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SYMBOLS

Here is a list of the symbols used within the

following paper, in the order that they appear. This is a

complete list with descriptions of what each symbol

represents. Because this paper combines fluid dynamics

with electrodynamics, some of the standard symbols have

been changed to avoid confusion.

FLUID FLOW SYMBOLS

x = position in fixed coordinate

X = position of a fluid particle at time t = 0

= 1i(X,t) = transformation from moving frame to fixed

frame

= 11(x,t) = inverse transformation

p = p(x,t) = fluid density

u = u(x,t) = fluid particle velocity

F = arbitrary scalar function of x and t

V = arbitrary volume element

I = arbitrary surface element

dV = differential volume element

dS = differential surface element

n = outward unit normal

= mass of a volume element

t = stress vector

f = extraneous forces per unit mass



T = stress tensor

V = ( 8 8 8 ) = gradient operator
Oxi'ex2,8x3

r = x x. = position vector where xo = x(0)

9 = deformation tensor

= kinetic energy

0 = vorticity tensor

P = fixed position in a vector field

w = curl(u) = vorticity vector

= Jacobian matrix

0 = temperature

= entropy

e = specific internal energy

0 = heat

p = pressure

cv = heat capacity at constant volume

cp = heat capacity at constant pressure

C = total entropy

U = internal energy

h = heat flux vector

5 = identity matrix

g = T + p5 = tensor

T = dissipation function

I, II, III = principle invariants of the deformation

C = div(u)

A, p = scalar functions of the thermodynamic state



(viscosities)

ELECTRODYNAMIC SYMBOLS

qi = source charge

Q = test charge

= unit vector pointing from qi to Q

F = force vector

E = electric field

pc = pc(x,t) = charge distribution

= flux

d = distance

i = i(x,t) = current

B = magnetic field

dl = differential line segment

K = surface current density

J = volume current density

a, b = general vectors

v = v(x,t) = charge velocity

a = conductivity

f = force per unit charge

= electromotive force

C = closed path

b = radius of a ball

p = dipole moment

a = polarizability

P = polarization



d = distance vector

pp = polarization volume density

D = displacement vector field

A = magnetic vector potential

m = magnetic dipole moment

M = magnetization

H = magnetic field intensity

EQUATIONS OF STATE SYMBOLS

cg = gas constant

e- = free electron

k = Boltzman constant

A = ionization energy

h = Planck's constant

gi = ground state degeneracy

= characteristic ionization temperature

V = volume

0 = degree of ionization



ELECTRO-MAGNETO-HYDRODYNAMICS:
The Processes of Electric Arc Steelmaking

INTRODUCTION

Electric arc furnaces have been used since the early

1900's for the efficient reduction of tons of scrap steel

to a molten bath. The awesome power of these furnaces is

used to quickly melt scraps for the production of high

grade carbon alloys and stainless steels. This method is

particularly well suited for these jobs because of the

tremendous temperatures reached, and the availability of

scraps rich in the valuable constituents.

Since the introduction of electric arc furnaces to

the United States in 1906, little has changed to improve

their efficiency. The electrodes have been made of a more

durable material, and the power sources have become more

powerful as the availability of inexpensive electrical

energy has increased. But, with highly technical

competition from overseas industrial nations, United

States steel industry needs to make major modifications to

the existing technology to increase the efficiency and

production of the high grade steels.

With this in mind, the U. S. Bureau of Mines, Albany

Research Center, Albany Oregon (ALRC) is conducting an

ongoing investigation into the physical phenomenon of

electric arcs and electric arc furnaces. The goal of this

research project is to make recommendations on how todays
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furnaces can become more efficient through design and

implementation changes. Fundamental insight into the

physical aspect of the problem is required in order for

the techniques considered to be possible. A mathematical

treatment became imperative and is now being actively

pursued.

This paper is the beginning of the mathematical

treatment. Due to the size and complexity of the problem,

this portion is confined to the derivations of the

governing equations giving a clear and concise classical

treatment of the system, with some comments and

recommendations on how a solution might be obtained.

The paper starts with a brief history of electric

arcs and electric arc furnaces and how they emerged as a

metallurgical tool, including how they work and what has

been done in the past to improve them. The second part of

the paper explains the experimental apparatus used by the

ALRC with a description of data acquisition, analysis

techniques and experimentation techniques. A brief

description of the ultra-high powered furnace is presented

and how the findings of the research at the ALRC

correlates to them. Then, the governing equations are

presented with some historical notes. The presentation of

the fluid mechanics is based on the works of James Serrin,

Sir Horace Lamb and the Russian physicists L. P. Landau

and E. M. Lifshitz, who have done extensive work in this
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field. The electrodynamics has been presented as a self

contained, theoretical approach to electromagnetic

phenomenon, with some historical arguments. A short

section is then presented on the equations of state and

how they interact with the field equations.

Finally, some comments are made on how the system of

differential equations can be reduced to a form that may

be solvable for the geometry of the experimental furnace

at the ALRC, and how this may apply to the larger, more

powerful furnaces used by the industry. The paper is

concluded with some references to further reading and some

closing comments on the problem.
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HISTORY

With the advent of the discovery of the electric arc

in 1800 by Sir Humphrey Davy came a metallurgical tool

unparalleled in its ferocity and ability to reduce tons of

scrap into a bath of molten steel. The method of Electric

Arc Steelmaking has become so widely used today that, in

1983, more than 30% of the nations steel was produced in

this manner. Electric furnaces are mainly used to make

carbon steel, which accounts for 73.4% of the total amount

of steel made in these furnaces. Since the scrap used in

this process need not be preheated, it has become a widely

used method. Other steels include stainless steel at

19.6% of the total, and alloys at 6.9%. The electric

furnace produces high grades of the stainless and alloy

steels that cannot be obtained by the other methods.

These furnaces produce practically all of the stainless,

constructional & special alloy steels used in the

automobile, aviation and food producing industries today.

The first patent granted for an electric arc furnace

was given on March 16, 1853 to a Frenchman, Pichon.

Pichon claimed that he could economically melt minerals

and metals, but the availability of sufficient amounts of

electrical energy was rather limited. This lack of energy

made the process very expensive and not very practical.

For some 80 years after Sir Davy's discovery, little

progress was made towards using the electric arc as a
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metallurgical tool, but Pichon had shown that someday it

might become a feasible tool.

In 1878, Wilhelm von Siemens was the first man to

melt steel successfully using an electric current, which

opened the doors to this powerful method of steel making.

Von Siemens received a patent for his furnace in 1878.

His first furnace used what is now known as an indirect

arc to melt the steel. This method consisted of two

electrodes suspended horizontally through the furnace

walls opposite one another creating an electric arc

between them and heating the metals by radiation.

A year later von Siemens received a patent for a

direct arc furnace which consisted of a single electrode

projecting through the roof of the furnace and another on

the bottom of the furnace. In this manner he created an

arc which jumped from the top electrode to the metals then

out the bottom, melting the metals by directly using the

electrical charges. Development of these furnaces for

commercial use was slow due to the inadequate supplies of

electrical energy and the high cost of producing it.

Dr. Paul Herault used electric arc furnaces for the

production of aluminum, calcium carbide and ferroalloys.

During the period of 1888-1894 he built a direct arc

furnace which provided the fundamental features of

furnaces today. In 1899 Dr. Herault commissioned the

first successful direct arc furnace for the production of
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steel in France. On December 28, 1900, the first shipment

of "electrical steel", a carload of steel bars, was sent

from Herault's plant in La Praz, France to Schneider and

Company, Creusot, France. Thus was born the modern day

electric arc furnace. Little has changed since these

pioneers constructed the first few electric arc furnaces.

The first electric furnace used in the United States

was at Halcomb Steel Company, Syracuse, New York. This

was a Herault furnace, rectangular in shape, which had a

steel capacity of 3 tons. It was a single phase, two

electrode furnace with a 500 kilo Volt Ampere (kVA) low

voltage, high current generator. It used amorphous carbon

electrodes with a 15 3/4 inch quarter octagon shape, 80

inches long. The roof of this furnace was made of Silica

bricks and the hearth sidewalls were made of basic

materials. This furnace made its first run on April 5,

1906. The first few heats were made by melting a cold

charge but the furnace had been installed to take on a

molten charge supplied from a 20 ton open hearth furnace

to cut the costs of operation. This was soon to be the

adopted process of steelmaking of the time.

Not long after this, electric furnaces became the

wave of the future. Firth Sterling Steel, McKeesport,

Pennsylvania, installed a similar, but smaller furnace in

1908.

The next year South Works of the Illinois Steel
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Company, South Chicago, Illinois, installed the first

three phase furnace. This furnace had a 15 ton capacity,

was the largest in the world, and was the first furnace

with a round shell. It also operated with a hot charge

supplied by a 15 ton Bessemer converter.

World War I caused a rapid growth of electric

furnaces. By 1920, just 14 years after the first furnace

came to the United States, 556,000 tons of steel were

being made in electric arc furnaces annually. This

accounted for just 1.2% of the total steel production, but

the trend was set.

The second World War caused another large surge in

electric furnace steelmaking, also. By 1945 3,457,000

tons of steel were made annually accounting for 4.3% of

the total, and still rising.

The post war era was the turning point for the

development of the electric arc furnaces. As the steel

industry rebounded from full capacity production of steel

alloys for the war effort, a great need was becoming

apparent for carbon steels to be used for civilian

purposes. It became necessary for research to be done to

define a new melting practice for reaching a proper

balance between the carbon and oxygen contents of rimming

grades of steel. This task proved to be an extremely

difficult, but surmountable one and carbon steel started

being produced in large quantities soon after.
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The furnaces have changed little since Herault

received a patent for his, besides a few novel

refinements, the same basic design is used today. The

size of the furnaces have grown to meet demands. Along

with the size requirements came electrode refinements. In

1915 the average electric furnace had a capacity of 6 tons

with the shell being 11 ft. in diameter. It had an

electrode made of amorphous carbon 17 inches in diameter.

The furnace was powered by a steam generator operating at

1500 kVA. April of 1971 saw the Northwestern Steel and

Wire Company, a pioneer in electric arc furnaces, install

a 400 ton furnace with a 32 ft. diameter shell. This

furnace, powered by a 162,000 kVA transformer had

electrodes of 24 inches made of graphite, a much more

durable conductor. These electrodes proved to be

inadequate and soon were replaced by 28 inch ones to

compensate. In May of 1976, this same company installed a

furnace with a 38 ft. diameter shell and powered by the

same type of transformer, with a 162,000 kVA rating.

The conductor or electrode that Sir Davy used was

made of wood, charcoal and syrup of tar. It was molded

together under what were then tremendous pressures. The

arc was established by utilizing the current of a storage

battery.

Dr. Herault's first furnaces used amorphous carbon

electrodes which were made from petroleum coke or low ash
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anthracite mixed with tar. After mixing, they were then

baked and machined to specifications. These electrodes

were very brittle and required extreme caution while in

operation. Because they were so brittle, a new, stronger

material was needed for the manufacture of a less costly

type of electrode. Graphite emerged as the answer to this

dilemma. The graphite electrodes, made in much the same

way as their carbon predecessors, were petroleum coke and

tar, mixed and then extruded. They were then baked at

4000 degrees Fahrenheit which graphitizes the mixture,

tempering it to give it much more strength and enhancing

its current carrying capabilities. A 6 ton furnace with a

2000 kVA generator required a 17 inch diameter carbon

electrode while the same furnace only needed a 10 inch

graphite electrode.

As the furnaces grew larger, and higher power ratings

caused higher heats, the demand for improved refractories

became imperative. The linings of these shells today are

commonly zoned linings using high quality fusion-cast

bricks. Recently the trend has become water cooled

sidewalls to extend the life of the walls and roof as well

as the refractory materials. As of yet, there are no

refractories that can withstand the temperatures generated

during a melt for any extended period of time. This

causes the necessity of shutting down the furnaces

periodically to have the wall linings repaired or
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replaced, a very costly and time consuming process.

As the power requirements increased, so did the

background noise levels, both acoustically as well as

electrically. In a furnace with a power rating of 162,000

kVA the noise is deafening, a tremendous 110-115 decibels

(db). If, at any time, some internal event causes a power

surge, whole cities can be affected by a brown out or even

a black out. Such power surges could be extremely

hazardous to industries in and around the area as well as

being very costly, and a major inconvenience.

Future refinements of the furnaces are headed towards

dynamic control. With the computer age comes a very fast,

powerful tool in controlling the furnaces. Utilizing

signature analysis, one can theoretically predict events

before they happen and adjust the furnace environment

accordingly to prevent them. Such dynamic control would

also cut down on the acoustical noise by controlling it at

its source, prolong the life of the refractories and

signal when the melt is complete, all appealing money and

time saving advantages.
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THE EXPERIMENTAL FURNACE

In the hope of being able to understand better the

physical phenomenon taking place within an electric arc

furnace (so that dynamic control may be possible), the

United States Bureau of Mines, Albany Research Center is

conducting an ongoing research project on electric arc

furnaces. The attack of the problem is in two phases,

simultaneously being approached. The first phase is the

experimental furnace built on station which is used in

studying the arc used in melting the scrap. The second

phase is an ongoing agreement with Oregon Steel Mills and

the Bonneville Power Administration to conduct

experiments, gather data and take high speed films of a

working furnace. The outcome of these experiments is to

obtain enough information about the phenomenon to be able

to categorize internal events and implement dynamic or

predictive control of the furnace.

The first phase is being conducted on the

experimental furnace installed at the ALRC. The furnace

is a 200 lb. capacity single phase alternating current

(AC) electric furnace. It is powered by two parallel AC

welders with a rated current capacity of 1500 Amperes (A)

at a low voltage of 40 volts (V) each. The primary rated

current is 170 A single phase with the primary voltage of

440 V each. A water cooled shunt with a resistance rating

of 1.009 x 10-4 ohms was installed on the connecting bus
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for current measurements.

The experimental furnace has been modified for data

acquisition purposes. The furnace shell was replaced by

an airtight enclosure with two viewports giving orthogonal

views of the arc (Fig. 1). The ports were installed for

visual and photographic observations of the arc.

The atmosphere inside the chamber can be changed by

injection of inert gases at three locations. The

injection of the gases occurs at the two viewports, giving

the extra advantage of cooling the pyrex glass windows

while also keeping any soot or smoke away from them. The

third location is at the electrode tip, which helps to

control the arc and to cool the radiated heat.

The electrodes are made of graphite, with a one inch

diameter tip machined to a 3 inch column (Fig. 2). Gas

ports of 1/32 inch have been drilled through the

electrode, surrounding the tip. Inert gases are injected

through these ports to enhance the stability of the arc

during experimental runs. The target block is a 16 inch

diameter

has been

maintain

graphite

threaded

the same

block, 4 inches thick. One electrode

and screwed into the target block to

physical structure and theoretical path

of the current in a single phase, two electrode furnace.

This has the advantage of eliminating the averaging

effects on the current and voltage data taken across the

arcs by eliminating one while studying the other. Thus,
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we are able to take better, more accurate data. Other

target blocks have been experimented with, including

copper and steel. Using the different materials for the

target block gives the advantage of comparing wave form

signatures.

Eight thermocouples have been placed on and inside

the target block for calorimetry. These thermocouples are

monitored by an Analog Devices pMAC-4000 microcomputer

based measurement and control system. Heat transfer to

the block, i.e. energy loss to the block, can thus be

calculated.

The inert gases used are Helium and Argon. A mixture

of 95% Helium and 5% Argon at 1.5 standard cubic feet per

minute gives best results for the furnace. One half cubic

feet per minute of the gas mixture is routed through the

electrode tip while the rest is split between the

viewports. The gas flow is monitored by thermal mass flow

meters, allowing for changes of the flow rates. The

furnace has a pressure release valve to keep the internal

pressure at a nominal 1 atmosphere during an arc run.

Sample gases are taken before, during and after each run

to standardize the data and to keep track of materials

burned.

Data acquisition takes several forms. High speed

films are taken from the orthogonal views utilizing a

system of mirrors installed for this purpose. The mirrors
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are set so that the orthogonal views of the arc divide the

film in half allowing the two views to appear side by side

(Fig. 3). The camera has the high speed capability of

11,000 frames per second. With a system of prisms, a

quarter frame head has been installed to reach an

effective shutter speed of 44,000 frames per second.

Video tapes are taken of each run to give real time images

of the arc.

In conjunction with the camera is a Precision

Instruments Data-6000 Digital Wave form Analyzer. The

Data-6000 uses two channels with a 1 MHz aggregate

digitizing rate for the storage of 64,000 data points.

The voltage and current wave forms are digitized at 50 kHz

per channel and stored to floppy disks for later analysis.

When the camera is operated, a triggering device

signals the wave form analyzer to start taking data.

Because the camera takes 200 feet of film to accelerate to

optimum filming speed the necessity of such a triggering

mechanism becomes apparent. Once the film reaches speed,

the camera simultaneously marks the film by means of

pulse of light while signaling the wave form analyzer to

start the data acquisition. In this manner high-speed

film, and the current and voltage wave forms can be

synchronized for the study of individual events, enhancing

analysis.

Because of the magnetic and electric fields generated
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by the transformers, an antimagnetic cage, or Faraday

cage, has been installed to house all computer and

computer assisted equipment (Fig. 4). This insures

correct data acquisition and prolongs the life of the

equipment under otherwise adverse conditions.

The second phase of the research is being conducted

as a cooperative agreement between the Bonneville Power

Administration (BPA), Oregon Steel Mills (OSM), and the

Albany Research Center. Monitoring of Oregon Steel Mills

furnace is fundamental to the understanding of the system

and how one may gain dynamic control.

Commercial electric arc furnaces use high current and

medium voltages for melting scrap steel. The instability

of the arcs in the furnaces is a basic cause for feedback

into the power grid and inefficiency in melting

operations. The start-up or bore-down procedure is the

most energy intensive and noisy portion of a heat due to

the rapid fluctuations in the voltage and current. These

fluctuations increase energy consumption and cause the

power feedback.

Oregon Steel Mills is the worlds only mini-mill

producer of carbon steel plate. OSM started in 1969 and

by 1995 will be a company solely owned by the employees.

The furnace to be studied is a three phase Lectromelt

furnace with a rated capacity of 90 tons and an average

heat size of 83 tons. The furnace has a shell diameter of
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17 feet and uses 22 inch diameter graphite electrodes

(Fig. 5). The primary voltage of the transformer is 23 kV

and secondary voltage is 648 V root mean square (RMS) with

a current rating of 55,000 - 57,000 A. This furnace has a

power consumption of 425 kilo Watt hours per ton (kWh/ton)

of molten steel and takes approximately 23 minutes to

reach a tap temperature of 3100° F. The furnace takes 50

minutes to run from tap to tap and OSM gets anywhere from

18 to 30 melts per day.

The objective of this research is to monitor a

working ultra high powered (UHP) furnace during different

times of a melt as well as during different times of the

day. This data will then be analyzed by the methods

pioneered for the small scale experimental furnace on

station. This, in turn, allows for the identification of

the events that precede the network disturbances, allowing

for categorization of the events to be used in dynamic

control. This will in turn increase efficiency while

reducing the power feedback and the noise levels during

bore-down and the rest of the run.
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THE GOVERNING EQUATIONS OF MOTION

A. Hydrodynamics

The first step towards a greater understanding of the

physical system is to derive the equations of motion. The

equations governing the flow of the current and voltage in

the system can be broken into two distinct parts each of

which can be treated separately. The first part is to

derive the equations for the plasma flow where the current

and voltage paths are unknown due to the nature of the

problem. We model this portion of the problem as a

circuit element to be inserted into the circuit equations,

for the second part of the derivation.

Traditionally plasma flow has been modelled by the

equations of Magneto-Hydrodynamics (MHD). Since

electrical forces as well as magnetic forces manifest

themselves in a predominant fashion in the UHP furnaces,

the term Electro-Magneto-Hydrodynamics (EMHD) is more

appropriately used and this paper adopts this convention.

Since the current ranges that these furnaces run at are

typically 50,000 to 200,000 A and voltages of about 5000

V, this is a reasonable convention to make.

As a starting point, we consider the equations of

fluid motion (or fluid dynamics). Some kinematical

preliminaries are needed in order to set a standard for

the derivations to follow: Since fluid mechanics concerns

itself with the study of fluid flows, we treat the fluid
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as a continuous medium. Thus, when we talk about

infinitely small elements of volume we mean small in

comparison with the bulk volume being considered but large

with respect to molecular distances. These infinitely

small volumes are the smallest elements that we can

conceive and still retain the same physical properties as

the bulk fluid. We assume that the fluid flow can be

represented by a continuous transformation from Euclidean

three space into itself with the parameter t, describing

the elapsed time. We introduce a fixed coordinate system

and denote the position of a particle in this system by x=

Ocix2,x0. At time t=0, we let X = (XI,X2,X3) be the position

occupied by a fluid particle, then at time t the particle

has moved to x = (xl,x2,x3) , thus x is represented as a

function of X and t, say x = b(X,t) or xi = 0i(X,t). We

note here that 0 : R3XR -+ R3XR and since we assume that

distinct points remain distinct then the transformation

has an inverse iY such that X = *(x,t).

If X is held constant while we let t vary then 0

specifies the path of a fluid particle with initial

condition given by X. If, on the other hand, t is held

constant then 0 determines the transformation of a region

initially occupied by the fluid into a new one at time t.

We wish to consider the state of motion of a fluid

element also. This is described by the functions giving

the density and velocity of the element. The density of
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the fluid is given as a function of position as well as

time i.e. p=p(x,t), specifying the density of the fluid

element at position x and time t. Similarly the velocity

u is given by u = u(x,t).

We now introduce a two variable systems used in

studying the field movements. The variables (x,t), called

spatial or Eulerian variables, are used in field

descriptions and the variables (X,t), called material or

Lagrangian variables, are used to single out individual

particles.1 If F is an arbitrary function of say (x,t)

then it is also a function of (X,t). With this in mind,

we define

aF _ oF(x,t)
at at

as the rate of change of F as observed from a stationary

point x, and we define

dF _ OF(X,t)
dt at

as the material derivative which measures the rate of

change of F following the particle. We can see directly

that the material derivative and the spatial derivative

are related by the chain rule, where the relation is given

by

dF aF aF dx1 OF dx2 OF dx3

dt 3-"E oxIdt + ax2dt ax3dt*

We can combine the last three terms in this relation, into

a more compact form by realizing that we are just using

1 These two sets of variables were both due to Euler.
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the dot product of the velocity and the gradient operator

V, i .e.

dF _ OF (u V)F.
dt at '

This derivative operation is cal led the convect ive

derivative and will be used extensively in this paper.

At the risk of seeming out of context, an important

result related to the above equation needs to be

presented. This result is the transport theorem and is

obtained by considering a volume element flowing with the

fluid. If we denote the Jacobian of a transformation by j

= j(X,t), then

d F(x,t) dVx = dt "F(0(X t) t) j(X,t) dVo =
dt
f(t) Y(0)

aF ads
at

Y'

t,faxiat
dVo F dv

at 0

V (0)

+ N(x,t)1 dVx + F(x,t) dVx.

r(t) i V(t)

By the so called Euler formula relating the time rate of

change of the Jacobian, jg = j (V u) , and realizing that

the sum of the derivatives is just the gradient of F(x,t),

we get

cfit F(x,t) dV = J [VF u + F (V u)] dV =

Y(t) r(t)

J
°--t-F d V + F u n dS,[at +V (Fu)1 dV =

at
r(t) st)r(t)

where n is the outward normal vector, the last term is
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obtained by use of the divergence theorem and we have

suppressed the dependence of the differential volume

element on the position. This form of the transport

theorem will become extremely useful in the derivations to

come.

Now, we have given the velocity as a function of the

spatial variables and we can then define the acceleration

as the rate of change of the velocity experienced by a

moving particle, i.e.

dua dt

But, u = u(x(t),t) (since dx/dt = u(x,t)) and by the work

done previously, we get

a = OL1
8t

(u V)u.

Now, let us consider an arbitrary fixed volume V.

The mass of the fluid in this volume is given by

=p dV

where dV is a volume element. The mass of fluid flowing

through the volume element is equal to the fluid flowing

across the surface of the element, that is, the total

fluid flow out of the volume T is

fpu.n dS (this is the mass flux out of V)

where I is the surface of the volume T, dS is a surface

element, and n is the (outward) unit normal to the

surface. The rate of change of mass in our volume V is

equal to the mass flux out, i.e.

0OtIP dV = pun dS.
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Applying the divergence theorem to the right hand side and

taking the derivative under the integral sign we get

Op
JE + div(pu) = 0,

and since our volume was arbitrary, we get the well known

relation

atOp
+ div(pu) = 0

which is the equation of continuity (or conservation of

mass) in the Eulerian form. Another derivation can be

realized from the principle of conservation of mass which

states that the mass of a fluid in a moving material

volume ir(t), does not change as the volume moves with the

fluid. That is,

d
d p dV = 0.

Using the transport theorem, it easily follows that

+ pdiv(u) )(IN =0.

Thus, since r(t) was arbitrary, it must be true that

dp
dt

+ pdiv(u) = 0.

We now consider the dynamics of fluid motion. The

stress principle of Cauchy states that "upon any imagined

closed surface t there exists a distribution of stress

vectors t whose resultant and moment are equivalent to

those of actual forces of material continuity exerted by

the material outside / upon that inside."2 We assume that

the stress vectors, t, depend only on position and the

2This statement of Cauchy's principle is due to
Truesdell, J. Rational Mech. Anal, 1, 125 (1952).
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orientation of the surface element dS at any given time.

If n is the outward unit normal to the surface /, then t =

t(x,t;n). This gives rise to the fundamental principle of

the dynamics of fluid motion, namely the principle of

conservation of linear momentum which states that the time

rate of change of the linear momentum of a material volume

T(t) equals the resultant force on the volume, or

ctd.tpu dV = dV + ItdS

where f is the extraneous force per unit mass and will be

derived at a later time. By virtue of previous work, this

may be written in the form

,,du dV = pf dV + f
r

t dS.
dt

It can be shown that the stress forces are in local

equilibrium (i.e. that the stress forces vanish as the

volume does) and that the stress vectors t can be

expressed as a linear function of the components of n,

that is ti=niTii where 0 are the matrix coefficients which

form a tensor called the stress tensor, denoted by T.

Physically, T" is the ,- component of the force acting on

the surface element with outer normal in the i-direction

showing that t = n T. Using this fact and the

divergence theorem gives

jfpft dV = 4(pf + V f) dV

where the divergence of a tensor means the divergence of

the tensor elements, i.e.
3

(V T)i = E
J=1 .
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is the i-th component. Again since V was arbitrary we get

the equation of motion discovered by Cauchy, namely

Au pf + div(T) .

r
=

dt

It is appropriate to note here that we have derived four

equations that relate the four unknowns given by p and the

components of u. These four equations being the equation

of continuity and the components of the equation of

motion.

The equation of motion can be transformed into the

well known Euler's Equation of Motion by recalling that

du _ au "
dt at + V) u

to get

p(--N + (u V)u) = pf + div(T) .

At this point we adopt Boltzmann's postulate3, namely

that the stress tensor T is symmetric i.e. Tif = and

then give the theorem of conservation of angular momentum.

If conservation of angular momentum is not assumed, one

must find physical, extraneous forces which cancel the

extraneous couples in the stress tensor. As of yet, no

such forces have been found.

Theorem. Conservation of Angular Momentum:

Let r(t) = x(t) - x(0) , and for an arbitrary
continuous medium satisfying the continuity
equation, the equation of motion, and Boltzmann's
postulate, then

d
p(r x u) dV = 4/(r x f) dV + Jr r x t dS

3This was originally due to Cauchy, but Boltzmann
recognized that it could serve as an axiom.



where V is an arbitrary material volume.

Proof.

adp(r x u) dV = 4p.kr x u) dV = 4p(r x qv dV =

4
x f) + r x div(T)) dV = p(r x f) dV + (r x div(T)) dV

applying the divergence theorem to the last term we

.i(P(r

and,

get
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4p(r x f) dV + x t) dS,

since 3 is symmetric, thus the theorem is proved.

We next wish to look at the energy transfer equation

and the momentum transfer equation to see in what manner

the presence of external forces effect the fluid flow.

Consider the kinetic energy X,

X = ipu u dV = qpq2dV .

Let be the deformation tensor defined by

1tOui auj)
= TFci axi"

We then define the energy transfer equation as

dt
1.11

dX _ u dV + t u dS T : 9 dV

where T : 5 is the scalar tensor product defined by (T :

= That is, "the rate of change of kinetic

energy of a moving volume is equal to the rate at which

work is being done on the volume by external forces minus

a dissipation term involving the interactions of stress

and deformation."4 This latter term represents the rate

at which work must be done to change the volume and fluid

4 James Serrin, Handbuch der Physik, Vol. VIII/1,
pg.138
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element shape. It is instrumental to note that much of

the power in this term must be accountable as heat loss.

We can derive the momentum transfer equation by

utilizing the principle of conservation of linear momentum

and applying the divergence theorem to get

f dV + t dS =
'

u dV
dt

by virtue of the transport

a= u dV + 1pu

theorem. Thus we

(u n) dS

get the

momentum transfer equation

u dV = .1p f dV + t -pu ( u n dS

which expresses the rate of change of momentum of a fixed

volume. (This equation is used to determine the force on

an obstacle immersed in a steady flow).

We now turn our attention to the quantity grad(u).

If grad(u) is decomposed into

grad(u) = 9 +

where 9 is as before and fl =
axe

- ), then we have
2 ax;

decomposed this term into its symmetric and skew symmetric

parts. The symmetric part, 9, is called the deformation

tensor while the skew symmetric part, 0, is called the

vorticity tensor. These tensors have properties which are

convenient to look at in a little more detail. First, the

deformation tensor: Let dx = (dxl,dx2,dx3) denote a

material element of arc, then its rate of change during

the fluid motion is given by d-C-It(dxj) = cfit(3;(zdX4) = gkL.. =

ax2
a(dx)So, we get = dx grad(u). If ds = kd,

then it is easy to see that SL(ds2) =2 dx 5 dx, thus 9
dt
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is a measure of the rate of change of the squared element

of arc following a fluid motion. Consider rigid motion,

ds = const., then a necessary and sufficient condition for

motion to be locally and instantaneously rigid is that 5 =

0. For this reason 1 is called the deformation tensor, or

the amount of deformation. A necessary and sufficient

condition for motion locally preserving angles is that the

tensor 5 trace(() I = 0. If 5 = 0 everywhere in the
3

fluid then the motion is rigid.

We turn now to the general motion of a fluid.

Consider the velocity field near a fixed point P. Then,

near P we have u = up + r (grad u )p 0(r2) , where r

denotes the radius vector from P. If we neglect terms of

order r2 we obtain the relation u = up + r - gp r Op

utilizing the decomposition of grad(u). Now, up

represents a uniform translation with velocity up. If we

let 5 = r - 9 r then [r91] = grad(P) where grad(P)

represents a velocity field normal at each point to the

quadric surface 5 = const. which passes through that

point. There exists three mutually perpendicular

directions with no instantaneous rotation, called the axes

of strain. The eigenvalues of 5 measure the rates of

expansion per unit length of fluid element in these

directions. The last term, r 0, can be written as lwP xr2

where w = curl(u) is the vorticity vector. We can see

this since w=(grad(u))s = Or = 2(023 031 'nu) = the
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components of r Op. This shows that r Op is a rigid

rotation with angular velocity l'wp. From this we see that

for an arbitrary motion in a neighborhood of P, the

velocity is, up to terms of order r2, given by u = Up +

grad(0) 2wpxr whereS=r-S-ris the rate of strain

quadric and w = curl(u) is the vorticity vector. Thus, an

arbitrary instantaneous flow is, at each point, a

superposition of uniform velocity of translation, a

dilation along the axes of strain and a rigid rotation

about these axes. It is instrumental to note that if w =

= 0 in a finite portion of fluid then the relative

motion of any element of that portion consists of pure

deformation and is called irrotational.

In order for a complete description of the fluid

flow, we must address the thermodynamics of the fluid

flow. This is necessary a total energy equation of a

fluid element. Here, we outline some basic

thermodynamical relationships which are relevant to the

derivations. It must be noted that since our derivation

of the EMHD equations at this point is confined to

classical fluid flows, we consider a one-phase system

only. We will attempt to treat the thermodynamics of the

EMHD problem when it becomes appropriate to do so. The

one phase system underlies all of the hydrodynamics of

compressible fluids, thus this is not an unreasonable

direction to take at this point.
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In describing the single phase system, the state

variables, volume V, entropy q, specific internal energy

e, pressure p and absolute temperature e must be related

in some fundamental form. We start with the fundamental

state equation, e = e(v,V), and define the state variables

p and 8 by

p = 0--t
OV

> 0 and e = - ; > o.

We can thus relate the state variables by forming the

total differential of e, which gives

8 dq = de + p dV.

A single phase system is said to undergo a

differential process if its state variables are

differentiable functions of time. If the phase moves

reversibly, that is, if it is in a state of equilibrium

with its surroundings at each instant, then the heat, Q,

supplied to the phase during the process is given by

dQ = de + p dV.

The heat capacities of the phases are given by

Ori

cv = e 46)1. = any and cp = e (2)Ip = (de) 1p

where cv is the heat capacity at constant volume and cp is

the heat capacity at constant pressure. It is evident

that these two quantities are also state variables. It is

always found experimentally that cp > cv > 0.

The following theoretical relations will be needed in

this treatment;

(N)le = e (a)1. P
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cp c. = e (2) I. (g) IP

Op
(W It, = (2)11, (Mle

= (Mk / 17)le

and from these it is easily deduced that

Op Op
< (JOIE).

The first law of thermodynamics states that the

amount of energy put into a control volume is equal to the

amount of energy released by that control volume plus the

energy used in changing the volume in any manor, that is

dO = de + p dV, which we have already noted.

The second law of thermodynamics states that the rate

of change of entropy inside a control volume plus the rate

of flow across the boundary of the volume is equal to the

heat flow across the boundary plus heat energy lost within

the volume plus the amount of work done to the volume.

Since it is nearly impossible to define how much heat is

lost within the volume or the work done to the volume, we

use the differential form,

dC > V'cl(" where, C = Eqa
Le ea a

is the total entropy in all phases a, Oa' is the amount of

heat supplied to phase a from external sources and ea is

the absolute temperature at phase a. A process is called

spontaneous if inequality holds. If the state variables

are such that no spontaneous process is available then the

system is said to be in equilibrium.

We define the total energy of a volume V as the sum
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of its kinetic energy X and its internal energy U where

X = Vp(u u) dV, U = Jpe dV

and e is the specific internal energy. For a compressible

fluid, e is a thermodynamic state variable satisfying 8 dt,

= de + d(10), where the quantity is the specific volume.

Since total energy is conserved within the fluid flow, we

have that the rate of change of the total energy of a

material volume is equal to the rate at which work is

being done on the volume plus the rate at which heat is

conducted into the volume, or

il(Z + U) = j(pf u dV + itu dS J n dS

where h is the heat flux vector and n is the outward unit

normal vector to the surface Y. Recalling the energy

transfer equation, we can rewrite the energy equation or

total energy equation as

p
dt
de _ T div(h) ,

3

where T : 9 = trace(T1) = We see then that
q=1

conservation of energy corresponds to the first law of

thermodynamics. In analogy, we have the equation

difpl dV > 1 h6n dS

corresponding to the second law, which states that the

rate of change of entropy within a control volume V is

greater then or equal to the total amount of heat flow

through the surface of the volume.

Consider the thermodynamics of deformation. When

tangential stresses may not be neglected, we write the



32

stress tensor T as f = 0 + g (defining g) where p is the

thermodynamic pressure for a compressible fluid. Then,

substituting this into the total energy equation we get

dtrnde
p div u = T div h

where T = g : 9). By using the continuity equation, this

reduces to

dn
03 dt

T div h

which expresses the rate of change of entropy following a

particle. Thus, Tdiv(h) is the rate per unit volume at

which heat is absorbed and T is the rate per unit volume

at which heat is generated by deformation of the fluid

elements. This is evident since div(h) represents the

conduction of heat from neighboring fluid elements. For

this reason, T is called the dissipation function.

Now, if we divide the above equation by the

temperature a and integrate over a volume moving with the

fluid we get

dt/P7/ dV = j(
h grad 0 ) dV 1 h n ds

e2
h grad ewhich implies that T > 0. This gives us T>

8

0 and h grad e < 0 since heat never flows against a

temperature gradient and deformation absorbs energy,

converting it to heat, but never releasing it.

Recall that up to now, much of what has been done

pertains to nonviscous fluids. We turn then to the

viscous case. A viscous fluid, put simply, is a fluid in

which internal stresses cause an irreversible transfer of
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momentum in a fluid volume. Recalling that the stress

tensor governs the dynamic response of the medium, we

attempt to write constitutive equations of viscous fluid

flow.

Sir George Stokes postulated that: 1) T is a

continuous function of the deformation tensor 5, and is

independent of all other kinematic quantities. 2) T does

not depend explicitly on the position, X (spatial

homogeneity). 3) There is no preferred direction in

space (isotropy). 4) When 1 = 0 then T = p5. Thus, we

have that T = f(5) from numbers 1) and 2) above and STS-1

= f(STS-1) for all orthogonal transformation matrices S,

from number 3 above. The second equation implies that a

given deformation produces the same intrinsic response

regardless of its orientation. That is to say, it is

invariant under coordinate transformations.

Together with the first equation above, it can be

shown that Stokes' postulates leads to the stress tensor

being a quadratic function of the deformation tensor.

However, it is reasonable to assume that, since the

deformation tensor is fairly small with respect to the

ratio of some reference speed and reference length, then

there exists a linear relationship between T and 5. This

hypothesis leads to the classical constitutive equation,

called the Cauchy-Poisson law,

g = (p A()I + 2p5
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where A and p are scalar functions of the thermodynamic

state called the shear and bulk viscosities, C = V u and

I is a principle invariant of the deformation tensor.

The dissipation function, T, corresponding to the

above stress tensor for compressible flows is thus given

as T = g 9 = + 2p9 : 1 where as before we have the

condition that > 0. This last relation places

restrictions upon the viscosities A and p, namely that for

a compressible fluid we have that 3A + 2p > 0 and p > 0.

Now, placing the Cauchy-Poisson law into the equation

ndu = pf + div(T)
rdt

yields the well known Navier-Stokes equation

du
pdt = Vp + V (A div(u)) + div(20) + pf.

The last step in the derivation of the equations of

classical hydrodynamics is to express the heat conduction

vector h in terms of mechanical and thermodynamic

variables. In so doing, we assume that h is an isotropic

function of the temperature gradient and thermodynamic

state. Thus, h is parallel to VO which gives rise to the

classical Newton-Fourier law

h = VO,

where K is a scalar function of thermodynamic variables

and Ivel The thermodynamic condition

pelt= T div(h)dt

implies that K > 0 and has been seen by experimental

observations that
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PCP - ir

where Pr is a constant commonly called the Prandtl number.

Inserting this into the thermodynamic condition we get

dt
dn = T + div(K Vs).

With this last step, we have completed our quick

discussion of classical fluid dynamics. We have found

that the governing equations of fluid flow are:

1)
at
'212 + V - (pu) = 0 (the equation of continuity)

2) pat =
Vp + V(A(V u) + V - (20) + pf (Navier-Stokes)

3) p0116/ = T + V (KW') (heat conduction)

and the thermodynamic equations of state. The only thing

left is to say something about the external force term pf

in the Navier-Stokes equation. In our setting the

extraneous forces are those which affect the fluid flow

through transmission of energy to the fluid. These terms

being the force due to gravity and the electromagnetic

forces. Thus, the extraneous forces are given by

pf = pg +pE(E + v x B)

which is the force due to gravity and the Lorentz force,

where e- is the charge of an electron and me is the mass

of an electron.

We can thus finally write the equations of fluid

motion given these extraneous forces. The system of

equations are:

1)

atOp + V (pu) = 0 (the equation of continuity)

2) pft = Vp + V(A(V u)) +
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V (20) pg + p(E + v x B) (Navier-Stokes)

3) peat + V - (x 06) (heat conduction)

and the thermodynamic equations of state. We can make one

more simplification by reducing the last two sets of

equations, the heat conduction equation and the

thermodynamic equations of state, yielding an energy

equation. By realizing the thermodynamic relation dq =

cpdA then the heat conduction equation becomes

,,oadq
=

ecpde
., de = T KAe +

P dt P dt = r-Pdt
ye. yx

and we get the new system of equations by the equation of

continuity, Navier-Stokes equation and the energy equation

3) pc4a = T x03 + ye V,c

where the time derivatives are given by the convective

derivative

dF _ 1E (u V)F.
dt Ot
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B. Electrodynamics

Here, we wish to derive Maxwell's equations for slowly

moving nonmagnetizeable media, where by nonmagnetizeable

we mean a media that cannot be effected macroscopically by

the introduction of a magnetic field. We start with a

treatment of stationary charged particles in free space.

In 1785, Charles Coulomb was able to express the

experimental observations seen by himself and his peers.

He found that for a test charge Q, the force on Q due to a

single source charge qi is given by

F. = 4-77.1

where is the unit vector pointing from the position of

qi to the position of and the constant co is the

permitivity of free space. The constant of

proportionality,
4reo,
1 depends on the system used and the

factor of 471- is a normalization inserted to cancel a 4w

that will arise from other sources. We also note here

that this is a repulsive force if the charges have the

same sign and attractive otherwise.

Since the force is linear in the source charge q;, then

for a distribution of point charges, the total force is

given by the law of superposition which states that "the

interaction between any two charges is completely

unaffected by the presence of all other charges."5 This

5Griffiths, David G., Introduction
Electrodynamics, Prentice Hall, pg. 49.
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gives the total force on a test charge Q due to a

distribution of source charges qias

n qfF E Fi = .

1=4

t,!/We define the quantity E = 4,Loi.: as the electric field
s

of the source charges and note that it depends on the

configuration of the source charges in space. If we have

a continuous charge distribution, then the point charges

qi dq = peci)dv with a charge density per unit volume pc(r)

and the sum passes to the appropriate integral

E(P) = TI---4p,()crdV.

Since this last integral i
r

is, in general, an extremely

difficult one to handle, we wish to recast it into a more

useful form. Consider the divergence of the electric

field,

V E =
4vc.

4V -% pc dV.

Here, the differentials are with respect to the field

coordinates and the charge density is a function of the

source coordinates, thus we need only look at the term

involving the position vector,

V -
r 3 = (V it); + r V(-1---3).

Now, the first term is just 4, while the second term is

just the negative of this and we see that the divergence

here is zero. But, what happens if r 0. Then we need

to take a closer look at what is happening in the

divergence.

Consider a ball of radius b centered at (x',y),z').
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If b is small enough then pc can be considered constant and

brought outside of the integral to get

V E =
4re,
2.1V Is dV.

r

Since F. = (x-x',y-y',z-z'), the differentials with respect

to the field coordinates (unprimed) can be replaced with

differentials with respect to the source coordinates

(primed) at the cost of a minus sign, V r _ V' -

Now, a simple application of the divergence theorem

(realizing that' is an inward normal vector and the

normal vector in the divergence theorem is an outward

normal vector) gives

V E = Pc j(j1
r2

(r2sin(0) dO dO =4reo

as r 0, where we have used spherical polar coordinates

to evaluate the integral. Thus we obtain the first of

Maxwell's equations, namely Gauss' Law

1) V E = 4pc(r)

where pc(r) is the charge distribution.

There are two more experimental facts that need to be

addressed at this point, the first being the Lorentz Force

Law and the second the law of Biot-Savart. First, if we

consider two very long wires hooked to a battery and

separated by a distance d, then when a current i travels

through the wires, there exists a force exerted upon them

(attractive if the currents are running in the same

direction and repulsive otherwise). What is this force?

In 1820, Hans Christian Oersted discovered that a magnet
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placed near a current carrying wire will align itself

perpendicularly to the wire. That is, each particle of

charge, q, which passes a given point in the magnetic

field B experiences a force Fm = q(v x B) . If we combine

this with the electric force, Fe = qE, we get the Lorentz

Force Law

F = q (E + v x B).

But, what does this have to do with the two wires laying

side by side? Since we had no magnet producing a magnetic

field, how can there exist this force between the two

wires? The answer was given by Ampere who showed that by

replacing the magnet by a current carrying wire, the same

effect was observed. Biot and Savart were able to

quantify Ampere's measurements by showing that the

magnetic field due to a line current is given by

B(P) = a x2F dl - iff x_dl
r r'

where p, E permeability of free space, it = x - x' is the

vector pointing from the source to the test position in

the field coordinates, the integral runs over the line

carrying the current, and i and dl point in the same

direction. We see then, that the magnetic field is

proportional to the current. Similar expressions for

surface currents and volume currents are given by

B(P) :701K X_ rdS or B(P) = P°I.J x2 dV,
r2 47

where the integration is over the current distribution, or

the source coordinate frame of reference as we will call
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Let us examine the divergence of the magnetic field:

V B=LitV
t

j(r)x i.dV = Pet7 j(r) x i. dV
24w 4w r2

We note two things here, first that

V(h = iti

where r = ((xx' )2 (y_y))2 (z_z,)2,) 1/2 and the vector

identity

V axb=b (Vxa) a (Vxb)
gives

V - J x V ( r ) = V( ) (VxJ) J- (VxV( r )).

Now, J is the charge distribution, it is not a function of

the field coordinates so that V x J = 0 and the last term

is zero because the curl of a gradient is always zero. We

see then that

V B 11-1 V x dV = 0
4r r2

and we get the second of Maxwell's equations

2) V B = 0.

which, incidentally has no name.

If we take a closer look at the moving charges, in

particular, consider an arbitrary volume of charge density

pc(r,t) at time t and pc(r,t+At) at a time t +it later.

Then, since the charge is moving, this gives rise to a

current flowing through the surface of the volume /, that

is

i = j(J dS

and, the total change of the amount of charge within the
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volume is

AQ = 4,[ipc(r,t+At) pc(r,t)] dV = ipc vAt dS = dS

thus

pc(r,t) dV j dS = 0
At

and, as At 0 we get

.12,_ dV + 1J dS = 0,

/
applying the divergence theorem to the surface integral,

and denoting differentiation with respect to the source

coordinates by a prime, we get

0 = '9,91.4j dV + V' J dV = Cat + V' JloiV,

4
Since the volume was arbitrary, then the integrand must be

zero, which gives the equation of continuity

Opc

at
+ V' J = 0,

stating that charge is conserved.

Suppose we want to make charges move within a

conductor. Then, we must push them by some manner. How

fast they move is proportional to how hard we push, that

is, the current density is proportional to the force per

unit charge exerted, i.e. J = af, where a E conductivity

of the conductor. But, the force per unit charge is given

by the Lorentz Force Law as

f =F=EA-vx B.

Now, if we are trying to push a charge around a wire, then

the net effect of the force is given as an electromotive

force

= 1 f dl.
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We also are interested in how this relates to the electric

and magnetic fields. The magnetic flux through a loop of

wire is given by

= 4 B da,

but, if the wire loop is in motion then da = ( v x dl )dt,

and the flux becomes

t = da =1B (vxdl ) dt.

Then, the rate of change of flux is

" = 1B (vxdl ) = ivxB dl = ifm dl.
dt

Recall that it was the motion of the conductor that

we are considering and that since the electric field is a

static one, then it cannot generate an electromotive

force, i.e. E dl = 0. Adding this term to the flux

change, since it contributes nothing to the integral, we

get

dt
dt ivxB- dl = ILE v x BD dl = c

C C
and we see that the electromotive force is just the

negative of the time rate of change of the magnetic flux,

f = dt
dt

What would happen if instead of the loop moving we

fixed the loop and made the magnetic field change with

time? Michael Faraday found in his experiments in 1831

that the result was the same. The changing magnetic field

induced an electric field in the wire. We see that it is

the relative movement of the loop and the magnetic field

that generates the electromotive force in the wire and we
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are led to conclude that

1 E - dl =c= - dt - diB da = - JAB da.
dt dtj

I 1
Applying Stokes Theorem to the term on the right we get

1E- dl =/VxE da = - P-13 da.
Ot

C 3' $
Again, since the volume was arbitrary then it must be true

that

3) V x E OB
at

which is the third equation of Maxwell, the well known

Faradays Law.

Recall the law of Biot and Savart;

B(P) = 411 4 j(r)2x
I-

r
dV.

If we take the curl of this, motivated by the fact that we

have very similar equations for electric and magnetic

fields so far, we get

V x B= LAI4 V x j(r) x I- dV I" V x j(r) x i. dV.

4 4r2 4r r2

Consider the integrand, the vector identity of the curl of

a vector cross-product gives

V x
J(r) x

r2
-Vxpx

+ J [ V - T-S1

j; V I J

1---2EVJ3-
r

.v Jr

Considering each term separately and by components, we

have for the first term that

x- x' 0 4.
y - y' 0 + z - z' 0 I j

!.31 j [(x - x))2 Ox (y Y')2 .9Y
(z - z')2 az

but, the differentials here are with respect to the field

coordinates and the current density is a function of the

source coordinates, thus we have that
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8J- OJ OJ- 0
Ox Oy = gZ

which shows that the first term is identically zero.

Similarly, we see that the last term V J = 0 since this

is also differentiation with respect to the field

coordinates.

A look at the third term gives

J[V--1-.31 = J[-1-3(Vr)+ r[V-1-3]].
r j

Now it is clear that V r = 3 since this is just the

derivatives of the position vector. What about the

gradient term?

V 41 = 1 +
Lr3j Ox[ (x - )2+ y') 2 (z )2 13/2

r-5 2E (x- x ' ) + (y - y ' ) + (z - z')1 = -
2 r5

and we get that

V 3rr
r3 r3 r5 r3 r5

Now, what happens when the position vector approaches the

field vector i.e. r 0? We need to investigate this in

much more detail as we did for Gauss' law. Since we are

dealing with real, physical quantities, then the current

density must be at least continuous on a ball of radius b

centered at (x',y',z'). If we take b small enough, J can

be considered constant on that ball and can then be

brought out of the integral to get

-r-ldv = da = --14-±Jf 1-'r2sin(0)
4r r3j 4r r2 47 r2 dB (14)

= 0 .

= --11J sin(0) de =
47(
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as r -4 0, where here / is the surface of the ball and we

have used spherical polar coordinates to evaluate the

integral. So, we are left with

VxB= p,,J + a -[ Jv] Ii dV .

r

The integrand here is a term which involves derivatives of

the position vector r
-3 We can thus change

differentiation with respect to the field coordinates to

differentiation with respect to the source coordinates at

the cost of a minus sign, i.e.

[ J V ] = - E J V' ,

where the prime signifies differentiation with respect to

the source coordinates. If we look at this component by

component and use the vector identity which relates the

divergence of a scalar function times a vector function,

(V . (Fa) ) = F(V a) a (VF), we get

r
(J V') Fx = v' . [J x (7) J) [x ;31

L

So, this term contributes an amount

Po
4w

4 [ J x
r'

(v, J)[X
r'

x']] dV .

The first term of this integral, by use of the divergence

theorem, gives us

[V' [x "r".3x'l dV = x
r3

J da.

The surface 1 is any surface which encloses the current,

but, on the surface 1, J = 0 so this term contributes

nothing to the integral. (If you don't like this

argument, we can make the volume larger since the current

density is zero out there any ways and the integral is
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unchanged. We see then by the same argument that we must

get zero and the result still holds.) So we are left with

/
V x B = poJ Al [V' J] I; dV ,

r
ap

but by the continuity equation we know that V' J =

and the integral becomes

po
4r L

11 dV = 14; dV
r 3

= po
4r

ape

at
dV

=
dt

114pe(r) j; dV

and we see that this last integral is just pot4E. From

this we get the forth of Maxwell's equations known as

Ampere's Law,

4) V x B = p0J pot-o--719.

Up to this point we have considered stationary

charges in free space, a pretty unrealistic but

instructional assumption. We now wish to relax this

condition somewhat, and later omit it. As a first step in

this direction, we consider stationary charges again, but

we will allow them to be in some sort of conducting

medium. The first question which naturally arises is what

happens to a neutral atom placed in an electric field?

The answer to this lies in the fact that a neutral atom is

made up of a positively charged nucleus and a negatively

charged electron cloud surrounding the nucleus. This

cloud acts in such a way as to cancel the net electric

charge of the atom, hence it appears neutral on the

macroscopic level.
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The effect of placing this atom in an electric field

causes the atoms microscopic elements to interact with the

field, pulling the electrons and the positively charged

nucleus apart. Provided that the field isn't so strong as

to pull the electrons completely away from the nucleus

(i.e. it's not strong enough to ionize the atom), a state

of equilibrium is reached and the atom remains in a state

of physical distortion, where the electrons are pulled one

way while the nucleus is shifted in the opposite way,

leaving the atom polarized. The net effect is then that

the atom now has a dipole moment, p, pointing in the same

direction as the field and, as long as the field is

reasonably weak, the dipole moment is proportional to the

field applied, p = aE, where a is defined to be the atomic

polarizability.

In general, for a distribution of molecules, each

molecule undergoes this transformation and a net dipole

moment per unit volume is set up. It should be noted that

this net alignment is an average of all the microscopic

dipole moments since the molecular collisions, thermal

motions and microscopic field interactions destroy

individual alignments. However, the net effect is the

dipole moment per unit volume, denoted by P, and called

the polarization of the medium.

What does this polarization do to change Maxwell's

equations? To answer this, consider a large number of
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dipoles within a dielectric medium. If we break the

volume up into differential cubes with volume AxAyAz then

all the dipoles completely enclosed in the volume element

contribute no net charge within the volume, while those

within a distance d n of each of the surfaces

contributes a net charge, where n is the outward unit

normal and d is the distance from the negatively electrons

to the positively charged nucleus, i.e. qd = p. Thus the

polarization P of the volume is given by the number of

dipoles per unit volume i.e. P = Np = Nqd.

If we consider each axis of the cube separately, we

find that the net charge in the x-direction is given by

dq = dq + dq + dq
Xt xi X2 X3

(Nq dx)I AyAz (Nq dx)1 AyAz =
x +Lx

Px(x)AyAz Px(x+Ax)AyAz.

Here we assume that Ay and Az are sufficiently small so

that the polarization is constant over the surface and the

minus sign comes from the fact that near the surface at x

a charge of one sign is present while near the surface at

x+Ax the oppositely charged part of the atom is present

(since they are all aligned by the polarization).

Similarly

dq = dq +
dgY2 dgYsY1 Y2 Y3

and

= Ax P (y) Az Lx P (y+Ay) Az

dq
zt

= dq + dq + dq = AxAy Pz(z) AxAy Pz(z+Az).
Z1 Z2 Z3

The total net charge enclosed by the volume is thus the
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sum of the individual components of the charge

dq = dqx + dqy + dqz = Px(x) Px(x+Ax)] AyAz

+ [Py(y) Py(y+Ay)] AxAz + pz(z) Pz(z+Az)] txty =

(
Px (x)Px(x+Ax) Py(Y) Py(YA-AY)

Ax Ay

Pz(z) Pz(z+Az))
Az

So, the charge per unit volume

dq Px(x) Px(x+Ax)
AxAyAz Ax

Pz(z) Pz(z+Az)
Az

is thus given by

P (Y) PY (Y+AY)
Ay

and in the limit we get a polarization

density given by

pp=l im
dq =

[Px(x) Px(x+Ax)
lim Ax

volume charge

P (Y) Py(Y+AY) Pz(z) Pz(z+Az)]
Ay Az

ripx
OP

aPz]=
Ox ay az

But, this is just the negative of the

polarization pp = V - P.

V.

divergence of the

Recalling Gauss's law, we have

E = app (r) where pc(r) is the total charge density, we

can now break up the total charge density as a

such charge densities, the polarization charge

and everything that is left over. But, what is

Since we have taken care of the charge that is

sum of two

density pp

left over?

attributed

to the medium, the left over charge is called the free

charge and consists of electrons on a conductor or ions
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embedded in the materials. Actually the term free charge

is used for lack of anything better. So, pc(r) = pj(r) +

pp(r) and Gauss's law reads co(V E) = pc(r) = pi + pp = p1

V P or V ( coE + P) = pl. We define the vector

quantity D = coE + P as the electric displacement vector

and note that when considering dielectric mediums, it

allows us to consider only the free charge, which is what

we control. Thus, Gauss's law becomes

1') V D = pi

with the constitutive relation D = coE + P.

Recall that Maxwell's equations in free space give

differential equations relating the magnetic field B and

the electric field E. We then showed that when a

dielectric material is placed within an electric field

there is an induced alignment of the molecules charged

constituents yielding a new field, the displacement field,

D. So, one should not be surprised to learn that a

similar occurrence happens when materials are placed in a

magnetic field. In fact, since magnetic fields are

produced by electrons in motion, one expects such an

occurrence.

Since we know from Maxwell's equations that the

magnetic field is divergenceless, we then can write the

magnetic field as the curl of a vector potential. So, V

B = 0 = V (V x A) since the divergence of the curl of

any vector function is zero (or at least any function that
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is twice continuously differentiable). Thus, we have that

B = V x A. The usefulness of this relation can be

realized by using Amperes law in integral form. If we

consider the magnetic flux through a loop of wire we have

that

= fB da = x A da = 1.A. dl

So, we get

fB da = IA dl.

If we take a step back and consider a particular problem

in magnetostatics, that is where the fields do not vary in

time, we see that Amperes law reads

V x B = p,J = 0 x (V x A) = V(V A)

Up to this point we have put no restrictions upon the

vector potential, all that was required was that at the

very least, the vector potential is twice continuously

differentiable since it comes from a physical quantity.

Without loss of generality we can stipulate that V A = 0

since, suppose A were not divergence free, then we can add

to it the gradient of a scalar so that A = A' + Vf. This

gives us V A = V (Al+Vf) = V A' + V Vf, and we can

then take the quantity V Vf = V A', that is solve

the system of differential equations given by V VA = AA

= V A' where the operator A is the Laplacian operator.

This is just Poisson's equation and with appropriate

boundary conditions can be solved explicitly for A. Thus,

there is no loss of generality in the assumption that the
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magnetic vector potential is divergenceless.

With this assumption, we have that

V x B = V x (VxA) = AA = poJ

or that AA = poJ which is again Poisson's equation and

has general solution

A(r) = Zr-111-. dV' , where as usual r = Jr r'

Then

VxA=VX 74.-Tr --r--dV) = 142-4 V x j(r1) dV'Po J(r))
47

tiiD(V x J) J x 0(11.)1dV'

= 112-4J x V(hdV'
r

= po
4r 3

r )dV' = :° J x r d
r'

V' POI.J )42 dV'47

(V x J = 0 since J doesn't depend on x,y, and z, only upon

on x',y',and z'). Solving for the curl we get that

A = L'-.4[1J x dV = P-14B x -4 dV47 r2 47r2 r-

since the inner integral is just the Biot and Savart law.

Suppose we want to approximate the vector potential at

points far from the source, i.e. R >> r (or r>>0). We can

use the fact that

= A 1] Pn(cos(0))O
where R is the position vector from the origin to the

point in question, r is the position vector from the

origin to the source and Pn(x) are the Legendre

polynomials of degree n. So, for a current loop,

A = 47dl = (n ,cos (0) )d1
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= --I - dl + r cos(0) dl + ir"Pn(cos(0)) dl .

47P°.[111 1,2i n=2R

We know that any integral around a closed loop is zero and

that in the limit R >> r then Rr +1 -+ 0, so that then

dominant term in the brackets is the second one, called

the dipole term. If we consider the dipole term only, we

have

Ad(r) = 4-11714r cos(0) dl = zaft r dl.

With the aid of some vector identities and some algebraic

manipulations, it can be shown that

ift r dl = - 2 R x Jr x dli

then

Ad(r) - - ft x ¢r x dl = x dl x R .

If we define a new quantity called file magnetic dipole

moment by

m = Jr x dl

we then have

Ad(r) P° m x R47 R2

as the dipole term in the vector potential. The physical

interpretation of this is in direct analogy with the

electric dipole. It is instrumental to note here that if

we are considering a flat current loop, then

l Jr x dl = a,

where a is the area of the current loop, and we get that m

= ia.
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We now define the magnetization, M, as the magnetic

dipole densityy of a magnetic dipole distribution in some

volume. If we consider this volume made up of tiny

current loops, then M = Ni da. Looking at one side of a

magnetic cube with N such current loops along each side,

then the only current loops that contribute are those that

have a dipole on either side of the edges. If the current

loops make an angle /3 with the coordinate axis then the

contribution from these current loops on the side x to the

magnetization is

- iN ds Ay cos (/j) Ix = - My (x) Ay

and the contribution on the side x +ix is

iN ds Ay cos(P) x+Ax = My(x+Ax) Ay.

The change in sign comes from the fact that the loops pass

through the plane in different directions.

Similarly, for the edges y and y+Ay we have

iN ds Ex cos(fl)ly = Mx(y) Ax

iN ds Ax cos(fl)ly+Ay = Mx(y+Ay) Ax.

So, for this planar loop we get a net current density,

call it Jz, as the sum of the current per unit volumes,

i.e.

Jx=1 im
YAx-4) AxA

Ay-40

lim
ply(x+Ax) My (x) mx(y+Ay) Mx (y)]

Axoo L Lx Ay
Ay-40

OMy

= Ox
OMx
8y
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But, this is just the z-component of the curl of M. A

similar argument for each of the coordinate faces of the

cube yields the x and y components of the curl to get a

magnetization current density given by Jm = V x M

Recalling Amperes law for magnetostatics, we have V x B =

p0J where J is the total current density. We can now

break this up into a magnetization current density and a

"free" current density to get

x B = J = Jf + Jm = Jf + V x M.

Combining the curls we have

V x (kB M) = Jf

and we define the quantity H = M and call H the

magnetic field intensity. This reduces Amperes law for

magnetostatics in matter to

V x H = Jf.

Let us consider the "free" current density Jf. If we

are no longer in the static case, then the current moves

as a function of time, thus the charge distribution also

moves as a function of time and as we have already seen,

this causes a change in the polarization of the material.

In this case, at least some of this free current goes into

changing the polarization, so why not break Jf up into two

more parts, call them Jf and Jp, so that J = Jf Jm + Jp.

Consider the polarization given by the sum of the

dipole moments per unit volume, i.e.
N N

P = tPf = Eak, ( q; Arf).
j=1 j=1
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But, these charges are "bound" to the atoms so, we see an

effective current due to the linear motion of the charges

when the electric polarization changes. Fixing the volume

we get for each i

AP. Ar.) _ 1
At AV qj At

and, in the limit as At-+10 we get

qj <N, .>pv=

where <vi> is the average velocity of the charge

Summing over

qj

and allowing the volume elements to get

arbitrarily small we get that

OP
Pb <v(t)> = Jp,5E

since pb<v> is just the current density due to the

movement of the charges, in this case the polarization

current density. To see that this is consistent with the

equation of continuity we take the divergence of the

polarization current density to get

V Jp = OP 51*
a (V 13) = a (P )

which is just what we expect to get.

So, we see that the current density becomes the sum

of three separate terms given by

OPJ=Jf +V X
at

which accounts for all of the charges. So Amperes law

becomes

V x B = /10,1 copon or

Tz;1V XB=Ji+V XM+OP + fOE
°at



0(c0E+P)
V x (7h1B M) = J j +

at

V x H = J1 + BD

and Maxwell's equations in media become

- D = pf

x E =
at

V B = 0

58

(Gauss's law)

(Faraday's law)

x H = J + 02 (Ampere's law with Maxwell's correction)
at

with the constitutive equations relating the fields

H =oB M,

D = e0E + P,

and the Lorentz force law given by

F = q(E v x B).

To transform Maxwell's equations into a moving frame

of reference, i.e. for moving media, we first make the

distinction between the charge velocity, v, and the fluid

velocity, u. Then, notice that V B = 0 will remain

unchanged because it can not be effected by the motion of

nonmagnetizeable media.

Consider Faraday's law, let lm be the magnetic flux

across a surface 1, then

dat"' =dJB
dt

dS = 1 3d dS = ; 2 (v V)B] dS

=
fat . dS + jr(v V)B dS = dS +

fr7 x (B x (B V)v B(V v) + v(V B)1 dS
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=fii: dS x (B x v) dS f(B V)v dS

where we have used a vector identity and the fact that V

B = 0 always, and that V v = 0 since velocities are not

being created within any control volume. So,

= PI/ dS + x (B x v) dS + jr(B - V)v dS
dt at

irOB dS + jr(B V)v dS + )(13 x v dl,

by the use of Stokes theorem. Applying Faraday's law of

induction we get

E' dl = = -
+

13(B V)vi dS + 1j( x v dl

where the term °B represents the flux through the surface
Ot

caused by the time variation of the field, V x (B x v)

represents the flux across the boundary of the surface and

(B V)v represents the passage of the surface through an

inhomogeneous field which generates flux lines. So,

j((E' v x B) dl = jig (B v)vi dS.

The use of Stokes theorem once again yields

x (E' v x B) dS = + (B - V)vi dS

or, since the surface element is the same we have

V x (E' v x B) = + (B V)v].

The quantity on the right of the equality is the field

that is measured by an observer at rest since, if the

observer carried a charge q through a field B with a

velocity v, he would feel a force given by q(v x B). So,

in the motionless frame of reference we have that E = E'
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v x B. Now, since we are considering the instantaneous

movements of the vector field, the velocity field is a

fixed (constant) vector field and differentiation with

respect to v yields zero i.e.

(B V)v = BrAv + By 4v + B3 -v = 0

and we get

V x E =

which shows that Faraday's law is independent of the

motion of the medium inside the fields. We note that this

is valid only if the velocity of the medium is much less

than that of the speed of light, which we know to be true

in our setting.

Now, since we are dealing with non-relativistic

motion, we see that Gauss' law in a medium (i.e. V D =

pf) also can not be effected by the motion of

nonmagnetizeable matter. It is instrumental to note that

V - E = b/c is effected by the motion of matter. Since we

know that E = E' v x B, then for an observer moving

with the matter E' = E + v x B and we get an effective

current density given by Ohms law J = qE' = a(E + v x B)

so P = xcE' = Xe(E + v x B) and we again define the

displacement vector D = colE + P = cE + (c--1)v x B and we

see once again thatVD= coV -E+VP= pc pb = pi.

Consider now Amperes law which is

V X B = p0J + pocon = 110(Jf + Jm + sip) + PoCon

First, we break the polarization current Jp up into two
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parts, the first part being the current relative to the

moving matter as seen by an observer moving with the

material and the second part being a current from all the

charges in the moving matter. In the first case this is

just Jp1 = POI (pi - V P)u, where here we make the

distinction between the velocity of the media, u, and the

velocity of the charges, v. In the second case we must

consider the change in coordinate systems. By use of the

convective derivative we have that

8P* = at + (v v)p
at

where the star indicates the polarization as seen from the

rest frame of reference. By use of the vector identities

already exploited we get

at
+ (v v)p =

at

OP
at

OP
at

x (P x u) + (P V)u - P(V - u) + u(V P)

x (P x u) + u(V P)

since V u = 0 and (P V)u = 0 for the same reasons as

before. So, the polarization current density is

JP = Jp1 Jp2 = pfu - (V P)u + u ( V P) + V x (P x u)

= p1u + x (P x u).

Since the media in question is nonmagnetizeable, then V x

M = 0 which means that the magnetic current density Jm = 0

and we are left with

V x B = poeoLE + po[Jf + pfu
at

+ + v x (P x u)]

= Po[Jf + p1u + + V x (P x u)] ,
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where as usual J1 = piv and v is the velocity of the

charges.

So, we now have all of Maxwell's equations in the

proper form for slowly moving nonmagnetizeable media.

They are

1) V D = pf (Gauss' law in dielectric mediums)

2) V B = 0

3) V x E = OB (Faraday's law)
Ot

4) V x B =

tio[Ji + + gv x (P x (Ampere's law)

together with the constitutive relations

5) D = folE + P

6) H = F17,18 M

and the Lorentz force law

7) F = q(E + v x B)

these equations govern the electromagnetic effects of the

problem.
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C. Equations of State

We are left with the derivation of the equations of

state. We need two equations of state, the first which

relates the pressure, p, with the gas density p, and the

temperature, e, and the second is an equation which

relates the amount of ionization of the control gas to the

amount of control gas and temperature.

To start with, as usual we take the ideal case and

then expand upon that. There are three laws that govern

the effects of pressure, temperature and volume in an

ideal gas. The first law is Boyle's law, Robert Boyle

found that at a constant temperature the volume of a fixed

quantity of gas decreases as the pressure is increased.

He formulated his experimental data into Boyle's law which

states that "at a constant temperature, the volume

occupied by a fixed quantity of gas is inversely

proportional to the applied pressure". Or mathematically

we have that V a P. Any gas that follows Boyle's law is
11)

called an ideal gas.

The second law is due to Jacques Charles who found

that if a gas is heated in such a way that the pressure

remains constant then the gas will expand. Charles found

that the relationship between the volume of a gas and the

absolute temperature of the same gas is a linear one and

he summarized it by Charles's law which states that "at

constant pressure, the volume of a given quantity of a gas
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varies directly with its absolute temperature". That is V

cc 8.

Third is Dalton's law of partial pressures. John

Dalton found that the sum of the pressures exerted by each

gas in a mixture is just the total pressure of the gas.
N

Dalton's law of partial pressure is pi = 1: pi , where phis
1=1

the total pressure and pi is the pressure of the i-th

constituent of the gas.

These three laws, together with Avogadro's principle

proposed by Amadeo Avogadro which states that "under

conditions of constant temperature and pressure, equal

volumes of gas contain equal numbers of molecules", that

is V a n where n is the number of moles of gas, yields the

ideal gas law in the well known form of pV = nRT, where R

is the constant of proportionality called the universal

gas constant. To cast this in a more useful manner we

divide both sides by the volume and then multiply both top

and bottom by the molecular weight of the gas in question

= rl? =MMVBto get p = I = cspe where the constant c9

= D. So, for this case of an ideal gas, we have an

equation of state given by p(p,O) = calla. To get away

from the ideal case we notice that because of the

molecular attractions between the constituent parts of the

gas, a correction to the volume, V, and the pressure, p,

must be made. According to J. D. van der Waals, the real

volume measured is given by V,. = Vi + nb, where b is the
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correction due to the excluded volume from the forces of

attraction. Thus to replace this in the ideal gas law we

must make the substitution Vi = Vr - nb. Similarly the

ideal pressure is higher than the actual pressure due to

an2the intermolecular attractions by an amount pi = pr + --y,
Vr

where a is a constant which depends on the strength of the

intermolecular forces. Substitution of the actual

pressure and volume into the ideal gas law gives

+ 0111(V
E) V2

nb) = nRe, which is known as van der Waals

equation of state. If we multiply this out, grouping the

appropriate terms and then divide by the volume term we

V
nRe

nb V'
al12.get p = The denominator of the first term

is the effective volume, where here V is the ideal gas

volume, so we can recast this into a more useful form by

using the substitution V, = Vi + nb, and then multiplying

and dividing by the molecular weight to get p = cope

an
2. At very high temperatures, a real gas behaves

(V + nb)

in the same manner as does an ideal gas, thus in effect we

can ignore the correction term in areas of very high

temperatures.

We know move to Saha's equation relating the amount

of ionized gas and the amount of host gas. Because this

is a classical treatment of EMHD and the necessity of the

knowledge of statistical thermodynamics in the complete

derivation of Saha's equation, much will be left out. We

first assume that we are in a state of local thermodynamic



66

equilibrium and proceed to calculate the chemical

composition of a plasma as a function of temperature.

Conservation of mass gives us that for a species A, if

this species is ionized we have that A = A+ + e-, where e-

denotes a free electron. The ionization energy for

species A is given by Ai = kEi where Ei is the

characteristic ionization temperature for species A and k

is the Boltzmann constant.

Assuming that the ionized gas resulted from No =noN

atoms of a neutral gas, and denoting the degree of

ionization by 0, then the constituents of the ionized gas

is given by No = (1 0)No, Ni = 00, and N. = 0No. Thus,

since the typical ionization temperature is high, we use

the ideal gas law to see that pV = (Na + Ni + Ne)ke = (1 +

0)Noke. The fraction of ionized gas can be shown to be
02 pV

1 0(1 + o)ke
(2inneke)3/2V

h3

[ 2 g
os exp(Ei/T),

or, after some algebraic manipulations
02 Pgil(2/rmeke)3/2

1 02 = ga
eke)

where h is Planck's constant, gi is the ionization ground

state degeneracy of species A, go is the ground state

degeneracy of species A, and me is the mass of the

electron.

With this last step completed, we are finally ready

to write down the complete equations of motion of magneto-

hydrodynamics. First we start with the equations of fluid

motion
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1) + V (pu) = 0 (the equation of continuity)

2) pft = Op + V(A(V u)) +

V (20) pg + pE(E+uxB) (Navier-Stokes)

3) pcpT? = KAO + VA Vic + T (energy equation)

Maxwell's equations

4) V D = pc (Gauss' law)

5) V B = 0

6) V x E = (Faraday's law)

7) V x B = pop, + peu + g? x (P x u)] (Ampere's law)

the equations of state

8) p = cola (gas law)

02.5. [ga 2gT2Tme) 3/2exp(Ailice) (Saha's equation)

and the constitutive relations given by

10) 3A + 2p > 0 and p > 0

11)D = coE + P

12) H = M

14) F = q(E + v x B) (Lorentz force law).

This is a set of 13 coupled differential equations in

13 unknowns, the unknowns being p, the pressure, E =

(E1,E2,E3), the electric field, H = (H1,H2,H3), the magnetic

field intensity which for us is the same as the magnetic

field B since the media is non magnetizable, 0, the

temperature function, p, the gas density, pc, the charge

density, and the gas velocity u = (u1,u2,u3).
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A PATH TO THE SOLUTION

Given the system described by equations 1 - 14, a

solution will be extremely difficult to obtain in general.

Some reductions can be made to the equations as they

pertain to the lower powered experimental furnace. From

this reduced system, fundamental insight into the

fluctuations within the arc can be gained and a control

scheme devised.

In order to reduce the equations to a more manageable

system, we nondimensionalize them to determine the

relative importance of each of the terms. The ones that

turn out to be small in magnitude can be neglected and the

resulting system attacked. In so doing, we use data

gathered by the Idaho National Engineering Laboratory

(INEL) and the Albany Research Center. With this data,

characteristic parameter values can be substituted and the

relative magnitudes determined.

Before we start, we make several observations.

First, on the basis of thermodynamic arguments, one always

has p > 0 and moreover 3A + 2p > 0. It is sometimes

experimentally even found that A > p. Nevertheless, in

the absence of additional data, it is customary to adopt

Maxwell's kinetic theory for monatomic gases, 3A + 2p = 0,

p>0 in this type of setting, which gives A = 3p. Also,

it has been experimentally found by INEL that the

viscosity, p, is a linear function of temperature in the
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temperature ranges we are considering. With this in mind,

the Navier-Stokes equation becomes

at
+ (u V)131 = Op + ApV(V u) + pAu +

i (v u) 2q] dA ye - pg + pE(E + u x B).

Now, we introduce a new, nondimensional coordinate

system. If we let L be a characteristic length, 110 a

characteristic velocity, and r = YU° a characteristic

time then the dimensionless variables x = Lx' and u = Uou'

can be used to transform the equations into a set of

dimensionless ones. In addition to the length and

velocity, similar substitutions for the temperature,

electric and magnetic fields and charge velocity can be

used to get the system given by

Uo
1) 1f

OP + v) pu' = 0

2) FU0 au3' UO2
PL'Y a-7 1.7(u V')u'II --117,13 + 5pU-TT02 V (7 u'

)1

UO2 u') + 2 --1)-1'5'12:
aµ0- V'L L de+ p

L
A'u'

H321121., (V"

pg + pE(E0E + U0Bou x B) .

T0 TU
3) PcP1: + ° ° (u' V')0] = K-2TA'e' + TAV'EP 0' x'

7 at) L L2 L2

2tdrij 25) 5)
U°2 (0' u))2]

LL2 3L2

4) 7-7' D' = pc
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5) t'V' - B' = 0

6) 2.72 x E'
Tat'

Bo7) TV'x B'= po[Vopcv' DoaD, uoPov, (r), x U.')]
7 at'

8) p = Tcppe'
pc 2g1 (27rmekTEP)3/2

- ga h3
9) exp(Ai/kTO') ,

with the appropriate constitutive relations

If we now divide out the constants on the left hand

side, giving terms of order one, then the right hand side

becomes

op
1) E-5 °' pu' = 0

au'2) + (u' V))1_1' = 3R-LeV' (V' u') rt-1 A' u'

2 T dp 2T dµ wo,
3 pUoLdOV'O' (V' u') + pUoL dO

3)

4)

5)

6)

7)

8)

+
L e-

(E0E UoBou x B) .

1 e, .w

g rn17 Uo e

ao+ + (u' v' )0'

2pUo
[pcpToL 5'

V' - D' = L at
Do

V' B' = 0

V' x E' UoBoaB'

= uopiccpLA'e'

: 9'

Luo ,,

uopcL

2pUo
3pcpToL(V'

u')21

DouoaD) UOPOV,
+

Eo at,

V'xB ,=tior,Bv0p,v, +

p = Tcppe'
so Pc- + x

Bo at, Bo

K,w

(P' x u')]
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pe 2g (2rmekT0')3/2
9) exp(-Ai/kT8') ,p ga h3

pUwhere we have defined the Reynolds number as Re= oL
and

used r=/JE-.
IM

Quantities for these characteristic values have been

measured by INEL and the ALRC. A characteristic length is

given by the electrode gap which the arc must jump.

Typically this gap length is about L=0.005 m.

Characteristic velocities of the gas mixture have been

calculated as the rate at which the arc "walks" out to the

side and extinguishes itself. This, of course, is not the

actual velocity that the gas molecules are travelling at,

but is a good indication of the velocity that the bulk of

the gas obtains. These walking arcs have been measured at

speeds of around Uo=900 m/s. We have a characteristic

temperature given by To=15,000 °K, the magnitude of the

electric field is Eo=10000 V/m and the magnitude of the

magnetic field is B0=Eo/U0=11.1 V-s/m2. The last three

quantities represent maximum obtainable values and have

been obtained by measurements taken at the ALRC.

The quantities co, 14, e-, me and g=igl are universal

constants. For the quantities given by the density p,

specific heat cp, thermal conductivity and the

viscosity p, a much more subjective means is used to find

the characteristic quantities. For the specific heat and

thermal conductivity, we use the average of these

quantities over the temperature region in question. The
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data from INEL shows this to be, for the specific heat,

cp=7500 J /Kg °K and the thermal conductivity x=13 J / °K -m -s.

This brings us to the density p, and the viscosity p. For

these quantities we take the maximum values over the

temperature range. Again INEL has supplied the

information needed to obtain a value. We use as the gas

density p=0.075 Kg/m3 and the viscosity p=1.5x10-3 Kg/m-s.

dpFinally, the term is experimentally found to be on the

order of 2x107Kg/m-s-°K.

With these values, we are able to identify the terms

which become important in our analysis of the system. If

we consider Saha's equation first, then for Helium it is

easy to show that the extent of ionization is about 4%,

and remains around this value over the temperature ranges

we are dealing with. With this fact, we can replace

Saha's equation by pc = 0.04 Ep.

Next, consider the Navier-Stokes equation, we see

that 1/Re = 4.44x10-3 and 1/(3Re) = 1.48x10-3. The gravity

term is of magnitude L /UoIgj = 6.06x10-8, the terms

multiplying the electromagnetic forces are

L E. e- 1.084x107 and L U. Bo
Uo2me

= 1.083x107,
Uo2me

and the terms involving the temperature gradient have

magnitude

2T dp
3UopLde = 5.93 x 1011 and 2T dp

UopLde
= 1.78 x 10".

From these values, we see that the gravitational term can

be neglected but the electromagnetic and deformation terms
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cannot. This is unfortunate in that this means that the

fluid equations and the electromagnetic equations can't be

decoupled. Because the Reynolds number terms are

approaching order one, it is unclear whether they can be

neglected. As a first attempt, one might neglect them,

but it is recommended that they remain in the problem when

the true solution is solved for.

If we take another look at the Newton-Fourier law,

the INEL data shows that the function, K, is a linear

function of temperature. The energy equation then reduces

to

00' + (1,
at,

0') O' = UopcpL k1 y'6'uopcpL V ' 0'

2pUo 2pUo
3pcpToL (V u ) .[pcpToL5' 5

With the data given, we see that the term k1=8.0x10-4 and

2

hence the constants are of the order

1(1 To
14x10-3,pcp U0 L = 5.

p cp Uo L =
4.74x10-3

U0 p 2 U0 p
=6.4x10-5, and 2.13x10-5.

P Cp To L = 3 p cp To L -

Because of the relative magnitudes of these last four

values, several approaches can be taken. The recommended

approach is to consider the last two terms to be

negligible. Another approach is to consider all terms

important and solve the full energy equation.

We do a similar analysis of the Maxwell's equations.
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We know that for Helium, the polarization and hence, the

displacement current is proportional to the electric

field. Data from the Handbook of Chemistry and Physics,

59th ed., Cleveland CRC Press, Inc. shows that the

dielectric constant for Helium is 1.00 so that D = e0E.

This gives the constant of proportionality between P and E

to be very near zero, allowing us to neglect the

polarization terms. It must be stressed that this is true

because we are using Helium as our test gas. Because the

charge velocity is so much higher than the gas velocity we

are able to combine these terms into an effective free

current. This is because the gas velocity will not affect

the charge carriers enough to cause any significant

difference. Thus, Maxwell's equations are reduced to the

equations in free space in this instance and the analysis

reveals that they must be left unchanged from this point

on. It does become apparent that the magnetic field terms

play less of a role than the electric field terms, but all

figure prominently in the analysis.

With this in mind, several reduced systems can be

studied. The first system is given by 1) the equation of

continuity, 2) the Navier-Stokes equation, neglecting all

terms of order less than one, 3) the energy equation

neglecting the dissipative terms, and 4) the Maxwell's

equations in free space:

Op
1 ) .5-T7 V' pu' = 0
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2) au)
-j 5-E7 (u' u' = + T

3 TIGIdev-y' (v" u,)

pUT La
o,

UL 2 me
tZ(E0E + U0Bou x B).

0

3) ae,
at) (u'

4) V' - E' =

5) V' B' = 0

. v) e ,j = " N TA' 09' + m
k
1 ,V' O' v' 6'

uopco,

e-L
f oEolne

6) V' x E' uoBoaB,
E0 at'

7) V'xB' = po LV
Bo

+ pocoEB0U00 OE'
at,

8) II =
Tcg
Te).

u.

This system represents the simplest case that we can

consider and yet maintain some assemblence of reality. It

will be easier to numerically solve, and may be a good

test of the method used.

A more realistic system is given by

ap
1)

at,
+ V' pu' = 0

2) au' + (u' V')u' = -V'll + (V' u') +
A' u' +at, Re

3)

4)

5) V' B' = 0

2 T
3 pUoLdeV'O' (V'

L
U2

ao)
at, (u'

u') + 2T dpv,e)
pUoLde

/1-i-Ti(E0E + U0Bou x B).

v') 9'
UoftoccpLA'e'

v' e' v' e'
UopcpL

V' E' e-L
comeEor

U0B0aB'6) V' x E'
Eo at,

Eouo aE)
P°f° so at,IA Bo j

Tc
8) ri = --I 0,

u02

with the appropriate constitutive equations. The
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important fact to remember in both these cases is that

these equations cannot be decoupled and hence must be

solved simultaneously.

With this in mind, the path can be generated as the

solution to a generalized variational problem. If we

assume that the conduction column takes a path that

minimizes the time of conduction across the arc gap, we

can then solve the generalized variational problem

ds = u(x,t)dt

where s(x(t),t) is the arclength in the vector calculus

sense. The solution to this gives a differential equation

for which boundary value problem techniques can be used,

in an iterative fashion, to successively approximate the

path of conduction as this path fluctuates. That is, we

assume an initial conduction column and then successively

solve for the new column as it undergoes the effects of

the external forces given by the coupled, nonlinear

differential equations. Numerical routines for this type

of process are abundant and in most cases are readily

available in canned type program packages.

Once the evolution of the conducting column can is

solved for, it can be placed into the telegraphers

equation. That is, once i(x,t) is known across the arc,

then the equation

Ai(x,t) = SCR i(x,t) + + RC) °i(
axt

't) + LC
a2i(x,t)

ate
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(where Se is the shunt resistance, R is the circuit

resistance, L is the circuit inductance and C is the

circuit capacitance) will give the complete solution of

the current as it travels through the circuit.

Knowing the solution of the circuit equations will

allow the furnace controller to adjust the furnace

environment parameters when the precursors to electrical

fluctuations are observed. In this manner, dynamic

control is possible, enabling a much smoother, more

efficient melt. It must be noted that some of these

equations of motion are highly nonlinear and in particular

the Navier-Stokes equation has been shown to be chaotic.

Because of this fact, other techniques for dynamic control

are being investigated at the ALRC and some progress is

being made towards this end.
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CONCLUSION

The future of competitive steel making in the United

States is at an impasse today. Without more efficient use

of the available resources, the highly technological

overseas countries will corner the steel market and force

the U. S. steels out as an export commodity, as well as

under sell them internally. In order to at least delay

this scenario, electric arc furnaces are being studied

extensively throughout the industry and at the U. S.

Bureau of Mines, Albany Research Center.

Research into this physical problem at the ALRC is

directed towards a better understanding of arc behavior,

with dynamic control of electric arc furnaces the main

goal. The ability to take large amounts of data at a very

rapid pace and to correlate this data with high speed

photography has allowed the researchers to view the

discrete fluctuations in the arc and identify electrical

signatures corresponding to them. In this manner arc

behavior has lost some of its mystery. Researchers are

slowly getting away from the idea that randomness is

inherent in the arcs and any type of predictability is

impossible.

A mathematical model will give researchers a means at

obtaining information which is not available, or hidden in

the discrete events observed in the wave forms and films.

The system of coupled nonlinear differential equations
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presented constitute the classical model for electro-

magneto-hydrodynamics, where classical magneto-

hydrodynamics can be obtained by neglecting electric field

effects. The latter case applies to the experimental

furnace at the ALRC where the voltages and currents are

sufficiently low to allow for the neglect of these

effects.

After appropriate reduction of the equations, an

iterative numerical scheme can then be utilized to solve

the system for the current path. Once knowledge of the

path is obtained, it can then be used in the circuit

equations to solve for the current as it evolves in the

circuit. With the knowledge of the evolution of the

current, a control scheme can be devised and implemented

by monitoring of the current and voltages and then

continuously changing operating parameters to force the

wave forms to behave in a desired manner.

This type of control allows the system to operate in

a more efficient manner by damping out or omitting

electrical fluctuations, causing a decreased use of

electrical energy, stopping power grid fluctuations,

reducing electrical and acoustical noise and shortening

tap times, all very appealing monetary benefits.



Figure 1. The experiemntal furnace at ALRC.
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Figure 2. Inside the experimental furnace.
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Figure 3. The camera setup for data acquisition.
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