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LEAST SQUARES SOLUTIONS FOR NON-ORTHOGONAL
TWO-WAY CLASSIFICATIONS

I. INTRODUCTION

In the investigation of any natural phenomenon, one early
attempts to discover what factors control the phenomenon and to what
extent. Scientists in agriculture were supplied with the tools to an-
swer these questions by R. A. Fisher in a book first published in 1925.
Fisher's book was revolutionary, but his methods spread rapidly from
agriculture to the biological sciences, later to the physical sciences,
and today pervade almost every area where men conduct experiments.

In factorial design experiments certain parameters provide a
measure of the influence each factor exerts over the phenomenon
under investigation. Fisher has said that the estimation of these
parameters is perhaps more fundamental than any other aspects of
experimental analysis. Indeed, in many experiments the analysis
stops with the estimation of the important parameters.

It is with point estimation that this paper is concerned.

1. Two-way Classifications

Traditionally this subject is introduced by an example, usually
from agriculture, usually concerning the yield of varieties of corn

under different fertilizer applications. We shall discuss a
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"subject crop" and the influence on yield of certain "factors." The
description which follows is to be interpreted in the greatest general-
ity.

Imagine that the yield of a certain crop is influenced by two
factors. To investigate the effect of these two factors on yield we
plant a number of plots of our subject crop, and imagine that a plot
may be subjected to the first factor at any of I different levels and
to the second factor at any of J different levels. There are 1J
combinations of levels for the two factors, and we suppose that each
possible treatment combination is assigned randomly to a plot.

When the crop is harvested the yield for each plot is measured.
The yield from the plot subjected to the first factor at the ith level

and the second factor at the jth level is denoted by xij and called

..th . . .
the ij observation. The observations are arranged in a rectangu-
. . .th
lar array of I rows and J columns with xij located in the i
.th " . . .
row and j columns. The position occupied by xij in this array

is called the ijth cell of the layout of observations.

By making certain assumptions regarding the population from
which each observation has been drawn, it is possible to associate a
paremeter with the effect of each level of a given factor. The set of

assumptions which permit this is called the model for the experiment.



2. The Model

The assumptions which follow constitute a possible model for
an experiment with two-way classification.

We assume that there are 1J different populations, each
with the same population variance. Each observation represents a
random sample of size one from one of these populations, one sample
from each population. We assume the random variable Xij may be

written

xij=ai+[3j+§+eij , (1. 1)

where a is a parameter associated with the ith row of the lay-

ith

out (and hence the level of the first factor) called the row effect

for the ith row, Bj is a parameter associated with the jth

column of the layout called the column effect for the jth column,

€ is a parameter to be defined shortly, and eij is a random vari-
able, called the error in xij’ with zero mean and the same vari-
ance as X,..

1)

If we denote the mean of xij by gij we have

1]

E(Xij) E(ai + BJ_ + & + eij)

ai+ ﬁj+§+E(eij) (1.2)

a B HE = L



and if we sum up the means of all the observations in the layout we

have I T I T
3 Y enn-Y 3
i=1 j=1 i=1 j=1
or I J I J
JZi ai+-I;z B+ ITE = 21 25 £ - (1.3)
i=1 i=1 i=1 j=1

The final assumption is that the sum of all row effects and the

sum of all column effects are 0. Symbolically the assumption is

I J
zg a, = zg B, = 0. (1. 4)

i=1 j=1

that

This is a mere convenience and involves no loss of generality. If
these conditions are imposed on Equation (1. 3) above, note that we
have

I J
- E%'zg 25 45 (1.5)

i=1 j=1

so that the parameter £ turns out to be the arithmetic average of
all observation means.

The model which is described here is said to be "additive. "
This means that it has been assumed that rows and columns do not

"interact," i.e., for example, if one of the factors tends to produce



a certain response in the subject, the pattern of response will not be
altered by the particular level of the remaining factor. This assump-
tion is reflected in (1. 2), which expresses the IJ parameters gij
in terms of the I+J+1 parameters a, [3J., and §, of which only
I+J-1 are algebraically independent, hence the need for (1. 4) to
make the parameters and their estimates uniquely determined.

The fundamental assumption (1. 1) above is, by Equation (1. 2),

equivalent to

E(xij)=ai+ﬁj+§ s (1. 6)

i. e., the mean of an observation is made up of a row effect, a column
effect, and a general mean.

If an ekperimenter were not satisfied with planting only one
plot for each of the possible combinations of levels for the two fac-
tors, he might plant two plots for each combination and thereby cer-
tainly increase the precision of his experiment. In general, he might
plant Kij replicates of the plot subjected to the first factor at the
ith  level and the second factor at the jth level and hence fill the
ijth cell of the layout with Kij observations, each a random sam-
ple of size one, all from the same population. The number Kij
will be called the cell frequency of the ijt® cell. The kP obser-

vation k=1,:---, Kij in the ijth cell of the layout will be denoted

by xijk' The experimental model has now been fully described.



With the description of the model complete we may rewrite
our fundamental assumption (1. 1) with some increased generality by

assuming plural cell frequencies. A slight manipulation yields

= X

eijk ik a, - Bj - . (1.7)

If we square the error e, and sum over all ijk we obtain an

ijk

expression Q called the sum of squared errors.

Z 1jk’2
j=1

@)
N'

1

5%

1=1)

i

‘W

2
ljk_al-ﬁj-g) . (1'8)

TTM

lI

By the method of least squares estimation, one takes as the estimates
of a., ﬁj, and £ those values which produce a minimum in Q.
Some attempt will be made to streamline the notation of leastsquares

analysis.

3. Notation

The estimate of 'a parameter will be denoted by fixing a caret

over the symbol for the parameter, e.g. (least squares estimate of £)

A\

= £ .

Where the limits of summation are clear we shall write



J

S e 3

ijk i=] j=1

1

—

K..
k=1

Throughout this work the range of i, j, and k

i=1,- , 1

j=1,-,J

k=1,---, K..
1)

unless otherwise stated.

We make the following definitions of symbols:

!

il
=N

H-W

g
1
O]
g
oy
-

ij,
k
ol T Z *ijk
ik

’_‘N
1l
]
:_N
W:

shall be



% |
i
==
o
&
~

ol

f
.m Lo
g
e
l_wl;

ij.

At times we shall be dealing with the case where Kij =1 for

every cell and the k will then be dropped from the symbol xijk'
In this case the notation above will be used with the obvious modifica-

tions.

4, Non-orthogonality

In section two it was pointed out that of the I+ J+ 1 param-
eters used to describe an IX J two-way classification model only
I+J -1 of the parameters are independent. That is to say, the
model contains only I+ J - 1 essential parameters. One is con-
vinced of this by considering the introduction of two new arbitrary

parameters into the model. For example, for arbitrary numbers

¢ and P, letus write
a. =a'+ a, i=1, , I
i
B. =B+ B, =1, »J
J J )

so that assumption (1. 1) becomes



— 1 1
xij = ai+a+ﬁj+[3+§+eij

One has now only to define
E = €' -a-p
and we have

= ! ! t
xij ai+ﬁj+§+eij ,

which is exactly the same model as before, described now, however,
by a different set of parameter values. This shows that two of the
I+ J+ 1 parameters a. ﬁj, and £ are dependent, and points up
again the need for a pair of additional constraints, such as are pro-
vided by (1. 4), if one hopes to determine these parameters uniquely.

The final remark preliminary to the defining of orthogonality
is that one minimizes the sum of squared errors Q, Equation (1. 8),
by solving the system

5Q 80 _ 80
Bai 853 o€

=0

These equations are known as the normal equations.
Let us suppose that one defines a set of essential parameters,
I-1 of which describe row effects and J-1 of which describe

column effects, and that the resulting normal equations fall into three
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sets of size I-1, J-1, and 1. The first set contains only the
parameters describing row effects, the second only the parameters
describing column effects, and the third only the general mean §.
The three sets can be solved independently of one another and it can
be shown that estimates in one set are uncorrelated with estimates in
another set, if the errors of observation are independent of one anoth-
er as we have assumed. Under these conditions a two-way classifica-
tion model is said to be orthogonal. A model which lacks this con-
venient property is by definition non-orthogonal.

We will illustrate this definition by showing thata 3 X 3
layout of complete data with one observation per cell is orthogonal.
Instead of the usual parameters al, az, a3, 6] 1’ BZ, 63, and §

we take our parameters to be a'l, al, '1, '2, and §' where

i i
- _ 1 !
a3— a az
. =p', 5 =1,2
BJ ﬁJ J
—R! - . [R?
53’51 ﬁ2
g = ¢

The normal equations become
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1 1 — - - -
6(11 + 3a2 = X + X5 + X3 = X3 = X35 = X33
1 1 —_ - - -
3a) 60y = Xy Ay b Xy - Xy - Xy, = Xgg
(1.9)
1 [ - - -
OBy + 3B, = X - X 3t Xy - Xya Xy - Xy
1 [ _ _ _
3BY H 6By = xpp - X g Xy - Xya Xy, - Xgg
g ==,
which clearly have the desired properties.
The solution of these equations is
a! l(Zx +2x . +2x “X =X =X, =X =X, )
1 9 11 12 137 21 22 23 731 32 733
al = l(—x -X. =X +2x, +2x,_+2x,,-X, . -X, -X,,)
2 9 11 712 713 21 22 23 731 32 733
/\l 1 2 2 0
By =g (2% =% 5% 372X, ) =X, =%, 3H2%g ) ~X 457X 53) (1.10)

A':l_ 2 - - - - -
By =g (oxy  ¥2x 5o 5%, 423 5 o 0 X 425 5% 5)

N
€1 =gy 4y o3 g3, 43, X, 24X 4%, 4 5)

The three sets of parameters are {a'l, a'2:}, {ﬁ'l,B’z}, and {£'} .

We will show first that 8'1 and /B\'l are uncorrelated. Recall

that the observations all have the same variance, let us denote it by

2 . . .
o . We may, for convenience, and without loss of generality assume,



12
for the moment, that the observations all have zero mean. Thus we

must show that

cov(@,B)) = E@ B) = 0

Well,
B(xx )= 0 i L)t @9
= ol (L) = (paa)
SO
n A
Efey, p') = E['__(Zx R P TR R e e S PRE T PRC PPV

(23 =%y 5% 3423, ) =Xy 5 =Xy 342X 5 =X 55 =X, 4]

1 2 2 2 2 2 2 2 2 2
8 E(4x11 -lez -2x13 -2X21 +x22 +x23 -2x31+x32 +x33)
UZ

=-8—'(4 2-2-2+14+1-2+1+1) = O

There are seven other similar calculations which can be made by
inspection from (1.10). It is from this property that the aptness of

the word "orthogonal" becomes most clear.
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II. MISSING DATA

In this chapter we shall restrict our model to the case where
there is a single observation in each cell, except one, which shall be
empty. There is no great difficulty in imagining conditions under
which such a model might arise. Most often, of course, a missing
observation is the result of one of the infinite variety of calamities
which assail experimenters. It is an axiom of research that if, in a
given experiment, anything can go wrong, it will. It is conceivable,
on the other hand, that an empty cell might be an unavoidable feature
of the design, though this would be rather at variance with the assump-
tion of additivity.

It is generally true, I think, that the feeling persists among
research workers that the abortion of even a small phase of an experi-
ment produces damage out of proportion to the number of observations
lost. There is no justification for this idea. When information is
lost, according to Fisher, "...there is no reason to suppose that the
loss of information suffered will be disproportionate to the value of
the experiment as a whole" (2, p. 176).

The method proposed by Cochran and Cox for dealing with
empty cells they have chosen to call the " correct least squares
method" (1). The method is perhaps the most natural of all in that it

consists simply in carrying out the usual least squares analysis on
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the observations that are not missing.
We shall apply the correct least squares method, hereafter
abbreviated CLSM, to an experiment whose design calls for one

observation per cell, but in fact has one cell empty.

1. Correct Least Squares Method With One Observation Per Cell

Take the IJ™B  cell to be the empty one. The sum of squared

errors is

Q=) (e -a B -8)
SREIN]

The normal equations are

I-1 J-1

t Iy B o1 Bo (T - 1)E -(F-1)s.-(T-1)B 0

E i e ~xpp) -9 ) % -1) B- - DE -G-8 -
i=1 j=1

/N ~ ~

a, xi.-Jal-Jg = 0, ikl

B B. -1t = 0 :

oox -1, -1 = , )

BJ ] ﬁJ ]

J-1
;g - %) -(J'-l)SI - zg Bj _(@-1E = 0
j=1

I-1
~ ~
ﬁJ: (X,J —xIJ)—z ’ai—(l—l)ﬁj—(l—l)g = 0

i=1



These equations reduce immediately to

N ~ ~
X —xIJ+aI+BJ-(IJ—1)§ = 0
A 1 ~
a = 7% - £, i :I: I
A 1 ~
= =x .- £, i+ J 2.1
B, = 7x; -8 it (2.1)
To18 4B - (T-1)E 0
(XI' - XIJ-) - ( - )aI + BJ‘ - ( - )g -
X )+, - (I-1)B, - (I-1)E = 0
(X- J - IJ') + aI - ( - 1) BJ‘ - ( - )g -
The last two equations may be multiplied by I and J respectively

and then added to give

I(XI. - XIJ)+J(X.J—XIJ)+[(1 —J)I+J]/<;I+ [1+(1-1)J] ’BJ

S[UT-1) 4+ TI-D]E = o0

’

or

(L7-1-3)(@ + BJ) = Ik, -x)+I(x g -xg) - (2 -1- nE

N
We now use this result to eliminate (QI+ ﬁj) from the first equation

of the system (2. 1) above. We obtain :



(IJ—I-J)(X. ' —xIJ) + I(XI.

—xU) + J(x' T

-xp7)

= [(IT-I-I)(1T-1) + (ZIJ—I-J)]E = IJ(I—I)(J—I)/E\ ,

or

A (1J-1-J)

¢ =mano-n * . *t ooy ¢

1

+

I(I-1)(T-1)

1

(x

LI

)

p. S -X

The last two equations of (2. 1) may now be solved for

I. IJ)

~
a

I

(I-l)(xI- —xIJ)+ (x‘ J--XIJ) - [(T-1)(T-1)-1] :z\l-(I-l)J'E,\

A
and B

= 0.

x ) H -0 - x)-[0-1)F-1)-1] BJ SIT-1E =0.

£ .

N

3

16

J.!

(2.2)

(p
2= %)T (1 -XIJ)+IJ——II-—J- N o ST_% €.
B;r - IJEI-J (xp %) 'I_Er!-_l%“ & yxgg) - _II}_J% ¢
Summing up, now, CLSM yields the following estimates:
ai:%xi._g’ it 1
a = TJ(ITII_)J (., 'XIJ)+1J1_I-J (x g-%gy) - I_'ErI“Tl%”
Bo=3x -8, }J



S S _J-1) _IJ-1) »
By = a7 & *p vt ooy ®oxy) - Toag ¢

17-1-J 1
Tne-n & 2w Tmnoon %L *w)

D
!

1

D eon %y

)

The following interesting comment by Cochran and Cox on
missing data serves to end this section and aptly introduce the next
section.

... missing data may be handled by applying
the standard least squares procedure to all observa-
tions that are not missing.

. To the experimenter it may be a difficult
business to carry out the construction and solution of
a set of unfamiliar normal equations, even though he
is quite competent to analyze a set of complete data.
For this reason Yates (3. 9), following a suggestion by
Fisher, considered inserting values for the missing
observations so as to obtain a set of complete data.

. If several observations are absent, a
repeated application of the formula enables values to
be substituted for each missing observation.

This method is essentially an ingenious com-
putational device whose purpose is to enable the easy
computations that apply to complete data to be used
even when data are incomplete. Substitution of esti-
mates for missing data does not in any way recover
the information that is lost through loss of data, as
some experimenters have suggested, usually face-
tiously; it merely attempts to reproduce the results
obtained by an application of the least squares method
to the data that are present. The only complete solu-
tion of the 'missing data' problem is not to have them
(1, p. 72-74).
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2. Method of Insertion With One Observation Per Cell

Though the method of insertion is due to Yates, he did not call
it that himself. In applying the method, one calculates an estimate of
the missing observation, inserts this estimate into the empty cell of
the layout, and proceeds as in the analysis of orthogonal data (4).

There are two equivalent ways of looking at the procedure for
obtaining an estimate of the missing observation. First we can sup-
pose that we are in possession of the estimates ?i’ Iﬁ\j, and g A
reasonable prediction for a missing observation xij is just the

mean of the random variable Xij’ E(Xij)' While we do not actually

know the value of E(xij) we have an estimate of it. That is, we

know that
x,. = a,+B.+€ +te,. |,
1) 1 J 1)
and
E =
() = a;+ B+ E
50

~ ~ FaN ~
E(xij) = a, +PB.+§&

Accordingly we take as our estimate of xij

A A ~ a
xij = ai+f3j+§

Second we might set up the sum of squared errors Q, symbolically,
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as if there were no missing observation, and regard the missing ob-
servation, qu say, as another unknown parameter. We then mini-
mize Q as a function of e, ﬁj, €, and qu thus obtaining the
same least squares estimate of qu as just indicated above.

The latter view will be taken in the work to follow. As before
we take X1y to be the missing observation.

There is a small notational difficulty here which we shall cir-

cumvent as follows: Define the symbols x , X 30 and xI by
x = Z X, .
. ij
ijE L
I-1
N Z i
i=1
J-1
b.< = X..
1)
=1
This notation permits the use of the symbol §IJ for the estimate of
X7 after the normal equations have been solved. Prior to that time
X1y will be used to denote both the missing observation and its esti-
mate.

Formally the normal equations are
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where

2
Q = z(xi_]—al—ﬁ_]_g)
i

In detail they become :

38, - JE 0
x, -Ja, - £ =

~ N
X —Iﬁj—Ig = 0

(2. 3)

X - IJE = 0

A A A\ N
Xjp-dp-By-& = 0,

where the conditions

Z“i ) EBJ‘ )
~ J.

o

have been invoked to simplify the normal equations as they were
written down.

From (2. 3) we have

SO



AN D L 1.2 1 P
xpp-@p- By -8 = xpp-gx vEoTx 68 = 0,
or
1 1 A
x;p- 7%, X gtE = 0
1 1 1
Xy~ 7%, 1¥stmx. <0
101 1. _1- 1- 1 -
S N T R i S s S T R B i
1 11 1 - 1 - 1 -
xp-g-1t3) = 7% *1*;-17% .
i.e.,
o . - 3 - .
17 - (I-1)@E-1) I (I-1)(7-1) .7 (I-1)(J-1)

Thus the estimates provided by the method of insertion are:

2P

Q)

%

CALY

-4

1J

-}xl - £, i f1

1 ~ ~

S T~ LA

Tlx.j -'g s j 4: J

L +%0-8

157 ¥y

1 - A

T &)

-

1 - i3 - —

CE-1)(I-1) Fr. (I-1)(7-1) .7 - T-1){@T-1)

21

(2. 4)
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To conclude this section we remark that of the two methods of
estimation, the correct least squares method and the method of inser-
tion, the latter is certainly superior from a computational point of
view, and hence generally the superior method in view of the fact that
both methods produce exactly the same estimates. Compare (2. 4) and

(2.2). Notice, for example, that by the method of insertion we have

o 1 - A
€= 7k + %)
1, - I - J - x
= wE L TEDen Lt Eheen Y1 e
x- X]-:- X-J. X-
=17 TTene-ny TIoneon T Do)
_ -nE-n-1 - *1, N X7
T DI-n@-1) *. T(I-1)(T-1) (I-1)(J-1)
17-1-J 1 ] -

TI-DE-D X . TEnon % *w e o & 55

exactly the expression given by CLSM in (2. 2).

Non-orthogonality arising from empty cells in a modeldesigned
to have no more than a single observation per cell is, in theory, a
special case of the non-orthogonality arising from unequal cell fre-
quencies in models of more general design.

It is to this more general problem that we now turn our atten-

tion.
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III. UNEQUAL CELL FREQUENCIES

The problem of finding solutions to the normal equations for
models with unequal cell frequencies is a difficult one -- at least to
the extent that one desires a simple explicit expression for the esti-
mate of each parameter in terms of the observations. Of course, the
solution to any linear system of equations, with unique solutions, can
be found, at least in principle, using determinants and in practice
with modern digital computers. In many instances approximate solu-
tions may be had which provide, with small loss of elegance, results
which are, practically, as satisfactory as exact solutions.

We must concern ourselves,then, with less than general mod-
els whose cell frequencies exhibit some particular pattern which
makes the normal equations easy to solve. Such a pattern exists

when cell frequencies are proportional.

1. Cell Frequencies in Rows and Columns Proportional

What we mean by proportional cell frequencies in rows is that
the row vectors of cell frequencies in any two rows are proportional.
If all row vectors of cell frequencies are proportional then the col-
umn vectors of cell frequencies must also be proportional. To be
precise, the assumptions to be made in this section are as follows:

We shall assume that the cell frequency Kij of the ijth cell
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can be written

Kij = K;K‘;‘ , (3.1)

and K.j is never zero.
i

The initial step is to define new parameters a, bj’ and x

as follows:

I
- _I_E
i~ 4% K

3
b = B, Kl—z K (3.2)
-1

I J
;L 1
% K' 4 K"

!._l

where

N

1
N

L

-
"
—

and

X
I

e
B

—
il
—

Under these definitions we have
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7
e
®
i
]
e
)
|
A
A
e,
)
Hv

i=1 i=1 r=1
I I
= Kig - 4+ Y i z K'a
ii K! i r r
i=1 i=1 r=1
= zKla, —ZK'Q = 0, (3. 3)
i1 rr
i=1 r=1

and similarly

so that

J

Z K'b, = 0 . (3. 4)
J ]
j=1

Now

-— 1_ 1 .l_ 1!
ai+bj+x = e - ZKiai-‘-ﬁj-K" ZKJ. (3J.+§
i

J

_1'_.. 1 _1_ n —
T ZKiai T ZKJ, ﬁj = ai+ﬁj+§, (3.5)
i J

2 2
Q = Z (lek - ai - ﬁ‘] = g) —Z(xijk-ai_ bj_x)
ijk ijk

Q will be minimized with respect to the new parameters. It

is clear that the minimun so obtained will have exactly the same value

as if Q were minimized with respect to the original parameters.
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Minimizing with respect to the new parameters now, the nor-

mal equations are :

x -Zla\..—zg.-K'}E:O
i j

ijk ijk
N
X, - K'K'a. - K EK"b SK'K!'RX = 0
i, i i %5 i
j
x . - K‘.'ZKIS. _K'K"D. -K'K'S = 0
. J j i7i i) j

1

This system may be simplified by noting that

DEEPR

ijk  ijk

1]

ZK!K!’a. + ZK'. K!b,
i i3]
ij ij '

Kn ZK!a.+K' ZK’.‘b.
ii i

i j

K'-0 + K'-0 = 0

1]

The result is :

~ 1
X —K X = X

N _ (3. 5)
a ‘K"Kixi.. - X :
N 1 %

S
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The next step will be to replace the new parameters in (3. 5) by their

equivalents in terms of the original parameters, but first notice that

I
a K rar
i=1 i=1 r=1
I
z a, + Z Kla, ,
i1
i=1 i=1

that is that

- 1 T

' - . =
Z Ki ai = I Z ai .
i i

(3.6)

Similarly

)
_— K'pg, = -
K" L JBJ

]

|
g
T

(3.7)

By the definitions (3. 2) the system (3. 5) becomes

~ 1 \ ~ 1 N ~
- = 1 - "
£ = - ZKi @& - x ) KB + x
1 j
B — _1.._ hﬂKng + 1 ~
i T R Py T RRY Xy T X

j J

which in the light of (3.6) and (3.7) becomes



i j
i j
a. = - -1- a. + 1 X - X
a1 - I i K"Ki i
i
" 1\» 1 _
BJ = - JZbJ +K'K3‘ xJ - X
j
If we introduce the notation
— _ 1
% K"K! X4
i
x =i X
g T K'Ki‘ j ’

and substitute the estimates (3. 5) in this last system we arrive at :

”~

i J

)
1"

.

— IZ_ —
. x. - T )& . -x) -
J .J. J (.J. )
J

which is easily manipulated to give the following least squares esti-

mates:

28
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_ 15—
R D Iin.. (3.8)
i

These differ from (3. 5) only by constants.
The interpretation of these formulas is, in the case of Qi
for example, as follows: The estimate of the row effect a, for the

:th

i row is the difference between the average of observations in the

ith  row and the average of all row averages.

It is doubtful that there exists any other pattern of cell fre-
quencies that will produce expressions for the estimates as simple
and compact as have been had under the assumption of proportional

cell frequencies. = Still there is a small class of models that may be

dealt with efficiently. This special case will be considered next.

2. Cell Frequencies Unequal in Fewer Than min {I-1,J-1} Cells

Henry Scheffé has shown that for a model with a layout of I
rows and J columns and completely arbitrary cell frequencies
Kij’ the problem of solving the normal equations under given linear

constraints may be reduced to the solving of a system of r
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equations in r unknowns, where
r = min {I-1,J-1}

(3, p. 114-115). In certain special cases of unequal cell frequencies
the estimates may be calculated with a considerable saving in labor
over that required for the solving of a general system of r equa-
tions in r unknowns, viz. in thecase where unequal frequencies
occur in fewer than r cells.
Let
m = max {Kij} .

1)

We take the view that if K, <m, then the ijth  cell has m-K,
missing observations. We propose to fill each deficient cell with
estimates of the missing observations, obtained by the method of
insertion. If n 1is the number of deficient cells the estimates of
the missing observations may be had by solving a system of n equa-
tions in n unknowns. If n > r it will generally be simpler to
solve the system produced by Scheffé's simplification. When n <r
the proposed method provides the simpler procedure, and if n 1is
much smaller than r the saving in labor is significant.

To demonstrate the details of the procedure imagine first an

experimental design model where the cell frequency Kij is equal

to m inallbut n cells, n<r. Letus suppose, for
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convenience in notation, that the k!B observation is missing in cells

iljl, *++,i ) . The missing observations will be denoted accordingly

X, . s T, X, .
11_]1k 1ank

Now the normal equations for a layout with m observations in

every cell may be written ¢

A 1 _
4 " my K., T X

‘33' " mI X5, T X (3. 11)
« —

E = x,

using the conditions

and the estimates of the missing observations are had, according to

the method of insertion, by solving the equations :

X, .. - a,
11Jlk i
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subject to these normal equations. Thus the system which must be

solved to obtain the estimates of the missing observations is

xi.k—-r'::}xi ——ljnl—l‘x. +x =0
14 = L
(3.12)
1 1 —
X1jk-rn.:fX1 _mIX.J tx=0
n'n n n

We have supposed that there is only one observation missing
from each deficient cell, but such a restriction is unnecessary -- in
fact, the analysis is not complicated by supposing that all of the defi-
cient cells are completely empty. To see this let Xijr and xijs
be any two observations missing from the ijth cell. Then, accord-

ing to the method of insertion, denoting both the observations and

their estimates, as we have given ourselves license to do, by x_.

ijr
and xijs’ the estimates must satisfy the two equations
A A
N
- - - = 0
ST
~ ~N oy
xijs—ai—ﬁj-g =0
Thus
X.. =X.. , (3.13)
ijr ijs

that is, any two observations missing from the same cell have the
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same estimate.
The method is highly efficient when there are only one or two

deficient cells. For example suppose that the t observations

xijl’ e ’Xijt .are the only missing observations. Then, if we denote
the sums of all observations present in the ith  row and in the jth
column by xi_ and x_j respectively, and the sum of all obser-
vations present in the whole layout by x_ we have
L x L x + X =0
*51 "mJ M., “mI *.j. T
Lty oLl ot lo-o it 1 -
%151 mJ %ij1 "md M. T mIN T ml . T mlr i T m ..., T
1ttt B VUSRS *
mJ ~ mlI mlJ’ 7ij1 mJ ml mlJ ’
R, = : (B, +Jx, -x ) (3. 14)
%151 T (mlJ-tI-tJ+t) i.. . L :
and
3\{ = ;\{ = e e o :?{
ij1 ij2 ijt’

One has now only to substitute these estimates for the missing obser-
vations and read off the estimates of the parameters from Equations
(3.11).

This method becomes progressively complicated as deficient
cells become more numerous. However it is possible to obtain

explicit expressions for the estimates of the missing observations
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for the case of as many as r+1 deficit cells, if the pattern of defi-
cient cells in the layout has a special character.

The requisite character is possessed by a model in whichthere
is no more than one deficient cell in any row or column.

3. No More than a Single Deficient Cell in Each Row and Column
ofan IX J Layout

For notational convenience we shall assume that the deficient
cells lie on the main diagonal of the layout in the first n rows,
where the main diagonal is defined in such a way as to include the
first cell in the first row. There is clearly no loss of generality in
this assumption since if such a pattern does not exist, we have merely
to effect a rearrangement of the original array to bring the deficient
cells onto the main diagonal and onto the first n rows. We take

the designations of the deficient cells to be

where

n < min{I, J} .

We shall assume that there are m observations in each non-
deficient cell, that there are t observations missing from each
deficient cell, and that it is the first t observations missing in

each case. Thus the observations missing from cell ilil are
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denoted by

To obtain estimates of the missing observations we must

minimize

Thus we consider the following system of equations :

I~ ”~n
xiil_’ai -B, -€ =0
1'1 1 1
(3. 15)
~ N laS
i1 % _ﬁi -6 =0
nn n n
~n _ _l__ _
“4 7 mIy M., 7%
8 L % 3.16
Py = mr*j. ~F (3.16)
/N
£ = x
Zai= Zﬁj:O (3.17)

We substitute from (3. 16) into (3. 15) and obtain
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1 1 —_
x11 ——Jx --—Ixi + X =0
111 m 11 m 1
(3.18)
1 1 - _
X1il_mJXi _rnIXi.+X_O
nn n n

Recalling that X ., may be used to denote any of the ob-
11
servations missing from the ililth cell and similarly for the other

deficient cells, we may write (3. 18) in the form

( t t t t t

1 - 1 - 1 -
mll 'ml md i Pt 1t Tmir ™ 1 1w T i
111 2%2 n'n 1 ]
(3. 19)
t t tot t. 1 - 1. -
mI i T i Y e mr S TS e e -
11 n-1 n-1 nn n n

If we multiply each of the n equations in (3. 19) on both sides

by mlJ] we obtain

(mIT+t-tT-tT)x, TR U 1' 'i h
171 2°2 n'n 1 1

(3. 20)

tx, . bcttx, L H(mITHt-tI-tDx, | . = Ix.  +Jx . -x
i.i.1 i i 1 i1l .
11 n-1 n-1

Adding all these equations gives
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n n
Mx, . 4+ +Mx. ..,=1) x, +J ) x . -nx , (3.21)
i i1 iil i .. 1o,
11 nn r r
r=1 r=1
where
M=mll +nt - tJ - tI . (3.22)

Divide both sides of (3.21) by M and denote the right hand

side of the resulting equation by X . This gives

x..1+---+x . = X. (3. 23)

Divide each equation in (3. 20) on both sides by t, then subtract

(3.23) from each resulting equation. The system obtained by this

procedure is

X
IJ-tJ-tI - } ,
= t ,’\‘111:%"1 7%y X%
11 1 "N
(3. 24)
.
mlJ-tJ-tI A __I - +:T_ - X
t i1 Tt . t X1, "t T
nn n n

From (3. 24) one obtains as the estimate of x,
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A t J - *
%m0 R e X
S S S S
-
t I - J -
s ors S e Nt P .
S S
( . ”IZ ") (3. 25)
T 'mIT+nt-tJ-tI A :
I'
r=1 r=1

The estimates given by (3. 25) are substituted for the missing
. . . . A D A
observations in Equations (3. 16), and the estimates 2, Bj, and §
take their usual form.
The pattern considered in this section does not permit more
than one deficient cell in any row or column. We consider next a
generalization of this pattern which permits a plurality of deficient

cells in both rows and columns.

4. The Indices of Deficient Cells Form a Cartesian Product Set

The assumptions for this section are as follows : The layout
is IXJ, thereare m observations in each non-deficient cell,
and the first t observations are missing from each deficient cell.
The indices of deficient cells form a Cartesian product set, that is,

if rows 1 <, 1 contain deficient cells'and columns jl’ Tty

1" q

contain deficient cells, then cell 1ij 1is deficient if
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and

}

. T —- M . e e b
J€ {Jl’ ’Jq

We achieve convenience in notation and suffer no loss in gener-
ality if we assume that it is the first p rows and first g columns

which contain the deficient cells. Thus we assume that

S = {1, ,p}

and

T - {1,...,q} s

so that the deficient cells form a block in the upper left hand corner
of the layout (Figure 1). In Figure 1, deficient cells are marked with
an X; non-deficient cells are unmarked. If t=m, we assume
p<I and q<J, as otherwise some rows or columns would con-
tain no observations, and the corresponding effects could not be esti-
mated, while the non-deficient cells would continue to form a (smaller)
rectangular array.

From the minimizing of the sum of squared errors Q as a
function of the missing observations, we obtain the system of equa-

tions

xijl -a, - BJ -£E =0, 1S, jeT. (3. 26)

As usual we also have
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DX XXX XX XXX
XXX XXX XXX
XXX X 1 XXXX

XX XX XX XX
DX XXX XXX

nt cells form a

of deficie
Cartesian product set.

Figure 1. Indices

XX
XX

XX

XXX X

XXX
XXX

of deficient cells form

disjoint sets of Cartesia

sets.

Figure 2. Indices

n product
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~ 1 _
%7 Tmr .. 0¥
A 1 —
Bj ~ mI ¥ j - X
(3.27)
~
£ = x
o= )8 =0
i J
Substituting from (3. 27) into (3. 26) we have, for 1ieS, jeT,
L L . = =0 (3. 28)
%51 T mJI %L, T mIrj. =5 '
where Xijl is used to represent any of the symbols xijl' T, xijt )

since they all have the same estimate. Referring to (3. 27) one sees
that itis not actually necessary to possess an estimate of each missing
observation. It clearly would suffice to have estimates of the sum of
all observations missing from any row, from any column, and from

the whole layout. Thus it would suffice to have estimates of x‘i‘-

+ .
x i and x+ , where X-i*- denotes the sum of observations
missing from the ith  row, 1 <i<p, x+j the sum of observa-
tions missing from the jth column, 1<j<gq, and x+ . the

sum of all missing observations. In the calculation to follow the

symbols xi— , X i and x are to be defined as in the pre-

ceding section. Notice that
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+ -

X, + x. = X
1, 1. 1
+ -

x . +x . = X
J <) J
+ -

There are pq equations represented by (3. 28). We multiply
each equation by t and sum first over 1i, and then over j, and

finally over all ij, 1<i<p, 1<j<q, toobtain

P
N 1p _
xJ gy X, —meJ +tpx = 0
i=1
q
+ tq t —
.. TmI N mIE:XJ.+th =0 (3.29)
j=1
p
+ ta_ tp_ -
X -mJle —mlzx +tpgqX = 0
i=1 j=1

i mJ i I . T Wt T mr N T ml “mir >t ..
i=1
P q
+ _tq + _tp +  tpq + _Ea.zg - .\ - _tpg -
X T T m L T mrE L T mr % T i mirx. ..
i=1 j=1
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These equations reduce to

p q
~t t
.7 {mIJ‘ th—‘cpJ’+1;pq}{q Z - pqx . }
: J:l
q
/\+ _ tJ - l} - J__ /\+
xi..”{m;r-tq} .. T % ,,,+_qu X} (3.31)
=1
P
oot LN - P~ P - I-p ot
TR S A T S R DR LN+ R
23 =1

and we have obtained the estimates we seek. With (3. 31) the esti -
mates 'c?i, ﬁj’ and ,é are immediate from (3.27). From a com-
putational point of view the formulas here are probably in their most
suitable form. When deficient cells are empty, i.e. when t =m,
the Equations (3.31) can be rewritten in a form that makes them easy

to remember by considering the natural division of the layout induced

by the rectangular block of empty cells (Figure 1).

P q I J
1 o _____1__>:X- +___1_Zx- o z Z
mpqg ... mp(J-q) i.. mq(I-p) .j- m(Ip)(Jq)

i=1 =1

i=pt+1 j=q+1
q
RS | - 1 At \ _- 1 \
mq xi..—m(J-q)Xi..+qu (X +Zx.j.)—mI(J-q)Z E xij. (3.31a)
j=1 i=1j=q+1
P
1 A+ 1 - 1 \ - ,at 1 \
mp ~.5. " m(Ip) x.j.+mpJ(in. = ..)-mJ(I-p)Z Z
i=1 i=pt+l j=1

Thus the average of observations missing from block 1 is
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equal to the average of observations in block 2 plus the average of
observations in block 3 minus the average of observations in block
4. An equally appealing description applies to the second equation in
(3.31a), except that one must bear in mind that there are, in fact, no
observations present in block 1, and one must use the estimate for
the sum of these missing observations as given by the first equation
of (3.31a). With this reservation then, the average of observations
missing from the ith  row is equal to the average of observations
present in the ith row plus the average of observations in blocks 1
and 3 minus the average of observations in blocks 2 and 4. The
third equation is described analogously.

It is possible to extend this result to a yet more general model,
whose description is as follows: The layout is I X J, non-deficient
cells contain m observations, and deficient cells are missing the
first t observations. The set of all deficient cells can be decom-
posed into n disjoint subsets Nl’ T ’Nn in such a way that the
indices of deficient cells in Nr’ r=1,---,n form a Cartesian
product set, and no row or column contains deficient cells from more
than one Nr. Without loss of generality, it may be assumed that the
cells in N_. form a block in the upper right hand corner of the lay-

1

out, the cells in N2 form a block situated immediately below and to

the right of the first block, and so forth, so that the deficient cells

form a chain of blocks extending downward and to the right across the
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layout from the upper left hand corner. An example of such a layout
is given in Figure 2. The position of each deficient cell is made pre-

cise by specifying the product set associated with each Nr'

M X = T, ) = PR
Nyt §;% Ty, S = {L, ppl, Ty =01 9, }
g x _ T -
Nr Sr Tr’ S {pr-1+1’ ’pr}’ r {qr-1+1’ q,}
y _ _
N:S XT, S {p_,*1, ,pn}, T {qn_l+1, »q_ }

Thus, for example, cell 1ij belongs to Nr if e Sr and je Tr.
<I <J.
Clearly p, <L q=< J
In minimizing Q as a function of the missing observations
we are ledto n sets of equations, each like the system (3. 26),
corresponding to the n sets Nl’ e, Nn. The equations associ-

ated with Nr are

xijl -a, - [33, -£ =0, 1eSr, je Tr. (3.32)

In exactly the same way as before, we substitute from (3. 27) into

(3.32) to obtain, for ie Sr’ je Tr

Xx. - —x - —x. + % =0, (3.33)
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Before proceeding, we pause to define the following symbols :

+ . N .

x, = sum of observations missing from the ith  row,
+ . C .

X j = sum of observations missing from the Jth column,

y, =sum of observations missing from cells belonging to Nr )
+ . .

x = sum of all missing observations.

Here, as earlier, we take the term "missing observation”" to mean
the symbol which is used to represent the observation when it is not
missing.

As in the earlier model, we do not require an estimate of each
individual missing observation, but only estimates of the quantities
represented by the symbolr‘ just defined. Following the procedure by
which (3. 29) was obtained from (3. 28), we multiply each equation in
(3.33) by t, then sum the equations, first on i, then on j,

and finally over all 1ij, p +1<j< q.- We

r-1

<i<
+1_1_pr’ qr_1

adopt the convention Py=9 = 0 and arrive at
P

r
+ t_z t(pr_pr-l) Ft(p - )% = 0
5. " mI/ Ti.. ml X3, PpPp /% 7
1=pr_1+1 .
T
+ t(q "4y 1) t A
L r- - — - x =0 ,
Xi.. mJ xi.. mlI Z X.j. * t(qr qr-l) * (3. 34)
j=q _1+1
p q

tq_-q_ 1) o tp_-P__ ) «
y - ——== in__-———r—l- Ex.ﬁt(p -p._Ma,-q,. )x=0.
q

i=p__,+1 j=q_;*1



47

Rewriting (3. 34) we have

Py
[1 Er-_l)] < = = _t_(f)r_'pﬁi) L Zx- +
" ml ). mI’yT T mid . ml i.
1:pr_1+1
+t(pr—pr_1) _ _t(pr-pr 7
mI x5, mlJ ’
L
[1 t(qr_qr—l)] +  _t _t(qr_qr—l) + +_1_:_ - N
) mJ .. TmI7r mlJ X . T mI %
J:qr_1+1
(3. 35)
+ t(qr_qr—l) - t(qr-qr—l)
mJ .7 mlJ x ’
0 tlq.-a. ;) tp, pr_l)] } tp_-p._Ma-a. ) .
) mJ ) ml Ye = 7 mlJ X,
p q
r r
t(qr_qr—l) E - t(pr_pr—l) Z -
+ X, T X .
mJ i.. ml 2J
1:pr_1+1 qu-l“

) t(pr-pr-l)(qr_qr-1) <

mlJ
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Rewriting once more we have finally

pr
~+ tI 1 -
x J {mI—t(p -p )} { J z i, * I(pr pr—l)XJ
r "r-1
i=p +1
-1
(pr_pr-l) " 1A (pr_pr-l) + }
ST x T " 1J x ’
q
r
N, tJ }{(qr'q B LS U O
X1 mJ-t(q -q ) J i. I .J.
r ‘r-1 .: +1
J .1
(3. 36)
(a.-a. ;) L la (a.-a,. 4) \
- 17 x 17 1J ’
P
o - t1J | {(qr'qr-l) -
r mIJ-tI(qr-qr_1)-tJ(pr-pr_1) J - :—1
_pr-l
qr
+ (pr_pr-l) - ) (pr-pr-l)(qr-qr-l)
i X, 1J x
J=aq,. 1
(pr_pr-l)(qr-qr—l) nt )
- x
1J .
It is clear that (3. 36) will give us the estimates we need if we
can obtain the estimate ’§<+ . This estimate can be had in the

following way: First note that
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Thus if we sum the last equation in (3.36) over r we may solve the

resulting equation for x+ . The result is
n
At 1+ tz [ (pr_Pr-l)(qr-.Qr—l) ]}‘1
ce = mIJ-tI(qr-qr_l)—tJ(pr-pr_l)

n
. Z [ t1J ]
miJ-tlq -q__,)-tJ(p_-p_ ;)

r=1
(3.37)
P q
T T
] [ (qr_qr—l) - + (pr—pr-l) -
T .. I 3.
i=pr_1+l j=qr_1+l

(p-p._Ma,-a )
i 17 x I

The work is now complete. To use these formulas one first

calculates §+ from (3. 37) and substitutes this result into the last
equation of (3.36) to obtain the n estimates ?’1’ Tt ”};n' The

estimates provided by the first two equations of (3. 36) can then be

calculated and all estimates substituted as appropriate into (3. 27) to

. . . AN a
obtain, finally, the estimates @, (SJ., and §
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Iv. ITERATIVE SOLUTION

In the preceding chapters we have considered the problem of
obtaining exact solutions to the normal equations for certain non-
orthogonal layouts. We conclude here with a brief description of a
method for obtaining approximate solutions to the normal equations
when data are incomplete. In illustrating the method we confine our
attention to a layout with a single observation in each non-empty cell.

Let us suppose that we have an IXJ layout with numerous
empty cells, but at least one observation in each row and column.
We set up the normal equations in accordance with the correct least
squares method discussed in Chapter II, i.e., we set up normal
equations utilizing the data that are present in the layout. The equa-

tions corresponding to a and ﬁj are

m m
~ a ~
ma, + mE = X, - g
i ip. P.
=1 7 =
n n (4.1)
I’ ”~
np. + n§f = z x . - z 2
J q,) a;
i=1 i=1
respectively, where cells ipl, e, ipm are the m non-deficient
cells in row 1i, and cells qu, s ,qnj are the n non-deficient

cells in column j. Notice that these equations can be written
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=1’ =1

n n
A 1 1 A ~ (4. 2)
B. = — Z x . - = z (¢ + §)
J m q,) n q

i=1 i=1

For reasons of convenience we will work with the parameter ai ,

¢' = a.+§ ,
i i

rather than e, itself. As our first approximation to the estimate

'&i (we will denote it by ai(O)) we take
m
1
1 = —
ai(O) p— Z xip‘ , (4. 3)
=1

i.e., just the average of observations present in the it row. Since

every row contains at least one non-deficient cell, we may compute

first approximations for all of the estimates :1\'1, Tt ,/3‘1 . In the
. N
second of Equations (4. 2) we replace each a' by its first approxi-
i
A

mation a'(0), and obtain a first approximation to [3j, which we

1 A
shall denote by ﬁj(l). We then replace the ﬁp in the first of
J
Equations (4. 2) by their first approximations Bp (1), and let the

J
resulting equation define the second approximation ai(l) to 31

Repetition of these steps gives an iterative process for obtaining the
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successive approximations ai(l), BJ_(Z), ai(Z), ﬁj(3)’ ai(3)r"'
~

One may obtain an approximation to g€ at any stage by

imposing the condition
I
Z @ =0,
1
i=]

since we then have

Given an approximation to §

7\
the individual ai from

]
I

The details of this procedure are demonstrated by setting up

the normal equations and performing the first iteration using the data

in Figure 3.

2 1
1 2
1 5 6

Figure 3. Sample Data .
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The normal equations are

= 2(2r1) -5 (B, + B
17 2 23 4
L = 2(142) - 5 (B, + B)
2 7 2 23 4

1 ~ A Lo
= S(1+5+6) - 3 (B, + B, + B,)

Wh—-

(4. 4)
~ 1 1~
‘3 = _1-(1) '-1- (a3)

B, = 105 - (@)
'63 = %(zn) -%(3'1 + )

~
a

I 1 1
B, = —3-(1+2+6) - 3(

e =

Now, according to (4. 3)

3

1 - =

a} (0) 2

3

1 —_ —_—

aZ(O) = 5
a'3(0) = 4 |,

and then from the last four equations of (4. 4)

B (1) =1-4 = -3
B,(1) =5-4 = 1
3 3
By(l) =5 -5 =0
7 2.
Bl =3-3= 3= .67,



and, to complete the first iteration, we use the first three of Equa-

tions (4. 4)
ai(l)
aé(l)

az(1)

i W

"
>

W |
]

7
c = L
7

< = L
40 .
5 = 4

From the last three approximations we obtain

£(1)

and hence

al(l)

ay(1)

The least squares estimates of a., ﬁj, and £

1]
o=

o=

AN
6

40

9 )"

It

= 2.19

exactly using formulas (3. 36) and (3. 37)

H

Qay un2
1

4

2>

1.50

-1.50

-1.50

3.00

>
—

™ ™ )
w )

NN

61
27

of Chapter III

-1. 09

-1.09

-3.50

. 50

1.50

1.50

= 2.26,

were calculated

They are

54
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Comparison with the approximations reveals that the approximations
are rather crude after only one iteration, but it is to be expected that
the convergence of the approximations will be slow if the layout is
small or if the observations are scanty or poorly interrelated. The
utility of the process lies in its application to large layouts having a

majority of cells empty.



56
BIBLIOGRAPHY

Cochran, William G. and Gertrude M. Cox. Experimental designs.
New York, Wiley, 1950. 454 p.

Fisher, Ronald A. The design of experiments. 6th ed. New York,
Hafner, 1951. 244 p.

Scheffé, Henry. The analysis of variance. New York, Wiley,
1959. 477 p.

Yates, F. The analysis of replicated experiments when the field
results are incomplete. Empire Journal of Experimental
Agriculture 1:129-142. 1933.





