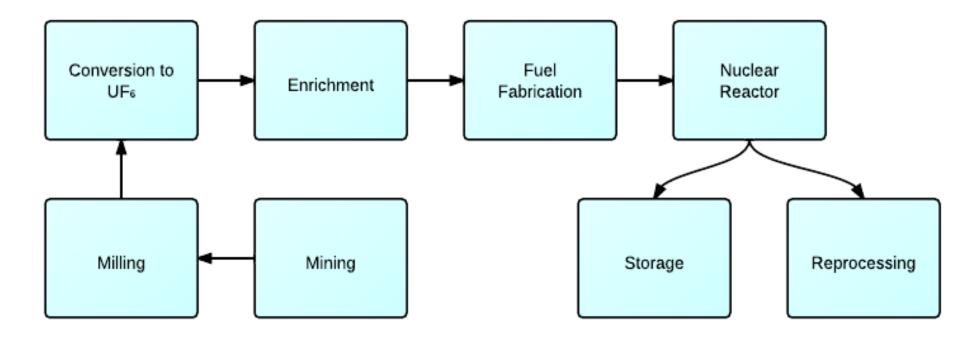
Taggant for Nuclear Material in the Enrichment Process

Sabrina Ireland

4 May 2012

Outline


Background

- Nuclear Forensics
- Nuclear Fuel Cycle
- Taggants
- Previously Proposed Nuclear Taggants
- Project Objective
- Possible Applications
- Requirements
- Materials Considered
- Taggant of Interest
- Detection Methods
- Conclusion

Background Nuclear Forensics

- Supports efforts to reduce nuclear terrorism
 & maintain control of nuclear resources
- Purpose: determine the origin & route of transit of radioactive materials used in illegal activities
- Reduces illicit trafficking of nuclear materials

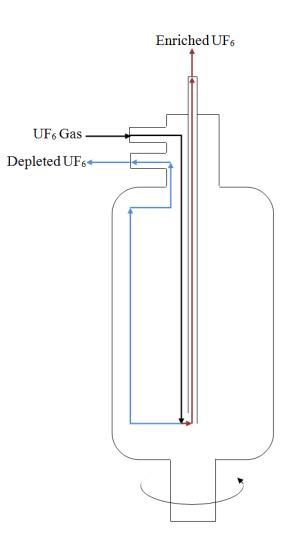
Background Nuclear Fuel Cycle

Background Taggants

- Taggant: A material bearing a unique signature used for the identification of an object or other material
- Current Uses
 - Electronics
 - Radiofrequency identifiers
 - Explosives

Background

Previously Proposed Taggants


Isotopes of uranium

- ²³³U Storage sites
- ²³⁶U Conversion facilities
- Rare earth element mixtures Mines & fuel fabrication plants
 - Varied combinations of lanthanoids
- Chemical tracers Conversion facilities
 - Porphyrins
 - Phtalocyanines
 - Aromatic amines
 - Calixerenes

Project Objective

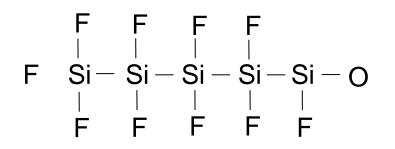
Determine a material that will withstand centrifugal processes to behave as a taggant for ²³⁵UF₆

 Subject to specific requirements

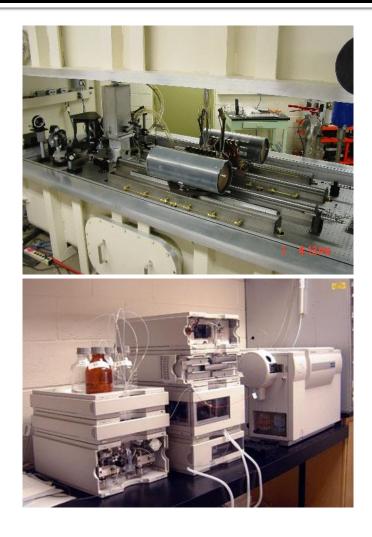
Possible Applications

- Nuclear forensics
 - Provides a way to track nuclear materials from a specified enrichment plant type
- Safeguards
 - Provides a means of determining the levels of enrichment present within a cascade hall
 - Creates a deterrent against the removal of nuclear material from a centrifugal environment

Requirements


- Same mass as ${}^{235}\text{UF}_6$ mass (349.03 g/mol)
- Withstand expected conditions subjected to it in a centrifugal environment
- Remain volatile in expected temperatures and pressures subjected to it in a centrifugal environment
 - Centrifuges operate at a minimum vapor pressure of 666.6 Pa at 310 K and within a temperature range of 273-570 K
 - Sublimation point of ²³⁵UF₆ is 56.5°C
- Not alter enrichment process
- Not negatively impact any of the subsequent fuel cycle processes
- Have a unique signature
- Hard to replicate

Materials Considered


- Dimers
- Molecules
 - C₁₄H₁₅O₂F₇
 - C₈H₅F₁₃
 - C₆F₁₃NO
- Molecules lacking carbon
 - Si₅OF₁₀

Taggant of Interest

- Mass: 347.87 g/mol
 - Requires ¹⁸O
 - Approximate using ²³⁴U with a mass of 348.03 g/mol
- Hyperfluorinated
- Likely volatile within region of interest
 - Si₄F₁₀ has a boiling point of 85.1°C
- Acceptable elemental concentrations for reactor if added at ppm or ppb level

Detection Methods

Suggested methods:

- IR spectroscopy
 - Measures compounds
- XRF spectroscopy
 - Measures elements
- Possible alternative methods:
 - Mass spectrometry
 - Microanalysis
 - Laser-induced breakdown spectroscopy
 - Inductively-coupled plasma spectoscopy

Conclusion

- Si₅OF₁₀ is a theoretically feasible taggant for the centrifugal enrichment process
 - Similarity in mass: Yes
 - Withstand expected conditions: Maybe
 - Remain volatile: Maybe
 - Not alter enrichment process: Maybe
 - No impact on subsequent processes: Yes
 - Unique signature: Yes
 - Hard to replicate: No
- The compound requires laboratory tests to establish its feasibility as a taggant experimentally

Acknowledgements

- Thank you to Brian Woods & Richard Metcalf for their guidance and support throughout the duration of this project.
- I'd like to thank Idaho National Laboratory for hosting me this summer.
- This research was performed under the Nuclear Forensics Undergraduate Scholarship Program, which is sponsored by the U.S. Department of Homeland Security Domestic Nuclear Detection Office.
- This research was also performed under the Science Undergraduate Laboratory Internship program, which is sponsored by the U.S.
 Department of Energy.

References

- "ChemExper Chemical Directory." ChemExper. Web. 3 Apr. 2012. <chemexper.com>.
- ChemSpider." ChemSpider. Royal Society of Chemistry. Web. 03 Apr. 2012. http://www.chemspider.com/.
- Containing the Threat from Illegal Bombings: An Integrated National Strategy for Marking, Tagging, Rendering Inert, and Licensing Explosives and Their Precursors. Washington, D.C.: National Academy, 1998. Print.
- "Convention on the Marking of Plastic Explosives for the Purpose of Detection (Montreal Convention)." Publication. Inventory of International Nonproliferation Organizations and Regimes. Center for Nonproliferation Studies. 23 Apr. 2010.
- C.P. Sherman Hsu, "Infrared Spectroscopy" in Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall, ch. 15, pp. 247-283.
- CRC Handbook of Chemistry and Physics, 91st ed.
- D. Fischer and M. Ryzhinskiy, "Safeguards Environmental Sampling Signatures: Comparison of Two Enrichment Scenarios," ORNL and IAEA, Oak Ridge and Vienna.
- D. Shropshire et al., "System Losses and Assessment Trade Study," Advanced Fuel Cycle Initiative, U.S. Department of Energy, INL/EXT-09-16891, 2009.
- G.P. Gilfoyle and J.A. Parmentola, "Using Nuclear Materials to Prevent Nuclear Proliferation," Science and Global Security, vol. 9, pp. 81-92, 2001.
- J. Bedell et al., "Strengthening Safeguards in the Nuclear Fuel Cycle: Use of Chemical and Isotopic Tracers," presented at the 8th International Conference on Facility Operations Safeguards Interface, La Grange Park, IL, 2008.
- K.J. Moody et al., "Engineering Issues" in *Nuclear Forensic Analysis*. Boca Raton: CRC, 2005.
- Korea Atomic Energy Research Institute, (2000), *Table of Nuclides*. Web. http://atom.kaeri.re.kr.
- M.J. Haire and C.W. Forsberg, "Tags to Track Illicit Uranium and Plutonium," in GLOBAL 2007 Advanced Nuclear Fuel Cycles and Systems, Boise, ID, 2007, pp. 1649-1656.
- National Institute of Standards and Technology, Physical Measurements Laboratory, "XCOM," http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
- "NIST Standard Reference Database Number 69." *NIST Chemistry WebBook*. National Institute of Standards and Technology, 29 Mar. 2012. Web. 03 Apr. 2012. http://webbook.nist.gov/chemistry/.
- "Nuclear Forensics Support: Reference Manual," IAEA, Vienna, 2006.
- The Nuclear Fuel Cycle." World Nuclear Association. June 2011. Web. 23 Feb. 2012. http://www.world-nuclear.org/info/info3.html.
- Thompson, Stephen, and Joe Staley. Chemical Bonding. Fort Collins: Colorado State University. PDF.
- "Radio Frequency IDentification: Applications and Implications for Consumers." Report. 2005. Federal Trade Commission.
- S. Salvini-Plawen, "Tracing the Source: Nuclear Forensics & Illicit Nuclear Trafficking," IAEA, Vienna, 2002.
- W.L. Roberts, "Gas Centrifugation of Research Isotopes," *Nuclear Instruments and Methods in Physics Research*, pp. 271-276, 1989.