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ABSTRACT

This article presents a semianalytic method to investigate the properties of energy transmission across
bottom topography by barotropic Rossby waves. The method is first used to revisit the analytical estimates
derived from wave-matching techniques and Wentzel-Kramers—Brillouin (WKB) approximations. The
comparison between the semianalytic method and WKB indicates that the results of the latter are valid for
waves with periods longer than a month and ridges taller than ~1000 m and wider than ~500 km. For these
parameter values both methods predict the passage of low-frequency waves and the reflection of high-
frequency waves. The semianalytic method is then used to discuss the energy transmission properties of a
cross section of the Mid-Atlantic Ridge. It is shown that the filtering characteristics of realistic bottom
topographies depend not only on the spatial scale set by the cross-section envelope, but also on the scales
of the individual peaks. This dependence is related to the fact that topographies narrower than ~400 km
(e.g., peaks) are high-pass filters of incoming waves, while topographies wider than that (e.g., cross-section
envelopes) are low-pass filters. In the particular case of the Mid-Atlantic Ridge the neglect of the contri-
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bution of individual peaks leads to an erroneous estimate of the filtering properties of the massif.

1. Introduction

The adjustment of the large-scale, oceanic circulation
to the atmospheric forcing at intra-annual time scales is
largely accomplished by the generation and propaga-
tion of barotropic Rossby waves. The propagation of
these waves, however, is strongly influenced by the to-
pography of the ocean floor. Ridges and seamounts
attenuate barotropic modes of a wide range of frequen-
cies while a rough bottom may prevent any wave propa-
gation. The influence of the bottom topography on the
transmission of energy by barotropic Rossby waves was
first investigated by Rhines (1969) and Barnier (1984).
In these studies the bottom of the ocean was repre-
sented by simple exponential or step functions, and the
solutions to the potential vorticity equation were de-
rived by matching plane waves at the boundaries of
regions of constant ambient vorticity gradients. Most of
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what we know about these matters has been derived
from these simple and insightful models. In a relatively
more recent study Matano (1995, M95 hereinafter), de-
rived an analytical solution for the potential vorticity
equation using the Wentzel-Kramers—Brillouin (WKB)
method and compared it with the results of numerical
simulations.

Although the solutions derived from the analytic
(wave matching and WKB) and the numerical models
are qualitatively meaningful, their implications for re-
alistic bottom configurations are obscured by the for-
mal limitations of the solution method. The analytical
models can only be applied to highly unrealistic types of
bottom topography. The numerical results can bypass
this constraint but their results are influenced by un-
wanted (but difficult to remove) factors such as the
shape of basin (which lead to the excitation of a par-
ticular set of basin modes), the propagation of gravity
and boundary waves, the details of the wave-forcing
mechanism, and so on. To circumvent these limitations
in this article we present a semianalytical model that
solves the potential vorticity equation discussed in M95,
with the addition of a set of matching conditions that
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FIG. 1. Schematic representation of Rossby wave propagation in an ocean basin of constant depth
divided by a meridional ridge. Wave propagation is inhibited in the region limited by x, and x,.

render the problem amenable to the use of numerical
methods. The objective of this exercise is twofold; first, we
want to determine the range of validity of the analytical
and numerical solutions, and second, we want to deter-
mine the energy transmission properties of slightly more
realistic topographic profiles than in previous studies.

2. The model

Let’s consider the linear, quasigeostrophic dynamics
of a homogenous, inviscid, ocean basin consisting of
two regions of constant depth separated by a meridi-
onal ridge of unspecified shape (Fig. 1). In the eastern
side of the basin there is a westward-propagating wave
packet (of unit amplitude) that, after impinging on the
ridge, generates reflected and transmitted wave pack-
ets. This dynamical system is described by the potential
vorticity equation for the mass streamfunction, which,
after some canonical transformations, leads to the fol-
lowing set of equations (e.g., LeBlond and Mysak 1978;
M95):
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where ¢(x) is the zonal component of the mass stream-
function Ui(x, y, t); that is,
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where B is the gradient of planetary vorticity, w is the
frequency of the propagating wave, [ is the meridional
wavenumber, k; and kj are the zonal wavenumbers of
the incident and reflected waves, and A(x) is the bottom
depth. Given w and /, k; and k; can be calculated from
the dispersion relation. The solutions to the above sys-
tem depend on the value of the potential k*(x). If k*(x)
is positive (and a slowly varying function) then the only
effect of the bottom topography on the wave propaga-
tion is a local refraction of the wave packet with no
associated energy reflection. If, however, k*(x) is nega-
tive somewhere in the domain, then the solutions to (1)
decay exponentially in that region and the topography
represents a barrier to the energy transmission. The
amount of energy that can be transmitted across this
portion of the domain depends on the shape of the
bottom and the frequency and direction of the incident
waves.

System (1) has been solved analytically using wave-
matching techniques for topographic profiles of con-
stant slope (e.g., Rhines 1969; Barnier 1984), and the
WKB technique for more general forms of bottom to-
pography (M95). The validity of these solutions, how-
ever, is strongly limited by the approximations made by
the solution method. The wave-matching technique, for
example, requires the use of topographic profiles with
unrealistic slopes. The WKB solution is more general
but it requires that the wavelength of the incident wave
be smaller than the scale of the bottom topography.
Since even relatively short, nondivergent, barotropic
waves have wavelengths comparable to, or greater
than, the scale of the bottom topography, the formal
validity of a WKB solution is marginal at best. M95
made a qualitative comparison between the values pre-
dicted by (2) and the results of a primitive equation
model. The comparison, however, was obscured by the
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fact that the numerical model encompassed a wider
gamut of processes than those represented by (1).
Given these considerations and in order to gain further
understanding on the energy transmission properties of
barotropic Rossby waves, herein we will solve (1) di-
rectly using a numerical method. To do so we need to
impose the following boundary conditions at the limits
of the region where k*(x) is negative; that is, at x = x;:

d(x,) = Ape*™  and

do .
dx (x1) = ikPp(xy),
and at x = x,:

d(xy) = P2 + A e *2 and
do , . .
- () = ik ™2 + ik g R2A e R

= i(k; = kp)e™ " + ik pd(xy). ©)

Equations (1) and (3) form a closed system that was
separated into its real and imaginary components and
solved numerically using the shooting technique (Press
et al. 1992). We make an initial guess of the values of
the imaginary component of ¢ to compute the real
component from the boundary conditions at x;. We
then integrate (1) from the boundary conditions at x, to
those at x, and construct a discrepancy vector that mea-
sures the degree of satisfaction of the boundary condi-
tions at x = x,. This is used to adjust the values of the
imaginary components at x; to attain the desired level
of tolerance in satisfying the boundary conditions at x,
and accuracy using the globally convergent Newton
method (Press et al. 1992). Once the specified accuracy
has been achieved, the solution is complete and accu-
rate to the level of tolerance chosen and to the order of
the time-stepping scheme.

3. Solutions

a. Bottom topographies of constant slope

Rhines (1969) investigated the case of two flat-
bottomed basins connected by a step of exponential
shape and width a. The coefficient of energy transmis-
sion derived for that particular case is

2
T= [1 + 0.25(% + ﬁ) sinhz(p,a)], )

where & = h/h,, and p? = —k? — [8/wa.

To compare (4) with the numerical solution de-
scribed in the previous section we calculated the trans-
mission coefficients as a function of the frequency and
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FIG. 2. Transmission coefficient for a step topography as a
function of the step width. The incident wave has k = [.

the step width for a basin with a fractional depth change
& = 0.05 (Fig. 2). The transmission coefficients for ba-
sins with other fractional depth changes are qualita-
tively similar. The amount of transmitted energy de-
creases as the fractional depth change increases (Fig. 2).
As noted by Rhines the energy transmission is largely
insensitive to the step width until (w/8)ka ~ 1, and it
decreases with decreasing frequencies. The difference
between the analytical and numerical solution is negli-
gible for all the values of 6 that we tested.

To further probe the numerical method we deter-
mined the energy transmission properties of a flat-
bottomed basin divided by a meridional ridge shaped
by the intersection of two exponentials. Barnier (1984)
derived an analytical expression for this particular case,
and we compared his expression with the results de-
rived from the numerical calculation (Fig. 3). As in the
previous case, there is good agreement between ana-
lytical and numerical results. Both methods indicate
that the energy transmission is more efficient at low
frequency and that the frequency at which waves can
cross the topography without any energy reflection
shifts toward smaller values as the parameter 8f/Ba in-
creases (not shown).

b. A Gaussian ridge

The analytical examples discussed in the previous
section were restricted to bottom topographies of con-
stant slope. M95 derived the following solution for to-
pographies with variable slopes:

1 = : h,
r= |AT|2EeXp{ f \/[<§> - _{Z_ﬁ] ds}'
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F1G. 3. Transmission coefficient as a function of the frequency for a meridional ridge shaped by
exponential functions.

Although this expression is more general than the ex-
pressions derived by Rhines and Barnier, it requires
that k? be a slowly varying function of the zonal coor-
dinate, a requirement that is not always fulfilled in the
real ocean. To determine the range of validity of WKB
in this section we compare (5) with the results of the
semianalytical model. To that end we consider the en-
ergy transmission properties in a 4000-m-deep basin di-
vided by Gaussian ridges of varying shapes (Fig. 4a).
There is good agreement between WKB and the semi-
analytical method for waves with periods longer than a
month (@ ~ 0.03), and for ridges taller than ~1000 m.
WKB, however, underestimates the tunneling process
that allows relatively shorter waves to pass through the
potential barrier. There is, for example, a large discrep-
ancy between the energy transmission predicted by
WKB and the semianalytical method for a 500-m-tall
ridge. The agreement, however, improves substantially
if the cross section of the ridge is augmented from 500
to 1500 km (Fig. 4b). The above results therefore, sug-
gest that (5) is valid for waves with periods longer than
a month and ridges taller than ~1000 m and wider than
~500 km.

The transmission coefficients derived from the semi-
analytical model are less restricted than those using the
WKB approximation. They are, nevertheless, con-
strained by the idealizations involved in their deriva-
tion. It is desirable, therefore, to compare the semiana-
lytical results with those of a more general model. For
these purposes we use the energy transmission coeffi-
cients calculated by M95 using a nonlinear, shallow-
water model on a rotating sphere. The model domain
consisted of a rectangular basin, 200° long, 60° wide,
and centered at 40°N. The bottom depth was constant
everywhere (4000 m), except the middle where there
was a meridional ridge of Gaussian shape. To generate

westward-propagating waves the model was forced with
an idealized wind stress specification near the eastern
boundary. The energy transmissions in different re-
gions of the model were calculated as the ratio between
the kinetic energy associated with a specific ridge con-
figuration and the kinetic energy corresponding to a
flat-bottomed basin.

Before discussing the results it should be noted that,
since the semianalytical and the numerical models en-
compass different dynamical ranges, it is not straight-
forward to compare them. The semianalytical model,
on the one hand, focuses on the linear dynamics of
Rossby waves in an infinite (unbounded) domain. The
M95 model, on the other hand, not only included
Rossby waves but also gravity and boundary waves,
basin modes, nonlinear interactions (but at such small
Rossby number that these terms do not measurably
influence wave propagation characteristics), bottom
friction, and so on. The coefficient of friction near the
western boundary was smoothly increased to 100 times
its value in the open ocean to avoid unwanted reflec-
tions of short, eastward-propagating Rossby waves. De-
spite these differences our calculation shows a reason-
able agreement between the energy transmission coef-
ficients derived from both methods (Fig. 5). The
estimates from the numerical model lack some of the
qualitative details of the semianalytical and WKB so-
lutions, such as the frequency dependence of the energy
transmission coefficient (a fact that can be partly attrib-
uted to the limited frequency range that was resolved in
that simulation), but are quantitatively similar. Both
methods, for example, predict that a 1000-m ridge will
allow the passage of approximately 35% of the incoming
energy for waves with periods less than 3 months, while
a 1500-m ridge will allow the passage of only 15%. The
general agreement between these estimates and their
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F1G. 4. Transmission coefficients calculated from the numerical method (solid line) and from
the WKB approximation (dotted line). These curves correspond to a Gaussian bump of height
h, and cross-sectional width of (a) 500 and (b) 1500 km.
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Fi1G. 5. Transmission coefficients calculated from the semianalytical model (solid line) and
from the numerical simulation of M95. The bottom topography was represented by a Gaussian
bump of height /4, and cross-sectional width of 500 km.

closeness to the values predicted from WKB (Fig. 4)
indicates that the above results are relatively robust.
Since the semianalytical solutions are more general
than those obtained through WKB and have fewer en-
cumbrances than those generated by the numerical
model, we used them to investigate the sensitivity of the
energy transmission coefficient to the meridional wave-

Frequency (1/day)

7,000 9,000

Meridional Wavelength (km)

FIG. 6. Transmission coefficient for a Gaussian bump with a
cross-sectional width of 500 km and a height of 500 m.

length, the ridge width, and latitude (Figs. 6,7,8). The
influence of the meridional wavenumber on the energy
transmission properties is greater at the low-frequency
end of the spectrum (Fig. 6). For a fixed frequency the
transmission coefficient increases with the meridional
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F1G. 7. Transmission coefficient as a function of the cross sec-
tion for a Gaussian bump with a height of 1000 m. The stippled
region marks the parameter values for which the energy transmis-
sion increases with increasing frequency. Note that cross sections
narrower than ~200 km are high-pass filters.
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F1G. 8. Transmission coefficient as a function of the latitude for

a Gaussian bump with a height of 1000 m and a cross-sectional
width of 500 km.

wavelength. In the limit of / = 0 the particles motion is
parallel to the isobaths and the wave does not feel the
bottom topography. The qualitative effect of the cross-
sectional width on the magnitude of the energy trans-
mission coefficient was discussed in the previous para-
graphs but its quantitative influence is illustrated here
(Fig. 7). For a given frequency, a wider ridge does not
necessarily lead to larger transmission coefficient but,
in fact, a relatively small widening of a narrow ridge
leads to a decrease of the energy transmission coeffi-
cient. In this regard it should be noted that, since the
influence of the ridge cross section on the energy trans-
mission properties is given by the term of 4~ '9h/ox in
(5), the range of cross-sectional widths in which the
energy transmission decreases/increases depends on the
particulars of the topographic profile. The parameter
range displayed in the above example only applies to a
ridge of Gaussian shape. It is important to note, how-
ever, that for relatively narrow ridges (cross sections
smaller than ~500 km), the energy transmission only
increase with increasing frequencies (the limit discussed
by Rhines 1969). For a given height, therefore, there is
a threshold cross section beyond which low-frequency
waves are more efficient in transporting energy than
high-frequency waves. The value of that threshold not
only depends on the shape of the ridge but also on its
location (Fig. 8).

¢. The Mid-Atlantic Ridge

The common trait of most of the figures discussed in
the previous section is that the energy transmission ap-
pears to be more efficient at lower frequencies. This
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characteristic reflects the dominance of the o * term
[see (5)] in ridges with a relatively wide cross section
(=500 km). The sensitivity study, however, also indi-
cates that a narrow ridge can prevent the propagation
of low-frequency waves (Fig. 7). The question, there-
fore, is what are the transmission properties of realistic
topographic profiles where narrow and wide peaks are
found side by side? Although there is no general an-
swer to that question because the transmission proper-
ties depend on the specifics of the topography, in this
section we consider the particular case of a Mid-
Atlantic Ridge cross section. This example not only
allows us to investigate the properties of more realistic
topographic profiles than those analyzed hitherto but
also illustrates the shortcomings of highly idealized to-
pographies. To facilitate the comparison between the
analytical and semianalytical methods we fitted a Gaus-
sian profile to the Mid-Atlantic Ridge and calculated its
energy transmission properties using both methods
(Fig. 9).

There is reasonable good agreement between the en-
ergy transmission coefficients estimated from WKB
and the semianalytical model for the Gaussian topog-
raphy (Fig. 10). Both methods predict the passage of
little energy for waves with frequencies higher than
~0.015 days™', and uniformly large values for waves
with frequencies lower than that. Interestingly, how-
ever, the predictions from the Gaussian topography are
completely out of phase with those using the realistic
cross section. In fact, for that case, the semianalytical
model predicts that high-frequency waves (0 = 0.05
days ') will be able to transmit between 60% and 80%
of the incoming energy, while most of the energy at the
low-frequency range will be reflected back. The dis-

2,000

3,000
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Mid Atlantic Ridge at 40°S

5,000

800
Distance (km)

F1G. 9. Cross-sectional width of the Mid-Atlantic Ridge at 40°S
and its approximate representation using a Gaussian function.
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Fi1G. 10. Transmission coefficients for the topographic profiles depicted in Fig. 9.

crepancy between the energy transmission coefficients
for the idealized and the realistic topography can be
understood in terms of the ridge width. According to
our previous discussion, the filtering properties of a
narrow ridge are qualitatively different from those of a
wide ridge; a narrow ridge is a high-pass filter of the
incoming energy, while a wide ridge is a low-pass filter
(Fig. 7). In these regards it should be noted that, while
the idealized topographies have cross sections of ap-
proximately 800 km (“wide” ridge), the individual
peaks of the realistic case have cross sections smaller
than ~200 km (“narrow” ridge). The Mid-Atlantic
Ridge can be thought of as the superposition of several
narrow ridges and, to the extent that the individual
peaks do not blend into a large massif but conserve
their characteristics (i.e., to the extent that they are able
to impose a specific spatial scale to the problem), they
determine the properties of the energy transmission. As
this example illustrates, this can lead to a radically dif-
ferent answer than that expected from an idealized rep-
resentation of the same topographic cross section.

4. Summary and discussion

In this article we presented a semianalytic method to
investigate the properties of energy transmission across
bottom topography by barotropic Rossby waves. The
method was first used to revisit previous analytical es-
timates of energy transmission using wave-matching
methods (Rhines 1969; Barnier 1984) and then to

evaluate the range of validity of the WKB solutions
derived in M95. This exercise shows that the WKB es-
timates are applicable to waves with periods longer
than a month and ridges taller than ~1000 m and wider
than ~500 km. For these topographies WKB and the
semianalytical method predict the passage of low-
frequency waves and the reflection of high-frequency
waves. In the last portion of this article we used a cross
section of the Mid-Atlantic Ridge to investigate the
properties of energy transmission across more realistic
topographic shapes. There, it was shown that the filter-
ing characteristics of the bottom topography are highly
dependent on the dominant scales of the topography.
This dependence is related to the fact that topographies
narrower than ~400 km (e.g., peaks) are high-pass fil-
ters of incoming waves, while topographies wider than
that (e.g., cross-sectional envelopes) are low-pass fil-
ters. In the particular case of the Mid-Atlantic Ridge
the neglect of the contribution of individual peaks leads
to an erroneous estimate of the filtering properties of
the massif.

Although the Mid-Atlantic Ridge example discussed
in the previous section includes scales smaller than
those strictly allowed by the assumptions of the
method, it serves to illustrate the dependence of the
solution on the scale of the problem. It is, of course,
possible to improve the fit between the Gaussian pro-
file and the realistic cross section by increasing the
smoothing in the cross section, or by including several
“bumps” in the idealized shape. In those cases, how-
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ever, the realistic cross section becomes less realistic
and the idealized bump less idealized. The purpose of
the exercise, however, was not to estimate the exact
values of the energy transmission coefficients at any
specific location, but rather to illustrate the importance
of the cross-sectional scale in a slightly less abstract
setting than that discussed in section 3b.

The semianalytical model discussed herein intends to
fill the gap between theory and numerical results. A
one-dimensional model, nevertheless, is a gross simpli-
fication of the real ocean. To interpret observations we
need to consider the 3D nature of the wave field as well
as the interactions between barotropic and baroclinic
modes. The complexity of the problem, unfortunately,
grows rapidly with the realism of our model so that
analytical solutions are difficult to obtain and numerical
results are difficult to interpret. During the last few
years, however, there have been significant advances in
our understanding of the influence of ridges that vary in
the meridional as well in the zonal direction. Pedlosky
and Spall (1999) and Pratt and Spall (2003), for ex-
ample, found barotropic solutions to topographic bar-
riers with open gaps (a configuration that might, for
example, represent an island chain). Their results indi-
cate that the islands between the gaps act as antennae
that radiate the incoming energy so that a meridional
barrier becomes nearly transparent to the passage of
Rossby waves. Pedlosky (2000) investigated the baro-
clinic equivalent of this problem and considered a gap
that extends to middepth (instead of reaching the full
water column) and concluded that the interaction of
modes at the ridge leads to a conversion energy from
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the baroclinic to the barotropic mode. Thus, topo-
graphic interactions tend to favor the dominance of
barotropic variability on the western side of meridional
ridges.
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