EFFECT OF RAPID LOADING ON THE COMPRESSIVE AND FLEXURAL STRENGTH OF WOOD

No. R1767

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE
FOREST PRODUCTS LABORATORY
Madison 5, Wisconsin
In Cooperation with the University of Wisconsin

By
J. A. LISKA, $\xlongequal{=}$ Engineer

Forest Products Laboratory, $\frac{2}{\text { Forest Service }}$
U. S. Department of Agriculture

Summary

Rapid loading tests in flexure and compression parallel to grain on Sitka spruce, Douglas-fir, maple, and birch specimens at approximately 12 percent moisture content show that the modulus of rupture and ultimate compressive strength are increased as the time to ultimate load is decreased. For loading times of 0.3 to 750 seconds, the increase or decrease is approximately 8 percent for a tenfold decrease or increase in loading time. Fiber stress at proportional limit values are generally increased to a greater extent than ultimates, but are much more variable. The effect of rapid loading on modulus of elasticity is small and no increase in modulus with rate of loading should be considered. Deflections and deformations to maximum load are about the same regardless of loading rate for softwoods, but they tend to increase as loading time is decreased for hardwoods. The duration of maximum load in compression varies inversely as the time to maximum load, and at rapid loading rates it is about one-tenth of the time to maximum load. The flexural work to maximum load js greater for the rapid loading rates, but only in hardwoods is the increase greater as the loading time becomes less.

Introduction

The period in which a load or force acts on a wood member and the duration of application of this force have an important effect on the strength properties of the member in question. This factor must be considered when designing with

[^0]wood, whether it be for a warehouse where the loads imposed on the structural members may be applied for weeks or months; or in aircraft where the load, during ordinary maneuvers, such as a change in direction of flight or flattenout after a dive, is applied in a fraction of or a few seconds. Early investigators were conscious of this effect, and in 1908 McGarvey Cline $=$ and H. D. Tiemann 4 published results of tests to evaluate the effect of rate of application of load on strength and stiffness of wood members and proposed speed of testing requirements for several basic test procedures.

These studies and others made at the Forest Products Laboratory over a number of years have indicated that the load to cause failure in a wood member that is continuously loaded for years, is approximately 60 percent of that required for failure in a standard flexure test that is completed in about 10 minutes. It was also determined that the load to cause failure in impact, where the load is applied in a few thousandths of a second, was about double the failing load in a standard flexure test. Other studies had been made to evaluate the effect of loading times between a fraction of a second and the standard testing time; but during World War II, when wood was used to a considerable extent for structural members for training aircraft and gliders, it became evident that additional test data were necessary in this range. Accordingly, a test program was initiated at the Forest Products Laboratory in cooperation with the ANC Committee on Aircraf't Design Criteria, and studies were made to determine the effect of rate of loading on the flexural and compression-parallel-to-grain strength properties of Sitka spruce, Douglas-fir, maple, and birch. The results of the studies on those species, representing some 640 rapid loading tests and more than 900 tests of matched controls, are presented and analyzed to evaluate the effects of these loading rates.

Materials and Procedures

Material

Two softwood and two hardwood species were included in the investigations made to evaluate the effect of rapid loading on the compressive and flexural strength properties of wood. The softwoods, Sitka spruce and Douglas-fir, were obtained from trees 250 to 400 years old felled in the Washington-Oregon area. Logs of those two species were shipped to the Forest Products Laboratory, where they were sawed into planks that were subsequently kiln dried to about 12 percent moisture content. Maple and birch logs from Wisconsin were also cut into planks and kiln dined at the Laboratory. Planks having the desired specific gravity characteristics were selected from this source of material to be fabricated into test specimens.

[^1]The planks chosen for fabrication into test specimens were in all instances free of defects and as straight grairied as possible. The grain direction of each plank was determined and the individual specimens were oriented so that the direction of grain was parallel to their edges.

Compressionwarallel-tomgrain specimens were noninally 1 by 1 inch in cross section and 4 inches in length parallel to the grain. One-inch-square sticks were cut from the selected plank and were in tum cut into 4 -inch lengths. From these, end-matched test specimens, controls, and rapid loading specimens were selected alternately. By this procedure it was possible to compare the properties of the rapidloading specimens with the average of those of the two endmatched controls. The variation in control strength between the two controls for each rapid loading specimen was limited to 5 percent, and if this limit was exceeded the results were not used.

Flexural specimens, nominally 1 inch by 2 inches in cross section for the softwoods and 1 inch square for the hardwoods, were 16 inches in length. The depth of specimen was the 1 -inch dimension in all casest, and the annual ringe were oriented parajlel to the specinen width. In all of the planks except some of the Sitka spruce, the flexural specimens were cut so as to obtain end matching between rapid loadirg specimens and controls. Selection of controls and rapid loading specimens from these planks was carried out in a manner identical with that used for the compression specimens. Test results obtained on the rapid loading specimens were compared with average properties from adjacent end-matched controls. The variation in properties of the controls was held to a minimum, but the results were not so consistent nor limited so closely as in the compression tests. In a few of the Sitka spruce planks the grain orientation was such that end matching was not possible, and in these instances the specimens were side matched tangentially. The properties of the rapid loading specimens were compared with those of the side-matched controls.

After fabrication, the specimens were stored in a humidity room maintained at a temperature of 70° T. and a relative humidity of 64 percent until they reached constant weight. Depending on species and previous conditioning, the specimens came to equilibrium at moisture contents of about 9 to 14 percent. The specimens were kept under these conditions until removed one at a time for test.

Compression-parallel-to-grain tests of the controls were made according to standard procedures, except that the special compressometer developed for the rapid loading tests was used to measure the deformation over a 2 -inch gage length. The specimens were loaded on the 1-by 1-inch ends, in a 10,000-pound-capacity, mechanical-type testing machine, at a rate of free head movement of 0.003 inch per inch of specimen length per minute. Actual rate of strain was less than this figure, particularly during the early part of the test. Other experiments have shown, however, that after the proportional limit stress has been exceeded, the rate of loaded cross-head movement of mechanical machines approaches the rate of free head movement.

Rept. No. R1767

Rapid loading tests were made at nominal rates of free head movement of 0.087 , $0.394,0.773,1.905,2.799$, and 5.87 inches per minute in a mechanical-type testing machine. Since at these rates it was impossible to measure load and deformation increments in the conventional manner, other techniques were devised.

Increments in load were measured by the deformation of a calibrated steel tube that was also used as a support for the specimen in the testing machine. This tube was 3 inches in diameter and 37 inches long and had a wall thickness of 0.073 inch. A machined steel bearing cap 1 inch thick was fitted to each end of the tube. A pivoted collar near the bottom of the tube and a rigid collar near the top were connected by two $1 / 4$-inch round steel rods. One rod was attached to a dial indicator mounted rigidly on the upper collar. This dial indicator, graduated to 0.001 inch, measured the deformation of the tube resulting from the load applied to the specimen as shown in figures 1 and 2. This deformation was converted to applied load from the relationship of load and deformation that had previously been obtained from calibration tests of the tube.

Strain measurements on the compression test specimens were made with the compressometer specially developed for this study. The compressometer was attached to the specimen, over a 2 -inch gage length, by conically pointed thumb screws bearing on small steel pins imbedded in the tangential face of the specimen. As shown in figure 3, one arm of the compressometer was fixed by means of a flexure pivot, while a dial graduated to 0.0001 -inch was mounted on the other to measure deformations. A locking pin to maintain the 2-inch gage length was removed once the compressometer was firmly attached to the specimen.

An electric timer reading directly to 0.01 second was used to measure the time of each test.

The loading periods from 0.8 to 50 seconds were too short to permit observation and recording of load, deformation, and time increments by normal procedures. Therefore a 35 -millimeter motion-picture camera (fig. 2), operated at an appropriate speed for each test, was used to record simultaneous dial gage and electric-timer readings. The camera was operated for the period just prior to contact of the loading head and the specimen to the point after ultimate load when the load decreased to less than the ultimate value. Thirty or 40 pictures were taken to ultimate load in each test, and the test data were subsequently transcribed from the film to data sheets for study.

Flexural tests were made on 1- by 2-by 16-inch softwood specimens and 1-by l- by l6-inch hardwood specimens tested over a l4-inch span. Depth of specimen was always 1 inch, and load was applied perpendicular to the growth rings at the center of the span through a maple block curved to a 3 -inch radius. Control specimens were tested in a mechanical-type testing machine at a rate of free head movement of 0.05 inch per minute. This rate produces a theoretical rate of straining in the outermost fiber, within the proportional limit, of 0.0015 inch per inch per minute. Actual rate of straining is somewhat less than this, but during the portion of the test beyond proportional limit, the loaded head speed compares closely with the free running head speed.

The rapid loading tests in flexure were made on a hydraulic-type testing machine at nominal rates of loaded head movement of $0.2,1,3,6,12,18$, and 80 inches per minute. Rates up to 6 inches per minute were obtained by conventional operation of the testing machine. The rate of 18 inches per minute was made possible by operating the motor-driven adjusting head at about 12 inches per minute in opposition to movement of the lower platen of 6 inches per minute. A bellows arrangement was designed to obtain the 80 -inch-perminute rate of loading. Air was admitted from a surge tank (fig. 4) through a quick-opening valve to the bellows. The valve regulated the flow of air to the bellows and thus the rate at which load was applied.

Conventional procedures for measuring and recording load, strain, and time increments were impracticable, and, therefore, special equipment was developed for this purpose. Load was measured by the deflection of a calibrated steel ring (fig. 5) that was substituted for the maple loading block. This ring, machined from a section of steel pipe, was 6.5 inches in outside diameter and had a wall thickness of 5/16 inch. A dial gage, reading to 0.0001 inch, was attached along the vertical diameter of the ring and measured the change in ring diameter as load was applied to the specimen. This deformation was converted to load from calibration data previously obtained on the ring.

A dial gage, measuring center deflections to 0.001 inch, was mounted on a yoke supported at the neutral axis of the specimen over the supports. Time intervals during each test were measured by a stop watch graduated to 0.01 second. The test apparatus, including load, time, and deflection measuring equipment, is shown in figures 5 and 6 .

When the bellows was used to apply load, as shown in figure 7, the calibrated steel ring was used as one of the reactions of the test specimen and the deformations of the ring in this position were converted to applied load increments.

The 35 millimeter motion-picture camera used in the compression tests was also used to record load, time, and deflection increments for the flexure tests. Loading times varied from about 0.3 to 150 seconds, and the camera was operated at an appropriate constant speed to obtain an adequate test record, which was subsequently transcribed from the film.

Results and Analysis

Compression Parallel to Crain
The effects of rapid loading on the compression-parallel-to-grain strength properties of wood are presented in tables I to 4, inclusive, wherein the results are summarized by species, rate of loading, and plank number. The plank summary is essentially by specific gravity, since the evaluation of specific gravity effects on variation in properties with rate of loading was introduced in the program by proper selection of test plank. The tables show that the specific gravity and moisture content values for rapid loading specimens and controls were in good agreement and that no adjustment in property values was required prior to evaluation of rate-of-loading effects. While the results

Rept. No. RI767

$$
-5-
$$

are averages for the number of rapid loading specimens indicated and a greater number of control specimens, the method of matching has provided excellent agreement in moisture content and specific gravity values for individual sets of matched specimens.

A resumary of a portion of the data in tables 1 to 4 , inclusive, is given in table 5, together with an indication of the uniformity of the data. The results are tabulated by species and within each species by nominal rates of deformation. A more precise indication of loading time, however, is afforded by the time-to-ultimate-load values. The effect of rapid loading on compres-sion-parallel-to-grain strength properties is indicated as an average ratio of the rapid loading properties to the average proper-
ties of their matched controls. Since such ratios alone do not completely describe test results, an indication of the uniformity of the data is given by standard deviation figures for each result presented. An analysis of the data shows that the maximum crushing strength values for each species are increased as the time of loading is decreased and that the amount of increase for any specific rate of loading is much the same, regardless of species. The fiber stress at proportional limit also increases as the rate of loading is increased, and, in general, this increase is more than that for maximum crushing strength at any given loading rate. The results, however, are more variable than those obtained for maximum crushing strength, and there is less correlation between species. Modulus of elasticity values show some increase as time of loading is decreased, although ezamination of the data in tables 1 to 4 , inclusive, will show that this is not always true. The magnitude of increase shows no tendency to become greater as the loading time is decreased, but rather that the increase is uniform for at least the four most rapid rates of loading. Considering the magnitude of the increase and the variability of results, it would seem logical to assume no increase in modulus of elasticity with decrease in loading time.

To determine the trend of the variation of maximum crushing strength with loading time to maximum load, the individual strength ratios were plotted against time on semilogaritmic coordinates. The charts of figures 8 to 11 , inclusive, present this data, each for a single species. The results were also plotted according to specific gravity groups to aid in evaluating the specific gravity effect, but no consistent trend could be established. The plotted points show scatter within a band, and it was possible to determine a straight line that detemines the slope of this band and that also passes through a point based on results of control tesis. The intercepts and slopes of the lines so determined for all four species are quite uniform; and based on these data, an average curve for all compression-parallel-to-grain test results would have the equation:

$$
P=121-8.5 \log T
$$

where

$$
\begin{aligned}
P= & \text { ratio of ultimate compressive stress of rapidly } \\
& \text { loaded specimen to that of controls }
\end{aligned}
$$

$T=$ time to ultimate compressive stress in seconds

Rept. No. RI767

Behavior of typical rapidly loaded compression-parallel-to-grain specimens and matched controls is pictured in the curves of figures 12 to 17, inclusive, for Sitka spruce and maple. Stress-strain, stress-time, and deflection-time curves are shown. The stress-strain curves for both species (figs. 12 and 15) are similar, and the relationships between rapidly loaded specimens and controls are also much the same. The modulus of elasticity of the rapid loading specimen is slightly greater than that of the control, as shown by the slopes of the initial portions of the curve. This straight-line portion of the curve also defines a proportional linit stress that is higher for the specimen tested in the shorter time. Ulimate compressive strength values are shown to be about 20 percent higher for the rapid loading specimens.

The stress-time curves of figures 13 and 16 show a uniform increase of stress with time during the early part of the test. If the difference in time scales is noted, the much greater duration of maximum load for the control specimen is readily apparent. If the higher strength values are used in design because of more rapid loading conditions, the fact that the ultimate load can only be carried for a very short time must also be taken into consideration.

Strain-time characteristics are evident in the curves of figures 14 and 17; and it may be noted that the deformation proceeds uniformly with time during the early part of the test, but at a rate much slower than that determined by the free running head speed chosen as the nominal rate of deformation. Other investigations have shown that this behavior is typical and depends on the capacity and elastic constants of the testing machine and the strength and stiffness of the test specimen. These studies also show that after the proportional limit stress is exceeded, the rate of deformation tends to increase and approach the free running head speed in magnitude as the ultimate load is attained. This condition is evident in the curves of figure 17. It is not so apparent in figure 14, however, particularly for the control specimen, but it was noted that in this species final failures occurred outside the gage length of the compressometer, so that the strains obtained do not truly measure the deformation taking place in the specimen as ultimate load is reached.

Comparisons of specimen deformation and rate of loading in compression parallel to grain are made in table 6. The average unit strain values tabulated are those obtained between gage points and may not, for species that tend to fail near the ends, give exact values of total deformation, since the deformations at the point of failure are not included. Within a species, however, all failures exhibit the same pattern, and the values given do afford an indication of behavior with loading time. Average results show that deformation at ultimate is approximately a uniform value regardless of loading rate for the softwood species, but tends to increase as the loading time is decreased for the hardwoods. The time that maximum load can be sustained is very clearly a function of loading rate, as shown by the duration of maximum load periods of table 6. As the rate of loading is increased, the duration at maximum load is markedly lessened, and for rapid rates of loading it is approximately 10 percent of the time to maximum load.

Rept. No. RI767

Flexure

Flexural properties of rapid loading specimens and comparisons with their matched controls are tabulated in tables 7 to 10, inclusive, by species, rate of loading, and plank number. The data presented are similar to those for the compression-parallel-to-grain tests given in tables 1 to 4 and discussed previously. A portion of the data are resummarized in table 11 according to species and nominal rate of center deflection, and a more exact indication of the rate of loading is presented in the fom of average time to maximum load. The effect of rate of loading on flexural strength properties is given in the form of average ratios of the property values, as determined in rapid loading tests, to the average properties of their matched controls. To afford an indication of the uniformity of the results obtained, standard deviation figures were computed and are presented for each property listed. The data indicate that the flexural modulus of rupture increases as the rate of loading increases for all of the species tested, and that the ratios are of the same order of magnitude for a given loading rate regardless of species. The fiber stress at proportional limit also increases as the loading time is decreased; and for softwood species, this increase is greater than that obtained for modulus of rupture. For the hardwood species, however, the increase is less than that obtained for modulus of rupture; and for the slowest rate of rapid loading in this study, the proportional limit stress value is less than that obtained for the matched controls. In all instances the variability of results, as measured by standard deviations, is greater for the fiber stress at proportional limit than for modulus of rupture. Examination of the data of table ll, as well as those of tables 7 to 10, inclusive, shows that the modulus of elasticity of the rapid loading specimens is usually, though not always, greater than that of the matched controls. The modulus of elasticity does not increase as the loading time is decreased, however, but rather is quite uniform over the range of testing speeds studied. The magnitude of the increase is small, and if this, together with the variability of results, is considered, it would seem logical to assume that the flexural modulus of elasticity is not changed with rate of loading.

The variation in modulus of rupture with loading time is illustrated graphically in figures 18 to 21 , inclusive. The ratios of modulus of rupture of rapid loading specimens to modulus of rupture of controls were plotted on semilogaritmic coordinates against time to modulus of rupture for each of the species studied. The data for each species are also separated into specific gravity groups to permit evaluation of specific gravity effect on specimen behavior, but no well-defined effect was evident from the data obtained. While the scatter of the test data is somewhat greater than that obtained for compression-parallel-to-grain tests, a trend of increased modulus of rupture with decreased loading time is clearly evident. The trend is defined by the straight line determined for each group of data that represents the mean condition for rapid load tests and that passes through the average control test value. Intercepts and slopes of the lines determined are similar for each of the species tested; and based on the data available, an average curve for modulus of rupture would have the equation:

$$
P=121-7.5 \log T
$$

where
Rept. No. R1767 -8-

$$
\begin{aligned}
& P= \text { ratio of modulus of rupture of rapidly loaded specimen } \\
& \text { to that of controls }
\end{aligned} \quad \begin{aligned}
T & =\text { time to modulus of rupture in seconds }
\end{aligned}
$$

The slope of the equation thus derived is slightly less than that obtained for the compression-parallel-to-grain studies (8.5 to 7.5); but if consideration is given to the variability of results, it would seem that an equation with an average slope of 8 is justified. Thus for flexure and compression-parallel-to-grain loading conditions, which are more rapid than those used in standard tests, the maximum strength properties are increased by 8 percent as a tenfold decrease is made in the loading time. Stated another way, a 100 percent change in loading time causes a change in ultimate strength properties of approximately 2.5 percent in the opposite direction.

Typical behavior of rapidly loaded flexure test specimens and matched controls is shown graphically in the load-deflection, load-time, and deflection-time curves for Douglas-fir and birch in figures 22 to 27, inclusive. The loaddeflection curves of figures 22 and 25 substantiate previously made statements on the equality of modulus of elasticity values for rapidly loaded test specimens and controls by the similar slopes for the initial portion of the test curves. The fiber stress at proportional limit comparisons can be made by noting the extent of the straight-line portions of the curves, and the increase of modulus of rupture with decrease in loading time is clearly discernible. Center deflections at maximum load are much the same for rapidly loaded specimens and controls, but the increase in modulus of rupture with decrease in loading time causes the area under the rapidly loaded test specimens to be greater; and since this area represents energy absorbed, the work to maximum load is greater for the rapidly loaded specimens.

The load-time diagrams of figures 23 and 26 show a uniform increase of load with time during the early portion of the test. They further show that the load at or near maximum is maintained for a much longer period of time in the control tests than at more rapid rates of loading; and this is a factor that should be given adequate consideration when the rapid loading increases are used in design, since failures will then give less warning and occur suddenly.

The deflection-time curves (figs. 24 and 27) are two straight-line segments joined by a short curved section. The initial straight-line portion represents the deflection characteristics at loads below the fiber stress at proportional limit value, which show about a 15 percent slower rate of deflection than the theoretically applied rate. Above the proportional limit the rate increases to about that determined as the nominal rate of deflection.

Table 12 is a tabubtion of the average deflection at maximum load and work to maximum load values, as they vary with rate of loading, that substantiates the statements made on typical specimens. There is no consistent relationship between time of loading and center of deflection at ultimate, but rather the deflections are quite uniform and independent of loading time. In the hardwoods tested there is some indication of increased deflections at increased rate of loading, but the magnitude of the change is small. With center deflections much the same and ultimate stresses increasing as loading
Rept. No. RI767

$$
-9-
$$

time is decreased, the energy absorbed to maximum load will also increase as time of loading becomes less. This is essentially true as shown by the work to maximum load values, which are generally greater than those of the matched controls. The increase is not related specifically to time of loading for the softwoods, however, although this trend is indicated by the tests of hardwoods.

Conclusions

1. The maximum crushing strength in compression parallel to grain and the modulus of rupture in flexure are increased as the time of loading decreases below that used in standard testing procedures for wood members. This increase is approximately 8 percent for tenfold decrease in loading time; or, to express it another way, if the loading time is changed by 100 percent, a change in strength in the opposite direction of about 2.5 percent will result.
2. The fiber stress at proportional limit in compression parallel to grain is increased to a greater extent than maximum crushing strength for any given loading rate, but the variation in results is much greater.
3. The fiber stress at proportional limit in flexure is increased more rapidly than the modulus of rupture for softwoods, but the reverse is true for the hardwoods tested. Greater variability in results for proportional limit stress data was found.
4. The modulus of elasticity in compression parallel to grain is generally greater at rapid loading rates, but this increase seems to be uniform for all rapid rates of loading and does not increase as loading time is decreased. Comparisons of the magnitude of the increase with variability of results suggest that no increase in stiffness be considered as loading time is decreased.
5. The modulus of elasticity in flexure is approximately the same for all rates of loading.
6. The unit strain at ultimate load in compression parallel to grain is approximately the same for all loading rates in softwoods, but it tends to increase as the loading time is decreased for hardwoods.
7. The duration of maximum load in compression parallel to grain decreases as the loading time is decreased, and for rapid loading tests it is found to be approximately 10 percent of time to maximun load.
8. The deflection at maximum load in flexure is about the same regardless of loading rates in softwoods, but it tends to increase as loading time is decreased for hardwoods.
9. The work to maximum load in flexure is greater for more rapid loading conditions, but only in the hardwoods is there any indication of greater increases as the time of loading is reduced.
Table 1.-hefect of rapld loading on the compreasive atrength propertios of Sitika spruce

Moninal rate of deformation ${ }^{\text {l }}$.in. per min.....	0.087	\%	0.087	:	0.394	8	0.394	1	0.773	$!$	0.773	1	1.905	8	1.905	:	2.799	8	2.799
Plank namber... .	25-18	8	36-23	8	25-18	8	36-23	8	25-18	1	36-23	:	$25-18$	8	36-23	8	25-18	\%	36-23
Yumber of tests..	4	8	12	8	4	1	15	2	4	1	17	1	5	1	6	8	5	8	15
Moisture content. .percant. . .	13.0	8	13.2	$:$	12.7	8	12.9	8	12.6	:	13.4	1	12.7	8	12.6	8	13.2	8	13.4
Moisture content of controls...................percent....	12.4	t	12.9	8	12.5	8	13.1	8	12.6	1	13.1	:	12.4	:	13.6	:	12.5	1	12.9
Specific gravity ${ }^{2}$..	0.342	8	0.402	1	$0.3{ }^{\text {3 }}$	8	0.403	1	0.338	8	0.402	t	0.334	8	0.403	:	0.332	8	0.404
Specific gravity of controls ${ }^{2}$................................	0.339	:	0.404	1	0.340	1	0.402	:	0.341	8	0.402	1	0.332	1	0.403	1	0.334	:	0.404
Time to maximun load...............................seer..... ${ }^{8}$	27.0	8	35.8	8	5.74	8	7.44	8	2.77	1	4.02	1	1.31	8	1.63	:	0.88	8	1.18
Time to maximan load of controls.................sec.....s	248	8	311	t	232	8	322	:	226	:	323	5	242	8	309	8	235	1	332
Maximam erashing strength.o......................p.s.i......	4,680	\%	5.430	8	4,900	8	5,800	8	4.990	:	6,010	:	5,000	1	6,190	1	5,090	8	6.150
Maximme crushing strength of controls..........p.s.i......	4,410	8	5,060	8	4.450	8	5,080	8	4.410	:	5,100	1	4,250	\%	5,090	\%	4,310	8	5.110
Percent of control strength..................................	106.0	t	107.4	1	112.0	8	114.4	8	113.2	:	117.8	8	117.6	8	121.4	8	118.1	:	120.4
Strain at maximm load.....................ine per in.....:	0.00370	8	0.00318	8	0.00330	8	0.00340	8	0.00340	i	0.00335	1	0.00363	1	0.00350	8	0.00338	:	0.00353
Strain at maximum load of controls........in. per in.....	0.00328	8	0.00323	:	0.00335	1	0.00328	1	0.00313	1	0.00327	1	0.00317	1	0.00341	8	0.00303	8	0.00329
Daration at maximum load...........................sec.....s	1.2	2	3.8	1	0.35	8	0.35	:	0.11	1	0.38	1	0.05	\%	0.19	:	0.04	8	0.11
Daration at maximum load of controls.............soc....t	9.6	:	15.8	8	9.5	1	14.4	$:$	6.4	1	14.9	:	4.8	8	16.8	\%	3.6	8	14.6
Time to proportional limit.........................sec.....	16.3	:	19.9	\%	3.74	:	4.50	8	1.91	1	2.30	:	0.88	8	0.97	1	0.64	8	0.69
Time to proportional limit of coutrol............sec.....s	144	8	158	8	144	1	164	:	144	:	163	1	144	8	162	:	143	:	160
Stress at proportional limit....................p.p.si.....t	3,650	8	3,810	8	3,840	1	4,180	:	4,010	8	4.300	t	4,120	:	4.570	1	4,290	1	4,490
Stress at proportional limit of controls.......p.s.i....ts	3.410	2	3,520	8	3.460	:	3.540	:	3.520	:	3,520	8	3.330	:	3.560	:	3.410	8	3.510
Porcent of control proportieaal linit......................	107.2	8	108.4	8	110.8	8	118.0	t	114.0	:	122.4	:	123.7	:	128.5	:	125.9	8	128.2
Modulus of elasticity..	1,465,000	$:$	1,860,000	8	590,000	8	50,000	8	585	:	900,000	$:$	1,470,000	8	895,000	,	1,540,0	$:$,910,000
Modulus of slaticity of controls...............p.s.i.....t	1,479,000	8	.780,000	2	1,495,000	8	146,000	8	. 535.0	:	1,773,000	:	1,443,000	1	.697,000	-	1,487,000	8	1,803,000
Percent of control modulus...................................	99.5	8	104.2	$:$	106.4	8	106.0	$:$	103.3	8	107.5	$:$	102.1	1	111.8	:	103.3	$:$	106.3

$1_{\text {moninal }}$ rate of doformation of controls -0.012 inch per ninute.
? $_{\text {Based on }}$ volume at test and over-dry weight.
Z M 84951 F

		:		:		:		:	
Nominal rate of deformation\%............in. per min....	0.087	:	0.394	:	0.773	:	1.905	:	2.799
Plank number...	39-59	:	39-59	:	39-59	\%	39-59	:	39-59
Number of tests,...	7	:	8	:	8	:	8	:	8
Moisture content................................. percent....	12.4	:	12.2	:	12.1	:	12.3	:	12.3
Moisture content of controls...................percent....	12.7	:	12.4	:	12.2	:	12.6	:	12.6
Specific gravity ${ }^{2}$. .	0.434	:	0.431	;	0.431	:	0.439	:	0.434
Specific gravity of controls?	0.433	:	0.429	:	0.431	:	0.435	:	0.431
Time to maximum lcad...............................sec.....	30.6	1	6.69	:	3.27	:	1.47	:	0.99
Time to maximum load of controls...................sec.....	266	:	268	:	267	;	265	:	263
Maximum crushing strength........................p.s.i.i.....s	6,170	:	6,440	:	6.530	:	6,870	:	6,830
Maximum crushing strength of controls..........p.s.i....:	5.700	:	5,670	:	5,710	1	5.760	:	5.660
Percent of control strength.	108.4	:	113.4	:	114.4	8	119.3	:	120.6
Strain at maximum load.....................in. per in.....i	0.00416	:	0.00438	:	0.00440	1	0.00429	:	0.00442
Strain at maximum load of controls........in. per in.....:	0.00463	:	0.00496	:	0.00472	1	0.00451	:	0.00452
Duration at maximum load...........................sec......	3.1	:	0.58	:	0.31	8	0.14	:	0.13
Duration at maximum load of controls..............sec....	10.4	:	7.4	:	8.3	8	8.6	:	10.1
Time to proportional limit.........................sec.....	17.7	:	3.94	8	2.09	8	0.96	:	0.66
Time to proportional limit of controls............sec....	151	:	253	8	152	\%	155	:	156
Stress at proportional limit.....................p.s.i.....	4,410	:	4.570	:	4,820	:	5,220	:	5,330
Stress at proportional limit of controls........p.s.i....i	4.090	:	4,060	:	4,090	:	4,290	8	4.150
Percent of control proportional limit......................	207.9	:	212.4	1	217.8	:	124.6	:	128.4
Modulus of elasticity..............................p.s.s.1.....	1,733,000	:	1,740,000	:	1,740,000	8	1,810,000	:	1,790,000
Modulus of elanticity of controls...............p.p.p.i....t	1,649,000	:	1,618,000	:	1,661,000	:	1,689,000	:	1,671,000
Percent of control modulus....................................	105.2	1	107.4	:	104.6	1	107.4	:	107.2

INominal rate of deformation of controls - 0.012 inch per minute.
${ }^{2}$ Based on volume at test and oven-dry weight.
と M 84952 F
Table 3.- -rffect of rapid loading on the comoressive strength properties of eaple

Yoninal rate of deformation ${ }^{\underline{1}}$..............in. per min...	0.087	!	0.087	:	0.087	:	0.394	:	0.394	!	0.394	:	0.773	:	0.773	:	0.773	:	1.905	!	1.905	$:$	1.905	:	5.87	!	5.87	!	5.87
Plank number..	H-3	1	$\mathrm{H}-2$	1	H-1	:	\%-3	1	H2	:	*-1	:	4-3	:	k-2	:	\#-1	:	1-3	:	\%-2	:	*-1	:	W-3	1	\%-2	t	$\mathrm{H}-1$
Wumber of tests.	6	!	5	$:$	6	:	6	:	6	:	6	1	6	!	6	:	6	:	6	1	6	:	6	:	6	:	6	1	6
Moisture content...............................percent....:	9.4	:	10.0	1	9.4	:	9.6	:	9.4	;	9.5	:	9.5	:	9.4	:	9.3	:	9.2	:	9.4	1	9.9	!	9.4	1	9.5	t	10.3
Moisture content of controls...................percent. .	9.1	:	9.0	1	9.6	:	9.2	:	9.0	:	9.6	t	9.3	:	9.1	t	9.6	:	9.3	:	9.3	$:$	9.8	t	9.2	:	9.2	t	9.6
Specific gravity ${ }^{\text {a }}$	0.59	1	0.635	:	0.672	:	0.595	:	0.638	1	0.674	:	0.595	1	0.636	:	0.677	:	0.596	:	0.640	:	0.674	:	0.590	:	0.642	,	0.674
Specific gravity d controls2...........................:	0.594	:	0.637	:	0.671	:	0.594	:	0.642	:	0.675	t	0.597	:	0.637	1	0.674	:	0.592	:	0.638	:	0.674	-	0.592	:	0.640	:	0.674
Fine to maximum losd...............................sec....	45.0	1	44.4	:	48.0	:	10.66	:	10.69	:	12.08	$:$	5.36	1	5.42	!	6.02	:	2.46	:	2.52	:	2.82	:	0.88	:	0.96	:	1.13
Tine to maximum load of controls..................sec....	323	$:$	333	:	378	:	323	'	338	:	370	1	319	$:$	339	$:$	373	$:$	320	:	335	1	370	:	314	:	332	:	377
Maximux crushing strength	8,740	:	9,540	1	9,550	:	9,380	t	10,010	1	10,240	:	9,300	:	10,050	:	10,350	1	9,610	:	10,500	:	10,540	:	9,970	1	17,050	:	11,000
Marimum orashing strength of controls..........p.e.i....	8,190	:	8,830	:	9,070	:	8,220	:	8,880	$:$	9,000	:	8,090	:	8,840	:	9,020	$:$	8,040	1	9,030	:	9,000	$:$	8,050	:	9,050	:	9,050
Percent of control atrength..............................t	106.8	1	108.0	1	105.3	:	114.1	:	112.8	$:$	112.8	1	115.0	:	113.6	t	124.7	:	119.5	:	116.3	:	127.1	:	123.9	:	122.2	:	121.6
Strain at marimum load....................in. per in....t	0.00664	:	0.00562	$:$	0.00720	:	0.00740	:	0.00696	:	0.00837	:	0.00819	:	0.00714	:	0.00871	1	0.00812	:	0.00713	:	0.00973	:	0.00914	1	0.00773	:	0.01188
Strain at maximum load of controls........in, per in....t	0.005%	:	0.00520	1	0.00731	1	0.00617	1	0.00554	:	0.00706	:	0.00603	:	0.00560	:	0.00662	1	0.00580	:	0.00523	:	0.00730	1	0.00611	:	0.00525	:	0.00718
Daration at maximum load.........................sec.... ${ }^{\text {a }}$	6.0	1	4.5	:	8.7	:	1.34	:	1.26	:	1.93	:	0.68	:	0.64	:	0.89	1	0.32	:	0.20	1	0.45	:	0.08	:	0.06	:	0.14
Daration at maximan lond of controls..............sec.... ${ }^{\text {a }}$	7.1	:	7.5	:	9.9	:	6.8	:	7.3	:	10.8	:	8.7	:	7.2	;	11.1	:	9.2	:	7.6	:	14.0	:	6.7	:	7.0	:	17.2
Time to proportional linit........................sec.... ${ }^{\text {a }}$	27.6	:	27.3	:	27.2	:	6.46	:	6.44	:	6.00	:	3.07	:	3.22	:	3.05	:	1.44	:	1.47	:	1.43	4	0.51	:	0.58	:	0.55
Fine to proportional limit of controls............sec....:	203	:	2 २2	:	216	:	206	:	220	:	208	$:$	202	:	224	:	217	:	212	:	223	$:$	217	:	202	t	219	-	220
Stress at proportionel lisit...................p.s.i....t	6,730	:	7.060	:	7.060	:	7,260	$:$	7,550	:	7.060	1	6,800	$:$	7.490	:	7,360	:	7,340	:	7,720	$:$	7,750	:	7.760	1	8,560	1	8,120
strose at proportional limit of controls.......p.s.i....s	6,160	:	6,720	:	6,380	1	6,250	$:$	6,660	$:$	6,270	:	6,050	:	6,750	:	6,470	1	6,340	1	6,800	$:$	6,490	:	6,140	1	6,700	:	6,530
Pescent of control proportional linit.....................	109.3	$:$	105.3	:	111.0	1	116.2	1	113.6	$:$	112.8	t	112.3	$:$	111.3	$:$	113.6	:	115.7	:	113.7	$:$	119.3	1	126.7	1	128.1	1	124.4
Motulus of elasticity..........................p.s.i....	99,000		18,000		31,000		77,000		2,368,000		2,467,000		2,031,000	:	2,346,000	:	,460,000		2,137,000		2,373,000		391,00		2,164,000		.493,000		2,427,000
Modulas of elesticity of controls...............p.s.i....t	2,050,000		,291,000	: 2	2,291,000		2,062,000		2,285,000		2,279,000	2	2,021,000		2,267,000	12	2,259,000		2,024,000		2,356,000		2,252,000		2,131,000		2,346,000		2,273,000
Percent of control modulus...............................:	102.8	:	105.5	$:$	101.8	$:$	105.6	\vdots	103.6	$:$	108.2	\vdots	100.4	$:$	103.4	:	108.9	$:$	105.7	:	100.7		106.1	:	106.7	:	106.3	:	106.8

$\mathbf{3}_{\text {Baced }}$ on volume at teat and over-dry weight.
Fable 4. Igfect of rapld loading on the eognoessive atrangth propertios of birch

L M 84954 F
Wabs 50m Sumay of the ratgo - Loading offact on the proporties of four species of wood tested in compression

The propertios obtained at rapid rates of loading are compared with those obtained on matched controls tested in compression parallel to grain
at a nominal rate of deformation of 0.012 inch per minute. Average time to maximum load of controls was 300 , 265 , 345 , and 325 seconds for
epruce, fir, maple, and birch, respectively.
7. M 84955 F

Table 6.--Summary of the rate of loading effect on the strain at maximum load and duration of naximum load for four species of wood tested in compression parallel to grain

Fable 8.-- Befect of rapid loading on the flexural stroneth provertioe of Powina-fir

Hominal rate of deflection ${ }^{\underline{1}}$	0.2	$:$	0.2	:	0.2	,	1.0	!	1.0	!	1.0	!	3.0	:	3.0	$\stackrel{1}{ }$	3.0	6.0		6.0	:	$6.0{ }^{-}$;	12.0	;	12.0	;	12.0	;	18.0	!	18.0	18.0
Plakk manber ...t	39-82	:	39-87	:	38-9	!	39-82	:	39-87		30-9	:	39-82	:	39-87	:	30-9	39-42	:	39-87	:	38-9		39-82	:	39-81	,	38-9		39-82		$39-87$	38-9
manber of testa...	4		4	:	6	,	4	:	5		3	:	4	!	5		7	: 4		5		7		4		5				4			
Mo1 star	12.4		12.2	:	11.1	:	13.0	:	13.0		2.5	!	2.0	:	12.9		12.8	: 12.2	,	12.1	'	12.5	,	13.2		13.1		12.2		12.1		13.0	
Noistare content	12.7		1.5	:	11.3	:	12.9	:	12.6		2.2	:	2.0	:	12.2		12.6	: 12.2		11.7		12.1	:	3.0		12.6		1.8		12.2		12.5	
apooific graviter ${ }^{\text {a }}$.	0.465		. 453		0.469		0.459	:	0.458		0.457	:	0.438	:	0.456	:	0.467	: 0.450		0.464		0.454	:	0.454		0.439		0.468		0.439	:	0.449	0.45
specific eravity of control. ${ }^{\text {a }}$	0.452	,	0.463		. 468		0.465	,	0.453		0.460	\pm	0.446	:	0.459	:	0.470	: 0.448		0.466		0.456	,	0.453		0.446		0.469		0.438		0.448	0.453
fine to ultimate	137		122	1	116	:	. 1	$:$	5.6		25.3	'	8.9	:	. 0		10.1	4.19		4.34		4.22	'	. 90		1.85	t	. 92		1.39		. 23	.25
Are to ultimato	525		520	$:$	551	'	$5{ }^{2}$!	498		512	,	505		519		55	1 512		560	-	577	1	513		509	1	550		510		501	5π
Modulue	13,89	1	12,770	:	14,130	:	14,030	$:$	2,770		14,880	:	13.35	1	13,21	:	15.350	14,19	1	14,700	:	14,410	:	14,040		12,980	t	5,79		3,340		3,710	15.520
Hodulue of rupture	2,580	:	12,660	1	2,94	1	12,600	:	11,770		12,180	:	11,890	:	12,160	:	12,290	11.960	:	12,88	1	11,990	1	12,080		11,360	1	12,000		11,720		12,480	12,370
corcent of cantrol modulus	210.5	-	100.8	:	9.	:	11.4	'	108.7		122.1	1	112.4	:	107.9	1	5.1	119.0		114.4	1	120.4	:	116.3		114.3	1	30.6		13.	1	129.6 ,	125
contor dofiection at uitimato loa	. 408	:	0.354	!	0.365	:	0.365	'	0.352		. 452	:	0.403		0.372	:	0.46	0.373		0.392		0.447		0.388		0.386	,	0.416	,	0.369	1	0.390	0.394
Conter doflectioi at altimate load of	0.380	:	0.	t	0.410	:	0.387	:	0.379		0.372	1	0.369		0.305	*	0.419	0.392		0.401		0.423		0.364		0.356	-	0.420		0.38	:	. 374	0.432
nte					11.8						15.0						16.5					23.5						14.7					13.4
Work to ultinate load of controle.......in.1b, per					13.0						11.0						13.1					13.2						12.6					13.0
tue to proportional linit..............soc...	60	t	65	1	46		11.8	:	13.6		9.4	:	4.5	:	. 3	,	3.6	12.18	:	2.15	$:$	1.74	!	0.92		0.9	:	0.9	'	0.89	:	0.66	0.69
flue to proportional 11mit of controla............soc....t	197	:	216	.	196	'	187	:	203		184	'	199	,	212	:	151	: 202	$:$	211		200		201		210	,	202		216	,	203	- 199
stress at proportional 1init....................p. .t.i...i	9,480	:	9.330	,	8,380	'	9.230	1	. 570		8.490	:	9.940		9.470		9.200	10,030	:	10,360	'	8,620		9,720		9.090	!	11,140		10,370		9,880	11,370
atrers at proportional limit of control.........p.t.i.....	7.690	1	8.140	,	7,810	'	7.380	1	,490		7.290	,	7.140	,	7,850	,	1.470	.400	1	8,040	:	7.580	:	7,360		7.28	:	7,62		7.70	t	7.230	7.350
ercont of control proportional 1	123.5	:	14.7	1	7.7	$:$	125.6	:	128.1		117.8	,	139.5	1	120.7	1	12. 2	134.8	:	129.	'	113.8	1	132.2		125.	:	146		135		26.	1 155.6
Kodulus of elasticity of contrals.................p.esi.....: $1,864,000: 1,738,000: 1,882,000: 1,903,000: 1,696,000: 1,880,000: 1,751,000: 1,736,000: 1,597,000: 1, \$ 2,000: 1,860,000: 1,744,000: 1,775,000: 1,688,000: 1,74,000$ 																																	

[^2]2.84957 F

Nominal rate of deformationt..............in. per min....:	1.0	:	1.0	:	1.0	:	1.0	:	12.0	:	12.0	:	12.0	:	12.0	:	80.0	:	80.0	:	80.0	:	80.0
Plank number...	H-1	:	H-2.	1	H-3	:	H-4	:	H-1	$:$	H-2	:	H-3	:	-4	:	H-1	:	*-2	1	14	:	*-4
Fumber of testr.. ${ }^{\text {a }}$	5	:	5	:	4	1	5	1	5	:	5	1	4	:	5	:	5	:	5	:	4	1	5
Moisture content.....................................percent...ot	10.4	1	10.7	:	10.3	$:$	10.9	:	10.2	1	10.2	$:$	10.3	:	10.4	1	10.7	:	10.2	:	10.3	:	10.7
Moisture content of controls......................percent....t	10.5	:	10.5	:	10.3	:	10.7	:	10.5	$:$	10.5	:	10.4	:	10.6	:	10.5	:	10.4	:	10.2	:	10.7
Specific eravity ${ }^{2}$... ${ }^{\text {a }}$	0.615	1	0.640	:	0.639	$:$	0.643	1	0.607	:	0.638	$:$	0.646	$:$	0.653	:	0.607	:	0.644	1	0.638	t	0.649
specific gravity of controlef...............................	0.615	t	0.641	:	0.647	:	0.648	1	0.609	:	0.638	$:$	0.645	:	0.651	t	0.607	:	0.641	:	0.655	1	0.651
Time to ultimate load................................8ec.... ${ }^{\text {a }}$	29.5	:	31.4	:	28.0	:	30.0	1	2.19	:	2.61	$:$	2.69	1	2.33	:	0.31	t	0.32	:	0.33	:	0.34
Fise to ultimate load of controls...................ssec.... ${ }^{\text {a }}$	606	:	678	$:$	724	$:$	046	t	598	:	708	:	76	:	660	1	649	:	673	:	765	:	651
Modulus of rapture.....................................p.s.i..... ${ }^{\text {a }}$	18,620	:	19,700	:	17,850	$:$	20,670	$:$	19,600	1	21,360	$:$	21,380	t	23.310	1	22,070	1	22,290	:	21,600	:	23,850
Modulus of rupture of controle....................p.i.i....t	16.670	:	18,210	:	17.880	$:$	19.300	:	16,460	:	18,050	:	17,700	:	19.300	:	17.000	t	17,880	:	17,770	t	19,340
Percent of control modulus of rupture....................... ${ }^{\text {a }}$	111.8	:	108.1	:	99.8	:	107.1	1	119.3	:	118.2	$:$	120.9	:	120.9	:	130.0	$:$	124.6	1	121.5	1	123.4
Conter deflection at ultimate loed...................in.... ${ }^{\text {a }}$	0.500	:	0.537	$:$	0.461	:	0.499	:	0.486	$:$	0.550	$:$	0.604	:	0.512	$:$	0.523	:	0.510	:	0.535	:	0.529
Genter deflection at ultimate load of controls.....in....i	0.455	:	0.516	:	0.543	:	0.484	:	0.452	t	0.542	$:$	0.535	$:$	0.489	$:$	0.491	:	0.506	:	0.578	:	0.481
Work to ultimate load.......................in.ib. per in.... ${ }^{3}$	20.8	:	24.0	:	18.3	:	23.7	$:$	20.2	:	25.5	$:$	29.0	$:$	27.0	:	23.9	:	23.9	:	24.8	;	28.7
Work to ultimate load of controls.......in.lb, per in ${ }^{3} . . .1$	17.5	:	22.1	1	22.8	:	22.2	:	18.0	:	23.4	$:$	22.1	$:$	22.4	$:$	19.4	t	21.0	1	24.5	$:$	22.0
Tine to proportional limit............................sec.... ${ }^{1}$	10.0	1	8.5	$:$	9.9	$:$	9.7	$:$	0.80	$:$	0.86	$:$	0.78	$:$	0.70	$:$	0.14	:	0.11	:	0.12	:	0.15
Fime to proportional limit of controls.............ssec....t	235	1	224	:	209	:	207	2	234	$:$	220	1	210	:	202	:	223	:	236	:	216	:	211
Stress at proportional limit.......................p.s.i.....t	9,690	t	8.010	1	9.460	3	11.340	:	10,180	1	11,420	:	10,130	$:$	10,930	2	11,640	:	11,080	1	11,330	:	13.850
Stress at proportional limit of control.c.........p.s.i.....s	10,150	$:$	10,400	:	9,110	1	10,960	$:$	10,070	$:$	10,080	$:$	9,140	$:$	10,680	:	9.910	$:$	10,700	t	9.340	:	11,040
Percent of control proportional linit....................... ${ }^{2}$	95.6	:	77.6	:	96.1	:	103.7	:	101.5	$:$	113.6	1	110.8	1	102.3	:	117.6	:	104.0	$:$	121.5	:	125.8
Modulus of elasticity.................................p.s.i.....t	2,067,000	$:$	2,168,000	:	2,054,000	:	2,454,000	$:$	1,961,000	$:$	2,011,000	:	2,004,000	:	2,505,000	:	2,032,000	:	2,154,000	:	2,047,00	1	2,571,000
Modulus of elasticity of controle.................pp.s.f.....t	1,972,00	:	2,100,000	:	2,053,000		2,477,000	1	1,936,000	$:$	2,067,000	$:$	2,030,000	:	2,454,000	:	1,987,00	$:$	2,052,00	:	1,990,00	:	2,462,000
Fercent of controia moduius of eiasticity..................	20th. 7	:	203.2	$:$	100.0	:	39.1	1	101.4	$:$	97.2	8	99.0	:	102.2	:	102.4	:	105.0	:	102.8	:	104.5
```Mominal rate of deflection of controls - 0.05 inch per m 2 Based on volume at test and oven-dry veight.```	inute.																						

Z M 84958 F


Sominal rate of deflectionn ${ }^{\frac{1}{2}}$...............in. per min....:	1.0	:	1.0	$!$	1.0	:	1.0	:	12.0	:	12.0	:	12.0	:	12.0	:	80.0	:	80.0	:	80.0	:	80.0
Plank number.................................................	B-1	:	B-2	1	B-3	:	B-4	'	B-1	:	B-2	:	B-3	:	B-4	:	B-1	:	B-2	:	B-3	:	B-4
Yumber of tests.................................................	4	:	4	:	4	:	4	:	4	:	4	:	4	:	4	:	4	1	4	:	4	:	4
Moisture content..................................percent... ${ }^{\text {a }}$	11.4	:	11.4	:	10.8	:	11.5	:	11.4	;	11.2	:	11.0	:	11.4	:	11.7	:	11.6	:	11.6	:	11.3
Moisture content of controls......................percent....	11.2	:	11.2	:	11.1	:	11.6	1	11.2	:	11.3	:	11.1	:	11.7	:	11.3	:	11.2	:	11.1	:	11.7
Specific gravity ${ }^{2}$............................................. ${ }^{2}$	0.596	:	0.595	:	0.589	:	0.592	:	0.608	:	0.605	:	0.588	:	0.593	t	0.601	:	0.599	$:$	0.590	:	0.596
Specific gravity of controls? ...............................	0.600	:	0.538	:	0.588	:	0.592	:	0.604	:	0.606	:	0.588	:	0.591	:	0.601	1	0.600	1	0.590	:	0.594
Time to ultimate load..................................sec.... ${ }^{\text {d }}$	31.2	:	30.3	:	35.9	$:$	30.6	:	2.46	:	2.37	:	2.97	:	2.36	$:$	0.37	:	0.34	:	0.29	1	0.27
Tine to ultimate loed of controls..................sec....	678	:	692	:	890	:	690	:	680	:	653	:	896	:	675	:	710	:	673	:	894	$:$	680
Modulus of rupture...................................ep.s.i.... ${ }^{\text {a }}$	18,900	:	18,470	:	17.460	:	18,650	1	21,610	:	21,370	:	19,280	:	20,280	1	22,610	:	22,330	:	22,660	:	21,400
Kodulus of rupture of controls....................p.s.i....:	17,300	:	17.490	:	16,580	:	17,220	:	17.660	:	18,120	1	17,000	$t$	17,230	:	17,280	1	17.870	:	16,890	1	16,970
Percent of control modulus of rupture	109.3	:	105.5	:	105.4	:	108.1	:	122.1	:	118.0	$:$	113.4	:	117.8	!	132.0	:	124.9	$:$	134.6	:	125.9
Center deflection at ultimate load..................in....	0.515	:	0.525	:	0.595	1	0.503	:	0.561	:	0.51 \%	:	0.643	:	0.522	:	0.612	1	0.532	1	0.701	:	0.499
Center deflection at ultimate load of controls.....in....t	0.512	:	0.520	1	0.658	$:$	0.524	:	0.512	1	0.492	1	0.679	$:$	0.514	$:$	0.522	1	0.497	:	0.689	1	0.504
Work to ultimate load........................in.ib. per in..... ${ }^{3}$	23.2	:	23.3	:	23.8	:	21.8	:	28.4	1	25.1	1	28.1	:	24.0	$:$	32.9	1	28.4	:	38.0	1	25.0
Work to ultimate load of controls.......in.in. $\mathrm{l}_{\text {cer }}$ in....i	21.8	:	22.3	:	27.0	:	22.2	:	22.2	:	21.5	!	28.3	:	2.5	:	22.4	:	21.4	:	28.0	1	23.5
Time to proportional limit............................sec.....t	7.7	:	8.4	:	9.8	:	9.1	:	0.75	:	0.77	1	0.78	:	0.68	:	0.10	:	0.10	:	0.10	:	0.10
Time to proportional limit of controls.............sec....:	220	:	217	:	212	:	214	:	212	:	228	:	205	1	220	:	224	:	224	:	202	:	211
Stress at proportional limit.....................ep.s.i....s	8,240	:	9,620	1	8,170	:	9,380	:	10,710	:	11,080	1	9,310	$t$	9,790	:	10,480	:	11,170	:	9,770	:	10,350
Stress at proportional limit of controls.........p.s.i.c...	10,310	:	10,300	:	8,190	1	10,020	:	10,100	:	11,020	;	8,150	:	10,250	:	10,400	:	10,710	:	7,920	:	9,980
Percent of control proportional limit.......................	80.0	:	93.9	:	103.6	:	94.2	:	106.8	:	101.4	:	121.3	$:$	96.6	:	101.4	$:$	105.4	:	126.9	:	105.9
Modulus of elasticity................................p.s.i.....	2,341,000	:	2,293.000	:	1,832,000	:	2,230,000	:	$2,333,000$	-	2.340,000	:	836,000	:	2,209,000	:	2,390,000		2,326,000		1,920,000		2,343,000
Modulus of elasticity of controls................ep.s.i.....	2,232,000	:	2,234,000	:	1,779,000	:	2,177,000	:	2,266,000	:	2,305,000	:	1,838,000	:	2,170,000	:	2,256,000	:	2,267,000		1,811,000	:	2,184,000
Porcent of control modulus of elasticity...................	105.2	:	102.8	:	102.8	:	102.4	:	102.9	:	101.6	$\begin{aligned} & 1 \\ & \vdots \\ & \hline \end{aligned}$	99.7	:	101.8	:	106.3	:	102.6	:	105.9	:	107.4
1   Hominal rate of deflection of controls - 0.05 inch per min 2	nute.																						

Based on volume at test and oven-dry velght.
7M 84959 F
Table 11. - Suramary of the rate-of-loading offect on the properties of four species of wood tested in flexure

The properties obtained at rapid rates of loading are compared with those obtained on matched controls tested in flexure at a nominal rate of
deflection of onj inch per minute. Average time to maximum load of sontrols was $550,530,670$, and 735 seconds for spruce, fir , maple, ona
birch, respectively.
7. M 84960 F

Table 12.-Summary of the rate of loading effect on the deflection at maximum load and the work to maximum load for four species of wood tested in flexure

Figure 1.-Method of testing small clear specimens in compression
(ZM58764F)
Rept. No.
RI767

Figure 2.--Equipment used to measure the effect of rapid loading
on compression-parallel-to-grain properties.
High-speed motion-picture camera used to record
load, deformation, and time increments is shown
in the foreground.
(2M57093F)



Figure 3.--View of 2-inch gage length compressometer
(ZM47886F)

Rept. No.
R1767

Figure 4.--Equipment used to measure the effect of rapid loading
(ZM49862F)


Figure 5.-Wethod of testing small, clear flexure specimens at
(2M46937F)
Rept. No.
RI767

Figure 6.--Equipment used to measure the effect of rapid loading
on flexure specimens for ratos of loading up to 18
inches por minute. High-speed camera with driving
mechanism used to record load, deflection, and time
increments is show in the foreground.
(ZM46936F)
Rept. No.


Figure 7.-Method of testing small clear flexure specimens at rates of deformation in excess of 18 inches per minute by means of loading bellows. Calibrated ring for measuring load used as one reaction and the deflection and time measuring equipment are shown.
(ZM4986) . . . . . . . . . . . . . . . . . . . . . .

Figure 8.--The effect of rate of load application on the
ultimate compressive strength of small clear
Sitka spruce compression-parallel-to-grain
specimens.
(2M85136F)
Rept. No.

Z M 85136 F



Z M 85137 F
Figure 10. --The effect of rate of load application on the
(ZM85138F)
ultimate compressive strength of small clear
maple compression-parallel-to-grain specimens.
Rept. No.
RI767

effect of rate of load application on the
ultimate compressive strength of small clear
birch compression-parallel-to-grain specimens.

[^3]Rept. No.


Figure 12.--Typical stress-strain curves for two matched Sitka spruce 1- by 1- by 4 -inch compression-parallel-to-grain specimens. The increase in ultimate strength due to rapid loading was 20 percent of the control strength. (2M85140F) . . . . . . . . . . . . . . . . . . . . . .


[^4]
# Figure 13.--Stress-time diagrams for Sitka spruce compression-parallel-to-grain specimens of figure 5 . 

(ZM8514IF) . .. . . . . . . . . . . . . . . . . . .


Z M 85141 F

Figure 14.--Strain-time diagrams for Sitka spruce compression-parallel-to-grain specimens of figure 5 .
(2M85142F) ••••••••••••••••••••••


ZM 85142 F

Figure 15.--Typical stress-strain curves for two matched maple 1- by 1- by L-inch compression-parallel-to-grain specimens. The increase in ultimate strength due to rapid loading was 22 percent of the control strength.

(2145143) • . . . . . . . . . . . . . . . . . . . . . . .



Figure 16.--Stress-time diagroms for maple compression-parallel-to-grain specimens of figure 8.



[^5]Figure 17.--Strain-time diagrams for maple compression-parallel-to-grain specimens of figure 8.
(ZM8514,5) . . . . . . . . . . . . . . . . . . . . . . .


Z M 85145 F



Z M 85146 F

$$
\begin{aligned}
& \text { Figure 19.-The eifect of rate of load application on the } \\
& \text { modulus of rupture of small clear Douglas-fir }
\end{aligned}
$$

Rept. No.
R1767
flexure specimens.

$$
(2 M 85147 F)
$$


STO甘LNOJ $\mathcal{O O L V H \perp ~ O L ~ N \exists W I J \exists J S ~ O F O V O 7 ~ 1 7 0 1 c i V y ~}$ to Gunldny 10 Sn7noow to Ollvy 'd




z M 85149 F

Figure 22.--Typical load-deflection curves for two matched Douglas-fir flexure specimens. The increase in ultimate strength due to rapid loading is 28 percent of control strength.
(2M85150F) . . . . . . . . . . . . . . . . . . . . .


[^6]Figure 23.--Load-time diagrams for Douglas-fir flexure specimens of figure 15 .
(2M85151F) . . . . . . . . . . . . . . . . . . . . . .


[^7]Figure 24.--Deflection-time diagrams for Douglas-fir flexure specimens of figure 15 .
(ZM85152F) . . . . . . . . . . . . . . . . . . . . . .


Figure 25.--Typical load-deflection curves for matched birch flexure specimens. The increase in ultimate strength due to rapid loading is 26 percent of control strength.
(ZM85153 F) • . . . . . . . . . . . . . . . . . . .

Z. M 85153 F

Figure 26.--Load-time curves for birch flexure specimens of figure 18.
(ZM85154 F) • . . . . . . . . . . . . . . . . . . . . .


[^8]Figure 27.--Deflection-time curves for birch flexure specimens of figure 18.
(Z1185155 F) . . . . . . . . . . . . . . . . . . . . . .

Rept. NO. RI767



[^0]:    $I_{\text {The testing and initial analysis of the data on Sitka spruce and Douglas-fir }}$ specimens tested in compression and flexure were done by G. W. Foster and M. P. Brokaw. Testing of the maple and birch specimens was done by G. W. Foster, M. P. Brokaw, L. A. Yolton, and D. I. Harker. Data were obtained during the wartime testing program to provide needed information to the Armed Forces. ${ }^{2}$ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

[^1]:    ${ }^{3}$ MicGarvey Cline, "Forest Service Tests to Determine the Influence of Different Methods and Rates of Loading on the Strength and Stiffness of Timber." Proceedings Amer. Soc. Testing Materials, Vol.8, p.535, 1908. 4
    Harry D. Tiemann, "The Effect of Speed of Testing Upon the Strength of Wood and the Standardization of Tests for Speed." Proceedings Amer. Soc. Testing Materials, Vol.8, p.541, 1908.

[^2]:    Iominal rate of doflection of controls -0.05 inch por minute.
    Beeod on volume at teat and oven-dry voight.

[^3]:    (ZM85ㄱ39F)

[^4]:    Z M 85140 F

[^5]:    Z M 85144 F

[^6]:    Z M 85150 F

[^7]:    Z M 85151 F

[^8]:    Z M 85154 F

