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LEAST SQUARES SOLUTIONS FOR NON-ORTHOGONAL
TWO -lMAY C I,ASSIFICATIONS

I. INTRODUCTION

In the investigation of any natural phenomenon, one early

attempts to discover what factors control the phenornenon and to what

extent. Scientists in agriculture were supplied with the tools to an-

swer these questions by R.A. Fisher in a book first published in 1925.

Fisherrs book was revolutionary, but his methods spread rapidly frorn

agriculture to the biological sciences, later to the physical sciences,

and today pervade aknost every area where rnen conduct experiments.

In factorial design experirnents certain parameters provide a

rneasure of the influence each factor exerts over the phenornenon

under investigation. Fisher has said that the estirnation of these

parameters is perhaps more fundarnental than any other aspects of

experirnental analysis. Indeed, in many experirnents the analysis

stops with the estimation of the irnportant parameters.

It is with point estimation that this paper is concerned.

I . Two -wav Clas sifications

Traditionally this subject is introduced by an exarnple, usually

from agriculture, usually concerning the yield of varieties of corn

under different fertilizer applications. 'We shall discuss a



rrsubject croprr and the influence

z

on yield of certain itfactors. rr The

interpreted in the greatest general-description which follows is to be

ity.

Imagine that the yield of a certain crop is influenced by two

factors. To investigate the effect of these two factors on yield we

plant a nurnber of plots of our subject crop, and irnagine that a plot

rnay be subjected to the first factor at any of I different levels and

to the second factor at any of J different levels. There are IJ

cornbinations of levels for the two factors, and we suppose that each

possible treatrnent cornbination is assigned randomly to a plot.

'When the crop is harvested the yield for each plot is measured.

The yield frorn the plot subjected to the first factor at the ith level

and the second factor at the jth level is denoted by *ij and called

the ijth observation. The observations are arranged in a rectangu-

lar array of I rows and. J colurnns with *rj located in the ith

_ .throw and j-'^ colurnns. The position occupied by *ij

is called the ijth cell of the layout of observations.

By rnaking certain assurnptions regarding the population frorn

which each observation has been drawn, it is possible to associate a

paremeter with the effect of each level of a given factor. The set of

assumptions which permit this is ca1led the rnodel for the experirnent.

in this array



2. The Model

The assurnptions which follow constitute a possible model for

an experiment with two-way classification.

We assume that there are IJ different populations, each

with the sarne population variance. Each observation represents a

random sample of size one frorn one of these populations, one sample

frorn each population. We assume the randorn variable *ij may be

written

*ij = oi*Pi+E+eii 
'

(1.1)

where a. is a parameter associated with the ith row of the lay-
1

out (and hence the ith 1evel of the first factor) called the row effect

for the ith row, pj is a pararneter associated with the jth

colurnn of the layout called the colurnn effect for the jth column,

E is a parameter to be defined shortly, and .ij is a randorn vari-

abIe, called the error in x,., with zero mean and the sarne vari-
U

ance as x...
r.J

If we denote the rnean of x.. bv E . . we haver.J - tJ

E(*ij) - E(oi*Pj t+.ij)

= oi*Pj [+e(e..) (r.2)

= a.* B.+g = E.. ,IJU



and if we sum

have

up the means of aII the observations in the layout we

6)

J

tkL_, 1

j=l

J

o.+rttL
j=1

I

)
i=l

*Pj €..
U

cs..
rJ

J

I
j= I

I

=)
i=l

I

=r
i=l

I
,)
i=l

Pr+r.l 5

J

T
j= I

(1.3)

The finaL assurnption is

sum of all column effects are

that

This is a mere convenience and

these conditions are irnposed on

have

e_S_

so that the pararneter E

a1l observation rneans.

The model which is described

This means that it has been assumed.

rrinteract,rr i.e., for example, if one

that fhe sum of all row effects and the

0. Symbolically the assumption is

0. (r.4)

involves no loss of generality. If

Equation (1. 3) above, note that we

(1.5)

turns out to be the arithrnetic average of

IJ

f',=fu,=
i=l j=l

IJ
+YTfLJLL-ij'

i=l j=l

here is said to be 'tadditive. 'l

that rows and columns do not

of the factors tends to produce
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a certain response in the subject, the pattern of response will not be

altered by the particular level of the remaining factor. This assurrrp-

tion is reflected in (I.2), which expresses the IJ pararneters E rj

in terms of the I+ J+ I parameters oi,9 j, and E, of which only

I+J - 1 are algebraically independent, hence the need for (1.41 to

rnake the parameters and their estirnates uniquely determined.

The fundarnental assurnption (1. l) above is, by Equation (l.Zl,

equivalent to

E(x..)=e,* B,+E ,lJTJ
(1.6)

i. e. , the rnean of an observation is rnade up of a row effect, a column

effect, and a general rrlean.

If an experirnenter were not satisfied with planting only one

plot for each of the possible cornbinations of leve1s for the two fac-

tors, he rnight plant two plots for each cornbination and thereby cer-

tainly increase the precision of his experiment. In general, he rnight

plant K,, replicates of the plot subjected to the first factor at the
IJ

ith 1evel and the second. factor at the jth level and hence fill the

ijth cell of the layout with 
^rj 

observations, each a randorn sam-

ple of size one, a1I frorn the sarne population. The nurnber *rj

will be called the ce1I frequency of the ijth ceIl. The kth obser-

vation k = 1, ' ' ' , Kij in the ijth cell of the layout will be denoted

by x,,r . The experirnental model has now been fully described.,UK



With the description of the rnodel complete we may rew,rite

our fundarnental assurnption (1. 1) with some increased generality by

assurning plural cell frequencies. A slight rnanipulation yields

(1.7)

If we square the error "rjt and surn over all iik

expression O called the surn of squared errors.
r J^rj

o=)))(",jo)
i=l j=1 k=I

I J*tj

) I)(*,ju-a.-pj-Ef
i=l j=l k=l

we obtain an

(1.8)

By the method of least squares estirnation, one takes as the estirnates

of e:, 9r, and f those values which produce a minimurn in O.1J
Sorne attempt will be rnade to strearnline the notation of least squares

analysis.

3. Notation

The estimate of 'apararrreter will be denoted by fixing a caret

over the syrnbol for the pararneter, e. g. (least squares estirnate of 6)

=E

Where the lirnits of surnrnation are clear we shall write



I J*rj
for 

)))
i=l j=I k=l

)
ijk

Throughout this work the range of i, j, and k sha11 be

i = I,... , I

j = 1,"' , J

k= I,.", K..
1J

unless otherwise stated.

We rnake the following definitions of syrnbols:

K- T"
lJ 1J

ij

\-
x = ) *..-/, lrk

ijk

x..= t*..
U. /J 1Jk

k

x = t x....J. lJ Uk
ik

*i.. = ) *rjo
jk
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1rx = i< /, *iix.
ijk

rf*ij. = K- L*rix-uk

At tirnes we shal1 be dealing with the case where *rj = I for

every ceIl and the k will then be dropped from the syrnbol *ijt.

In this case the notation above will be used with the obvious modifica-

tions.

4. Non-orthogonalitv

In section two it was pointed out that of the I + J + t paranr-

eters used to describe an I X J two-way classification rnodel only

I + J - I of the pararneters are independent. That is to say, the

rnodel contains only I + J - I essential pararneters. One is con-

vinced of this by considering the introduction of two new arbitrary

parameters into the rnodel. For exarnple, for arbitrary numbers

a and p , Iet us write

oi=o|*a, i= 1,"',I

Pr=F'.+P, i =I,"',J

so that assurnption (I. I) becomes



*ij = o|*a*Pj*P+6+"ij

One has now only to define

E=lr-o-P

and we have

x.. = ol +91 +t'+e.. ,IJ 1 'J 1j

which is exactly the sarne rnodel as before, described now, however,

by a different set of pararneter values. This shows that two of the

I + J * I pararneters oi, pj, and I are dependent, and points up

again the need for a pair of additional constraints, such as are pro-

vided by (1.4), if one hopes to deterrnine these parameters uniquely.

The final rernark prelirninary to the defining of orthogonality

is that one minirnizes the surn of squared errors Q, Equation (1.8),

by solving the systern

Ae_Ae_Ae_n
0o. - aB. - aEr.J

These equations are known as the normal equations.

Let us suppose that one defines a set of essential parameters,

I - I of which describe row effects and J - I of which describe

column effects, and that the resulting normal equations faIl into three
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sets of size I- 1, J - I, and l. The first set contains only the

pararneters describing row effects, the second only the pararneters

describing colurnn effects, and the third only the general rrrean E.

The three sets can be solved independently of one another and it can

be shown that estirnates in one set are uncorrelated with estimates in

another set, if the errors of observation are independent of one anoth-

er as we have assurned. Under these conditions a two-way classifica-

tion rnodel is said to be orthogonal. A rnodel which lacks this con-

venient property is by definition non-orthogonal.

We will illustrate this definition by showing that a 3 X 3

layout of complete data with one observation per cell is orthogonal.

Instead of the usual pararneters ol, oZ, o3, p l, P Z, p 3, and E

we take our pararneters to be o\, at, pi, 9'r, ar.d Et where

oi= o'i, i = IrZ

o3=-"\-"2

P, = Pl, j = l,zJJ

9, =-Pi - 9,

C - CrS -S

The normal equations becorne
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6o\+ Zot, = *II * *lZ* *13 - *3I - *32- *33

3atr+ 6at, = *Zl* *ZZ* *23 - *31 - *32 - *33

1r. e)
6p\+ 3Pi = *tI - *t 3+ *Zt - xZ3 t *31 - *33

3P\ + 6Pi = -t Z - *13* *?,2 - *23r *32- *33

Fl-v
5-"

which clearly have the desired properties.

The solution of these equations is

e i = i (2x 
r r* 

2x 
I z* 

2* 
| 3- 

x zr -* zz- * ?,3-* 3 r- * 32- -: a 
)

hi = i(-xt I --l z-*l 3*z*zt*2*zz*2*23-*3t -*: z-*33)

nlpi = ;(r-rt-*tZ-*t 3r2*ZL-*Z?-*Zr+Zxrt--32-r33) (1. l0)

^19 L = i ( - * 
t t 

+ Z* 
| Z- 

* 
I 3 

- * 
Z r* 

Zx. rr- x 
Z 3 

- * 
3 tr Z* 

3 Z- 
* 

S Z)

/\I
E' = ;(*r r**t z** r3**zrr*zzr*23**r 3**za**sl)

The three sets of parameters are ioi, oL,l, {pi, pi}, and {g'}

We will show first that ai and 0i are uncorrelated. RecaIl

that the observations all have the sarne variance, let us denote it by

nZ. We may, for convenience, and without loss of generalityassurne,
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for the mornent, that the observations all have zero mean. Thus we

rnust show that

We11,

SO

.",.tti,?1) = Bt?'i 6it = o

E(x-.x-^ ) = 0 if (i, j) + (p, e)upq
2

= oi if (i,j) = (p,q) ,

E (ei, 6' ) = E t # (zx 
r r+ 

zx 
t z+ 

z* 
r 3- 

x z r-* zz-* z3-* 3 r- 
* 3z-*l I )

( r* r, -* I Z-* | 3*2* ? t-* ZZ-* 23* 
2* 

3, -*r, -*r, ) J

= fre G*t?, -r*r1, -z*ti -z*z?, r*z:z**?1 -z*!r+*rl, r*rlt

2
(r

=,- (4-?-Z-2+I+1-2+l+l) = Q.

There are seven other sirnilar calculations which can be made by

inspection frorn (I.I0). It is frorn this property that the aptness of

the word ttorthogonalt' becornes most clear.
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II. MISSING DATA

In this chapter we shall restrict our rnodel to the case where

there is a single observation in each ce11, except one, which shall be

ernpty. There is no great difficulty in irnagining conditions under

which such a model rnight arise. Most often, of course, a rnissing

observation is the result of one of the infinite variety of calarnities

which assail experirnenters. It is an axiorn of research that if, in a

given experirnent, anything can go wrong, it will. It is conceivable,

on the other hand, that an ernpty cell rnight be an unavoidable feature

of the design, though this would be rather at variance with the assurnp-

tion of additivity.

It is generally true, I think, that the feeling persists among

research workers that the abortion of even a srnall phase of an experi-

ment produces darnage out of proportion to the nurnber of observations

1ost. There is no justification for this idea. When inforrnation is

1ost, according to Fisher, rr...there is no reason to suppose that the

loss of information suffered will be disproportionate to the value of

the experirnent as a whole" (2, p. L76).

The rnethod proposed by Cochran and Cox for dealing with

ernpty ce11s they have chosen to call the rrcorrect least squares

rnethod't (l). The rnethod is perhaps the rnost natural of all in that it

consists sirnply in carrying out the usual least squares analysis on
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the observations that are not rnissing.

We shall apply the correct least squares method, hereafter

abbreviated CLSM, to an experirnent whose design calls for one

observation per cell, but in fact has one ceI1 ernpty.

l. Correct Least Squares Method Wlth One Observation Per Cell

Take the IJth cell to be the empty one. The surn of squared

errors is

*i. -ri -10 = o, i+r

o=t(x..-a.-F.-€f
LJUT"J

ij+rr

T

€

P:

or

he norrnal equations are

I.I J-I
(*.. -*r.r) - r)tr- r) 6, - (rr - r)a -(r-r)?r-rr-r)fi, = 0

i=l j=l

x.-tp,-tE = 0, jlJ
,J )

J-1
.r)tr )8,-(r-r)a = o

j= I

r_tr(*., -rr)-) ?.-(r-rl0r-(I-r)e - o

i=l

a.
1

a,
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)a =fB,-o
ij

; =i*, -?, ilr
,l1\
Pj = r*.j-8, i*l

These equations reduce irnrnediately to

(2.rl

A'1.(*r. - *r.l) - (J - t)ar + PJ - (J - 1)€, - 0

(*..r - *r.r) * ?, - ti- rlBr - (r- r)g - o

The last two equations rnay be rnultiplied by I and J respectively

and then added to give

,(*r. - *r.l)+J(x..1 --l.l)+[(r -l1i+l]?r* tI+(I -r).ll Bl

-[r(r-r)+r(r-r)]a - o ,

or

(IJ-I-J)(ar*0r) - I(xr.-*u)*J(x..1 -*r.l) -QIJ -I-J)e

We now use this result to eliminate ttf *Bll frorn the first equation

of the system (?.Ll above. 'We obtain :
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(IJ-I-J)(x. 
. -*l.l) + I(xr. -*U)+ J(x. .l-*t.l)

= [(rJ-i-J)(iJ- r) + (zrJ-r-J)] ? = IJ(r- r)(J- l)6 ,

* t" --x,-)r(IJXJ- t) t*. J'*u/

The last two equations of. (Z.I) rnay now be solved for ai and drt

(r- r)(x, 
. -*r.l) + (x. ,-xrJ) - [(r- r)(J- r)- l] tr-tr- rtJ0 = Q

(*r. --rl) + (J-r)(*..r-*,)-[(r-r)(J-1)-1] AJ - I(J-I)e = Q.

^ (r-r) I (r-r)J 1aI = ffi (*r. -*r.r)+ ,r-1-r (x. r-xrr) i-rJ g

A,= #-r-,(*r. -*rr)-#(*. l-*r) -!J:u ?

Surnrning up, now, CLSM yields the following estirnates:

?. = +*,.-?, i+r

?r = *+ (*r. -*r.r)*#*, (-..r-*r.r) -Elr- a

Aj ='l-- j-?, i+r (z.z)
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ar= #(*r.--r.r)-#-+ , r r(J- I)
t*. J-*ut - IJ-rJ E

(xE= IJ-I-J
rJ(r-1)(J-1) -xrr) * J(r- 1)(J- 1)

(rr. -*rr)

r(r-l)(J-r) (x. ,-xrr-)

The following interesting corunent by Cochran and Cox on

rnissing data serves to end this section and aptly introduce the next

s e ction.

. . . rnissing data may be handled by applying
the standard least squares procedure to all observa-
tions that are not rnissing.

To the experirnenter it rnay be a difficult
business to carry out the construction and solution of
a set of unfarniliar norrnal equations, even though he
is quite cornpetent to analyze a set of cornplete data.
For this reason Yates (3.9), following a suggestion by
Fisher, considered inserting values for the rnissing
observations so as to obtain a set of cornplete data.

If several observations are absettt, a
repeated application of the forrnula enables values to
be substituted for each rnissing observation.

This rnethod is essentially an ingenious corrr-
putational device whose purpose is to enable the easy
cornputations that apply to cornplete data to be used
even when data are incornplete. Substitution of esti-
rnates for rnissing data does not in any way recover
the inforrnation that is lost through loss of data, as
sorrre experirnenters have suggested, usually face'
tiously; it rnerely atternpts to reproduce the results
obtained by an application of the least squares rnethod
to the data that are present. The only cornplete solu-
tion of the 'rnissing datar problern is not to have them
(1 , p. ?Z-7 41.
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Z. Method of Insertion \Mith One Observation Per Ce11

Though the rnethod of insertion is due to Yates, he did not call

i,t that hirnself . In applying the rnethod, one calculates an estirnate of

the rnissing observation, inserts this estirnate into the ernpty ce1l of

the layout, and proceeds as in the analysis of orthogonal data (4).

There are two equivalent ways of looking at the procedure for

obtaining an estimate of the rnissing observation. First we can sup-

pose that we are in possession of the estirnates a, 4.., and e AIJ

reasonable prediction for a rnissing observation *ij is just the

mean of the randorn variable -rj, 
"(*rjl,...Wf;ile 

we do not actually

know the value of E(*ij) we have an estirnate of it. That is, we

know that

x.. = a.+p.*E,+e..,
UlJU

and

s(*ij) = oi+9j+E ,

^  .,\r(*ij) = di+Pj+€

Accordingly we take as our estirnate of *ij

UIJ

Second we rnight set up the surn of squared errors Q, syrnbolically,
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as if there were no missing observation, and regard the missing ob-

servation, X_^ say, as another unknown parameter. 'W'e then mini-pq

mize O as a function of oi, pj, E, and *pq thus obtaining thd'

sarne least squares estirnate of x as iust indicated above.pq

The latter view will be taken in the work to folIow. As before

we take r,, to be the rnissing observation.

There is a small notational difficulty here which we shall cir-

cumvent as follows: Define the syrnbols x , *]f , and *;. by

_\-x = ) x..LJU

*.J =

ij+rr
I-t

T
i=I

J-I

)
j=t

x..
U

{ x..
U

This notation permits the use of the syrnbol i, for the estirnate of

*,, after the normal equations have been solved. Prior to that time

-,, will be used to denote both the rnissing observation and its esti-

rnate.

Forrnally the normal equations are

AQ

-=
0a.

1

AQ AQ AQ
Tq = E =a*rJ 0,
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where

In detail they becorne :

x. -l?.-t? - o
1. 1

.\,  ,*.j-IPj-It = 0

x -rJe - o

*u_er_ar_? = o ,

where the conditions

t,
/-, 1

have been invoked to simplify the norrnal equations as they were

written down.

I'rom (2.31 we have

o = )(*rj oi-Pj -il?
ij

(2.31

r= LPi = o

j

,..lfor = J*r. - E

,\lr\
FJ = i*., - E

:I! = Jr*.. ,
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*u-ar-Ar-g = *u-i-rl? +".r*?-? = o,

or

111*u- i*r. -ix.r+6 = o

ltt*u- i*r.- ,x.J+Ir*.. - o

I I t I - t- I -*u- .r*t"l-f *t.r+ r.r-r.r = i*r. * i*. r - u *. .

I I I I - l- I -*rl(l - j -i* rr ) = i*r. *i*.r- f*..,
i.e.,

c-rrJ*u = (rJ)(J- t) *r. ' ffiff *. I - (r-lXJ- r)

Thus the estimates provided by the method of insertion are:

a.lfroi = f *i. - E ' 1 f r

,..la'q'I = j (*f . +:irr) - 6

111Pj = r*.j - g , i I I
(2.4')

A, = i,-., + irrt - ?

,\, l_E = Et".. *Qr.r)
x

a.I-J*u - (r-rxr-r) *i. - @ffiTf *. I - ir-il(rJt
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To conclude this section we rernark that of the two rnethods of

estimation, the correct least squares method and the method of inser-

tion, the latter is certainly superior from a cornputational point of

view, and hence generally the superior rnethod in view of the fact that

both methods produce exactly the same estirnates. cornpare (2.4) and

(2.2). Notice, for example, that by the method of insertion we have

l1t = ,rr".. *?rr)

= Elx.. 'fTtiJ-rt *r. - tr-rir.r-rl *. J - (rrxJ-r) I

rJ 'J(r-l)(J-l) r(r-l)(J-r) rJ(r_l)(J_1)

exactly the expression given by CLSM in (2. Zl.

Non-orthogonality arising from empty ce1ls in a rnodeldesigned

to have no lTrore than a single observation per cel1 is, in theory, a

special case of the non-orthogonality arising frorn unequal cell fre-

quencies in models of rnore general design.

tion.

It is to this rnore general problern that we now turn our atten-
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]II. UNEQUAL CELL T'REQUENCIES

The problern of finding solutions to the normal equations for

models with unequal celL frequencies is a difficult one -- at least to

the extent that one desires a sirnple explicit expression for the esti-

rnate of each parameter in terms of the observations. Of course, the

solution to any linear system of equations, with unique solutions, can

be found, at least in principle, using determinants and in practice

with rnodern digital computers. In many instances approxirnate solu-

tions may be had which provide, with srnall loss of elegance, results

which are, practically, as satisfactory as exact solutions.

We rnust concern ourselves,then, with less than general rnod-

els whose cell frequencies exhibit sorne particular pattern which

rnakes the normal equations easy to so1ve. Such a pattern exists

when ce1l frequencies are proportional.

l. Ce1l Frequencies in Roys and Column.s PropoJjlional

What we rnean by proportional cell frequencies in rows is that

the row vectors of ceI1 frequencies in any two rows are proportional,

If all row vectors of ce11 frequencies are proportional then the col-

umn vectors of ce1l frequencies rnust also be proportional. To be

precise, the assumptions to be rnade in this section are as follows:

We shall assurne that the celI frequency 
^rj 

of the ijth ceII
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can be written

K=. = Kl . K]' , (3. l)Ur"J

and K.. is never zeto.
U

The initial step is to define new parameters a,, b., and xr.J
as f ollows:

(3. zl

and

Under these definitions we have

I
1\-

i=I
J

oj = pj-#) *j,e:
j= I

IJ
x = s+*)Kioi + #I ^j,pj ,

i=l j=I

where I
K'=)Kl,

L1
i=l

J

Kr'=tK1
/-J
j=l
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III

) ^i,, = f "i,,, - 
^l ) ^i 

o,)

i=l i=I r=l
III

=f"i,,-#)"i fKio"
i=l i=I r=l
II

= t Kr o. - f rn' a = o.L ii L rr
i=I r=I

(3.3)

(3. 4l

Now

s o that

O will be minimized with respect to the new pararneters. It

is clear that the minirnun so obtained will have exactly the sarne value

as if O were rninirnized with respect to the original pararneters.

and similarly
J

T rnuo. = o
LJ JJ
j= I

a. * b. * x = o, -fr f"ioi*pj -* )";u, * grJ'tj

**)"1,, -#)"j'u, = oi+pj+8, (3.5)

ij

o = )(*rjo - a. - P: - 612 =)t*rjr-"i- oj-*,
ijk ijk
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Minimizing with respect to the new pararneters now, the nor-

rnal equations are :

This systern rnay be simplified by noting that

x - Ta -f ;-Ki = o
LLlJJ
ijk ijk

x. - K,, x: t. - xl f *,'t. - K,' K:i = o1.. 1 1 t + J J 1

J

\-x K:') K:t. - x,Kl'|. - K,Kt'i = o.J. JL i i. J J J

i

= Krr ) "ia. 
* K' f *j'o,

ij

)
ijk

"r*)o: = )K! K,a. - )Kr K:'b.
ijk ij ij

= K'l.o + K'.0 = 0

The result is :

ll. 1x =-=x = XK

^. 1-
"i =[E*i.. - x

1

1
rloi =ffi*.i. - x
-J

(3. 5)
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The next step will be to replace the new parameters in (3.5) by their

equivalents in terrns of the original pararneters, but first notice that

11I
o -t q. =t(a.+* F^'o )L i L'i l(r L r r'

i=l i=l r=l
II

= )"*#) Kio' 
'

i=l i=l

(3.5)

(3.7)

that is that

I !-. I \-K Lor", = - T L^i'
ii

Sirnilarly

# )*j,u, = _ ifr,
jj

? = -+)"i t, *'I"j'F, + x
ij

By the definitions (3. ?) the systern (3. 5) becornes:

t, = +r f"in, * #r"*,.. - *
i'

aj = #f"j'F, + #".,. - = ,

JJ

which in the light of (3. 6) and (3. 7) becornes:
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e = ift, + ift, + =
ij

 . tf^ I
'i =-T4^, -x'xi -i.. -x

1

I r\l IP' = - iLo: +rc'x': *.j. - =J ' 
j J

If we introduce the notation

X. = -'1.. xE *i..
1

= =-'^.j._x,r<l *.j. ,

and substitute the estirnates (3.5) in this last systern we arrive at :

which is easily rnanipulated to give the following least squares esti-

rnates:

e = i)*,.. -r)+ *),=,.-=) += ,

ij

^.. tfa. = x. -;) (x. -x) - = ,1 r... tL.t 1..
i

a I \-.-B. = I - +)(* -x) -; ,J .J. "? .J.
J
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-x

(3. 8)

These differ from (3. 5) only by constants.

The interpretation of these formulas is, in the case of t,

for exarnple, as follows: The estirnate of the row effec, ,i for the

ith row is the difference between the average of observations in the

ith row and the average of all row averages.

It is doubtful that there exists any other pattern of celI fre-

quencies that will produce expressions for the estimates as sirnple

and cornpact as have been had under the assurnption of proportional

celI frequencies. Sti1l there is a small class of rnodels that may be

dealt with efficiently. This special case will be considered next.

Z. CelI Frequencies Unequal in Fewer Than rnin {I-1, J-l} Cells

Henry Scheff6 has shown that for a model with a layout of I

rows and J colurnns and completely arbitrary cel1 frequencies

K.,, the problern of solving the norrnal equations under given linear
U

constraints rnay be reduced to the solving of a systern of r

? = +)=,. + i)=,
ij

," If-a-=x.-:)x.1 1.. ,+ I
1

a t)=,lrj = *.j. - r 
j
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equations in unknowns, where

r = min {I-1, J-I}

(3, p. I t4-115). In certain special cases of unequal cel1 frequencies

the estirnates may be calculated with a considerable saving in labor

over that required for the solving of a general system of r equa-

tions in r unknowns, viz. 7n the case where unequal frequencies

occur in fewer than r ce11s.

Let

rr) = rnax {K..} .

ij rJ

We take the view that if *rj . * , then the i;th cell has --*rj

rnissing observations. We propose to fill each deficient cell with

estirnates of the missing observations, obtained by the rnethod of

insertion. lf n is the nurnber of deficient ce1ls the estirnates of

the rnissing observations rnay be had by solving a systern of n equa-

tions in n unknowns. lf n ) r it will generally be sirnpler to

solve the systern produced by Scheff6rs sirnplification. When n ( r

the proposed method provides the sirnpler procedure, and if n is

rnuch smaller than r the saving in labor is significant.

To dernonstrate the details of the procedure irnagi4e first an

experirnental design rnodel where the ceII frequency 
^rj 

is equal

to rrl in all but n celIs, n ( r Let us suppose, for
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convenience in notation, that the kth observation is missing in cells

tlj1,'" , irrj, . The rnissing observations will be denoted accordingly

by

x..'r"'rX.
'IJI* 'rrJr*

Now the norrnal equations for a layout with m observations in

every cel1 may be written :

,r. I-
O. = .T](. - )(1 mJ r..

11_P. = .-x x
J rnJ. .J.

A x.:r -d. -8. -E = 0rlJln ,I 'Jl

4,1x.:1-4.-P,-E=0,rll( I 1 -
n"n n 'n

(3. 1l)

g=x,

using the conditions

and the estimates of the rnissing observations are had, according to

the method of insertion, by solving the equations :

)",=fu, = o'
ij
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subject to these normal equations. Thus the system which must be

solved to obtain the estirnates of the rnissing observations is

Ix. - --x.,IJI* rnJ 11..

x.1rk
n"n

I-.....-xrnl .J I.
+f = Q

+i=0

(3. rz)

(3. l3)

ll- --,- x.rnJ 1.. rnl
n

=0

=0

x
'Jn

'We have supposed that there is only one observation missing

frorn each d6ficient celI, but such a restriction is unnecessary -- in

fact, the analysis is not complicated by supposing that all of the defi.

cient cel1s are completely ernpty. To see this let *ij" and -ij"

be any two observations missing frorn the ijth ce11. Then, accord-

ing to the rnethod of insertion, denoting both the observations and

their estirnates, as we have given ourselves license to do, by *ij,

and x.. , the estirnates rnust satisfy the two equations
us

x..ur -4.-
1

^.x.. - 4.. -us1

P:-t

F:-6

Thus

x.. = x.. ,UT US

two observationsthat is, af,y rnissing from the sarne cel1 have the
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same estirnate.

The rnethod is highly efficient when there are only one or two

deficient ce11s. For example suppose that the t observations

X::, r.. . rX::r -.are the only missing observations. Then, if we denote.lJI UT

the surns of all observations present in the ith row and. in the jth

column by *i. . and -. j . respectively, and the surn of all obser-

vations present in the whole layout by x we have

and

  A*ij1 =*ijz= "'=*ij,'

One has now only to substitute these estimates for the rnissing obser-

vations and read off the estirnates of the pararneters frornEquations

(3. I r).

This rnethod becornes progressively complicated as deficient

ceIls become rnore nurnerous. However it is possible to obtain

explicit expressions for the estimates of the rnissing observations



34

for the case of as many as r*l deficit cells, if the pattern of defi-

cient cells in the layout has a special character.

The requisite character is possessed by a rnodel in whichthere

is no more than one deficient ceI1 in any row or column.

3. No More than a Single Deficient CelI in Each, Row and Colurnn
ofan IX J Lavout

For notational convenience we shall assume that the deficient

ce1ls lie on the rnain diagonal of the layout in the first n rows,

where the rnain diagonal is defined in such a way as to include the

first cell in the first row. There is clearly no loss of generality in

this assurnption since if such a pattern does not exist, we have merely

to effect a rearrangement of the original artay to bring the deficient

cells onto the main diagonal and onto the first n rows. We take

the designations of the deficient ce1ls to be

1' 1' ,"' , 1 1
IINN

where

n ( min {I, l}

'W'e shal1 assurne that there are m observations in each non-

deficient ce1I, that there are t observations rnissing frorn each

deficient ceII, and that it is the first t observations missing in

each case. Thus the observations missing frorn celI trt, are
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denoted by

X. . -t" 'rX.

'r'r t 'rtr'

To obtain estimates of the rnissing observations we rnust

rninirniz e

Thus we consider the following system of equations :

o=f (*rju-c.-Pj-Ef
ijk

 '\4.x. -4. -8. -E - 0

'r'l' tr '11

. t3. t5)

.A  x..,-a.-8.-E-0
11r 1 1nn n n

nI_a. = ....-' x. - xI rnJ 1..

A'Ip = **. -x (3. 16)
J rnr .J.

,-E-x

We substitute frorn (3. 16) into (3. I5) and obtain

(3. L7)
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*irirl - .rr.r*1r.. - d *.rr.+ x - o

. (3. 18)

tt*iil- *T*i -,,il*.i +==Q
nn n n

Recalling that X.. .i r may be used to denote any of the ob_
'r'r '

servations rnissing from the trtrtn cel1 and similarly for the other

deficient cel1s, we may write (3. 18) in the form

( I + -l-* - * - *'-i 
I 

i l l+ #J * 
r rr rr 

*''' * #J *r,r 
r,, r = * *r 

r. 
. 
*#: 

r 
r. 

- #". . .

(3. l9)

#, *r 
r 

r 
r 
r*'' * a* *ir-r 

i,,- 
r 
r{ " #, - k, - #, *rr, 

rr,, = * "L * *r* * ;* ". . .

If we rnultiply each of the n equations in (3. 19) on both sides

by mIJ we obtain

(mIJ+t-tJ-tI)x-. ,*tx. ,+"'*tx.: r =Ix] +.Jx-. _x,lrl, ,ZrZI trrtrl ---iI..'-'-.iI

. 
( 3.20)

tX, , ,*"'*tx. r+(mlJ*t-tJ-tl)x- : r = [a- +Jx-. _*
'ItI' '.r-l'r-l I 

--'--irrirr' *t 
r' trr. ^. . .

Adding alI these equations gives
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(3. zr)

where

M=mIJ*nt-tJ-tI (3. Z?,1

Divide both sides of (3.?.L) by M and denote the right hand

si,de of the resulting equation by X . This gives

x. +"'*x. - X.1.1-I i i II I nn
(3. ?3)

(3. ?41

Divide each equation in (3.20) on both sides by t, then subtract

(3.23) from each resulting equation. The systern obtained by this

procedure is

rnIJ-tJ-tI ,r I - J - *...
-T .x. = =A. 

-r-.-,a 

- 

- /\t r,r_I t r-.. t. .1-. tll I t

xmIJ-tJ-tIa. I - J
--*.T--*--At '-i i I t "i .. t .i . tnn n n

Frorn (3.24l. one obtains as the estirnate of x.ri I'ss
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/\ t ..r - J - x-
*i i , = {rrrg-1y+r}titr ..*i*.t .-; -X}=

SS S S

, t ,,r - J - *...
tr-,u-tr-trl tJ-i ..*t*.t . - t

SS

ffi"#-rtr t r) "; ..*r)- *. i . -,,*-. . )) (3.251

r-ltlrr

The estirnates given by (3. 25) are substituted for the rnissing

observations in Equations (3. t6), and the estimates ?r,6r, 
"rrd t

take their usual form.

The pattern considered in this section does not permit more

than one deficient ceIl in any row or column. w'e consider next a

generalization of this pattern which perrnits a plurality of deficient

cells in both rows and columns.

4. The hdices of Deficient cells Form a cartesian Product set

The assurnptions for this section are as follows: The 1ayout

is r x J, there are m observations in each non-deficient cell,

and the first t observations are rnissing frorn each deficient ce11.

The indices of deficient cells forrn.a Cartesian product set, that is,

if rows iI,"',ip contain deficient cells,and columns ir,..., jq

contain deficient cells, then ce1l ij is deficient if
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and
jtT = {jt,"',iO}

We achieve convenience in notation and suffer no loss in gener-

ality if we assulne that it is the first p rows and first q columns

which contain the deficient ceI1s. Thus we assume that

S = {1,"',p}

and

T = {1,"',q} ,

so that the deficient ce1ls forrn a block in the upper left hand corner

of the layout (Figure l). In Figure 1, deficient ce1Is are marked with

an X; non-deficient cells are unmarked. If t = rn, we assume

p < I and q < J, as otherwise sorne rows or columns would con-

tain no observations, and the corresponding effects could not be esti-

mated, while the non-deficient ce1ls would continue to form a (prnaller)

rectangulat ar"r.ay.

Frorn the rninirniztng of the sum of squared errors O as a

function of the rnissing observations, we obtain the systern of equa-

tions

X,., -a.- P,-E=0, ieS, i.T,UI 1 J

As usual we also have

(3. 26l
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X X X X X X X X X
X X X XIXIX

X,X
XtxrX

X X X
X X X X X X
X X X X X X
X X X X X X X X X

4

Figure l. Indices of deficient cells forrn a
Cartesian product set.

Figure 2. Indices of deficient cells forrn
disjoint sets of Cartesian product
sets.

X
X X X
X X X

X X X X
X X
X X
X X
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,\I-q. = 
-- 

x. - x1 IT]J 1..

nt
^rD. = --.-X -X'J MI ,J.

(3. z7l

l=x

= Tu. = o
/-/ J

j1

t,.1--, 1

Substituting f rorn (3. 271 into (3 . 26) we have, f or ie S, j. T,

x... -+* -+* +T = o, (3.25)
ur rrrJ 1.. rTrr .J.

where *ijt is used to represent any of the syrnbols *ijl, "' ,*ijt,

since they all have the sarne estirnate. Referring to (3.27) one sees

that it is not actually necessary to possess an estirnate of each rnissing

observation. It clearly would suffice to have estirnates of the surn of

all observations rnissing frorn any row, frorn any colurnn, and frorn

the whole layout. Thus it would suffice to have estirnates of , 
**i.. 

'
+_++
.J.

rnissing frorn the ith row, I ( i ( p , **, the surn of observa-
.J.

tions rnissing frorn the jth colurnn, I < j < q, and ** the

surn of all rnissing observations. In the calculation to fofto* tft.

syrnbols -, t x : t and x are to be defined as in the pre-' 1..' .J.'

ceding section. Notice that
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There are pq equations represented by (3.28). We rnultiply

each equation by t and surn first over i, and then over j, and

finallyoverall ij, 1(i(p, 1<j<q, toobtain
p

+tftpx -:-- ) *, - t'x., *tp* = 0
.J. mJ L 1.. rnl .J.

i=l

q
+tqtfx. -r-x. - :, ) x. *tq* = 01.. mJ r. rrrl L .J.

j= I

(3. z9l

+to\-tofx -+ ) x. -: ) * , *tpq* = 0mJ L, r... rrrL L, .J.
i=l j=l

This may be rewritten in the form
p

+t+tp+tp+tf-tp-tpx - --( ---x r-:-x = -- 
) x. r--x - 

--x
.J. rnJ rnl .J.rnU rnJLt t.. rnL.J. rnIJ

i=l
q

+to+t+to+to-tf-tox. ----x. ---x 1-...:x = --x. 
a|-- i x ---x1.. rnJ 1.. rn1 rnIJ mJ r.. rnLL, .J. mIJ

j=l
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These equations reduce to

^* , t ,,-s -si- . = {,,.u-tqr-tpJ+tpqtlqrL*i..*pJ L*. j.- pqx... }

i=l j=I

r +T 
q

d = {;jl,n}{ ?" . - +f *.:. * "... * #n].. r (3.3r)

j= I

, tr,,rt-.- rp--- -L--- -. I-p.* r
Q+. =t,-,-,r-tplljL *i..t i*.j. -tr T*...1'

'J' i=I

and we have obtained the estimates we seek. With (3.3I) the esti-

rnate " t. , 0, , and e are irnmediate f rorn (3. Z7l. Frorn a corrr-1 'J

putational point of view the forrnulas here are probably in their rnost

suitable forrn. When deficient cells are ernpty, i. e. when t = rn,

the Equations (3.31) can be rewritten in a forrn that rnakes thern easy

to rernernber by considering the natural division of the layout induced

by the rectangular block of ernpty cells (Figure I).

r...*r+,r+I++
,,,pn "... =;p1l{ L*r..*ron1r-r1 L*.:. - rrrg-pXlql Z L *ti.

i=l j=I i=p*I j=q*l
qIJ

*ol .='fo)*;.-#Gl -f", ,;fu,) I *ij. (331a)

j=l i=1 j=q*l
PIJ

I t* - I I ,f - ,,r* , I- \ \
-rn 

u. j. = il1i-r1 *.3.+ropr I L*, . .l- r-rW L L *ij.
i=} i=p*l j=I

Thus the average of observations rnissing frorn block I is
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equal to the average of observations in block 2 plus the average of

observations in block 3 minus the average of observations in block

4, An equally appealing description applies to the second equation in

(3.3Ia), except that one must bear in rnind that there are, in fact, no

observations present in block l, and one rnust use the estimate for

the surn of these rnissing observations as given by the first equation

of (3. 3Ia). With this reservation then, the average of observations

rnissing frorn the ith row is equal to the average of observations

present in the ith row plus the average of observations in blocks I

and 3 rninus the average of observations in blocks ? and 4. The

third equation is described analogously.

It is possible to extend this result to a yet rnore general rnodel,

whose description is as follows: The layout is I X J, non-deficient

celIs contain m observations, and deficient cells are rnissing the

first t observations. The set of all deficient cells can be decorn-

posed into n disjoint subsets Nl, "',N, in such a way that the

indices of deficient cells in N", r = I t.. . ,rL forrn a Cartesian

product set, and no row or colurnn contains deficient cells frorn more

than one N 'Without loss of generality, it rnay be assurned that ther
cells in N, form a block in the upper right hand corner of the lay-I

out, the cells in NZ form a block situated irnrnediately below and to

the right of the first block, and so forth, so that the deficient cells

forrn a chain of blocks extending downward and to the right across the
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layout frorn the upper left hand corner. An exarnple of such a layout

is given in Figure 2. The position of each deficient cel1 is made pre-

cise by specifying the product set associated with each N

Nt, Sr r tr., St = {1,"',pl}, Tl = {t,...,gt}

:

N, r S"r tr, s" = {pr_t*\,"',p"} T"={gr_l*1, "',gri

Nr, SrrX Trr, Sr, = {prr-l+I, "' ,prr}, Trr= {grr-I*I, "',qn}

Thus, for exarnple, ceIl ij belongs to N, if ie S, and i. T".

Clearlv D <I. o <J.
' 't:--

In rninirniztng O as a function of the rnissing observations

we are led to n sets of equations, each like the system 13.26l,

corresponding to the n sets N,, ' , N_. The equations associ-
IN

ated with N arer

x... -a.- B.-E=0, ieS, jeT
uI I J r - r (3.321

In exactly the same way as before, we substitute from {3.271 into

(3. 32) to obtain, for ie Sr, j. T,

1tx..,---X,--rx.+==Q(3.331ur mJ 1.. rnr .j.
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following symbols :

+
x.

1

+x j.

= surTl

= surn

of observations

of observations

of observations

rnis sing f rom the ith row,

rnissing frorn the jth column,

rnissing frorn ce11s belonging to Nv = sulTl'T

+
= sum of all missing observations.

Here, as earlier, we take the terrn rrrnissing observationrt to rnean

the syrnbol which is used to represent the observation when it is not

mls s lng.

As in the earlier rnodel, we do not require an estimate of each

individual rnissing observation, but only estirnates of the quantities

represented by the symbol just defined. Following the procedure by

which (3.29) was obtained frorn (3.28), we rnultiply each equation in

(3. 33) by t, then surn the equations, first on i, then on ),

and finally over all ii, pr_l*I a i a p., e"_l*I < j S gr. W'e

adopt the convention pO = gn = 0 and arrive at
pr

+ t 5. t(nr_n"_r)
*. j.-,tL*r.. ,,il *.j.*t(Pr-Pr-l)=-o

i=Pr-r*I

t(c, -e, _, )
9,

x { t*--i.. rnl L--.j.
j=9, 

- r+ 
I

+
x.

1

D^r

r",
Pr-l*I

. rnJ

t(qr-q"_ r)
rnJ

+ t(qr 9r_t) E = o (3. 341

q_
t(P.-P"_r) i/^. mr /J .J

j=Q" 
-,+ I

v'r
1=

* t(pr-pr_ l)(e"-tr_1)x= 0.
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Rewriting (3. 34) we have

1,'(P,-e'-r't *1,.= *r,-ts}=t'*1..*!- I-, +

i=P"-r+ I

P- q.
t(cr-9r_ r) a. _ ,(Pr-Pr- I) i-T- / ^. rT- / ^rnJ /- 1.. rnl L .J.

i=P.-l*l j=Qr-r+l

t(Pr-P._ r)(c"-9r_ t) _

t-IJ



,\+x .J-

x.
1..

Rewriting once more have finally

={ rnl-t(p"-pr_t)

(nr-n"_r)
-IJ

){+
i=

tI -l*i.. * l
II

I''

we

Pt

)
D'r-

(P"-Pr_t)*.j.
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(3.35)

-Lr + JY,
(P"-P"-r) 

^.*---ir*..

(er-er_ y'

IJ

, tJ .(9"-9.-r) -
i r.J-(q.-qJ j t-J- *i.

x

I

-r

r,
pr-

.-t)

p

\
I
)r

qr

t\-+ 1L*.:.
j=9r 

- r+ 
I

(er-t"_ 
r)

IJ

v.T rnIJ -tI(q" -9, _ I ) 
-tJ(pr-pr_ 

t )
={ ){

(er-e"_ 
r)

1..
+l

x
(P" -P, _ , )(c, -

x)

give us the estimates we need if we

This estimate can be had in the

,r*xL..+ lY" - ),

tIJ

1=

q
Q1

(n"-n"_ r) 1-
T- t 

^t L .J.
j=9" 

- r+ 
I

r
IJ

(P, -P. -, )(c" -9, 
- t )

IJ

It is clear that (3. 36) will

can obtain the estirnate 3.+

following way: First note that
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Thus if we sum the last

resulting equation for

1+ = {1+

n

),.
r=l

equation in (3. 36) over
t

lFrx The result is

(Pr-Pr_r)(er-9r_t) .I
mIJ -tl(qr- qr_l - tJ (p"-pr_t) t)

we may solve the

(3. 371

+
=x

n

,)r
r=1

n

),,
r=l

tIJ
rnIJ -tl(q" -9r _ I ) 

-tJ(pr -p" _ t )

p,
- (9"-9=-l) 1-r- J L*r. .

i=P, 
- r* I

(p" -p, _ , )(q, -q. 
- , )

IJ

q_
(n.-n"-r) +'T- L*.:.

j=9" 
- r+ 

I

l)

The work is now cornplete. To use these forrnulas one first

calculate" i+ . f rorn (3.371and substitutes this result into the last

equation of (3.36) to obtain the n estirnates   A
Yl, , Yn Ine

estimates provided by the first two equations of (3.36) can then be

calculated and all estirnates substituted as appropriate into (3.271 to

obtain, finally, the estimates a, 4.., and eLJ
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IV. ITERATIVE SOLUTION

In the preceding chapters we have considered the problem of

obtaining exact solutions to the norrnal equations for certain non-

orthogonal layouts. We conclude here with a brief description of a

method for obtaining approxirnate solutions to the normal equations

when data are incornplete. ftr illustrating the method we confine our

attention to a layout with a single observation in each non-ernpty cell.

Let us suppose that we have an I X J layout with numerous

ernpty cells, but at least one observation in each row and column.

We set up the normal equations in accordance with the correct least

squares rnethod discussed in Chapter l[, i. e., we set up norrnal

equations utilizing the data that are present in the layout. The equa-

tions corresponding to oi and p j are

mIn

",t.+-i = f *rn, -)?n,
j=l t j=I J

(4. l)

respectively, where ceI1s ipr, '' , ip.r, are the rn non-deficient

cel1s in row i, and cells glj, . . . , qnj are the n non-deficient

cells in column j. Notice that these equations can be written

nn
 '\T
"4,+"8, = )X-.,- )t-,J - L q,J L 9,

i=I ' i=I '
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a.+
1

x.
lD..J

x
9iJ

Po.
.J

(o+qi

m
I\
,NL

j= 1

n

1\nL
i=1

m

? = rt' rnL
i-1J-r
na='f.J TN L

:-1r- I

g)

For reasons of convenience we will work with the pararnete" oi ,

at.
1

E,

rather than a. itself. As our first approximation to the estirnate
1

?l (we will denote it by al(0)) we take
i.'L

ITI

)
j=l

= a.*
t

(4.2)

(4.31al(o) =
1

I
In x.,,Pj

i. e. , just the average of observations present in the ith row. Since

every row contains at least one non-deficient cell, we lrray cornpute

first approximations for all of the estirnates ?i, "' ,?i. In the

second of Equations (4. 2) we replace each 2'- by its first approxi-^qi^

rnation @t (o), and obtain a first approxirnation to F,, which weq.' J
1 

shall denote by p j(1). we then replace the p in the first of
Pj

Equation s 14. 2't by their first approxirnations pD. ( I ), and let the
.J

resulting equation define the second approxirnation ol(l) to ?:

Repetition of these steps gives an iterative process for obtaining the
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successive approxirnations oj (l), p ,(Zl, ail2l, p.,(3), @: (3),' ' '1JlJr
One rnay obtain an approximation to E at any stage by

imposing the condition

since we then have

I

)q=0,
i=l

i=l

I

+I
i=I

a'|= +f (Q*?r = ?

Given an approxirnation to ! one rnay calculate approximations for

the individual e, from
1

ANA
a'. = e. + E11

The details of this procedure are dernonstrated by setting up

the norrnal equations and performing the first iteration using the data

in Figure 3.

z I

I z

I 5 6

Figure 3. Sarnple Data
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The norrnal equations are

?r = ler,) -+t6r+fin1

Now, according to (4. 3)

oi(o) = 1

a,r(Ol -- i

oi(O) = Q 
'

and then frorn the last four equations of {.4.41

Pr(I) =r-4'-3
Pz(l) =5-4 - I

P3(1) =i-* = o

P4(1) =3-+=1+.67 '

9+l

t!, ,

ii= |orrt *,6r*0+t

;5 = ]tr+5+5)-]t6,*P',

A, =i,,r-]te5r

Ar={rtr-}t;51

A, =)rzr\-lztii+tp

An = ]t *z+6t - ]tii * t;

(4.41



54

and, to complete the first iteration, we use the first three of Equa-

tions (4.41

Frorn the last three approximations we obtain

c',(r) =i-+--Z = 1.r?

airt=i-*=t: I.r?

oi(r) = nr; = += 4.44

E(r) = ir|rlrrf t = * L 2.26,

and hence

c,(r) = i-+, = # L -1.0e

ar(rl ='r-* = +n t -r.oe

ar(l) =+ *Lz.re
The least squares estimates of ai, pj, and f were calculated

exactly using formulas (3.36) and (3.371 ot Chapter III. They are

E = 1.50

at = -I' 50

iz = -1' 50

t3 = 3'oo

Pl = -3' 50

0z = ' 50

03 = l'50

04 = l'50
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Cornparison with the approximations reveals that the approxirnations

are rather crude after only one iteration, but it is to be expected that

the convergence of the approxirnations will be slow if the layout is

srnall or if the observations are scanty or poorly interrelated. The

utility of the process lies in its application to large layouts having a

majority of ceIls empty.
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