
A Georeferenced Digital Image Analysis
of

Micro-topographic Patterns
within the

Willamette Floodplain Research Natural Area,
W.L. Finley National Wildlife Refuge

by

Karen L. Anderson

A Research Paper

submitted to

The Department of Geosciences
Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science
Geography Program

February 1996

directed by

Dr. Philip L. Jackson





ABSTRACT

The present day vegetation pattern of the Willamette Valley is a result of a long

past of human alteration of the landscape. Beginning with aboriginal burning of the

grasslands to present day land uses, the vegetation of the valley has been affected by

anthropogenic activity. Wet prairie is a vanishing habitat of the valley as both urban

and agricultural development continue to alter the landscape.

The W.L. Finley National Wildlife Refuge of the south-central Willamette Valley

contains within its boundaries one of the last remaining examples of open wet prairie.

In order to maintain the prairie community complex and associated biodiversity of the

Willamette Valley Floodplain Research Natural Area, a restoration project in which

controlled burning plays a significant role was initiated. As a part of the on-going

research a need was felt to develop a baseline data base identifying the spatial

distribution of principle features of the research area and to map the vegetationally

associated mount-intermound micro-topographic pattern prevalent throughout the

refuge.

The purpose of this research project was to develop that baseline spatial data

base and to investigate the use of digital image processing and analysis as a tool for

inventorying micro-topographic features and associated open wet prairie vegetation

patterns. This paper is primarily a methodological study of applying geographic

techniques to an on-going biogeographical study

This study had three objectives: (1) defining the location and boundaries of

treatment spaces and sampling plots in a standard geographic coordinate system, (2)

delineation of spaces and plots onto a scanned image creating a spatial data base and



(3) classification of vegetation and associated microtopography. The aim of this study is

to provide an evaluation of appropriate geographic information technology for the

planning and analysis of wetland restoration and management.

The objectives of this study were met with varying degrees of success. The use

of Trimble's Global Positioning System, IDRISI's low-cost image processing/

Geographic Information System software and a small scale, color aerial photograph

scanned to a single band, monochromatic digital image were utilized to create a

suitable visual and spatial data base.

Classification of the image into micro-topographic class was conducted using

three strategies. Two standard supervised classification algorithms were compared

using signatures generated from the original single band image. The influence of

including signatures created from an additional data band based on digital richness of

the original image was also examined.

Information provided by the single, wide spectral space image was lacking and

hampered classification of vegetationally associated micro-topographic patterns. The

addition of signatures based on a created Relative Richness band did not appreciably

effect classification accuracies. Regardless of classification strategy, insufficient

separability of class signatures led to overall classification accuracies of +1- 70%. A

high level of misclassification occurred within the intermound region resulting in over-

representation of the mound micro-topographic pattern.

The resulting thematic map was created using signatures generated from the

original single band image and maximum likelihood classification routine.
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INTRODUCTION

The present day vegetation pattern of Oregon's Willamette Valley reflects a history of

human manipulation of the natural landscape. Annual burning of prairies by Native Americans,

cessation of burning with settlement and the introduction of grazing, logging and agriculture

together with the continued expansion of agricultural clearance, alteration of natural drainage

patterns, and urbanization profoundly influenced the vegetation composition and structure

found in the Willamette Valley.

Today, the Willamette Floodplain Research Natural Area in W.L. Finley National

Wildlife Refuge protects what is thought to be one of the few remaining examples of relatively

unaltered open wet prairie. In the absence of fire and/or grazing the prairie would revert to

forest. In order to restore and maintain the disclimax prairie in a condition similar to that at the

time of settlement, a rigorous prescribed burning program was initiated in the Research Natural

Area in 1990.

It is the purpose of this research paper to investigate the use of digital image analysis

as a tool for inventorying micro-topographic features and associated open wet prairie

vegetation patterns. The aim of this study is to provide an evaluation of appropriate geographic

information technology for the planning and analysis of wetland restoration and management.

Objectives

As a part of the controlled burning program, long term research is being conducted to

assess and document the topographic and ecological conditions of the Willamette Floodplain

Research Natural Area (RNA). The objective of this study was to use digital image processing

and classification techniques to develop a baseline geographic data base that would:

(1) map the boundaries of the RNA and research burn units,



(2) map the spatial distribution of permanent vegetation sampling plots within the

RNA, and

(3) map the vegetationally associated mound-intermound micro-topographic pattern of

the RNA.

To accomplish these objectives, I gathered spatial data using Global Positioning

System (GPS) technology, mapped the spatial data with a computerized Geographic

Information System (GIS) and identified and mapped the pattern of the vegetationally

associated mound-intermound micro-topography. Mapping of the micro-topographic patterns

was conducted using supervised classification techniques with available digital image

processing and GIS software.

Historical Background

The north-south oriented Willamette Valley, approximately 130 miles long and 25-30

miles wide, is a physiographic region of western Oregon bounded on the east by the Cascade

Range and the west by the Coast Range. Topography is predominantly flat, with slightly more

relief to the north. Flowing northward, the Willamette River and its numerous tributaries form

the drainage network for the region, eventually emptying into the Pacific-bound Columbia River

north of Portland Oregon.

The valley has a mild climate. Annual temperatures range from highs of 18 degrees

centigrade in July and August to lows of 3 degrees centigrade in January. Although

precipitation occasionally occurs in summer, it is concentrated in late fall and winter from

October through March with annual averages of approximately 890-1140 mm (Boyd 1986,

65). Low-intensity rains occur in the valley an average of 16-18 days during both December

and January with the highest monthly precipitation of approximately 150-230 mm. during

December (Jackson and Kimerling 1993, 53). Snow during the winter months is not
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uncommon, yet usually moderate in amount, persisting on the ground for a matter of days.

The mild climate, flat terrain and fertile alluvial soils attracted the first settlers arriving via the

Oregon trail and led the valley to become a prime agricultural region of Oregon. The valley

continues to be both the agricultural and population center of the state.

The semi-natural plant communities that today make up the Willamette Valley are

reflective of past anthropogenic manipulation of the natural landscape. A meagerly

documented prehistory of valley burning, a more recent and better documented history of

agriculture and grazing with the advent of Euro-American settlement, and continued expansion

of agricultural conversion and urban growth have all had a hand in altering the valley

landscape and vegetation patterns.

Several authors have attempted to reconstruct, describe and map the original

vegetation of the Willamette Valley (Habeck 1961, Johannessen et al. 1971, Towle 1979).

Focusing on the period immediately prior to European settlement, researchers have reviewed

early settler's journals, diaries, correspondences and environmental descriptions contained in

the original General Land Office survey reports to reconstruct valley vegetation patterns.

Although no direct evidence for the rational and procedures of Kalapuya burning exist, Boyd

(1986) attempted to reconstruct both the practice and effect of purposeful burning upon the

prairie while examining the interaction of the Kalapuya cultural ecology within the ecological

context of the Willamette Valley. Prior to European settlement, the Kalapuya tribes were sole

claimants to the territory of the mid-W,llamette Valley. As hunter-gatherers, the Kalapuya were

dependent upon the availability of wild game and wild plants for their livelihood. Annual

settlement patterns of the Kalapuya revolved around the exploitation of valley resources.

The bulb of common camas (Camassia quamash) is often referred to as a dominant

staple in the Kalapuya diet. Other important wild food plants include tarweed (Madia spp.),



hazel nuts(Cory/us), acorns (Quercus), wapato (Sagitfaria), and berries (Boyd 1986, 69).

Gunther's ethnobotanical research of 18 tribes of western Washington describes numerous

plant species important to the indigenous Native American lifestyle (Gunther 1973). Of those

plant species listed by Gunther as being important sources of food and medicine or having

uses as charms or textiles, sixteen are found within the prairie communities of the RNA

(Appendix 1). In reviewing plants important in the Kalapuya diet, Towle (1971) notes that "it is

clear that most of the plants eaten by the Kalapuya--including the staple camas--were

dependent on maintenance of an open landscape" (Towle 1971, 18).

The importance of plant resources to the Kalapuya diet has been documented in

archeological research. In their study of the dental pathology of Oregon's prehistoric

indigenous population, Hall etal. (1986) examined dentitions of 208 prehistoric skeletal

specimens from five geoclimatic-cultural regions of Oregon. Geoclimatic provinces were used

to categorize heterogeneous cultural areas based on similarity of resource availability and

utilization within the units. Of the five provinces studied, the Willamette Valley ranked second

to the Klamath Basin in overall lowest dental status, ranking highest in incidences of caries

(tooth decay) and edentulous jaws (0-2 teeth present at time of death) and second in

pathologically missing teeth. As noted by Hall et al., higher levels of caries and lower attrition

are associated with a diet based predominately on plant resources and softer foods as was the

case for the populations of the Willamette Valley and Kiamath Basin (Hall et al. 1986).

The practice of annually burning the prairies to maximize resource production altered

the ecology of the valley and maintained the productive expanses of disclimax grasslands and

savanna. Euro-American settlers brought into the valley new expectations of the environment.

Although the first settlers claimed land fringing the valley along the lower edges of the foothills

(Boag 1992, 50), their impact was soon felt throughout the valley floor. The cessation of
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purposeful burning as agriculture, and especially grazing, became predominant prairie

activities led to significant historical changes in the valley landscape. As noted by

Johannessen etal. (1971) the development of prairie and open woodland vegetation in the

valley had probably been influence by fire for millennia (Johannessen et al. 1971, 292).

Today, the valley floor is dominated by agricultural lands and urban development. In

the remaining open areas, cessation of fire has allowed succession to take place. The once

open, fire resistant oak savanna and open grassland have become thickets of woody

vegetation, dense woodlands, and maturing forest. Douglas-fir has become dominant in many

areas overtopping and inhibiting oak growth (Johannessen et al. 1971, 286). Remaining

semi-natural communities include: oak woodlands, coniferous forests, riparian deciduous ash

woodlands and forest and grasslands.



STUDY SITE

General Setting and Environment

The W.L. Finley National Wildlife Refuge, located approximately 20 km. south of

Corvallis, west of U.S. Highway 99W (Figure 1), encompasses what is thought to be one on

the few remaining examples of undisturbed open wet prairie. The United States Fish and

Wildlife Service established the Willamette Floodplain Research Natural Area (RNA) within the

refuge on December 27, 1966 to "exemplify unplowed, near-natural grasslands" (Franklin et

al. 1972). Enlarged in 1987, the Research Natural Area now consists of 200 hectares of open

wet prairie.

A micro-topographic pattern of slightly raised, 40-50 cm., lenticular mounds surrounded

by low-lying intermounds is the most striking topographic feature of the study site,

distinguishable both in the field by vegetation structure and on low altitude aerial photographs

by the distinctive patterning of topographically associated vegetation. This mound-intermound

pattern is perhaps a remnant of past drainage patterns of the area (Frenkel and Streatfeild

1993, 2). While it has been claimed that the area had not been plowed or used for intensive

agriculture (Franklin et al., 1972 and Moir and Mika, 1972), it had been heavily grazed by cattle

(Frenkel and Streatfeild, 1994,1). It has been suggested that the higher elevated mound areas

may have been shallow tilled and seeded at one time (Streatfeild-Welch 1995). Surrounded

by agriculture, the RNA prairie drainage has been modified as indicated by several shallow

ditches. Regionally available alien seeds have found their way into the RNA resulting in a

highly altered floristic composition. Elimination of grazing in 1963, along with the cessation of

purposeful burning, has allowed woody species such as rose (Rosa spp.), spirea (Spirea

doug/ash), hawthorn (Crataegus doug/ash) and ash (Fraxinus latifolia) to invade the prairie

RNA.
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Figure 1. Location of the Willamette Floodplain Research Natural Area, W.L. Finley
National Wildlife Refuge in reference to the Willamette Valley, OR.
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At the time the RNA was established, Finley refuge staff realized that prescribed

burning was necessary to restore and maintain the open prairie complex. Lack of a clear

management plan and of a consistent burning program along with insufficient funding resulted

in an haphazard burn history (Figure 2) with only limited post-burn ecological assessment

having been conducted. Beginning in 1990 a prescribed burning management program, which

included restoration research, was initiated and incorporated into the RNA management

program. The overall purpose of the program was to restore the prairie, increase biodiversity

and maintain a diversity of habitat and native species.

Concurrent RNA Ecological Research

The prescribed burning research program within the RNA addressed four primary

concerns (Frenkel and Streatfeild 1994):

(1) consistent long term monitoring of vegetation and its response to fire,

(2) an effective long term burning program that maintains prairie

vegetation,

(3) an accurate description of the present vegetation and its relation to

environment, and

(4) an inventory of sensitive plant species.

Specific goals of this restoration research were to assess "the role of annual and triennial

burning frequency on prairie composition and structure on mound and intermound topography"

(Frenkel and Streatfeild 1993, 1).
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Figure 2. Burn history of research units within the Willamette Floodplain Research
Natural Area, 1994.
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To assess the impacts of prescribed burning upon plant communities associated with this

micro-topographic pattern, the RNA was subdivided into four research "spaces" or burn

treatment units with a planned burning schedule as follows:

Space 1: Burned annually beginning in 1990.

Space 2: Control area not to be burned.

Space 3: Burned triennially beginning in 1991.

Space 4: Burned triennially beginning in 1991 but with a complex prior burning

history.

(Note that in 1979 an accidental fire swept through the entire area; thus, all spaces have a
baseline burn history beginning in that year.)

In 1991 permanent vegetation sampling plots were established in the RNA by

Streatfeild-Welch (1995). Delineation of the four treatment areas (Spaces 1-4) and the

leriticular mound/intermound topographic pattern provided eight main sampling strata. Thirty-

eight, 25 meter square vegetation plots (plots 1-36, 5a and 18a) were randomly selected from

the strata such that at least 10 plots were selected each from Spaces 1-3 and six within

smaller Space 4; they were equally distributed between mound and intermound topographic

types (Figure 3). One-inch steel fence posts permanently mark the northwest and southwest

corners of the plots.

Vegetation within permanent plots has been sampled annually since 1991 during late

spring and early summer. Burn treatments have taken place in early fall. Using a one meter

square nested frequency sampling frame, 25 random vegetation samples which include

species identification, nested frequency and cover estimates have been collected within each

plot (see Streatfeild-Welch (1995) for details on sampling design). Vegetation analysis was

conducted by Frenkel with the use of the two-way indicator species analysis (TWINSPAN)

statistical program for vegetation classification and non-metric multi-dimensional scaling (NMS)
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Fioure 3. Delineation of research units and spatial distribution of permanent vegetation

sampling plots.



ordination of the first year's data to investigate major environmental factors such as

topography and moisture (Frenkel and Streatfeild 1994).

General characteristics of the mound-intermound topography are apparent in the field

and observable on aerial photographs. They have been further investigated by Streatfeild-

Welch (1995) using elevation transects along with vegetation sampling and analysis. Grasses,

forbs and shrubs dominate the prairie landscape. Immature hawthorn (Crataegus doug/ask)

and ash (Fraxinus latifolia) can be found in scattered groups. Frenkel and Streatfeild (1994)

found that the shrub and herb species are distributed with respect to topographic differences

and that fire alters the makeup of these communities.

The raised, lenticular mounds are generally dominated by species associated with drier

conditions. Shrub species such as Rosa eglanteria are more important in the mound rather

than intermound habitats. Annuals account for 57.0% of the species found in mound

communities. Introduced and native species are found in approximately equal proportions.

Key mound species include: Poa pratensis, Madia spp., Hypericum perforatum, Geranium

dissectum, Sidaicaea campestris and Carex tumulicola (Frenkel and Streatfeild 1994).

Within the lower lying intermound areas, herbs are important. Often submerged during

the peak precipitation in winter and early spring months, water tolerant species dominate

intermounds. Unlike the mounds, the intermounds favor perennial forbs (55.0%) and native

species dominate (73.1%). Key intermound species include: Deschampsia cespitosa,

Beckmannia syzigachne, Hordeum brachyantherum, P/a giobothrys scouleri, Juncus spp. and

Carex spp. (except C. tumulicola) (Frenkel and Streatfeild 1994).

Differences between research units are apparent both in the field and on low altitude

aerial photographs. The above mentioned differences between mound and intermound plant

communities exist, to a differing degree, in each of the treatment spaces. Space 1, burned
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annually, is generally more open than the other spaces. Except for Spiraea doug/as/i , bunch

grasses dominate. The woody vegetation associated with the higher mound areas has a low

stature and is limited mostly to rose. Single ash and small stands of hawthorn are present.

Topographic pattern expressed by vegetation is most apparent in Space 1.

Space 2, the control area, again exhibits the general mound-intermound species

differentiation. Due to the absence of fire, rose and spiraea have formed large, dense, often

impenetrable woody thickets that obscure the underlying topographic pattern.

At the time of my research in 1993, Spaces 3 and 4, which are burned triennially, had

only been burned in 1991. The intermound areas were generally open and dominated by

graminoids. The mound areas were denser with more woody vegetation but not as mature or

congested as in the control unit. Although less so than in Space 1, the differences of mound-

intermound vegetation communities are apparent on the aerial photograph.

As suggested by prior research, fire history is an important control of vegetation

composition (Johannessen, et al. 1971., Frenkel and Streatfeild, 1994., Towle, 1979.) With the

advent of annual and triennial burning in the RNA, species richness increased while local

structural diversity decreased (Frenkel and Streatfeild 1993, 1). Frenkel and Streatfeild (1991)

found that individual species displayed poor correlation with burning history. Contrary to what

was expected, Frenkel and Streatfeild's 1993 results found that annuals generally increased

with burning while perennials decreased. This may be primarily a short-term result due to a

large seed bank of alien annuals on site and a seasonal effect as 1992 was warm and dry,

favoring annuals (Frenkel and Streatfeild, 1993, 4). Rosa eglanteria exhibited a decrease with

burning yet Deschampsia cespitosa did not show a marked increase (Frenkel and Streatfeild

1994). Restoration to native prairie conditions is more easily achieved in the intermound areas

(Frenkel and Streatfeild 1993).
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METHODS

General Approach

This paper is primarily a methodological study of applying geographic techniques to an

on-going biogeographical study. This study had three objectives: (1) defining the location and

boundaries of treatment spaces and sampling plots in a standard geographic coordinate

system, (2) delineation of spaces and plots onto a scanned image creating a spatial data base

and (3) classification of vegetation and associated microtopography.

To achieve my final objective of mapping the vegetationally associated mound-

intermound micro-topographic pattern, a central question of this research became whether or

not the spectral information contained in the available monochromatic digital image was an

indicator of vegetation and microtopography and would provide statistical differentiation of

class signatures necessary for accurate digital image classification.

In my attempt to digitally classify the image based on signatures developed from the

single band, I made the following assumption: that the principles and techniques of remote

sensing and image processing traditionally used with small scale imagery could be applied to

large scale imagery of a small research site.

I hypothesized that, (a) mound and intermound vegetation differences in structure,

texture, and composition would be represented by spectral differences, and (b) these spectral

differences of micro-topographic class association would be statistically distinct. It would then

follow that digital image classification would be possible based on signature sets developed

from training plots of known vegetation type.
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Ground Point Location

The Oregon State University Department of Geosciences' newly acquired Trimble

Navigation Global Positioning System (GPS) was used to establish the location, recorded in

Universal Transverse Mercator (UTM) coordinates of the following:

(1) ground control positions for digital image rectification;

(2) control positions to aid in the digitization of the RNA boundary and

treatment units; and

(3) positions of 38 vegetation plots and 6 older research plots established in

1983.

The GPS was selected based on the following attributes: (a) use by a single operator,

(b) positional data is recorded in digital format using UTM coordinates, (c) ability to collect real-

time positions quickiy and accurately, (d) ability to record positions in the open prairie

environment lacking abundant visually identifiable reference points, and (e) ability to record

positions independent of each other. This last point is an advantage in the RNA where

distances between positions were large.

The Global Positioning System, developed and operated by the United States

Department of Defense, is a system for navigation and measuring locations upon the earth's

surface. Based on traditional principles of navigation a constellation of 24 high-altitude

satellites orbiting the earth broadcast signals which are picked up simultaneously by a

stationary receiver, in this case, the Community Base-station located on the roof of Wilkinson

Hall, Oregon State University, Corvallis and the mobile field receiver. The main functions of

the GPS are data capture and navigation (Hum 1989). For this project, ground point location

data capture was used. To increase the accuracy of position data, raw points were subjected

to differential correction using Trimble Navigation software allowing for accuracy in the sub-

meter range.
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Equipment:

. Field notebook

. 1992 black and white, low altitude aerial photograph of the RNA

Trimble Navigation Pathfinder Basic receiver (Rover 5.29) with external

antenna, tripod and battery pack

Trimble Navigation post-processing software (PFINDER 2.2) and IBM 386

computer

Community Base-station positional data (PFINDER 2.2)

Prior to conducting field work, rover data collection parameters were selected.

Informational parameters define the manner in which data will be displayed and include:

Dynamic Code, Altitude Reference, Datum, North Reference, Units of Measurement,

Coordinate System and Time Zone. Critical parameters, defining how the data will be

collected include: Positional Fix mode, Percent Dilution of Precision (PDOP) mask, PDOP

switch, Elevation mask, Signal to Noise Ratio (SNR) mask, Filter Coefficient and Position

Logging Interval. Selection of critical parameter settings was based on the advice of Trimble

Services personnel, Trimble operating manuals and a bit of best guess/trial and error. GPS

parameter settings used for this project are listed in Appendix 2.

Prior to beginning each GPS field day, a preliminary reading was recorded at the

United States Geological Survey (USGS) Global Positioning Super-station marker E141

located along the southern boundary of the RNA, approximately three quarters of a mile west

of U.S. Highway 99W. Readings at this USGS precisely located and recorded position

provided a pre-field test of the equipment, daily conditions, and an accuracy check of

differentially corrected data of this known location as an estimate of the accuracy of

subsequent readings.
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Field location readings were recorded for the northwest corner of each of the 38

vegetation plots, at least one corner of the six older research plots and 13 ground control

points at strategic locations on the perimeter of the RNA. All readings were conducted with the

rover mounted on a tripod, and connected to an external antenna balanced at two meters

above ground level. Positional readings were taken at one second intervals for at least five

minutes to include at least 180 sample point readings. During the recommended three minute

warm-up period for the rover, pre-reading information was recorded which included: the file

number, field location, number of satellites available, the PDOP, accuracy level and a check

that the reading could be made in 3D. If the number of satellites was low (less than 5) or if the

PDOP was higher than 6.0, field work was halted for the day. This same information, along

with the duration of data collection and the number of data points collected, was recorded at

the end of each reading. This process was repeated at each of the postional fix sites

(Appendix 3).

Postional data were downloaded from the rover onto a 386 computer for differential

correction using Trimble Navigation post-processing software. Accuracy was increased by

normalization of positional data using statistical corrections of the constant Base-station known

position and the satellite positional data which the Base-station receive and records. From this

statistical data base, a mean center location was calculated for the sample points in UTM units.

Data Base Development

Creation of the digital data base was essentially a four step process which included:

1. Importation of the Tagged Interleaved File Format (*.tif) digital image file into

IDRISI image (*.img) format

2. Rectification and georeferencing of the digital image

3. Creation of vector files for RNA boundary and Spaces 1-4

4. Creation of vector files for vegetation plots
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These steps created the primary data base which was then used in conjunction with

image classification techniques to create the final thematic map.

Equipment:

IDRISI Image Processing/Geographic Information System software (version

4.1)

Digital, low altitude, true color, 1993 aerial photograph of study site: scanned

as a single band, 8-bit, 1724 rows x2298 columns, 1.2 meter pixel

resolution

USGS Greenberry, Oregon 1:24,500 topographic map

. 1991 black and white, low altitude, aerial photograph of site

Differentially corrected GPS location data for ground control points and

vegetation plots

Digital color imagery, rather than low altitude black and white photography was utilized

to (1) create a GIS/digital image data base and (2) test the utility of delineating mound-

intermound micro-topography for the region based on digital classification of vegetation

communities defined by vegetation sampling field data. The digital aerial photograph of the

site was purchased from the Western Aerial Corporation (WAC) of Eugene. This image had

been produced by scanning the masked study area from a larger aerial color positive print.

The original color positive was taken using Kodak 2445 Aeriocolor negative film and a WILD

camera with a focal length lens of 213.67 mm. Flying height of the camera was 16,500 feet

above ground level. The original photograph was at a scale of 1:24,000. The final image

acquired had many suitable characteristics such as no striping, minimal distortion from roll,

pitch, yaw, and vignetting, and was acquired on a cloud-free day. The spatial resolution of the

imagery, 1.2 meter pixels (picture element or unit of resolution), was appropriately fine for the

research design.
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Scanning the photograph into digital form was conducted by WAC using a single pass

Agfa scanner (FotoLook Vi .26). Adobe Photoshop software was used to create a single

band, 8-bit per pixel color index image from the initial 3 band, 24-bit per pixel scanned image.

The 8-bit image is monochromatic with pixel values ranging from 0-255.

Rectification and Georeferencing

IDRISI software has a simple conversion command allowing for importation and

conversion of Tagged Image File Format (*.tif) files into IDRISI readable image (*.img) files.

After reformatting, rectification and georeferencing were conducted. Rectification is the

process of fitting the data to a map projection or grid system. Resampling is the means by

which data values are extrapolated from the original source grid to the new grid/projection.

The process of assigning map coordinates to the image is referred to as georeferencing.

Initially 13 ground control points were selected from the 1991 black and white aerial

photograph, distributed along the perimeter of the RNA, and distinguishable on both the

photograph and in the field. Difficulty in selecting ground control points due to: (1) the scale

difference between the photograph and the pixel resolution of the digital image and (2) the one

year difference between the photograph and the digital image, led to the dismissal of four of

the original 13 points. A first order (linear) polynomial fit using a nearest neighbor resampling

technique for a RMS erroi of 2.72 pixels (+1- 3.26 meters) was selected as it requires the least

number of control points (three required) and retains much of the original data integrity. Six

control points remained after three points with high RMS error were removed during the

rectification process.

The final ground control points were not evenly distributed along the perimeter and

tended to be located in the northern and eastern regions of the RNA boundary due to the lack



of distinguishable features in other areas of the digital photo. As a result, potential distortion is

both increased and concentrated outside of these areas of the image. Nonetheless, the

distortion effects seemed to be minimal as the overlay of GPS positions on the georeferenced

image show little displacement from their original positions.

Creation of Vector Files

Following georeferencing, vector files defining the RNA boundary, burn units (Spaces

1-4) and vegetation plots (1-36, 5a and 18a) and six past research plots were created.

Boundary and research space vector files were built using a combination of differentially

corrected GPS perimeter points and on-screen digitization with the aid of the 1991 hard copy

black and white photograph for boundary attribute recognition. Vegetation plot vector files were

created using the differentially corrected GPS position acquired for the northwest corner

marker of each of the 38 vegetation plots. From this corner point position the three remaining

corner point positions for each plot were calculated by adding 25 meters at 90 degree angles,

yielding a 25 meter square area for each plot. This same procedure was followed for the six

older 450 foot square research plots.

Digital Image Classification

Three stages are involved in the supervised classification process: training,

classification and output (Lillesand and Kiefer 1979, 669). Training involves defining regions

of the image that represent the output classification categories. Training areas should be as

homogeneous as possible and exhibit unimodal frequency distributions in each of the bands

used (Campbell 1987,314).
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A signature is a statistical description of a class from these training areas combined

over all input bands. During classification each pixel (picture element or cell of resolution) in

the image is statistically compared to the signatures and then assigned to a class.

Procedure:

Creation of Relative Richness image

Division of image into research sub-spaces

Digitization of training sites

Development of training signatures

Examination of pre-classification training statistics

Application of classification routine using (a) Maximum Likelihood Classifier

and (b) Minimum Distance to Mean Classifier upon selected bands

Recombining of classified research sub-spaces into single thematic maps

Extraction of classification results

Final cartographic output

Creation of Relative Richness Band

Traditional image classification relies on the use of either a single band or a set of

bands of reflectance data, each limited to a narrowly defined region of the electromagnetic

spectrum. Signature differentiation can often be effectively increased through the use of

multiple data sources provided by additional bands of data. Therefore, a second image was

created in order to test the effectiveness of signature differentiation with additional information

provided bya second band of data.

The visual distinction between mound and intermound topographic patterns on the

digital image is a result of reflectance differences in the visible bands due to the color,

physiology, phenology and density of the associated vegetation. Distinction in

mound/intermound community structure and composition is revealed by both vegetation

analysis and digital analysis of the vegetation polygons extracted from the original image.
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The PATTERN module within IDRISI uses variability within a 3x3 pixel moving window

to assess a variety of pattern measures commonly used in landscape ecology. To investigate

signature distinction based upon patterns within the micro-topographic communities the

Relative Richness index was selected to create a pseudo-band. Relative Richness is the

variability of pixels within the 3 x 3 window as a percentage of maximum variability possible

(R=n/nmax*1 00, where n= number of different classes present). Output from the module is a

new image where the new pixel value is resultant of the pattern index selected upon the

original value.

Because the numeric results of the index were narrow, a multiplier of 63 was applied to

the resulting image extending the digital range as close as possible to the 0-255 range

achievable with 8-bit data. Classification routines later applied to the data require the input of

byte binary data. Therefore, data resultant from the Relative Richness index was truncated to

whole numbers.

Treatment Space Division

Prior to each classification, four separate images, each consisting of one of the four

research spaces, were masked from the original and Relative Richness images. Because of

its similar burn history the undesignated area to the west of and contiguous to Space 2 was

included as part of Space 2 for classification purposes. Digital numbers outside the research

areas were reset to zero. This allowed for each of the treatment areas to be classified

separately. Once classified, the separate images of the treatment areas were merged to form

a single image consisting only of areas within the RNA study site.

Pre-classification separation of research areas was conducted for two reasons. First,

it eliminated classification of areas within the image yet outside of the study area. Second, as



was discovered during a pre-test using the maximum likelihood classification routine on the

full-scene original single band image, failure to do so resulted in classification error. The eight

signatures, based on all burn history and topographic combinations, were inseparable. This

was due to the limited information contained in the single band. For this reason, a priori

knowledge of burn history was used to eliminate the need for between space signature

development and classification distinction.

Development of Training Site Vector Files

Supervised classification relies on the availability of a priori knowledge of the study site

so that training sites can be established from ground locations of known characteristics.

Therefore, 36 of the 38 vegetation sampling plots were used as training sites for the mound-

intermound classification of the RNA. Plots 2 and 5A in Space 1 were not used because of

their location on a mound-intermound fringe. This made them difficult to classify into either

topographic type based on statistical analysis of vegetation association or wetland species

association index (Frenkel and Streatfeild 1994).

Signature training sites for supervised classification were created within the boundaries

of the 36 research vegetation plots. Signature training sites are samples of the desired

classification categories. Digital numbers in each site are used to develop signature statistics.

These signatures are then analyzed, edited if need be, and used to classify the remaining area

of the image into one of the signature classes.

Training sites were created within the vegetation plots for two reasons. First, Frenkel

and Streatfeild (1994) had previously classified these sites as being of either mound or

intermound topography based on field observations of the plots, vegetation associations and

original aerial photographic selection of plot location by strata association. Second, the
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extraction of statistics from a sub-space within each of the research plots allowed classification

accuracy to be established by examining classification results from the area within the plots but

not included n the development of training signatures.

Polygon files for training statistic development were created by on-screen digitization.

Using guidelines digitized from the upper left to lower right and the upper right to lower left

corners of the plot, an X shape polygon of approximately four pixels width was digitized for

each vegetation plot (Figure 4). Final training sites encompassed approximately 27% of the

area within vegetation plots for each topographic class per space.

Figure 4. Schematic of a mound associated vegetation plot (bold line), guidelines (dotted line) and digitized
training areas (grey area) useu for signature development, classification accuracy assessment was based on the
area lying within the vegetation plot polygon yet not included within the signature training area (red area).

Mound-Intermound training sites and plot assignments were:
Space 1 Mounds: 3, 4, 5, 8

lntermound: 1,6, 7, 9, 10

Space 2 Mounds: 14, 15, 16, 17, 18, 18a
Intermounds: 11, 12, 13, 19,20

Space 3 Mounds: 21, 22, 24, 29, 30
Intermounds: 23, 25, 26, 27, 28

Space 4 Mounds: 32, 33, 34
Intermounds: 31, 35, 36
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Development of Training Signatures

Signature training polygons were classed according to micro-topographic association

(mound or intermound) within a separate polygon file for each of the burn treatment and

control spaces (Spaces 1-4). Signatures were created for micro-topographic association

based on the original and Relative Richness pseudo band. This yielded four signatures per

treatment space.

Application of Classification Routine

Three classification strategies were applied: (1) signatures developed from training

sites taken from the original image were used to classify the image using IDRISI's maximum

likelihood routine and (2) minimum distance supervised classification routine, (3) signature sets

from the original and Relative Richness images were used in combination with the maximum

likelihood routine.

The use of the minimum distance and maximum likelihood classifications with training

statistics from the original single band data allowed for comparison between classification

routines. The maximum likelihood routine using the combined training statistics of the original

and Relative Richness images allowed for the assessment of additional bands of data created

from a single data source as a means of increasing signature differentiation.

Maximum Likelihood Classifier. This classification routine was performed using

signatures based on the original single band, 8-bit image, and with the combined original and

Relative Richness signature sets. While computationally demanding, an appealing attribute of

the maximum likelihood classifier is its ability to take into consideration both statistical variation

within a class and overlap of the digital number frequency distributions of classification

categories. By taking into account the mean and the variance or variability of values within



each class, this classifier is better able to discern the membership and class association of

"maximum likelihood". Because of this ability it is also very sensitive to the quality of the

training data and is based on the assumption of normality of the frequency distribution of pixel

values within each training class (Campbell 1987, 320).

The maximum likelihood routine in IDRISI allows the user to employ a priori knowledge

about the site in question by permitting the user to either specify the probability of pixel

inclusion in a class based on the expected class coverage or to assume equal class

probability. For this application equal probability of mound versus intermound association was

chosen. Additionally, the routine allows the user to specify what percent of the pixels least

likely to belong to the categories in question are to be left unclassified (either 0%, 1%, 5% or

as a chi-square statistic). In order that only the most probable pixels be classified and

therefore reduce misclassification, the least likely 5% were selected to be unclassified.

Minimum Distance (to mean) Classifier. The minimum distance classification routine

was performed on the original single band image. This type of classification is one of the more

mathematically simple and computationally efficient routines but has limitations. Pixel

classification is based on the distance between the mean of the training plot digital numbers

and the digital number of the pixel to be classed. Unlike the maximum likelihood classifier, this

routine does not consider statistical variance within classes. Thus, reliability is lacking in cases

where spectral classes are close or overlapping and have a high level of variance (Lillesand

and Kiefer 1979, 673).

Within this classification module IDRISI has two methods for calculating distance to the

mean: raw distances or distances normalized by the standard deviation in each band under

consideration. In either case the user must specify the maximum distance beyond which a

pixel will be left as unclassed (zero). The IDRISI manual suggests that distances in standard
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deviations should have superior performance when a large number of training pixels are used.

It was assumed that training areas for this project had a sufficient number of pixels (428-1033

per signature); therefore, 1.96 standard deviations, or 95% of those pixel values closest to the

mean, were selected to be classified.

Cartographic Output

Based on accuracy assessment comparisons, the single band maximum likelihood

classification was selected for final cartographic output. To reduce noise and smooth

fragmentation, a moving 3x3 pixel mode filter was passed over the maximum likelihood output

image using IDRISI's FILTER module. To add text and color print maps, IDRISI image files

(*img) were reformatted (*.tif) and imported into ARCINFO's GRID module. Once transformed

into a grid format the images were displayed in ARCPLOT and titles, neat lines and legends

were added to prepare the maps for printing. ARCPLOT compositions were then converted to

Postscript format and printed on a Colorcal Postscript printer.
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RESU LTS

Global Positioning System

Average differences between the pre-field collection GPS tests and the USGS defined

position of the Super-station were sub-meter in the easting reading at 0.93 meters and 1.47

meters in the northing measurement. The minimum difference was 0.29 meters in the northing

and 0.01 meters in the easting. Maximum difference in the northing was 2.54 meters and 1.97

meters in the easting. From these test readings taken prior to each GPS field period, it can be

assumed that subsequent field positions were at this level of accuracy.

Use of differentially corrected GPS positions as ground control points yielded a

georectified image with an postional error of 3.26 meters (RMS 2.74). Accuracies of the

differentially corrected GPS positions (+1- 2.54 meters) and georeferencing process (+1- 3.26

meters) were also evident when the differentially corrected field positions were placed upon

the georeferenced image. Corrected GPS positions were within 1-3 pixels (+1- 1-4 meters) of

the feature locations obs-zvable upon the image.

Appendices 4 and 5, respectively, record the differentially corrected GPS locations in

UTM units of the 38 permanent vegetation plots and six 1983 research plots with a locational

accuracy of +1- 2.54 meters. This accuracy estimate is based on differentially corrected GPS

readings of the USGS Super-station. Also shown are the number of samples recorded and the

standard deviation of the samples. Appendix 6 records the differentially corrected GPS

positional reading in UTM units taken prior to each GPS field day at the USGS Super-station

marker.
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Pre-Classification Vegetation Sampling Plot Characteristics

Table 1 provides micro-topographic class spectral reflectance statistics for the original

single band, 8-bit image as derived from the 36, 25 meter square, vegetation sampling plots

distributed in each of the four research spaces. Extracted plot data were combined according

to micro-topographic class and research space association. Statistics include the spectral

reflectance mean and standard deviation for each micro-topographic class per research space.

Also included are the range of values (highest digital number minus lowest digital number), the

number of different digital numbers present (digital diversity), and the number of pixels

representing each micro-topographic/treatment space category. Difference values between

the mound and intermound statistical characteristics are also shown for each of the research

spaces.

Within-space mean reflectance value differences between micro-topographic classes

are moderate, and especially low within Space 3. Standard deviations for micro-topographic

classes within all spaces are relatively high but tend to be higher for intermounds than for

mounds.

The digital diversity (number of different digital numbers present) of the mound and

intermound vegetation sampling plots may be an indicator of textural heterogeneity reflecting

structural and species diversity. Spaces I and 3 exhibit large differences in digital diversity

between micro-topographic classes (24 and 29 respectively) while Spaces 2 and 4 show rather

low differences (3 and 5 respectively).
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Table 1. Research space statistics derived from vegetation sampling plots for original single
band, 8-bit image.

Mean

Space 1 Mound 149.47 17.95 168 62 2206

Space 1 Intermound 126.59 32.62 235 86 2904

Difference 22.88 67 24 693

Space 2 Mound 153.92 14.53 120 53 3552

Space 2 Intermound 117.02 26.87 192 50 2904
Difference 36.90 72 3 648

Space 3 Mound 162.43 9.47 74 27 2904

Space 3 Intermound 162.30 21.23 182 56 2880

Difference 0.13 108 29 24

Space4Mound 160.15 9.97 67 24 1727

Space 4 Intermound 142.83 14.86 93 29 1728

Difference 17.32 26 5 1

(1w]



Table 2. Training site statistics for original single band, 8-bit image.

Digital Diversi Sample Se (pixels)

Space 1 Mound 147.32 19.32 135 40 645

Space 1 Intermound 126.62 32.38 189 63 834
Difference 20.70 54 23 189

Space2Mound 153.36 14.73 109 42 1033

Space 2 Intermound 117.05 27.30 192 40 757
Difference 36.31 83 2 276

Space3Mound 162.18 9.26 73 22 827

Space3lntermound 161.77 21.68 182 44 803
Difference 0.41 109 22 24

Space 4 Mound 160.40 10.02 67 25 454

Space 4 Intermound 142.51 15.10 81 24 428
Difference 17.89 14 1 26

31



Table 3. Training site statistics for Relative Richness pseudo-band.

Mean . Standard Deviation Ran9e Di9ita . Diversi Sample Size(pixeis

Space 1 Mound 116.65 34.16 177 8 645

Space 1 Intermound 133.95 34.64 177 8 834
Difference 17.30 0 0 189

Space 2 Mound 112.46 34.98 202 9 1033

Space 2 Intermound 111.69 30.45 177 8 757
Difference 0.77 25 1 276

Space 3 Mound 86.55 24.54 151 7 827

Space 3 Intermound 110.27 32.34 202 9 803
Difference 23.72 51 2 24

Space4Mound 91.80 25.89 151 7 454

Space4lntermound 110.72 30.76 152 7 428
Difference 18.92 1 0 26
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Training Site Statistics (signatures)

Tables 2 and 3 record the mean, standard deviation and number of pixels included

within each of the micro-topographic signature training sets per research space for both the

original image (Table 2) and the Relative Richness image (Table 3). Additionally, digital range

and diversity are recorded. Difference values between class signatures for each of the above

statistics are shown for each research space as in Table 1 for the original image.

While smaller than the vegetation plots from which they were extracted, the signature

training sets maintain similar spectral reflectance characteristics. Again, within-space micro-

topographic class reflectance differences are moderate and especially low within Space 3

(0.41). Standard deviations within all spaces are relatively high. Signature class differences in

digital diversity are large in Spaces 1 and 3. Low differences in digital diversity are found in

Spaces 2 and 4 (Table 2).

Signature training sets derived from the Relative Richness image also exhibit moderate

mean reflectance value differences and high standard deviations for the micro-topographic

classes (Table 4). Unlike the original data set, it is in Space 2 that the mean reflectance value

difference is extremely low (0.77) while Space 3 signatures display the greatest difference in

class means (23.72). Because of the generalizing effect of the Relative Richness filter, the

difference in the number of digital numbers present in each class is rather low (Table 3).

Vegetation Plot and Training Site Histograms

Figures 5 through 7 display spectral reflectance value histograms for mound and

intermound micro-topographic type as expressed by vegetation plots and the sub-plot training

sites for each of the research spaces from the original and Relative Richness images.
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SPACE I

SPACE 2

SPACE 3

SPACE 4

[I

F'

MOUNDS INTERMOUNDS

0.00 26.6061.20 75.60102.40 ¶26.00 163.60 ¶70.20 204.60 230.40 258.00

0.00 26.80 51.20 76.60 102.40 126.00 163.60 ¶70.20 204.60 230.40 256.00

0.00 25.80 51.20 75.80 ¶02.40 120.00 153.60 170.20 204.60 230.40 256.00

0.00 25.60 51.20 76.60 02.40 126.00 ¶53.60 ¶79.20 204.80 230.40 256.00

F'

F'

0.00 26.80 61.20 7680 102.40 ¶20.00 163.60 ¶70.20 204.60 230.40 256.00

0.00 26.60 51.20 15.80 102.40 ¶26.00 ¶63.60 175.20 204.60 230.40 258.00

0.00 25.80 5120 75.80 102.40 ¶26.00 153.60 ¶76.20 204.60 230.40 268.00

0.00 25.6051.20 76.60 ¶02.40 ¶25.00 ¶53.60 ¶70.20 204.80 230.40 256.00

Figure 5. Histograms of digital numbers representing vegetation plots masked from the
original single band image.
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.00

0.00 25.80 51.20 78.60 102.40 128.00 163.60 179.20 204.80 230.40 258.00
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U

F'

I NTERMOUN DS

.00

0.00 26.60 61.20 78.90 102.40 128.00 163.60 178.20 204.80 230.40 258.00

., I Mi
0.00 26.60 51.20 18.80 102.40 128.00 163.6

1.
I 119.20 204.80 230.40 256.00

0.00 25.60 51.20 78.80 102.40 128.00 163.80 179.20 204.80 230.40 256.00

Figure 6 Histograms of digital numbers representing class signatures from training plots
masked from the original single band image.
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In comparing spectral reflectance histograms based on the original digital image it is

evident that the training sites (Figure 6) closely approximate the mean, range, and general

distributional shape of the vegetation plots (Figure 5) from which they were sub-set. Important

differences between micro-topographic class spectral data include the range and normality of

distribution. Frequency distributions of digital numbers extracted from mound regions are

narrower, representing less deviation from the mean and a smaller value range than those of

intermounds. The range of the mound data often intersect the range of the intermound data.

It is evident that there is slight bimodality to the distribution of the intermound data. This is

especially true for Spaces I and 2. The greater range, deviation and diversity of digital

numbers of Space 1 intermounds probably reflects the controlled burn 9 months prior to the

image date. The uneven spread and intensity of the burn created a diversity of surfaces and

textures with exposed soil, charred vegetation, re-growth, and unaffected older growth all

present in the area. These differences in signature characteristics are important in assessing

both the classification technique used and the results achieved.

Figure 7 displays training site histograms from the Relative Richness pseudo-band.

Because of the generalizing effect of the Relative Richness algorithm, these histograms are

smoother in appearance, display a more normal distribution, and are comprised of fewer digital

numbers.

Image Classification Accuracy Assessment

Classification accuracy assessment results are presented in Table 4. Results are

separated by classification routine and bands used in the classification process. Results are

based on the total number of pixels within the accuracy assessment area (within vegetation
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Table 4. Classification assessment of vegetation plots based upon the size of the training
sample by space and by topographic class.

MAXIMUM LIKELIHOOD CLASSIFICATIONS:

Training Signatures and Classification based upon Original 8-bit Band Values:
MOUND INTERMOUND AVERAGE PER SPACE

CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS

SPACE 1 89.74% 7.62% 2.65% 53.72% 39.86% 6.43% 68.91% 26.26% 4.83%

SPACE2 83.72% 13.10% 3.18% 71.97% 20.63% 7.41% 78.31% 1657% 5.12%

SPACE 3 92.20% 7.80% 0.00% 34.81% 59.94% 5.25% 63.51% 33.87% 2.62%

SPACE 4 85.13% 13.06% 1.81% 68.46% 25.31% 6.23% 76.70% 19.25% 4.05%

AVE. PER 87.58% 10.48% 1.94% 56.23% 37.42% 6.35% 71.68% 24.15% 4.17%

CLASS

Training Signatures and Classification based upon Original and Relative Richness Band Values:
MOUND INTERMOUND AVERAGE PER SPACE

CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS

SPACE 1 80.93% 14.64% 4.44% 52.75% 33.43% 13.96% 64.64% 25.50% 9.86%

SPACE 2 76.06% 19.33% 4.61% 74.71% 16.35% 8.94% 75.44% 17.96% 6.90%

SPACE 3 87.53% 12.37% 0.10% 45.84% 46.51% 7.66% 65.68% 29.44% 3.88&

SPACE 4 81.90% 15.42% 2.68% 68.54% 24.46% 7.00% 75.15% 19.99% 4.86%

AVE. PER 81.29% 15.74% 2.97% 59.77% 30.64% 9.59% 70.38% 23.30% 6.33%

CLASS

MINIMUM DISTANCE CLASSIFICATION:

Training Signatures and Classification based upon Original 8-bit Band Values:
MOUND INTERMOUND AVERAGE PER SPACE

CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS CORRECT ERROR UNCLASS

SPACE 1 73.11% 25.63% 1.25% 67.10% 27.10% 5.80% 70.64% 26.48% 3.88%

SPACE 2 76.26% 20.56% 3.18% 76.62% 15.98% 7.41% 76.43% 18.45% 5.12%

SPACE 3 0.00% 100.0% 0.00% 94.75% 0.CX)% 5.25% 47.38% 50.00% 2.62%

SPACE 4 79.86% 18.33% 1.81% 71 .31% 22.46% 6.23% 75.54% 20.42% 4.06%

AVE. PER 55.25% 43.58% 1.65% 78.08% 15.75% 6.18% 66.83% 29.46% 3.95%
CLASS
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sampling plot yet not included within the training site for signature development) per

topographic class for each research space.

"Correct" values are the percentage of pixels within the accuracy assessment area per

topographic class and classified as such by the classification routine per space. "Error" values

are the percentage of pixels within the accuracy assessment area per topographic class per

research space that were misclassified as a result of the classification routine. It is important

to note that misclassification of one class results in over representation of the other. This type

of error is not accounted for in the accuracy assessment of the over represented class.

"Unclass" is the percentage of pixels that remained unclassified after the classification was

performed.

Research space averages (right hand column) are based on the total number of pixels

within the accuracy assessment area of both the mound and intermound topographic class per

space. Mound and intermound topographic class averages (bottom row) are based on the

total number of pixels within the accuracy assessment area for all spaces per topographic

class combined. Final averages (bottom row, right, bold) are based on the number of pixels

within all assessment areas classified as correct, error or unclassified for the total number of

assessment pixels.

Table 4 shows that when using the maximum likelihood classifier, mounds tended to

have higher correct averages than the intermounds. Using signatures based on the original

image, mounds classified correctly at an average of 87.58% while intermounds correctly

averaged at 56.23%. Error in intermound classification is especially apparent in Space 3

where correct classification was only 34.81%. Using signatures based on both the original and

Relative Richness band also produced better results for the mounds at 81.29% as compared

to the intermounds at 59.77%. Thus, while the addition of the secondary data band increased

the accuracy of intermound classification, primarily due to the increased accuracy of
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intermound classification within Space 3, it was at the expense of the accuracy of the mound

classification.

The minimum distance routine had the highest percent correct average (78.08%) for

intermounds. Yet, it can be seen that this was at the expense of the accuracy of the mound

classification, which achieved an overall accuracy of only 55.25%, due to the extreme

classification error associated with Space 3.

The overall highest percentage of correctly classified pixels for both topographic

classes within all spaces resulted from signatures based on the original image using the

maximum likelihood routine (71.68%). The greatest overall error occurred using the minimum

distance algorithm (29.46%). The largest percentage of pixels left unclassified were a result of

the combined original and Relative Richness signature sets using the maximum likelihood

classifier (6.33).

Table 5 lists plot lavel accuracies achieved when using the maximum likelihood

classifier and training plots from the original image, which had resulted in the highest overall

accuracy as outlined in Table 4. Mound plots had generally high accuracies with 15 of the 18

mound designated plots achieving classification accuracies of +80%. Plots 17 and 18a in

Space 2 and plot 21 in Space 3 classified less than 80% correctly. Intermounds plots are more

variable and less successful in their classification success rate. Five of the 18 intermound

plots achieved +80% correct classification. Of the 13 plots classifying less than 80% correctly,

eight classified below 50% correctly and include all intermound plots located in Space 3, plots

7 and 9 in Space 1, and plot 20 in Space 2.

Table 6 lists the post classification percentages of total area classed by topographic

type or left unclassified for each space according to classification routine and bands used in

the classification process. Results show that regardless of the classification algorithm used, a

higher percentage of all spaces is classified as mound. The minimum distance routine tended



to assign more area to intermounds while the maximum likelihood classifier assigned a higher

percentage of area to mounds. Maximum likelihood classification based on the two-band

signature set resulted in the highest percentages of unclassed pixels.

Figure 8 is the final classification output for this study. This map was created using the

maximum likelihood classification routine and signature sets developed from the original single

band image. In order to achieve a smoother image and reduce noise, a 3 pixel X 3 pixel

"mode" filter was passed over the maximum likelihood output image.
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Table 5: Plot assessment of classification accuracy of the maximum likelihood routine based
training sites form the original image. Percentages based on total pixels within the accuracy
assessment area of individual plots.

PLOT

SPACE I
3
4
5
8

SPACE 2
14
15
16
17
18

1 8A

SPACE 3
21
22
24
29
30

SPACE 4
32
33
34

Maximum Likelihood Classification: Original Image

MOUND INTERMOUND

CORRECT ERROR UNCLASS PLOT CORRECT ERROR UNCLASS

95.28% 1.89% 2.83% 1 68.47% 26.82% 4.71%
81.63% 15.22% 3.15%

:
6 81.75% 15.17% 3.08%

94.56% 0.52% 4.92% 7 25.06% 73.29% 1.65%
88.12% 11.16% 0.71% 9 10.75% 77.50% 11.75%

10 81.75% 6.75% 11.50%

97.40% 1.18% 1.42% 11 86.08% 9.43% 4.48%
91.71% 1.22% 7.07% 12 71.59% 0.00% 28.40%
90.25% 2.00% 7.75% 13 72.58% 25.58% 1.84%
67.06% 32.24% 0.70% 19 94.88% 4.65% 0.47%
93.72% 5.58% 0.70% 20 33.89% 64.92% 1.19%
63.08% 35.05% 1.87%

79.00% 21.00% 0.00% 23 34.04% 59.15% 6.81%
96.52% 3.48% 0.00% 25 48.18% 51 .30% 0.52%
94.66% 5.34% 0.00% 26 17.75% 71.75% 11.0%
94.84% 5.16% 0.00% 27 37.70% 57.61% 4.68%
94.88% 5.12% 0.00%

:

28 37.05% 59.77% 3.18%

80.32% 18.29% 1.39% 31 81.34% 7.14% 11.52%
91.81% 5.71% 2.48% 35 74.24% 21.31% 4.45%
83.72% 14.68% 1.61% 36 50.11% 47.15% 2.73%
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Table 6: Percent area classed as mound, intermound or unclassed per space by classification
routine.

MOUND INTERMOUND UNCLASSED

SPACE 1 MINDIST ORIGINAL 56.16% 40.19% 3.65%

MAXLIKE ORIGINAL 72.90% 21.95% 5.15%

MAXLIKE ORIG. AND RICHNESS 64.27% 26.06% 9.67%

SPACE2 MINDISTORIGINAL 52.58% 42.40% 5.01%

MAXLIKE ORIGINAL 61 .36% 33.62% 5.01%

MAXLIKE ORIG. AND RICHNESS 52.69% 39.31% 8.00%

SPACE 3 MINDIST ORIGINAL 0.00% 91.36% 8.64%

MAXLIKE ORIGINAL 58.14% 33.21% 8.64%

MAXLIKE ORIG. AND RICHNESS 47.98% 40.53% 11.49%

SPACE 4 MINDIST ORIGINAL 46.87% 45.04% 8.09%

MAXLIKE ORIGINAL 52.28% 39.63% 8.09%

MAXLIKE ORIG. AND RICHNESS 49.22% 41 .63% 9.15%

Note: Percent area calculations for Space 2 include the undesignated area on the western edge and contiguous to
Space 2.
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DISCUSSION

Global Positioning System

The use of the Global Positioning System (GPS) in this research project proved

invaluable for accurate location of ground control points used in image rectification and plots

for subsequent image classification. Traditional means of geographic field mapping are often

difficult, labor-and time-intensive, and require the positional reading of numerous features,

some of which must also be identifiable on a second information source containing geographic

coordinates. Transfer of field information onto a secondary source can also be time and labor

intensive, requiring that the researcher be trained in geographic field techniques, map, aerial

photograph and satellite interpretation and have cartographic skills. On the other hand, the

GPS field unit is small, light weight and requires only one person to operate. In sites lacking

numerous distinctive features, as was the case in this study in the open prairie of the Finley

Research Natural Area, the ability of the GPS to take positional readings from any point in the

field was advantageous and very time efficient. Finally, because the results of the GPS are

digital and in standard geographical units (i.e., UTM coordinates), the data can be transferred

directly to the digital image or to topographic maps.

Classification

The results of this classification depended on several factors: quality of the original

data, accuracy in transforming the original data to a format suitable for processing, training site

quality, suitability of identification classes, processing capabilities and algorithms of the image

processing software, the addition of a pseudo-band as an additional source of data and finally,

the interpretive skill of the analyst.
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Information provided by the image, as related to the growth stage of the vegetation, is

greatly dependent on image date. The May 22 date of the image used in analysis was well

within the time frame of early May to late June in which plant development and photosynthesis

would be at a maximum. Yet, an earlier date may have provided better distinction between

topographic classes within the wetland prairie. At an earlier date, the intermounds, being at

times submerged and saturated and predominately made up of annual herbs may have been

more distinguishable from the perennial shrub-dominated mounds.

Limited information contained in the single band image is undoubtedly the most

important factor affecting classification results. The process of aggregating three fine

resolution visible reflectance channels into one wide monochromatic channel results in a loss

of spectral information which would otherwise facilitate differentiation of vegetation

characteristics. Because both the maximum likelihood and minimum distance algorithms

classify pixels based on the mean value of the training sets, signature distinction within a

single dimension becomes difficult. Maximum likelihood offers the advantage of considering

both the variance and covariance of the class response patterns but assumes normality of the

distributions. When applied together, the eight micro-topographic / fire regime signatures

derived from the original image were indistinguishable due to the combination of similar means

and large standard deviations of the signatures. Pre-classification spatial segmentation of the

image into research spaces eliminated the need for signature distinction based on fire history.

Regardless of treatment space, signature differentiation between mound and

intermound communities was difficult due to similarity in means and large spectral variation of

intermound signatures. This resulted in moderate to complete overlap of signature classes as

displayed in the digital number frequency histograms of signature training sets. Additionally,

intermound signatures of Spaces I and 2 from the original image tend to display a histogram
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that is slightly bimodal (Figures 5 and 6). Overlapping signature set distributions and similarity

of class means within the single wide spectral band used in this project resulted in the

misclassification of intermound areas as mounds. It is likely that those pixels spatially within

intermound plots, yet having digital values both close in spectral space to the similar class

means and represented within the narrow range of mound signatures, were misclassified as

mound. Signature distinction within Space 3 was extremely difficult as the intermound

signature completely encompasses that of the mound. The problems with signature distinction

mentioned above are significantly related to the use of a single, wide, monochromatic spectral

band for classification but are also related to the spectral characteristics of the micro-

topographic classes and must therefore be considered in the context of the training

methodology used in this research project.

Overall accuracy using the maximum likelihood routine and signatures from the original

image was 71.68%, with mounds averaging 87.58% and intermound only 56.23% (Table 4).

Yet, the break down of accuracies to plot level reveal that accuracies for a given region are

highly variable and strongly influenced by specific plots (Table 5). Many of these low

accuracies can be explained at the plot level and attributed to such factors as intra-plot

heterogeneity where plots straddle the mound-intermound transition (plot 7), intra-plot

heterogeneity associated with homogenous patchiness of certain species which may be

uncommon to the associated class (plots 17, 20), intra-plot floristic homogeneity yet

dissimilarity within a general micro-topographic class (plots 1 and 9), and intra-space class

similarity probably as a function of successional stage (Space 3). Individual plot characteristics

affected classification accuracies. Therefore, the issues of (1) training site quality and (2)

treatment of training sites for signature development, both related to the use of pre-defined

identification classes based on detailed vegetation analysis, need to be examined.
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Vegetation analysis using field plots is commonly conducted in a subjective manner, or

objectively using multivariate techniques. While both phytosociologists and remote sensing

practitioners are interested in analyzing and ultimately documenting the vegetative landscape

they differ in their approach. As noted by Treitz etal. (1992), phytosociologists have tended to

employ objective analysis for plot classification, expounding on the repeatability and less

operator bias qualities of the multivariate techniques. From the phytosociologist's perspective

ground data should provide sufficient information for remote sensing vegetation mapping.

Remote sensing analysts, on the other hand, have tended to favor subjective techniques,

employing the use of field notes, low altitude aerial photography and ground photography to

collect field data closely correlated with the spectral data (Treitz et al. 1992).

A comparison study conducted by Treitz etal. (1992) analyzed accuracies achieved

using MEIS II high resolution digital imagery and supervised classification techniques with both

TWINSPAN generated and subjectively defined training class sets. The researchers note that

in addition to the objective, quantitative and repeatable nature of TWINSPAN, the multivariate

clustering algorithm used to classify plots is similar to those used to cluster remotely sensed

data. They hypothesized that supervised classification best revels ecologically important

characteristics of the vegetation. Thus, objectively and quantitatively defined training classes

would provide results superior to those obtained using the subjective approach traditionally

employed in remote sensing vegetation mapping. Yet, their analysis found that qualitatively

generated field-plot descriptions produced a more statistically accurate digital classification of

MEIS II data than did detailed quantitative ground information (Treitz et al. 1992, 65).

Their conclusion was based, in part, on the problems associated with distinguishing

classes consisting of multiple dominant species. In these cases subjective methods tend to be

more monothetic and base class division on dominant species. Because the detecting
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capabilities of the MEIS II sensor which, with the exception of the near-infrared band, primarily

measures the top layer of vegetation, the subjective methods produced a classification

scheme better suited to the spectral qualities of the image (Treitz et a! 1992). The color aerial

photography used in this project, which lacked either unique bands or an infrared channel,

also primarily detected qualities of the vegetation canopy. Additionally, some of the signature

training sets consisted of multiple dominant species. Thus, the findings of Treitz etal. (1992)

can be considered in the context of the training methodology used in this project and highlight

the importance of working with identification classes and subsequent training sites which are

spectrally uniform, adequately representative of identification classes and correlated with the

spectral data available in the image.

Identification classes and subsequent training sites used in this project were based on

previously established vegetation sampling plots where micro-topographic association was

initially determined on observable characteristics (using low altitude aerial photography and

field observation) and further refined with TWINSPAN clustering based on detailed vegetation

sampling. Because vegetation plots were originally selected for ecological field analysis,

remote sensing and image processing were not considered. While classes developed by

statistical routines such as TWINSPAN may be ecologically similar based on species

abundance, composition and percent cover yet distinct based on the present or absence of

indicator species, the resulting classes may not be spectrally similar nor adequately distinct.

Thus, the compatibility of pre-determined, ground data based TWINSPAN-generated

identification classes with the spectral qualities of the data is an issue related to training site

quality and signature development.

Successful supervised classification is greatly dependent upon the analyst's knowledge

of the site under consideration. Research conducted by Scholz etal. (1979) found that "...the
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major variable affecting correct classification accuracy is not the classifier, but the training

method used in generating the class statistics. The most important aspect of training is that all

cover types in the scene must be adequately represented by sufficient number of samples in

each spectral subclass" (as cited in Campbell 1987, 315). Uniformity or homogeneity within

training sets is important to successful classification (Campbell 1987, 314).

In retrospect, the manner in which I dealt with the creation of signatures from training

sites extracted from the vegetation plots may have been inadequate. Species composition is

heterogeneous within and among mounds and intermounds. This adds another level of

complexity to differentiating the two cover types, as community structure and composition vary

from mound to mound and within the intermound regions. Such factors as differential effects

of burning within the research space, environmental factors such as local micro-topography

and soil characteristics, drainage patterns, proximity to alien seed sources, and several plots

straddling the mound-intermound boundary generally increase class heterogeneity thus

increasing the complexity of class signatures. The generalizing effect of the single, wide

spectral data band magnified problems associated with intra-class complexity and together

increased the chances of statistical similarity between signature sets further hindering

signature distinction.

Variability was somewhat accounted for by dividing the research unit into treatment

subspaces, training and classifying each separately. Treitz etal. (1992) suggest that one way

TWINSPAN clusters might perform better with spectrally distinct remotely sensed data would

be to modify the parameter space on which TWINSPAN operates forming spectrally distinct

TWINSPAN clusters by combining spectrally non-distinct species. In this case, training classes

were not spectrally distinct; therefore, rather than modifying TWINSPAN classes, further

division of micro-topographic signatures into spectral sub-units would have been appropriate.
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This is especially evident in the intermound signatures which exhibit large standard deviations

and bimodality, most prominent in Spaces 1 and 2 (Figure 6).

While TWINSPAN does develop a dendrogram where classes can be considered at

various levels of aggregation (Treitz et al. 1992, 69), the binary classification scheme used in

this research project did not account for variation within specific plots or community types.

Thus, labeling training sites in a binary fashion generalizes variation and results in signature

classes that are not necessarily spectrally distinct. By developing signatures for each training

site within a research space, signatures could be examined for outliers, anomalies, and

compared to others within the same micro-topographic class. This would allow the editing of

outliers within a training site and reveal vegetationally associated micro-topographical class

anomalies, such as plot 9, to be developed as a spectrally distinct sub-classes. Through post-

classification aggregation of micro-topographic sub-classes a binary thematic map could be

developed.

Because of the generalizing effect of a single, wide data band and the associated loss

of spectral information, I would suggest that the classification still be conducted on a space by

space basis. The use of multiple, spectrally distinct data bands might enable the entire RNA

to be treated as a single unit. Yet, due to treatment (fire) related differences in community

makeup associated with the micro-topography, signature distinction based on binary micro-

topographic labels, even with the use of sub-classes, may be difficult. In that case, the

classification categories could focus on plant communities at a level of disaggregation finer

than mound-intermound association.

I do not believe the aforementioned training alternatives to the classification method

used in this paper would significantly increase classification accuracies in Space 3. Extreme

similarity of signatures, comparatively low standard deviations and approximately normal
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distributions leave little hope of creating spectrally distinct classes using the wide, 8-bit,

monochromatic image available to this project. The possibility for enhanced signature

distinction with the use of multiple data bands was most apparent in Space 3. The addition of

signatures based on the Relative Richness pseudo-band did not appreciably affect overall

classification accuracy. This may be due to (1) derivation of the pseudo-band from the original

image, (2) inappropriate filter size (3x3 pixel) of the Relative Richness index for the textual

pattern of the mound-intermound communities and/or (3) image acquisition not conducted

during a period of maximum textural diversity between vegetation classes.

While the Relative Richness index had a smoothing effect, thus reducing the

difference of means for Spaces 1,2 and 4, the inclusion of signatures extracted from this

additional band helped distinguish micro-topographic classes within Space 3. Space 3

signatures from the single original band exhibited extremely close means and a larger

standard deviation for intermounds yet, the signatures also exhibit large differences in range

(109) and digital number diversity (22). By considering relative digital diversity within the

moving filter, the index was able to create signatures with greater separation of means. The

inclusion of the additional information provided by the Relative Richness index aided in class

distinction for Space 3.

Choice of algorithm had minimal impact on overall classification accuracies. Maximum

likelihood had a slightly higher overall accuracy rate at 71.68% than minimum distance at

68.83% (Table 4). Mounds tended to have higher accuracies with maximum likelihood.

Intermound, on the other hand, classed better with the minimum distance algorithm. The

minimum distance classifier, which does not consider variance nor covariance of signatures,

tended to better class intermounds at the expense of mounds. Thus, while total area classed

as mound was higher regardless of algorithm, the relative percentage of area classed as
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mound was higher and intermound lower with the maximum likelihood classifier than the

minimum distance classifier (Table 5). The limitation of minimum distance for dealing with

variance and covariance of signatures is especially apparent in Space 3 where extremely close

class means (difference of 0.41 for training plots and 0.13 for vegetation plots) and high

intermound standard deviation (21.68) led to the majority of pixels being classed as

intermound (94.75%) (Table 4).

Performance levels for the maximum likelihood classified image were better than those

based on the minimum distance algorithm. Accuracies achieved using the maximum likelihood

algorithm, with signatures based on the original band and then with the inclusion of the

Relative Richness based signatures, were close enough to make selection for final output

difficult. The greatest difference was in the percentage of pixels left as unclassified with the

single band strategy leaving 4.17% of the accuracy assessment area unclassified while the

two band strategy left 6.33% as unclassified. Total area per space left as unclassified was

also higher using the combined signature set (Table 5). Comparison of the classified images to

the original image revealed that in both cases the majority of unclassified pixels outside the

vegetation plots were on the fringes of the RNA representing small stands of trees. Because

both classification strategies identified the stand areas as unclassifiable, I decided that the

strategy resulting in a lower percentage of unclassified pixels within the vegetation plots was

desirable. Therefore, the output image resultant of the maximum likelihood classifier with

signatures derived from the original image was selected for final cartographic output.
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CONCLUSION

The objectives of this research project were to: (1) locate and map the boundaries of

the RNA and research burn units, (2) locate and map the spatial distribution of permanent

vegetation sampling plots within the RNA and (3) map the extent of the vegetationally

associated mound-intermound micro-topographic pattern of the RNA using digital image

processing and classification techniques. These objectives were met with varying degrees of

success. The use of Trimble's GPS, IDRISI's low cost, PC compatible image processing/GIS

software and a monochromatic image with values comprised of the visual spectrum proved

sufficient to create an accurate digital spatial data base. The single band image and

associated color palette was satisfactory for creating a visual and spatial data base but was

lacking in the spectral information required for digital "spectral" classification.

To increase analytical abilities, thereby increasing both classification possibilities and

accuracies, additional spectral information is desirable. An increase in the number of spectral

bands, together with the restriction of band information to a narrow region of the

electromagnetic spectrum, would provide information conducive to signature separability in

spectral space. Thus, it is recommended that at the least, three bands comprising the red,

green and blue components of the visual spectrum be used to increase signature distinction.

Inclusion of an infrared channel is extremely desirable for distinguishing types of vegetation,

vegetation condition as well as separating vegetation, soil and water. As an indicator of

vegetation vigor, the inclusion of signatures based on infrared values might help in separating

mound versus intermound classes during periods of differing growth status, thus placing less

emphasis on either color or textural differentiation.

Because TWINSPAN developed classes are not necessarily spectrally distinct further

emphasis needs to be placed on creating signatures that are spectrally unique. In addition to
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the use of multiple data bands, spectrally distinct class categories could be developed in such

ways as: (1) switching to a dominant species/vegetation based classification system, (2)

modifying parameter space on which TWINSPAN operates by combining spectrally non-

distinct species to form spectrally distinct clusters (Treitz etal. 1992, 80), or (3) modifying the

training method by separating classes into spectrally distinct sub-classes. Because the

TWI N SPAN generated micro-topographically associated vegetation classification system is

both firmly established and suitable to the RNA environment, I suggest that option number 3

be further investigated.
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Appendix 1. Indigenous uses of plant species found in the Willamette Floodplain Research
Natural Area, W.L. Finley National Wildlife Refuge.

Achillea rn/lie foliurn medicine

Carnassia guarnash food

Cirsiurn sp. medicine

Erioph v//urn lanaturn medicine

Fraqaria sp. food medicine

Galiurn aparine charm

Galiurn triflorurn medicine charm

Potentilla gracillis charm

Rhamnus purshiana food medicine

Rosa spp. food medicine

Rurnex spp. food medicine

Rurnex acetosella food medicine

Spiraea spp. medicine

Syrnphoricarpos aibus food medicine

Vicia arnericana medicine

materials

material

Source: List complied from those species listed in Gunther's Ethnobotany of Western Washington (1973) and
identified as species present in the RNA according to Frenkel and Streatfeild's vegetation sampling records.
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Appendix 2. Global Positioning System rover and Community Base-station parameter settings
used in this research project.

Oregon State University Community Base-station

Location: 44 34' 5.664" N 123 16170" W

Ellipsoidal Elevation: 71.308 meters

Critical Setting
Position Interval: 0.05 seconds
Filter Constant: 0.20
PDOP Mask: 10
PDOP Switch: 08
Elevation Mask: 13
Signal to Noise Ratio Mask: 0.07

Pathfinder Rover

Critical Settings:
STS Mode on MASK Screen
Position Interval: 001 seconds
Filter Constant: 0.20
Maximum PDOP: 06
2D Switch: 06
Elevation Mask: 18
Signal to Noise Ratio: 07

Informational Settings:
SET UP Mode on Set Up Screen
Dynamics Code: Land
Position Fix Mode: (manual) 3D
Altitude Reference: Mean Sea Level (MSL)
North Reference: True North
Units of Measurement: Meters
Coordinate System: Universal Transverse Mercator
Datum: WGS 84
Time Zone: UTC

SET UP Mode on Communications Screen
Communications Protocol: XMODE
Baud Rate, Parity, Data Bits, Stop Bit: 9600, N, 8, 1
RTCM: non-differential GPS
Stale RTCM: 0.001 seconds

USGS GPS Super-station (E141) NGS Survey

Location: UTM Northing: 4915366.440 UTM Easting: 476815.244

Elevation: 80.75 meters (264.3 feet)
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Appendix 3. Global Positioning System rover display data recorded prior to and concluding
each positional reading.

PLOT# FILE# PRE
SAT.

POST
SAT.

PRE
PDPO

POST
PDOP

PRE
Acc.

POST
ACC.

3-D DURA-
TION

SAMPLE
SIZE

1 B101122B 7 7 2.6 2.5 100 100 Y 5.00 220

2 B021820A 6 5 2.9 3.5 300 100 Y 5.01 211

3 B101218C 5 6 3.4 3.6 300 300 Y 5.00 213

4 B101218A 6 5 2.9 3.3 100 300 Y 5.22 244

5 B101217B 6 6 2.9 2.9 100 100 Y 5.25 226

5A B100123B 6 6 2.5 2.5 100 100 V 5.00 214

6 B101221C 6 6 3.2 3.2 300 300 V 5.55 248

7 B101221A 6 6 3.6 3.4 300 300 V 5.00 242

8 B101219C 7 7 2.8 2.7 100 100 V 5.00 216

9 B101219B 7 7 3.2 3.1 300 100 V 5.00 215

10 B101122D 7 6 2.4 2.8 100 100 V 5.00 218

11 B1O112OA 6 6 3.5 3.4 300 300 Y 5.00 187

12 B1O1119B 7 7 3.4 3.2 300 300 Y 5.34 209

13 B1O1119D 7 6 2.6 3.8 100 300 Y 5.16 234

14 6100722C 6 8 3.2 2.7 300 100 Y 5.08 215

15 B100722A 6 6 3.2 3.3 300 300 V 5.00 214

16 B100721D 7 6 3.1 3.2 100 300 Y 5.00 219

18 B100722D 8 7 2.8 2.6 100 100 V 5.00 226
18A B100722B 6 6 3.2 3.2 300 300 Y 5.02 210

19 B100723B 6 6 2.4 2.5 100 100 Y 5.01 214

20 B021821A 5 7 3.1 2.6 100 300 Y 5.00 218

21 B100721A 6 6 3.0 3.1 100 100 V 5.17 222

22 B100721D 7 6 3.1 3.2 100 300 Y 5.00 219

23 B100719D 7 7 3.2 3.0 300 100 V 5.00 216

24 B100719C 6 7 3.9 3.5 300 300 Y 5.01 211

25 B100720A 7 6 2.6 3.8 100 300 Y 5.02 212
26 B100719B 7 7 3.1 3.3 100 300 Y 5.00 211

27 B100719A 6 7 3.7 2.9 300 100 Y 5.24 226
28 B100718D 6 6 3.6 3.7 300 300 V 5.00 212
29 B100718B 6 6 2.9 2.9 100 100 V 5.01 218
30 B100718A 6 6 3.0 2.9 100 100 Y 5.00 215
31 B100720B 6 3.4 300 **** V 5.01 212
32 B100720C 6 8 3.2 2.3 300 100 Y 5.00 202
33 B100718C 5 5 3.3 3.4 300 300 V 5.00 227
34 B100717A 5 5 3.5 3.3 300 300 V 5.00 222
35 B100717B 5 6 3.2 3.0 300 100 Y 5.00 214
36 B100717C 7 7 3.0 2.9 100 100 V 5.00 217

* PRE-POST SATELLITE = Number of satellites being tracked.
* PRE-POST PDOP = Percent dilution of precision.
* PRE-POST ACCURACY = Accuracy in meters.
* DURATION = Length of sample in minutes.
* SAMPLE SIZE = Number of samples positions.



Appendix 4. Differentially corrected GPS determined UTM locations of the northvest corner for the 38
permanent vegetation plots (+1- 2.54 meter accuracy).

Plot Number Sample Size Mean UTM (m) Standard Deviation

1 Northing 220 4918838.39 1.95
Easting 220 475716.03 1.58

2 Northing 211 4918768.87 3.30
Easting 211 475662.44 2.68

3 Northing 213 4918605.20 2.59
Easting 213 475700.99 2.06

4 Northing 243 4918635.82 1.98
Easting 243 475757.47 2.05

5 Northing 226 4918646.83 2.03
Easting 226 475775.14 2.26

5A Northing 214 4918643.49 1.60
Easting 214 475826.83 1.97

6 Northing 248 4918617.27 2.97
Easting 248 475863.72 1.77

7 Northing 242 4918545.80 1.60
Easting 242 4757908.02 1.52

8 Northing 217 4918380.95 2.56
Easting 217 475864.07 1.61

9 Northing ** 4918378.24 4.17
Easting ** 475793.03 2.41

10 Northing 202 4918761.35 2.14
Easting 202 475793.00 1.77

11 Northing 188 4918192.40 3.94
Easting 188 476557.22 3.15

12 Northing 209 4918182.95 3.48
Easting 209 476503.06 2.00

13 Northing 235 4918232.73 2.81
Easting 235 476469.13 2.75

14 Northing 216 4918016.41 3.34
Easting 216 476472.65 2.86

15 Northing 214 4917865.57 1.72
Easting 214 476336.35 2.81

16 Northing 219 4917856.60 1.87
Easting 219 476395.76 2.92

Appendix 4 (Continued)
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Plot Number Sample Size Mean UTM () Standard Deviation

17 Northing 232 4918109.27 2.71

Easting 232 476320.36 2.81

18 Northing 226 4917954.86 2.01

Easting 226 476485.01 2.43

18A Northing 209 4918013.37 4.16
Easting 209 476376.06 2.94

19 Northing 214 4918124.61 1.61

Easting 214 476498.97 3.45

20 Northing 218 4918005.70 2.80
Easting 218 476522.77 2.91

21 Northing 222 4917649.59 2.71
Easting 222 476487.99 2.55

22 Northing 215 4917568.42 2.21
Easting 215 476485.86 1.73

23 Northing 216 4917427.73 3.18
Easting 216 476319.38 2.31

24 Northing 204 4917400.69 3.81
Easting 204 476405.85 1.85

25 Northing 212 4917395.02 2.52
Easting 212 476508.55 1.78

26 Northing 212 4917272.64 3.07
Easting 212 476389.94 2.37

27 Northing 226 4917228.36 2.22
Easting 226 476408.12 2.10

28 Northing 212 4917170.37 3.03
Easting 212 476445.69 1.26

29 Northing 219 4917083.09 2.67
Easting 219 476399.47 2.21

30 Northing 216 4916863.16 1.95
Easting 216 476451.78 2.27

31 Northing 212 4917216.29 1.70
Easting 212 476646.20 1.49

32 Northing 202 4917181.53 1.57
Easting 202 476592.68 2.28

33 Northing 227 4917065.20 1.54
Easting 227 476527.38 1.87
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Plo Numbe Sample Size MeanUTM(m)StandardDeviaton

34 Northing 223 4916961.64 1.38
Easting 223 476604.04 1.41

35 Northing 214 4916834.73 2.05
Easting 214 476618.72 2.04

36 Northing 217 4916864.91 1.60.. . 476525.53

Note: The location of plot 9 s visually determined using the rectified digital image.
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Appendix 5. Differentially corrected GPS determined UTM locations of the northwest corner
for the six 1983 research plots (+1- 2.54 meter accuracy).

Plot Number Sample Size Mean UTM (m) Standard Deviation

1 Northing 236 4918935.17 2.19
Easting 236 475703.66 2.94

2 Northing 248 4918664.04 4.18
Easting 248 475723.31 2.31

3 Northing 197 4918462.49 2.62
Easting 197 475759.18 2.28

4 Northing 192 4918252.10 3.36
Easting 192 475961.94 2.55

5 Northing 215 4918106.18 1.44
Easting 215 476272.16 2.13

6 Northing 234 4918250.23 3.21n216503.Zj4
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Appendix 6. Positional Readings of USGS Superstation (El 11)

Date Sample Size Mean Standard Minimum UTM Maximum UTM
UTM Deviation

10/7/93 Northing 215 4915368.98 2.32 4915363.44 4915374.47
Easting 215 476816.76 1.55 476811.92 476820.13

10/11/93 Northing 237 4915365.16 2.36 4915358.78 4915371.12
Easting 237 476815.23 2.26 476810.17 476821.18

10/12/93 Northing 242 4915366.15 1.57 4915362.01 4915370.23
Easting 242 476815.45 2.47 476808.07 476820.29

10/14/93 Northing 205 4915368.19 2.88 4915360.61 4915374.16
Eastin9 205 476817.21 1.59 476813.65 476820.31

Results of the pre field data collection GPS tests are recorded in Universal Transverse Mercator units.

USGS Recorded Superstation (E141) Location: UTM Northing: 4915366.440

UTM Easting: 47681 5.244
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