CAM model, reducing accuracy. The resolution to this di¢ culty is to perturb the component values

of the ECM to slightly "shift" its poles ~p into the same position as the measurement data�s poles,

p. Mathematically, this is

YCAM (s) =

QECMX
i=1

(~ki +�~ki)

s� (~pi +�~pi)
+ ( ~d+�~d)| {z }

Perturbed ECM

+

QAugX
i=1

k̂i
s� p̂i

+ d̂| {z }
Augmentation

Although demonstrated for a single-port example, the preceding discussion applies directly to

the multi-port case represented by any network parameters. In such cases ECM component value

perturbations generally a¤ect all port responses, which constrains the useful range over which the

values may be modi�ed.

3.2.2 Automated Perturbational Algorithm

While early versions of the CAM software [36] simply swept over "reasonable" component parameter

values in an attempt to optimize the CAM result, the current version utilizes a "general-purpose"

global optimizer to intelligently search the solution space of possible ECM component values such

that the perturbed ECM�s poles (~pi+�~pi) are ideal, or at least optimal within the CAM framework;

this signi�cantly reduces the CPU time required to build the model relative to the swept approach,

and was �rst detailed in [37]. While the only means of guaranteeing optimal component values is to

perform an exhaustive search of the solution space, high-quality optimizers use a mix of analytical

and heuristical techniques to return results that are statistically likely to be optimal or near-optimal

while searching only a tiny fraction of the solution space [38,39].

Most general-purpose optimizers require only the provision of a "cost function" or "metric,"

f(x), and will "wiggle" the contents of the n-dimensional solution vector x within a lower- and

upper-bounds u and v in order to minimize the cost function�s value, where all quantities are real
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values. Mathematically stated, this is

min f(x) : x 2 [u;v]

[u;v] : fx 2 <n j ui � xi � vi; i = 1 : : : ng

CAM makes use of the MCS �Mulit-level Coordinate Search �algorithm detailed in [38] and the
DIRECT algorithm detailed in [39]. While quite complex, the basic idea is to examine the gradients

of f(x) (within the constraint area provided by u and v) and "descend" along the steepest gradient

to �nd a minima or maxima. This is similar to the Method of Lagrange Multipliers, discussed in

E, with signi�cant complexity added to try to avoid local extrema in favor of the globally optimal

result while keeping the number of gradient sample points to a reasonable number for the sake of

performance.

Within CAM, the solution vector x represents ECM component values. With a proposed solution

x, it is straightforward to re-compute the network parameter data associated with the ECM and

then compute the cost function. CAM typically uses a cost function such as the root-mean-square

(RMS) error between the CAM model and the measurement data, with the mean taken over the

number of data points (frequencies) where measurement data are available. For instance, with

N -port scattering parameters we have

f(x) =

vuut NX
i=1

NX
j=1

MX
k=1

W (i; j; k)

M
�
��SMeas
i;j (!k)� SCAMi;j (!k)

��2
where W (i; j; k) is an "appropriate" weighting function, which can be used, e.g., to give less im-

portance to diagonal network elements (i.e., trade o¤ reduced accuracy in return loss for greater

accuracy in transmission coe¢ cients), avoid "double counting" the diagonal entries (since the scat-

tering parameter matrix of a reciprocal passive component with real port impedances will be sym-

metrical), etc. W (i; j; k) can also be used to normalize the calculation: While X/Y/Z/G/H network

parameters have values ranging between 0 and �1, S and T parameters using real port refer-

ences (such as the ubiquitous 50
 termination) are inherently bounded to jSj � 1 for all passive

structures. Finally, changing W (i; j; k) may be used to alter the statistical nature of the error

vector SCAM � SMeas: Setting W (i; j; k) = 1=
��SMeas
i;j (!k)

�� tends to normalize the error percentage
(jSCAM � SMeasj = jSMeasj), whereas leavingW (i; j; k) = 1 attempts to minimize the absolute error,
jSCAM � SMeasj. This topic is closely linked to that of the weighting matrices used in least-squares
�tting, which is discussed in C.3.

Fig. 3.7 shows how CAM interfaces to a general-purpose optimizer, including various inputs

and outputs. Each time the optimizer pro¤ers a value for x, a CAM Iteration is run to compute

the cost function; a �owchart of this process is shown in �g 3.8. CAM iterations generally include
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passivity checks and enforcements for non-passivity of the overall network, since the "optimal"

non-passive network may have a signi�cantly di¤erent ECM and augmentation than the (required)

passive network. (Strictly speaking, these checks can be performed after optimization is �nished.

While faster, typically the results will not be passive and therefore the optimizer must be run again.)

At the end of the optimizer�s run, an ECM with speci�c component values has been combined with

a speci�c topology augmentation; the result should closely match the measurement data.

Figure 3.7: Optimizer data �ow in CAM. The general-purpose optimizer searches a small fraction
of the solution space, attempting to �nd the ideal ECM/augmentation combination.

3.3 Data Fitting

A core operation within CAM is the "curve �tting" of a set of tabulated data to a rational function.

As discussed in 2.2, such functions are usually expressed as either a ratio of polynomials, Eq. (2.1),

or as a pole-residue summation, Eq. (2.2). CAM uses a "direct" least squares �tting algorithm or

as vector �tting routine to perform this operation; this section provides further details about each

approach.
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Figure 3.8: CAM iteration �owchart. An ECM using optimizer-provided component values x is
augmented, passivity/stability are tested, and quality of result is computed, to be returned to the
optimizer. Process steps in yellow are generally performed but may be optional in certain instances.
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3.3.1 Direct Least Squares Fitting

Given a set of tabulated data h(s), we seek the most "direct" approach to obtain the coe¢ cients am
and bn in Eq. (2.1) repeated here:

h(s) =

PP
m=0

ams
m

QP
n=0

bnsn
(3.2)

For real-world problems, the data may be in the form of a vector h(s); least squares �tting can be

applied directly to each element of the vector or to some "hybrid" whereby, e.g., the same poles

are used for all vector elements. Furthermore, sometimes it is desirable to weight some data more

than others if, e.g., high-frequency or low-frequency responses are more important than mid-band

responses; this is addressed in further detail in Appendix C.3.

For the simple (scalar, unweighted) case considered herein, however, the problem begins by noting

that Eq. (3.2) is non-linear due to the bn�s in the denominator, and is therefore di¢ cult to solve

directly. This can be �xed trivially by multiplying both sides by the denominator to obtain

QX
n=0

bns
n � h(s) =

PX
m=0

ams
m

h(s) �
QX
n=0

bns
n �

PX
m=0

ams
m = 0

which is a standard linear equation. Using the available tabulated data at s = j!1 : : : j!K , one can

write a set of k simultaneous equations:

h(j!1) � (b0 + b1(j!1)1 + � � �+ bQ(j!1)Q)� (a0 + a1(j!1) + a2(j!1)2 + � � �+ aP (j!1)P ) = 0
...

h(j!K) � (b0 + b1(j!K)1 + � � �+ bQ(j!K)Q)� (a0 + a1(j!K) + a2(j!K)2 + � � �+ aP (j!K)P ) = 0

which can be written in matrix notation as Mz = 0 where

M
�
=

266664
h(j!1) h(j!1) � (j!1)1 � � � h(j!1) � (j!1)Q

h(j!2) h(j!2) � (j!2)1 � � � h(j!2) � (j!2)Q
...

...

h(j!K) h(j!K) � (j!K)1 � � � h(j!K) � (j!K)Q

����������
�1 �(j!1)1 � � � �(j!1)P

�1 �(j!2)1 � � � �(j!2)P
...

...

�1 �(j!K)1 � � � �(j!K)P

377775
(3.3)



29

and

z
�
=
h
b0 b1 b2 � � � bQ a0 a1 a2 � � � aP

iT
If this equation were solved directly, the coe¢ cients returned would typically be complex when

h(s) is complex. Since physical circuits can only have poles and zeros that are real or occur

in complex conjugate pairs, the an and bn coe¢ cients must be real (see Appendix D.2 for more

information). An easy way to enforce this requirement is to split the matrix into two sub-matrices,

the upper-half containing the real part of (3.3) and the lower-half containing the imaginary part.

The new equation is "
<(M)
=(M)

#
z = 0 (3.4)

which can be seen to be in the standard "Ax = 0" form. This equation is solved in a least-squares

manner, beginning as described in Appendix C.1 by transforming Eq. (3.4) into

ATAx = AT � 0 = 0

At this point we�d like to solve the system of equations, but there�s a problem: If ATAx = 0, then

surely x is zero, isn�t it? Indeed, zero is a solution, but this so-called "trivial solution" is not the

one we�re after. To have a non-trivial solution, A must be singular and �preferably �have a null

space with rank one (i.e., A has nullity one) so that there is a single uniquely de�ned, non-zero

solution vector x: The means of obtaining A requires a bit of analysis �detailed in [40] �with the

result being surprisingly simple: The best (in the standard least-squares sense that jAxj is as close
to zero as possible) non-zero solution x is the eigenvector corresponding to the minimum eigenvalue

in the equation

ATAx = �minx (3.5)

(Note that one coe¢ cient such as b0 in (3.2) may be set to a �xed constant such as 1, as mentioned

in Section 2.2. In such a case, Eq. (3.4) has a non-zero right-hand side and, at least conceptually,

may be solved without resorting to eigenvalue techniques.)

Unfortunately, the preceding technique for �tting data to a rational function is inherently weak,

with the source of the problem being the increasing powers of s (= j!) seen in (3.3). Intuitively,

the problem is that the coe¢ cients for the higher-order terms of the polynomial receive radically

higher "weighting" in the system of equations that the lower-order terms, and therefore the mean

values of the matrix�s columns end up with enormous variations from column to column. (Since the

problem shows up with the columns, there�s no easy means of re-normalizing the matrix.) This sort

of "power" variation creates a matrix similar in form to that of a Vandermonde matrix, which has
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a condition number1 that�s approximately proportional to the inverse of the Hilbert determinant2

of order N , where N is the size of the matrix A [41]. For example, the Hilbert determinant for

N = 1 is 1, whereas it�s 4:6� 10�4 for N = 3, 3:7� 10�12 for N = 5, and 4:8� 10�25 for N = 7: In

other words, the system of equations is inherently ill-conditioned, and attempting to use the direct

method to curve-�t rational functions with orders higher than 5-6 often leads to poor quality results.

Many techniques have been developed to overcome the limitations of this naive approach (al-

though the "obvious" �x of changing the computation to use double-precision numbers is not consid-

ered a proper "solution!"). Various methods include the use of "quasi-orthogonal polynomials" [41],

"total least squares" methods [42], and those based on Chebyshev polynomial basis functions [43].

In some cases the original problem is posed in terms of �tting a rational function to another function

and its derivatives known at a single point (as opposed to knowing the function�s value as multiple

points); such approaches would require additional steps to �rst numerically compute the derivatives

based on the tabulated data.

3.3.2 Vector Fitting

A relatively recent and robust method of rational function curve �tting is that of vector �tting, �rst

introduced by Bjørn Gustavsen and Adam Semlyen in 1997 [44]. The "core" was improved and

generalized over the next two years before further publication in 1999 [5]; since that time, Gustavsen

has maintained the freely-available vector �tting code, making improvements, providing passivity

enforcement routines, and �xing bugs. To date, several dozen papers reference the vector �tting

code and it has been incorporated into commercial products.

Vector �tting eliminates the inherently ill-conditioned matrix obtained via direct least squares

�tting by �rst formulating the rational function in the pole-residue form, Eq. (2.2):

h(s) =

QX
i=1

ki
s� pi

+ d+ se (3.6)

Here, Q is prescribed but the ki�s, pi�s, d and e are unknown. Vector �tting begins by assuming

the various poles have values, �pi; that are "reasonably" close to their actual values, pi. The (largely

heuristical) strategy for choosing these initial poles is based on whether h(s) is relatively "smooth"

or has multiple resonances: For smooth functions, real poles spaced linearly or logarithmically over

the � axis of the S plane are used (where s = � + j! as usual), extending over the same values as

the frequency range to be modeled by h(s) (e.g., if h(s) is to be modeled between 1Hz and 100kHz,

one might set �p1 = �1 � 2� (rad/s), �pQ = �100 � 103 � 2� (rad/s), and distribute the remaining poles
1See Appen�x C.2 for more information on condition numbers.
2See Appendix C.5 for more information on Hilbert matrices.
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in-between). For functions with resonances, complex pole pairs are placed such that the imaginary

part of the poles covers the frequency range of interest whereas the real part is set to the imaginary

part divided by 100. For the preceding example, the initial poles would be �p1 = 2�(�1=100 + j1),
�p2 = 2�(�1=100� j1), �pQ�1 = 2�(�103 + j100 � 103), and �pQ = 2�(�103 � j100 � 103) (all rad/s).
Once the starting poles are chosen, a "weighting" or "scaling" function, w(s) is speci�ed. It is

expressed as a rational function in pole-residue form with unknown residues �ki but the same (known)

poles �pi as assumed for h(s): That is,

w(s) =

QX
i=1

�ki
s� �pi

+ 1

with the constant "1" introduced to avoid the ambiguity in scaling factors, as discussed in Section

2.2. Next, the product of the weighting function and h(s) is set equal to a third function, c(s);

which is constructed in pole-residue form again using the same assumed poles �pi as for h(s) and

w(s):

w(s)h(s) = c(s) (3.7) 
QX
i=1

�ki
s� �pi

+ 1

!
� h(s) =

QX
i=1

~ki
s� �pi

+ ~d+ s~e (3.8)

Notice that this is a linear problem in all unknowns (�ki, ~ki, ~d, and ~e). Writing Eq. (3.8) at several

frequency points creates an overdetermined system of equations in the standard Ax = b form;

this is solved using standard least squares �tting as described in Appendix C.1, or by more robust

techniques such as those based on singular value decomposition.

At this point we�ve gone through several machinations with seemingly little gain, as we�ve yet to

ascertain the poles and residues or Eq. (3.6). Deliverance is near, however, as seen by �rst writing

out c(s) and w(s) in pole-zero product forms:

w(s) =

QX
i=1

�ki
s� �pi

+ 1 =

QY
i=1

s� �zi
s� �pi

c(s) =

QX
i=1

~ki
s� �pi

+ ~d+ s~e = ~e �
QY
i=1

s� ~zi
s� �pi

Note that �zi and ~zi are implicit once �ki and ~ki are obtained from solving Eq. (3.8). Next, observe
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from Eq. (3.7) that h(s) = c(s)=w(s) which is

h(s) =
c(s)

w(s)
=

~e �
QY
i=1

s�~zi
s��pi

QY
i=1

s��zi
s��pi

= ~e �
QY
i=1

(s� ~zi)
(s� �pi)

� (s� �pi)
(s� �zi)

= ~e �
QY
i=1

(s� ~zi)
(s� �zi)

(3.9)

Comparing Eq. (3.9) to Eq. (3.6) shows that the zeros of w(s) are the poles of h(s)! Additionally,

since the assumed poles �pi cancel out, the actual values chosen for them impacts only the "degree of

conditioning" when solving (3.8) and not (directly) the solution itself. In brief, we�ve solved the non-

linear problem of obtaining h(s)�s poles by instead solving the linear problem in Eq. (3.8). While

the problem is solved using least squares methods, the solution can be used in an iterative process

whereby the �rst "solution" poles are used as the second "assumed" poles, etc. This technique is

similar to that of Santhanan-Koerner iteration, using partial fractions as basis functions rather than

polynomials [45].

There are various details of the technique that have been glossed over or outright ignored: Deter-

mining the zeros, ~zi, from Eq. (3.8) is done by solving an eigenvalue problem, taking into account

the requirement that the poles of h(s) need to be complex conjugates. Secondly, once the poles

of h(s) are found, the residues of Eq. (3.6) still need to be computed. While this could be done

directly using Eq. (3.9), a more accurate approach is to substitute the new poles of h(s) into Eq.

(3.6) and directly solve for the residues again using standard least squares �tting. Finally, as the

name implies, "vector �tting" applies to vector data just as readily as it does with scalar data using

the derivation shown; this is a straightforward extension implemented by changing h(s) to h(s) in

Eq. (3.6) and proceeding as before. More details on these procedures can be found in the primary

reference, [5].
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Chapter 4 �Results

4.1 Lumped Element Test Circuit

To illustrate the CAM concept �as well as to debug the CAM code! �a test circuit was created

to generate "measurement data," after which component changes were made to test CAM�s ability

to recreate the original circuit. The test circuit is shown in Fig. 4.1. The modi�cations to the

test circuit to create an equivalent circuit model are the removal of the upper branches of the test

circuit along with signi�cant changes in the component values; this is shown in Fig. 4.2. Notice that

the lower half of the network forms a low-pass structure whereas the upper-half forms a high-pass

structure. Given the nature of these modi�cations, the obvious topology for augmentation is the

"network parallel" style, shown in Fig. 4.3. With this setup, it is expected that CAM should be

able to regenerate the original test circuit�s measurements with near-perfection.

Fig. 4.4 shows S11 and S22 magnitude plots for the ideal circuit, the ECM, and the ECM with

a 3rd-order parallel network augmentation (without component value perturbation). The RMS

error for this augmented network is approximately one-sixth the error of the original ECM. If

perturbation is performed � speci�cally, on the two capacitors and two inductors modi�ed from

the ideal test circuit�s schematic, the results improve dramatically, as expected. Table 4.1 shows

the perturbed values of the four perturbed circuit elements, demonstrating that they have been

e¤ectively transformed back to their original values. Finally, Fig. 4.5 compares the scattering

parameters of the ideal circuit with those of the augmented and perturbed ECM; the plots are

virtually indistinguishable.

Component ECM Value Perturbed Value Ideal Value
C1 290fF 244.9fF 245fF
C2 390fF 419.9fF 420fF
L1 390pH 360.2pH 360pH
L2 970pH 1.100nH 1.1nH

Table 4.1: Test Circuit Perturbation Results
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Figure 4.1: CAM test circuit for generation of "measurement" data.

Figure 4.2: CAM test circuit with upper branches removed and component values modi�ed; this is
the ECM.

Figure 4.3: ECM showing placement of augmentation network.
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Figure 4.4: Scattering parameter comparison between original (�ideal�) test circuit, ECM, and
augmented ECM.
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Figure 4.5: Scattering parameter comparison between original (�ideal�) test circuit, ECM, and ECM
with perturbation and augmentation.
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4.2 CMOS Spiral Inductor

Reliably producing high-Q inductors within an integrated circuit fabrication process is quite desirable

from the point of view of minimizing the cost of RF power ampli�ers, mixers, and other ICs that

typically require low-loss matching or �ltering networks. Producing such inductors has proven

di¢ cult given the lossy substrates and (typically) moderate-conductance metal layers available in

most IC processes [46,47]. While on-chip inductors are commercially viable and produced in quantity

today, their quality is still far below that available from discrete components, and this drawback has

emphasized the need for accurate equivalent circuit models.

CAM provides a means of generating accurate ECMs while retaining the traditional model used

for inductors. A typical on-chip spiral inductor as well as a low-frequency ECM is show in Fig.

4.6. While this model has intuitive appeal, its high-frequency behavior diverges signi�cantly from

inductor�s actual performance, and �at least for on-chip inductors with lossy silicon substrates �

is only applicable over narrow bands. Part of the inaccuracy rises from a lack of modeling several

signi�cant magnetic-�eld loss e¤ects, as detailed in [48]. Additionally, parts of the model itself are

somewhat specious, or at least misnomers: the capacitor CC , generally known as "the interwinding

capacitance," is not a signi�cant function of interwinding spacing [49]. Better models can be

obtained by using frequency dependent loss in the series branch of Fig. 4.6, adding multiple series

sections as in [46] to better approximate the distributed nature of the structure, or moving directly

to a transmission line-based model as in [49].

Figure 4.6: Illustration of an on-chip spiral inductor structure and the associated ECM. The series
branch is highlighted.

Fig. 4.6 highlights the series branch of the spiral inductor ECM, which is regarded as the most

di¢ cult to model [46]; this is the branch that CAM will model. From Y parameters, the series branch
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impedance (shown on the �gure) can be immediately calculated as described in Section 3.1.1. For

a particular spiral inductor, a standard "least-squares" curve �t generates "optimal" series branch

component values of R=1.527
, L=1.301nH, and C=1.896fF; these values are used for the ECM.

Next, augmentation alone, using one zero and two poles, is applied; the results are quite poor as

seen in Fig. 4.7. Allowing ECM component value perturbation generates a model with acceptable

accuracy, as seen in Fig. 4.7; the perturbed component values are R=1.238
, L=1.349nH, and

C=2.280fF.

This spiral inductor example was utilized during the early stages of CAM research and the

resultant overall model was not checked for passivity. In retrospect, there is reason to believe

that the augmentation is not passive, but the example nevertheless illustrates the CAM concept

nicely. This example drove the need for the use of a global optimizer during the perturbation

stage of CAM: Examination of mean-square errors (using S parameters) between the perturbed and

augmented ECM relative to just the ECM itself, as a function of the R, L, and C component values,

showed numerous local extrema that non-global optimizers would converge to. A further challenge

for a global optimizer lies in the observation that some local extrema had extremely large gradients.

As one may infer, �nding the "ideal" component values is quite challenging.

4.3 Probe Tip Hybrid Matching Network

While manufacturers of the day�s fastest CPU or highest bandwidth wireless networking card get

all the press for pushing the limits of technology, the lowly test-equpiment manufacturer is a prime

participant in making such designs a reality. As soon as the venture capitalist�s check clears, one

of the �rst things a company asked to build a GHz-range device does is to go out and spend a

�ve- or six-�gure sum on multi-GHz oscilloscopes, network analyzers, or similar test equipment.

A sometimes-overlooked component of such test equipment is the importance of the probe used

to gather high-speed signals, which contributes signi�cantly to test equipment�s overall behavior,

including the limits of its high-frequency performance1 . A model of part of a high-performance

(multi-GHz) oscilloscope probe "tip hybrid" from Tektronix is shown in Fig. 4.8. The overall hybrid

circuit consists of a small bu¤er ampli�er connected through 125
 coax at port one that drives an

oscilloscope input; the portion of the circuit shown in the �gure consists of a resistor/capacitor

matching network between the port 1 output and the port 2 input, which is the input of the probe

itself connected only to, e.g., a needle point for ease of probing.

An initial ECM designed by an experienced modeling engineer for the probe�s matching network is

shown in Fig. 4.9; ideal transmission lines have been used to model pure delays. One of the strengths

1One ironic limitation of better technology is that manufacturers successfully building multi-GHz oscilloscopes
sometimes have to arti�cially limit the bandwidth of their designs targeted at the entry-level (<=1GHz) market
segments!



39

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

Frequency (GHz)

R
 (Ω

)

Measurement
Augmentation and ECM
Augmentation and Perturbed ECM

0 2 4 6 8 10
1.29

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

Frequency (GHz)

L 
(n

H
)

Measurement
Augmentation and ECM
Augmentation and Perturbed ECM
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Figure 4.8: Physical CAD model for Tektronix oscilloscope probe tip matching network.
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of CAM is the ability to freely mix lumped elements with distributed elements during augmentation

and perturbation. The "measurement data" for the matching network was obtained from a 3D full-

wave electromagnetic simulation, performed using the �nite-element based solver HFSS [50]. As

shown in Fig. 4.10, the initial ECM doesn�t match the measurement data particularly well, especially

at higher frequencies. Augmentation, using "network parallel" topology with six poles and zeros,

provides a much better match, but perturbation provides an even better improvement. (In this

case, component values as well as transmission line lengths (delays) and characteristic impedances

were allowed to be perturbed a maximum of �50%.) Fig. 4.11 plots the same data on a Smith

chart to emphasize the quality of the results in both magnitude and phase, since in measurement

applications small phase errors are often more important than small magnitude errors, and generally

more di¢ cult to correct. The results are quanti�ed in Table 4.2. As seen, the augmented ECM

decreases the RMS error relative to the simulation ("measurement") data by a factor of 30, and

perturbation provides an additional factor of approximately 5.

Figure 4.9: Hand-engineered equivalent circuit model for the probe tip hybrid�s input matching
network.

RMS Error
Circuit (Relative to Measurement Data)

ECM 257:6 � 10�3
Augmented ECM 8:4 � 10�3

Augmented and Perturbed ECM 1:7 � 10�3

Table 4.2: RMS error vs. model type for tip matching network

4.4 Distributed and Lossy Test Circuit

As already demonstrated, CAM is useful for modeling circuits containing distributed elements.

While time-domain simulation of lossless (ideal) transmission lines is straightforward to implement,

signi�cant care is required to correctly simulate lossy lines while still maintaining high simulation
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Figure 4.10: Comparison of the probe tip matching network�s measurement data to CAM data (this
is a reciprocal network, so S12 = S21).

.
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Figure 4.11: Probe tip matching network results, indicating excellent magnitude and phase obtained
with CAM.
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e¢ ciency [51]; the di¢ culty is heightened when the loss is signi�cantly frequency dependent, as in

the case of microstrip transmission lines patterned on many inexpensive substrates. One means of

side-stepping the di¢ culty is to use a pair of ideal transmission lines on the input and output of

a network and use CAM to model the "inner" circuit as well as the loss of the transmission lines.

Consider the test circuit shown in Fig. 4.12(a): The microstrip transmission lines have signi�cant

electrical length (especially the outermost lines) at 10GHz where the circuit is meant to be used.

The CAM approach here is slightly di¤erent than those detailed so far: As illustrated in Fig. 4.12(b),

we replace TL1 and TL3 with ideal transmission lines, and use a rational function "macromodel"

intended to capture all other circuit behavior seen in Fig. 4.12(a). In essence, the ideal transmission

lines have become the ECM.

The ideal transmission lines in Fig. 4.12(b) are given the same physical length and characteristic

impedance as those in Fig. 4.12(a); their dielectric constant is set to microstrip line�s low-frequency

e¤ective dielectric constant. The characteristic impedances and physical lengths are allowed to be

perturbed while the macromodel augments the ECM using a 4th-order rational function. Fig. 4.13

shows the results, comparing a 22nd-order "direct" curve �t to that obtained via CAM �the CAM

result is quite comparable, arguably even a skosh superior from the viewpoint of having a more

evenly distributed error function. Table 4.3 summarizes these results, including a comparison with

a 21st-order direct �t which is signi�cantly worse than the 4th-order CAM model. One �nal bene�t

of the CAM approach is the ability to largely ignore numerical round-o¤ and ill-conditioning issues

given the low order of the augmentation, whereas attempting to increase the number of poles used

in a direct �t did not result in signi�cantly better matches, due to such di¢ culties.

TL1 TL1 TL3 TL3 RMS Error
Methodology Z0 Length Z0 Length (Vs. Fig. 4.12(a))

21st-order Direct Fit 63
 25mm 63
 15mm 291 � 10�3
22nd-order Direct Fit 63
 25mm 63
 15mm 6:55 � 10�3
4th-order CAM 63.33
 28.47mm 63.24
 12.73mm 7:85 � 10�3

Table 4.3: Distributed, lossy test circuit results as a function of curve �tting methodology
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(a)

(b)

Figure 4.12: Distributed, lossy test circuit: (a) Test circuit containing distributed, lossy elements,
represented by ideal transmissions lines shunted by loss components. (b) CAM model toplogy.
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Figure 4.13: Distributed, lossy test circuit: (a) Comparison between measurement data and high-
order direct �t vs. 4th-order augmented/perturbed CAM model. (b) Comparison of error magnitude
of S21.
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Chapter 5 �A Guided Tour of the MATLAB CAM Software

CAM research was largely performed using MATLAB software to test out and validate the underlying

concepts using data �les provided by National Semiconductor and Tektronix. This software slowly

evolved into a menu-driven suite of procedures and function calls that � after re-factoring � has

become powerful and readily extensible by others (for instance, a GUI "wrapper" is now available;

contact the OSU Microwaves Group for more information on this option). In this section, a quick

"walkthrough" of the CAM software is provided, demonstrating its utility and some of its �ner

points.

When CAM is �rst executed (either by double-clicking on the compiled executable or by running

cam.m from the MATLAB command line), a splash screen is shown followed by the main menu:

*******************************************************************************

* *

* Oregon State University Microwaves Group Circuit Augmentation Modeling Tool *

* Version 0.9 beta Contact: andreas@eecs.oregonstate.edu (541) 737-3153 *

* *

*******************************************************************************

Enter bracketed text to change parameters or execute command:

Measurement Data

================

[M] File name: (None -- this must be specified prior to modeling)

[F] Data filtering: Skip 0 points, use 0 point median filter, use 0

point moving average filter

** Data interpolated to no more than 100 data points.

Equivalent Circuit Model

========================

[E] File name: (None -- if left unspecified, pure �black box� synthesis

will be used)

Curves/Augmentation/Perturbation Setup
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======================================

[O] Order of numerator/denominator curve fitting polynomials: 3/3

[C] Curve fitting routine: (None -- this must be specified prior to modeling)

[A] Augmentation topology: (None -- this must be specified prior to modeling)

[P] Perturbation optimizer: (None -- no ECM perturbation will be performed)

Control

=======

[GO] Create model!

Other Functions

===============

[PL] Configure data plotters

[S] Save modeling parameters to a file

[L] Load modeling parameters from a file

[H] Help/About

[X] Exit

Enter command:

For the sake of simplicity, we�ll perform a "black-box" �t to a measurement data �le. (That is,

there will be no ECM.) To begin, menu option "M" ("Measurement Data") is selected, providing

a standard �le requestor to specify the measurement data �le, which is named "50res.s2p". Next a

"plotter" �a graph of a particular set of parameters relating to the data provided and generated �

is added with the "PL" ("Plotters") command; we request that S11, S21, and S22 are shown:

Plotting configuration:

(No plotters are currently defined...)

Commands

========

[A] Add new plotter
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[E] Edit existing plotter

[D] Delete existing plotter

[X] Return to main menu

Enter command: a

Available plotters:

1. S Parameters (linear)

2. S Parameters (dB)

3. Y Parameters

4. Z Parameters

5. Smith Chart S Parameters

Select plotter: 1

Enter plot title: CAM Demonstration S Parameters

Expected number of ports in data (hit return to use default of 2):

Select responses to plot; use Y/N, T/F or 1/0:

S11:Y S12:N

S21:Y S22:Y

After exiting this sub-menu, we see the original data plotted in the form requested; this is shown

in Fig. 5.1. Now back at the main menu, we con�gure the "augmentation" (which is, for this demo,

the complete black box �t) to use a rational function with a fourth-order numerator and �fth-order

denominator using the "O" ("Order") command. We also select the augmentation topology to be

"Network Parallel" with the "A" ("Augmentation Topology") command (although for a black-box

�t the option chosen doesn�t really matter), and the curve �tting routine to be vector �tting with

the "C" ("Curve Fitting Routine") command. We then use the "CS" ("Curve Fitter Settings")

command to indicate that our data is relatively smooth and that four vector �tting iterations should

be performed (the "CS" commands are speci�c to the type of curve �tting routine chosen). Finally,

we issue the "go" (Go!) command to execute the black-box synthesis algorithm. In short order,

the results are displayed, as shown in Fig. 5.2. S11 is a very good match, whereas S21 is a little
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Figure 5.1: S parameter "measurement" ("Msmt") data for CAM software demonstration.

o¤ at higher frequencies and S22 contains signi�cation variations relative to the measurement data

throughout the measurement frequencies.

After �tting, the CAM software�s main menu displays the mean-square error between the CAM

model (the block box �t, in this case) and the measurement data; 0.051 in this case. Increasing the

augmentation order to use a 5th order numerator reduces this to 3:164 � 10�3 and visibly improves
the appearance of the �t. Adding a Smith chart plot con�rms this, as shown Fig. 5.3. Finally,

the CAM software can output a SPICE netlist corresponding to the CAM model with the "SM"

("Save Model") command; the augmentation is implemented using Laplace-type controlled sources

that correspond to the rational function calculated for the augmentation. This rational function

and the SPICE augmentation model can be displayed with the "AR" ("Augmentation Results")

command:

Augmentation Results -- Network Parallel Topology

Interpolating polynomials in Y:

0.01906*s^5+7.02e+009*s^4+2.477e+021*s^3+(2.212e+032+j1.252e+016)*s^2+ ...

Y11: ---------------------------------------------------------------------------
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Figure 5.2: Black box �t ("BBox") to measurement data ("Msmt") for CAM software demonstration.

1*s^5+3.698e+011*s^4+5.419e+022*s^3+(8.005e+033-j2.882e+017)*s^2+ ...

(-0.006289)*s^5+(-1.677e+006)*s^4+(-1.283e+020)*s^3+(-2.278e+031+j1.813e+015)*s^2+ ...

Y12: ---------------------------------------------------------------------------------------

1*s^5+3.698e+011*s^4+5.419e+022*s^3+(8.005e+033-j2.882e+017)*s^2+ ...

(-0.006289)*s^5+(-1.677e+006)*s^4+(-1.283e+020)*s^3+(-2.278e+031+j1.813e+015)*s^2+ ...

Y21: ---------------------------------------------------------------------------------------

1*s^5+3.698e+011*s^4+5.419e+022*s^3+(8.005e+033-j2.882e+017)*s^2+ ...

0.0352*s^5+5.794e+009*s^4+1.475e+021*s^3+(1.194e+032-j1.915e+016)*s^2+ ...

Y22: ---------------------------------------------------------------------------------------

1*s^5+3.698e+011*s^4+5.419e+022*s^3+(8.005e+033-j2.882e+017)*s^2+ ...

Augmentation SPICE Netlist (Y-parameters):

.subckt 2PortAug 1 2
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Gy11 1 0 LAPLACE 1 0 0.0190628061155509 7019506155.39351 2.47727921883448e+021 ...

Gy12 1 0 LAPLACE 2 0 -0.00628890276845647 -1676855.94955683 -1.28261884243961e+020 ...

Gy21 2 0 LAPLACE 1 0 -0.00628890276845647 -1676855.94955635 -1.28261884243961e+020 ...

Gy22 2 0 LAPLACE 2 0 0.0352043200039831 5793739103.99805 1.47461196859803e+021 ...

.ends

(Lines ending with "..." have been truncated to �t on the page.)

With this demonstration as a starting point, the user is encouraged to "play" with the CAM

software to become more familiar with its abilities. Con�guring perturbation and equivalent circuit

models is a straightforward extension using the "P" ("Perturbation") and "E" ("Equivalent Circuit

Model") commands.
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Chapter 6 �Conclusions and Suggestions for Future Research

6.1 Conclusions

This work has developed a new, automated means of creating high-accuracy, broadband models that

are compatible with time-domain simulators such as SPICE. This circuit augmentation method,

CAM, seeks to merge the physical information provided by a user-provided equivalent circuit model

and that obtained from a high-quality, general-purpose computer-based modeling algorithm. CAM

seeks to "�ll in the gaps" where ECMs fail, often in the realm of high-frequency accuracy or providing

�ts over wider bandwidths for band-limited designs. Unlike many traditional modeling approaches,

CAM is not negatively impacted by distributed elements or highly frequency-dependent losses. CAM

bene�ts directly from the tremendous speed of a computer, making heretofore intractable problems

plausible when the solution space can be decimated many times over by the application of human

intelligence (via the provision of a high-quality ECM), and by the iterative process that component

value perturbation provides. This "meeting of the minds" can create a better solution than either

approach alone, and the input of man vs. machine can be controlled by setting the allowable ECM

perturbation range.

We have applied CAM to numerous passive structures with encouraging results. Run times are

typically in the minutes, which is acceptable for a research-oriented vehicle. The quality of curve-

�tting routines continues to improve, as does the quality of general-purpose optimizers; together these

improvements may superlinearly increase the performance of CAM over time. This new methodology

could be useful for modeling a wide range of passive structures on-chip and in electronics packaging,

including bond wires, matching networks, solder-bump interconnects, and so on.

6.2 Suggestions for Future Research

As CAM stands today it does not yet appear to be of signi�cant value to the practicing engineer;

further research will be required if the method is ever to move out of the insular world of academia

and reach the level of utility that practicing engineers demand. Some interesting additional area of

research, related to CAM, are as follows:

� CAM has introduced numerous topologies for augmenting ECMs, but it still relies on user

selection or brute-force testing to �nd the "best" topology. Is there a more intelligent, auto-

mated means to perform this selection? What produces better results �focusing on relatively
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"large scale" augmentations as has been done to date, or perhaps focusing on very "�ne scale"

augmentations where, e.g., every component in the ECM becomes a "super component." This

idea, suggested by Erick Naviasky at Cadence, might replace resistors with a network whereby

P=Q, inductors with networks where P=Q+1 and capacitors with networks where P=Q-1

(with relatively low values for P and Q), so as to preserve the resistive, inductive, or capacitive

behaviors at low frequencies.

� Can an automated means of selecting the augmentation order be found? To date, almost all

work has consisted of simply increasing P and Q until "good" results were obtained. Some

early research concentrated on the behavior (speci�cally, the condition numbers) of the matrices

involved in curve �tting; this provides a reasonably good indication of when increasing P or

Q beyond their current values is unlikely to provide further improvements in augmentation

results. Is there a more intelligent way to �nd the optimal values of P and Q besides this

"brute force" approach?

� Noise modeling is of obvious importance for devices used in noise-sensitive applications, such
as the �rst ampli�ers encountered in a receiver�s RF chain. While much of this noise is

due to active components, discrepancies between simulated and fabricated devices are often

signi�cant, easily exceeding 3dBc/Hz [52]: Perhaps an augmentation approach could be used

to close this gap?

� Historically, a very useful technique has been to compute a "sensitivity analysis" of a circuit;
this provides the percentage change in a "desired" output (such as a voltage, a transfer gain

such as S21, etc.) to the percentage in a component value (such as the value of a resistor

or inductor). This analysis turns out to be surprisingly straightforward to perform, using

"adjoint" networks [53] and is included in all major SPICE simulators. Could this data be

used to help select an augmentation topology? Or augmentation locations? How about using

it to help set proportional limits on the percentage changes allowed in component values during

perturbation?

� A signi�cant recent work [54] that builds on CAM provides an elegant technique to calculate

the necessary serial or parallel immittance needed in combination with a speci�ed ECM com-

ponent (e.g., a R, L, C, voltage source, etc.) to optimally (in a least-squares manner) "shift"

a network�s n-port response to that prescribed by its measurement data. An important as-

pect of this work is that the problem formulation is completely linear: Global optimizers need

not apply! Results are obtained numerically as a function of frequency; these can be readily

�t to a low-order rational function or synthesized into low-component count circuits. The

method has been extended to support up to three or four multiple augmentation immittances

simultaneously and is quite powerful; for a larger number of augmentation immittances one
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can iterate through three of four components at a time �the referenced paper synthesizes six

immittances for a small-signal FET model. This is a considerably more general technique than

the branch augmentation scenarios described in Section 3.1.1, and perhaps could be extended

to automatically ascertain the best immittances to augment.

There are many more interesting circuit modeling avenues to explore, and hybrid methods such as

CAM have perhaps opened the door to approaches that may one day reduce the level of complexity

needed for circuit models without reducing simulation accuracy or increasing simulation time.
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Appendix A �A Brief History of Circuit Simulators

Research into e¢ cient circuit modeling occurred simultaneously with research into faster simulation

techniques, as discussed in Section 2.1; this section provides a brief history of the development of

the simulators themselves.

As anyone with an interest in circuit simulators is well aware, the University of California at

Berkeley came out with what would become the �rst "killer application" for circuit simulation:

SPICE ("Simulation Program with Integrated Circuit Emphasis"), by Larry W. Nagel, Ron Rohrer

and many others. SPICE was largely based on the program CANCER ("Computer Analysis of

Nonlinear Circuits, Excluding Radiation" �a snub from the liberal �60s Berkeley to the government,

which was funding many "Cold War" contracts that required radiation-hardness analysis) before

it. CANCER was an "all students" project for a class taught by Rohrer, and the rule was that if

department professor Donald Pederson �who was a pioneer in transistor research and established

the �rst integrated circuit lab at Berkeley in 1960 �liked the program, everyone passed! Nagel was

given the job of demonstrating CANCER to Pederson who �much to his classmates�relief, since

the class was supposed to have been about circuit synthesis and had somehow managed to turn into

one on circuit simulation �was satis�ed. CANCER was ~6,000 lines of FORTRAN, and was the

�rst simulator to use sparse matrix techniques.

CANCER became Nagel�s master�s project, and SPICE 1 was his doctoral project with �rst

Rohrer and then Pederson as his thesis advisor. SPICE 1 was released in stages between 1971-1973,

although widespread acceptance came with the release of SPICE 2 in 1975, polished and advanced

to the point of being usable and extensible by anyone familiar with FORTRAN. Despite Nagel�s

own �rst interest being IC design, his PhD thesis [55] was the seminal tome on such programs and

perennially linked him to simulator development long after he left Berkeley.1

The increasing availability of computing power for circuit design gave rise to the need for accurate

component models �SPICE 1 had models for diodes and bipolar transistors but not MOSFETs,

which are signi�cantly more di¢ cult to model accurately. Changes between SPICE 1 and 2 included

the addition of JFET and MOSFET models, as well as a change from Ebers-Moll bipolar transistor

models to the more accurate Gummel-Poon models. Berkeley was still a center of intense simulation

and modeling research; by the late-1980�s Don Pederson�s group came up with innovative simulator

techniques such as CODECS, a Coupled Device and Circuit Simulator, which extended SPICE to
include some "technology" or "T-CAD" simulation, generally taken to be the device and/or process

1Nagel�s own recollection of the history of SPICE is a fascinating read; it is available at http://www.designers-
guide.org/Perspective/life-of-spice.pdf.
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layers shown in Section 2.1. Largely designed by Karti Mayaram [56], Mayaram�s research later

continued at Oregon State University.

Meanwhile, SPICE had become a mainstream tool for the electrical engineer. Version 2G6

released in 1978 was the last version written in FORTRAN and contained numerous model improve-

ments that had been integrated over the past decade. For a number of years, SPICE research

waned, as many considered it a "solved problem," when in actuality, it was anything but! In 1983,

Berkeley�s Tomas Quarles took up the gauntlet and converted SPICE 2G6 to RATFOR (RATional
FORTRAN, sometimes described as "FORTRAN with improvements stolen from C") for his mas-

ter�s project. For his PhD project, he started yet again and converted the code to C, releasing

SPICE 3 in 1989 [57]. Even before this point, various companies had created their own internal

SPICEs: Tektronix had TekSpice, Bell Labs had ADVICE, TI had TISPICE, and Motorola had

MCSPICE � a preponderance of software known as, "alphabet SPICE." Additionally, commer-

cial entities had begun selling simulators based largely on the freely-available Berkeley source code:

HSPICE, presently owned by Synopsys (it seems to change ownership every handful of years) and

now the "golden standard" of IC simulation, started life based on SPICE 2E after signi�cant per-

formance optimizations were added by Shawn and Kim Hailey2 , running on a time-shared Cray

supercomputer that supported vector operations in hardware.

The early- to mid-1990�s was largely a period of incremental improvements in circuit simulators

and a realization that, for all of its utility, SPICE was inherently ill-suited to many design prob-

lems such as RF IC designs, due to the slow speed and convergence di¢ culties of the core SPICE

"transient" simulation needed to model large-signal non-linear circuits. Much research centered on

speci�c simulation techniques to overcome these limitations; developments included various "shoot-

ing method" techniques such as harmonic balance simulations that quickly provide steady-state

non-linear simulation results based on a small, �nite number of �xed amplitude and frequency con-

tinuous wave excitation sources. Along with enhancements to the simulation "engine," advances in

circuit modeling techniques provided another means to signi�cantly decrease simulation time while

maintaining acceptable accuracy. Many such techniques attempt to extract a "dominant pole"

representation of circuit behavior, which speeds up circuit simulation due to the elimination of su-

per�uous poles; AWE (Asymptotic Waveform Evaluation, [58]) and PVL (Padé via Lanczos, [59]),

fall into this category. For passive systems, a detailed overview of many popular high-e¢ ciency

simulation techniques can be found in [3].

The late 1990�s and the 2000�s saw further re�nements with a large emphasis on seamlessly

"co-simulating" large designs. Although the complete simulation of a complicated circuit such

2The Hailey twins have a very colorful history, and might be described as a pair of highly successful "electronic
cowboys" of a then-young �1970s and 1980s �Silicon Valley, long before the sheri¤ came to town; some of their exploits
at the time would today be more liable to land them in a penitentiary rather than their vacation home in Hawaii! A
fascinating interview transcript with them is available at http://silicongenesis.stanford.edu/transcripts/hailey.htm.
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as an RF front end from a high-level "block diagram" all the way down to the process level is

not yet feasible, many contemporary design tools such as Microwave O¢ ce [60] provide nearly

seamless merging between system, circuit, and device level simulators �including those implementing

harmonic balance, �nite-element, and other specialized techniques.

Perhaps ironically, the 1990�s onward also saw the gradual changeover at most educational insti-

tutions from using Berkeley SPICE to instead using freely-provided or heavily-subsidized versions

of commercial SPICE software. Similarly, companies that had developed their own SPICEs also

began to phase out their usage in favor of commercial o¤erings. Such changes are indicative of the

"coming of age" of circuit simulation and its signi�cance in today�s technology-oriented economy.
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Appendix B �An Examination of Polynomials for Circuit Modeling

Almost any non-trivial electronic circuit will quickly end up with transfer functions that are rational

functions in s. This is not a surprise given the behavioral di¤erence between capacitors and inductors

with respect to s, and the "1=(1=a+ 1=b)" form of impedances in parallel or admittances in series.

Hence, it is intuitively reasonable to use curve �tting with rational functions to create circuit models.

Nevertheless, one might consider the utility of simple polynomials of the form

h(s) =
PX

m=0

ams
m

given the easier means of �tting a curve to a polynomial (rather than a rational function) and the

potential increase in simulation speed due to the lack of denominator terms requiring evaluation

as well as the lack of a division operation, which is generally much slower than multiplication or

addition. The di¢ culty in such a construction is that P must often be increased well beyond the

sum of order of the numerator and denominator in a rational function to provide a good curve �t.

For instance, consider the simple function y(x) = ((x � 35)(x � 65))=(x � 250). In this case, over

the span of x = [0 : : : 100], the 3rd-order polynomial y(x) = �26:733 � 10�6 � x3 � 1:2488 � 10�3 � x2 +
332:04 � 10�3 � x� 8:9392 creates a reasonably good approximation to y(x) as shown in Fig. B.1.
On the other hand, once the poles of y(x) move closer to the function�s domain, their in�uence

becomes greater and a polynomial �t becomes di¢ cult, as shown in Fig. B.2, where y(x) = ((x �
35)(x� 65))=(x� 115). The 3rd-order �t y(x) = �568:76 � 10�6 � x3 + 553:03 � 10�3 � x2 � 972:57 �
10�3 � x� 10:198 produces a poor �t, and even the 5th-order �t y(x) = �203:31 � 10�9 � x5� 40:068 �
10�6 �x4�2:9239 �10�3 �x3+85:2 �10�3 �x2�293:74 �10�3 �x�17:375 is a little o¤ at y(0) = 19:783.
A "rule of thumb" is that polynomials are best at approximating data where the analytic con-

tinuation of the function to be modeled contains no poles that are "close" to the intended domain

of the interpolating polynomial. Although the preceding example has an obvious pole nearby (at

x = 115), in the general case the poles may not lie on the real axis, in which case the suitability of

an interpolating polynomial is always immediately obvious. Hence, while polynomials are useful for

many curve-�tting requirements, they are not particularly applicable to modeling data resulting from

physical circuits. On the other hand, one might consider other basis functions such as Chebyshev or

Legendre polynomials for inclusion in a CAM augmentation network: Both can be readily expanded

in terms of regular polynomials (and hence simulated e¢ ciently), but have boundary conditions that

may allow for better conditioning during the curve-�tting process.



62

0 20 40 60 80 100
16

14

12

10

8

6

4

2

0

2

x

y

Polynomial Fit to a Two Zero/One Pole Function

Original Function
Polynomial Fit

Figure B.1: 3rd-order polynomial curve �t to ((x� 35)(x� 65))=(x� 250)
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Appendix C �Useful Results from Linear Algebra

In this section only, we use kxk2 to denote the standard (Euclidean) 2-norm for vectors, so that

single vertical bars can be used to denote the determinant of a matrix (e.g., jMj), and to minimize
ambiguity when discussing norms. In all other sections, jxj refers to the standard Euclidean 2-norm,
as other norms aren�t used and the "jxj" form is felt to be more readable due to its compactness.

C.1 Least-Squares Fitting

With real-world problems, more often than not an exact solution to Ax = b does not exist: Often

A isn�t square to begin with (i.e., the number of unknowns di¤ers from the number of equations

present) or, even if it is, the equations are inconsistent: b will have come from measurement data

that contain (hopefully small) errors and are likely to have su¤ered numerical round-o¤. In such

cases, a common approach1 is to �nd the vector x̂ such that Ax̂ is as "close as possible" to b.

(This approach is so common that MATLAB does so by default when asked to "solve" a system of

equations, although the method used is considerably more sophisticated than the approach described

herein.) That is, we seek to minimize kAx̂� bk2. This task is equivalent to minimizing kAx̂� bk
2
2,

and therefore x̂ is known as the "least squares solution" to Ax = b.

Obtaining x̂ is relatively straightforward. Consider Fig. C.1, meant to illustrate least squares

�tting for a 3x3 system of equations: The shaded area (a plane) represents the span of the column

space of A, indicating that A�s rank is only 2 and therefore Ax = b cannot be solved exactly unless

b happens to lie in the plane illustrated; this is not the case for the vector b shown and therefore

we instead seek the least squares solution x̂. The dashed lines around the shading indicate that the

span of A extends to 1 in all directions. a1, a2, and a3 are the columns of A that provide a basis

for its span, that is, A = [a1ja2ja3] For any given x, Fig. C.1 shows the error vector b �Ax; it
is this vector that must be made as small as possible by judiciously choosing x̂. As shown in Fig.

C.2, when x = x̂ the error vector is orthogonal (at right angles to) the span of A and is as small as

possible.

Since the error vector b � Ax is orthogonal to A, it is orthogonal to any and all of A�s basis
1So common that MATLAB does so by default when asked to solve a system of equations, although the method

used is more sophisticated than the approach herein. This robust implementation bene�ts CAM, as solving systems
of equations is a very common CAM operation.
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Figure C.1: Error vector between arbitrary Ax and b:

Figure C.2: Minimizing the error vector.
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vectors. As such we can write
a1 � (b�Ax̂) = 0
a2 � (b�Ax̂) = 0

...

an � (b�Ax̂) = 0

where n = 3 for the example given, but applies in general for any n�n system of equations. Writing
this in matrix notation we have 2664

aT1
...

aTn

3775 [b�Ax̂] = 0
which is

AT (b�Ax̂) = 0

ATAx̂ = ATb

x̂ = (ATA)�1ATb (C.1)

In other words, to �nd the least squares solution to Ax = b, we multiply both sides of the

equation by AT and proceed to solve for what is now x̂. This solution exists whenever ATA is

invertible, which can be shown to be the case so long asA has independent columns or (equivalently)

full column rank �see [61]; this reference also has a more formal derivation of the result. As an

aside, ATA is additionally square and symmetric, regardless of the original size (m� n) of A; this
desirable property is made use of in more sophisticated least squares algorithms.

Eq. (C.1) can also be obtained directly from calculus by setting the derivative of an "error"

function, b � Ax̂, equal to zero and solving for x̂; the approach presented above is felt to be
somewhat more illustrative and elegant.2

C.2 Condition Numbers

In a well-conditioned system of equations Ax = b, small changes in the "measurement" data b

shouldn�t give rise to unexpectedly large changes in the "model" x: the condition number of the

matrix A quanti�es this change. Speci�cally, assume that contaminated measurement data b̂ are

used to obtain a contaminated model x̂, that is, we solve Ax̂ = b̂. We would like to relate kx�x̂k to
2 It�s times like this when one grudgingly agrees with Dr. Gilbert Strang that linear algebra�s beauty is often

underappreciated. But then someone reminds you that studying symplectic vector spaces or manifolds perhaps isn�t
quite as much fun as going to Disneyworld... or just building a radio and listening to Def Leppard.
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kb� b̂k, and do so with some algebraic manipulation. Start by subtracting Ax̂ = b̂ from Ax = b:

Ax�Ax̂ = b� b̂

x� x̂ = A�1(b� b̂)

kx� x̂k =
A�1(b� b̂)


Assuming a compatible norm is chosen (see Section C.4), this becomes

kx� x̂k �
A�1b� b̂

We would like to normalize the two sides of the inequality to kxk andkbk, respectively, to obtain
a unitless sensitivity measure. First, divide both sides by kbk:

kx� x̂k
kbk =

kx� x̂k
kAxk �

A�1b� b̂
kbk

kx� x̂k �
kAxk

A�1b� b̂
kbk

kx� x̂k �
kAk kxk

A�1b� b̂
kbk

kx� x̂k
kxk � kAk

A�1 �
b� b̂
kbk

kAk
A�1 is the condition number of matrix A, and sets an upper limit on the errors in

the solution x dues to errors in the right-hand side, although in some systems cond(A) grossly

overestimates the actual error. Practically speaking, log10 cond(A) provides some indication of the

number of trailing digits in x that may be inaccurate. When this reaches a signi�cant fraction of

the digits of precision in the system (e.g., 16 for MATLAB), all solutions x become highly suspect

and may no longer retain any signi�cant accuracy (results might as well be compared with, e.g.,

x̂ = rand(size(A)):::!).

C.3 Weighting Matrices

The fact that an inconsistent set of equations has no exact solution, yet we�re pressed to provide

some sort of "best approximation" of x in Ax = b, provides the opportunity for endless de�nition
(and journal articles) of the "best" solution x̂ for any given problem. Before exploring a slightly

di¤erent solution for x̂, recall that the least squares solution derived above minimizes kAx̂� bk22.
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Mathematically we can expand the 2-norm and write out that the least squares solution obtains

min
mX
i=1

[(Ax)i � bi]2 (C.2)

where A is m � n. Now consider the possible sources of error in our "measurement" data b3 :

First, assume that the errors are independent and normally distributed with mean 0 and standard

deviation �i; then b will have a mean of Ax and a standard deviation �i. Recall (or look up in,

e.g., [62]) the probability density function of the normal distribution

f(x) =
1

�
p
2�
e�

1
2 (x��)

2=�2

where � is the distribution�s mean and � is its standard deviation. The conditional probability

density function for each bi (one entry in the measurement vector) for a given "model" x is then

f(bijx) =
1

�i
p
2�
e
�
1
2 (bi�(Ax)i)

2=�2i

Now, assume that the solution x we seek should maximize the overall probability density function

f(bjx) (i.e., the contaminated data b observed are most likely if we choose this particular x); such
a solution is not only intuitively reasonable but also has desirable statistical properties [63]. From

the assumed independence of the errors we have

f(bjx) = f(b1jx) � f(b2jx) � � � � � f(bmjx)

and seek

max f(bjx) = max f(b1jx) � f(b2jx) � � � � � f(bmjx)

= max

mY
i=1

1

�i
p
2�
e
�
1
2 (bi�(Ax)i)

2=�2i

= max
1

m=2
p
2� �

mQ
1
�i| {z }

Constant

�
mY
i=1

e
�
1
2 (bi�(Ax)i)

2=�2i

where the constant can be removed directly. Taking the logarithm (allowable as it is monotonically

3 In books on system modeling, a standard linear equation used is Gm = d where m is the model for the system,
d is the data that model produced, and the kernel G (which likely translates into a word starting with "G" in some
language) that ties the two together; we�ll keep using Ax = b for the sake of consistency.
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increasing) converts the multiplicative series into a summation

= max ln
mY
i=1

e
�
[bi � (Ax)i]2

2�2i

= max �
mX
i=1

[bi � (Ax)i]2

2�2i

= min
mX
i=1

[(Ax)i � bi]2

�2i

Notice the similarity with Eq. (C.2). Thus � under the assumption of normally distributed

errors in b as detailed above �the most likely solution x is obtained if we �rst weight each equation
(row i of A and b) with 1=�i. More formally, we form a weighting matrix

W = diag(1=�1; 1=�1; � � � ; 1=�m)

and solve the system of equations

WAx =Wb

using least squares �tting. From Eq. (C.1) we then have

x̂ =
�
(WA)TWA

��1
(WA)Tb

= (ATW2A)�1ATWTb

In real-world systems, � may not be known (due to the di¢ cultly of or simple lack of its mea-

surement!). A heuristical approach is to assume that �i is proportional to bi and simply use

W = diag(b); this assumption implies that measurement error is proportional to the measurement

value itself � true for many instruments, where error limits are often given as percentages of the

measured values. This approach tends to improve results (and condition numbers); maybe peo-

ple have experimentally come up with this form of "normalization" on their own �CAM uses this

approach internally.

C.4 Norms

Although most people are familiar with "the Euclidean norm" in the context of vectors, the applica-

tion of norms to matrices is more obscure and overlooked. Confusion often arises due to the use of

norms without being aware of what type of norm is in use. Strictly speaking, for vectors, the norm

of x (designated by kxk) is any function that satis�es the following properties
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k�xk = j�jkxk

kx1 + x2k � kx1k+ kx2k

kxk � 0

kxk = 0 i¤ x = 0

(where � is a scalar). The so-called p-norm is typically used for vectors; it is de�ned as

kxkp =
 

NX
i=1

jxijp
!1=p

(where jxij is the absolute value of xi) This gives the standard 1-norm �the sum of the absolute

value of the vector�s components �, the 2- or Euclidean-norm �the length of the vector �, and the

in�nite-norm where p!1 emphasizes the largest entry within x to pick out max jxij.
For matrices, any norm may be de�ned so long as

k�Ak = j�jkAk

kA+Bk � kAk+ kBk

kAk � 0

kAk = 0 i¤A = 0

kABk � kAkkBk

Norms between matrices and vectors are compatible so long as kAxk � kAkkxk; this de�nition
is used in many derivations such as that of condition numbers.

P-norms for matrices have the de�nition of

kAkp = f max kAxkp : kxkp = 1 g

which is compatible with the P-norms for vectors. Unfortunately, kAkp is generally di¢ cult to
obtain for p 6= f1; 2;1g (see [61]). Even for p = 2; kAkp is the largest singular value of A, which is
typically quite time-consuming to obtain. As such, a more common matrix norm is the Frobenius4

4Ferdinand Georg Frobenius, October 1849-August 1917, a German theoretical mathematician whose main contri-
butions were to the theory of di¤erential equations and group theory. Frobenius was recognized as so gifted that he
was allowed to begin teaching in Berlin even before �nishing his post-doctorial thesis (Habilitationsschrift in German).
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norm, which has the markedly simpler de�nition

kAkF =

vuut mX
i=1

nX
j=1

jai;j j2 =
q
Tr(AHA)

The Frobenius norm is compatible with the 2-norm for vectors, and as such is sometimes referred

to as the Euclidean Norm for matrices, which unfortunately has the potential to create confusion

with the matrix 2-norm.

C.5 Special Matrices

Many matrices will, under certain conditions, have various interesting properties that make them

"special." This list provides the de�nitions of various special matrices encountered within CAM,

although the "interesting properties" are highly abridged:

� Hermitian Matrix: A Hermitian matrix is a matrix where the "diagonally opposite" entries

are complex conjugates. That is, for each matrix entry Aj;k, Ak;j = A�j;k. This implies that

the matrix�s diagonal must be real. "The Hermitian of A" or "A-Hermitian," AH , is meant

to refer to A�T (that is, the complex conjugate transpose of A). Hermitian matrices are the

logical extension to real symmetric matrices when the entries are no longer purely real. This

extension unfortunately provides for a certain degree of confusion, in that it is not uncommon

to see literature refer to "the transpose of A" to mean the Hermitian of A. As with real

symmetric matrices, Hermitian matrices have real eigenvalues.

� Hilbert Matrix: Hilbert5 matrices have the simple de�nition that each matrix element Hi;j is

equal to 1=(i+j�1). I.e., the Hilbert matrix of size 2 is simply
"
1 1

2
1
2

1
3

#
. Hilbert matrices are

often considered to be canonical examples of ill-conditioning, as their condition numbers grow

almost exponentially with order: O(e3:5255n=
p
n). Hilbert matrices are clearly symmetric and

positive de�nite, and their determinants and inverses can be expressed in closed form. The

most direct form of setting up a system of equations to curve �t tabulated data to a polynomial

5David Hilbert, 1862-1943. Hilbert was a brilliant German mathematician, researching a broad range of theoretical
mathematical areas, including invariant sets, geometry, and functional analysis. He rang in the 20th century by
proposing 23 then-unsolved problems in Paris. The solutions trickled in, providing great mathematical insight and
understanding long after Hilbert�s death (even today, a few problems remain unresolved). Hilbert was a "formalist,"
meaning that he considered mathematics a "game" that man invented for himself, consisting of axioms and theorems
that were rigorously founded and logically extended. From this vantage point, he was fond of proclaiming that no
problem was unsolvable: "Für den Mathematiker gibt es kein Ignorabimus... Wir müssen wissen, wir werden wissen"
�"For the mathematician there is no ignorabimus... We must know, we shall know." Hilbert�s later years were spent
at the University of Göttingen; he retired in 1930, shortly before the Nazi party began gutting Göttingen of Jews and
other intellectuals in 1933.
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(or rational function) generates a matrix that is approximately (depending on the exact data

used) Hilbertian in form.

� Hamiltonian Matrix: A Hamiltonian matrix is a real matrix H of size 2n by 2n such that

J �H, where J =
"

o In

�In 0

#
, is symmetric. J can be seen to be a skew-symmetric matrix,

and (as can be veri�ed directly) J�1 = �J = JT �hence J is orthogonal as well. In other

words, JH = �HTJ. It can be shown that any Hamiltonian matrix H can be written as

H =

"
F G

Q �FT

#
where G and Q are symmetric matrices. The name "Hamiltonian"

derives from the form of the results when classical (Newtonian) dynamics has its equations of

motions generalized using Hamiltonian mechanics.

� Symplectic Matrix: A symplectic matrix is a real or complex matrix M of size 2n by 2n such

thatMT
M = 
, where
 is a skew-symmetric matrix that must be non-singular. Often
 is

chosen to be J as used in Hamiltonian matrices,

"
o In

�In 0

#
, which gives symplectic matrices

properties similar to those of Hamiltonian matrices. It can be shown that all symplectic

matrices have a determinant of 1.

The use of Hamiltonian and Symplectic matrices is an example of specialized results from other

�elds being put to productive use in circuit modeling theory. These results are specialized enough

that it�s highly unlikely one would �nd a discussion of their application in a circuits textbook, but

rather only in published papers relating to circuit modeling. A resource such as [64] is helpful, as

the typical undergraduate or graduate engineering student will not have been previously exposed to

this material.

C.6 Quadratic Forms and Positive De�niteness

Quadratic forms are mathematical expressions of the form

xH �M�x (C.3)

where M is an arbitrary matrix. This expression produces a single, scalar result. By themselves,

quadratic forms provide little more than a compact way to write polynomial expressions; (C.3) can

be expanded as

xHMx =
nX
j=1

nX
k=1

Mj;kx
�
jxk (C.4)

(The form of this summation is what leads to the quadratic form nomenclature; quadratus is Latin
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for square.) For example, consider the case where x andM are real. For a 2x2 matrixM we have

xHMx = M11x
2
1 +M12x1x2 +M21x2x1 +M22x

2
2 (C.5)

which can be seen to provide a scalar polynomial function f(x1; x2) when M is constant. Under

various scenarios �usually involving restrictions on M �various useful results can be shown:

� When M is Hermitian, the expression xHMx produces a real result �regardless of the signs

and pure real or complex nature of x or M. The proof of this is shown in Section C.7.

� WhenM is Hermitian, the expression xHMx is greater than or equal to zero when the eigen-

values of M are themselves greater than or equal to zero for all values of x. (Since M is

Hermitian, its eigenvalues will be real.) In such a case, M is said to be positive semi-de�nite

which is sometimes written as M >06 . This notation should not be taken to imply anything

concerning the entries of M itself, however: The matrix M =

"
1 2

2 1

#
is not positive semi-

de�nite (e.g., for x =

"
�3
5

#
, xHMx = �26), whereas the matrix M =

"
2 �1
�1 2

#
is

positive semi-de�nite (its eigenvalues are 1 and 3).

� If xHMx is strictly greater than zero, M is termed positive de�nite. The eigenvalues of M

being strictly greater than zero is necessary and su¢ cient for M to be positive de�nite.

� The product MHM is itself Hermitian (since
�
MHM

�H
= MHMHH

=MHM!), as well as

positive semi-de�nite, since xH(MHM)x = (Mx)HMx, which is seen to be the Euclidean

norm squared of the vector Mx and hence must be greater than or equal to zero.

� An arbitrary matrixM is positive (semi-) de�nite if the Hermitian part ofM is positive (semi-)

de�nite. The Hermitian part of a matrix, denotedMH , isMH =
1
2

�
M+MH

�
: MH is itself

Hermitian, as can be veri�ed by direct examination. Similar to how a function can always be

equated to the sum of an odd and even function �and doing so can have signi�cant utility,

an arbitrary matrix can always be equated to the sum of a Hermitian (Ma=M
H) and Skew-

Hermitian (Mb= �MH) matrix. As mentioned previously, Hermitian matrices have purely

real eigenvalues; Skew-Hermitian matrices have purely imaginary eigenvalues.

The bullet points listed without proofs can generally be shown using material from, e.g., [20]

or [65], along with a little elbow grease to take proofs based on real symmetric matrices and extending

them to the Hermitian case. An unfortunate fact about the literature surrounding quadratic forms

6You are not alone if you �nd this notation a little misleading! One would think the "0" would at least be written
as "0"(bolded to indicate a matrix).
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and positive de�niteness is that calculations often assume a Hermitian matrix without stating as

much.

C.7 Proof: Quadratic Form of Hermitian Matrix Produces a Real Re-

sult

Consider the expression

xH �M�x (C.6)

WhenM is a Hermitian matrix, the result is real even when x is complex. To prove this, begin by

expanding the expression into a a double summation as follows

xH �M�x =
nX
j=1

nX
k=1

Mj;kx
�
jxk

In the summation, when j = k, we have entities of the form Mj;jx
�
jxj , which is real given that

Mjj must be real for a Hermitian matrix. For the "o¤-diagonal" (j 6= k) terms, we pair the "j; k"
entry with the "k; j" entry to obtain the real quantity

Mj;kx
�
jxk +Mk;jx

�
kxj

= Mj;kx
�
jxk +M

�
j;kx

�
kxj

= Mj;kx
�
jxk +

�
Mj;kx

�
jxk
��

= 2<
�
Mj;kx

�
jxk
�

Hence, Eq. (C.6) is real.

In the case where M is not Hermitian, a pair of useful results that can be proven using similar

reasoning are

<(xHMx) = xH<(M)x

=(xHMx) = xH=(M)x
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Appendix D �Results from Circuit Network Theory

D.1 Driving Point Immittance Functions

Immittance is a generic name for either an impedance or admittance. Their functions, h(s) = z(s)

or h(s) = y(s) can be viewed as any other transfer function, albeit with the unusual convention

that both the "input" and "output" (input current and output voltage for z(s) = v(s)=i(s) or input

voltage and output current for y(s) = i(s)=v(s)) are taken at the same point in the system. (Using

standard network parameters, driving point immittances are found along the diagonals of the Y or

Z matrices, whereas the o¤-diagonal entries are termed transfer immittances.) For a network made

of only resistors, inductors, and capacitors, the driving point immittance transfer function (2.1),

repeated here

h(s) =

PP
m=0

ams
m

QP
n=0

bnsn

will have jP �Qj � 1 regardless of the network�s topology. This can be derived by starting with a
single R, L, or C at the measurement point of h(s) and proceeding to add all other elements until the

network is complete. The network at any given point is termed resistive, inductive, or capacitive if

h(s) approaches a constant multiplied by 1, s, or 1=s as s!1 with s = j!. The constant re�ects

the particular component values used, but does not a¤ect the order of the network as components

are combined (other than for the non-physical cases of zero-valued or in�nite-valued components).

As a second component is added to the �rst, if the resulting immittance is still asymptotically

bounded as 1, s, or 1=s, via induction any arbitrarily large network will also remain likewise bounded

and therefore jP �Qj � 1: For instance, a 1F capacitor in parallel with a 1H inductor has impedance
z(s) = 1=(s + 1=s) = s=(s2 + 1) ) z(s) / 1=s (
) whereas the series combination as seen in Fig.

D.1 has z(s) = s+ 1=s = (s2 + 1)=s) z(s) / s (
).

Table D.1 shows the results of all possible series and parallel "second" (or n+1) elements added

to the "�rst" (or n). As seen, all results are still bounded to 1, s, or 1=s, and as such jP �Qj � 1:
If a given physical network has a stable driving point impedance function, the same network

must have a stable driving point admittance function as well. Hence, not only must h(s) have no

poles in the right-half of the s�plane, it must not have any zeros in the RHP either, as the zeros of
z(s) are the poles of y(s) and vice-versa.
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First Asymptotic Add Series Add Parallel
Element Form R L C R L C
Resistive 1 1 s 1=s 1 s 1=s
Inductive s s s s 1 s 1=s
Capacitive 1=s 1 s 1=s 1=s 1=s 1=s

Table D.1: Asymptotic network behavior as additional components are added to an asymptotically
resistive, inductive, or capacitive network.

D.2 Transfer Functions

Transfer functions are often represented in the pole-residue form, Eq. (2.2), repeated here

h(s) =

QX
i=1

ki
s� pi

+ d+ se

where the residues, ki, and the poles, pi, are either real or occur in complex-conjugate pairs (i.e.,

ki+1 = k
�
i and pi+1 = p

�
i ); d and e are real. Restricting our attention to the case where all ki�s have

a non-zero real component, Eq. (2.2) can be readily manipulated into a rational function with real

coe¢ cients, taking one of the following forms:

h(s) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

Q�1P
m=0

ams
m

QP
n=0

bnsn
for d = 0; e = 0

QP
m=0

ams
m

QP
n=0

bnsn
for d 6= 0; e = 0

Q+1P
m=0

ams
m

QP
n=0

bnsn
for d 6= 0; e 6= 0

(D.1)

Observe the utility of the d and e coe¢ cients to control h(s)�s limit as one of 0, a constant, or 1 as

s!1.
Complex conjugates combine as follows

k

s� p +
k�

s� p� =
2<(k)s� 2(<(k)<(p) + =(k)=(p))

s2 � 2<(p)s+ jpj2
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which can be seen to have purely real coe¢ cients. If k is purely imaginary, however, this result has

a zero coe¢ cient in s, i.e., the numerator�s order is not one less than that of the denominator (as

occurs when k has a real component �the basis for Eq. (D.1)). A trivial example of such a case is

Fig. D.1 where Vout=Vin = 1=(s2 + 1).

Figure D.1: Simple L-C voltage divider; V out=V in = 1=(s2 + 1).

As such, in the general case we have

QX
i=1

ki
s� pi

+ d+ se =

PP
m=0

ams
m

QP
n=0

bnsn

where the relationship between P and Q is bounded by P � Q � 1. With additional information,

this bound can be tightened, e.g., for driving-point immittance functions, it can be shown (see the

previous section) that jP �Qj � 1. In many cases h(s)!1 is non-physical (e.g., for S parameters)
and P �Q � 0 is ensured during modeling (e.g., by setting e = 0 in (2.2)).

D.3 Conversion Between Y, Z, and S Parameters

While two-port conversion formulas are readily found in almost all references on network or mi-

crowave theory and synthesis such as [28], the more general, multi-port conversion formulas are less

common, and are therefore reproduced here for the convenience of the reader. This is especially

true when the port references are complex, as many commonly published formulas are not valid in

this case1 . The derivations of these formulae are available in [66].

When converting to or from scattering parameters, one must know the port reference impedances

1All CAM work was performed with data utilizing purely real port impedances, however.
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desired or used. To begin, de�ne two diagonal matrices ZRef and U as follows:

ZRef
4
=diag(ZiRef )

U
4
=diag

0@
q
<(ZiRef )���ZiRef ���

1A
where ZiRef is the reference impedance at port i

The conversion formulas are then as follows:

From )
To +

Admittance Parameters
Y

Impedance Parameters
Z

Scattering Parameters
S

Y Y = Y Y = Z�1
Y = Z�1Ref � (U+ SU)

�1

�(U� SU)

Z Z = Y�1 Z = Z
Z =(U� SU)�1

�(U+ SU) � ZRef

S
S = U � (Y�1 � ZRef )
�(Y�1 + ZRef )

�1 �U�1
S = U � (Z� ZRef )
�(Z+ ZRef )�1 �U�1 S = S

In the preceding, I is the identity matrix of size n (the number of ports). CAM includes MATLAB

functions to perform these conversions both numerically as well as symbolically, in terms of rational

function coe¢ cients.
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Appendix E �Lagrange Multipliers

The use of Lagrange Multipliers allows one to minimize an equation subject to another equation�s

constraint. This is quite similar to what CAM does during the perturbation stage of its algorithm,

with the signi�cant di¤erence that the network parameters of an ECM are generally not available

in terms of a closed-form expression. Nevertheless, general-purpose optimizers are loosely based on

some of the same ideas as those that go into the use of Lagrange Multipliers, and for this reason we

discuss the method in-depth. Mathematically stated, Method of Lagrange Multipliers solves the

problem

fmin f(x) : g(x) = 0g

where g(x) = 0 is the constraint equation. The solution to minimizing f(x) can be motivated with

the following thought experiment: Assume one is made to close one�s eyes and walk along a path (the

constraint) that encircles a set of rolling hills, constantly �nding oneself walking uphill one minute

and downhill the next. How do you locate the minimum height (the function) of the hill along the

path prescribed? Let f(x) represent the height of the hill in any location. For an x on the path,

if moving a little bit forwards or back along the path doesn�t change the height, one has discovered

what must be either a height extremum or a saddle point. This implies the gradient of f(x) must be

orthogonal to the path g(x) (i.e., walking at a right-angle to the path would be the steepest ascent

or descent you could make on the hill). One �nal trick: Since we constrained g(x) to be equal to

zero, its gradient must also be orthogonal to the path itself! Mathematically, then, a minimum of

f(x) can only occur when its gradient "lines up with" (is a multiple of) g(x)�s:

rf(x) = �rg(x) (E.1)

where � is an arbitrary constant. This equation is commonly seen in the form of

rf(x) + �rg(x) = 0 (E.2)

with � (= ��) referred to as the Lagrange multiplier. Again, Eq. (E.2) is requisite but not su¢ cient
for a minimum: it may also locate a maximum or a saddle point.

A straightforward extension to the method of Lagrange multipliers is solving

fmin f(x) : g(x) � 0g
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To extend the analogy, g(x) now de�nes one or more areas on the hills where one might roam.

Extrema of f(x) will either occur within an area �in which case rf(x) = 0 and � = 0 as well �or
it will occur along the perimeter of an area, in which case the same reasoning as before applies. In

both cases, Eq. (E.2) holds true, but additional restrictions are needed to insure the sign of g(x): If

we move a little in the direction opposite of rg(x), g(x) will either decrease to something now less
than zero or remain constant; if f(x) increases in such a case, we�ve found our minimum. In other

words, a minima can only occur when moving in a given direction decreases g(x) but increases f(x);

this implies that the gradient of f must be opposite that of g or, equivalently, � in Eq. (E.2) must

be negative (or zero). Similarly, a constraint of g(x) � 0 would require � � 0.1 In all cases, such

conditions are requisite but not su¢ cient to �nding a minima.

Obtaining the solution x that minimizes f(x) is typically performed by �nding the extrema of

the unconstrained function

L(x; �) = f(x) + �g(x) (E.3)

in the usual manner, by setting all partial derivatives equal to zero or, in vector notation,

rL(x; �) = rf(x) + �rg(x) = 0

which of course is just Eq. (E.2); substituting the solution x back into Eq. (E.3) provides f(x), as

g(x) = 0 at these points.

1Eq. E.2 is sometimes written as rf(x) = �rg(x), in which case the necessary signs of � are reversed.
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