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Abstract. We introduce a model for the surplus of nonprofit organizations (NPO).

We assume two types of spending schemes for an NPO. Type I is a constant spend-

ing rate and Type II is a variable rate above and below a cut-off reserve level.

Under steady state, we compute and compare the dysfunction probability, mean,

and variance for these two spending schemes.

1. Introduction

The nonprofit sector is referred to by many names such as “nonprofit organizations

(NPO)”, “non-governmental organization (NGO)”, “the charitable sector”, etc. NPOs

often offer services to people who do not have the opportunity to pay for them.

They also provide individuals volunteering opportunities or jobs as to help lower the

unemployment rate. Moreover NPOs return a large amount of goods to the general

public. They range from hospitals, day-care centers, community centers, schools and

religious institutions.

NPOs play a crucial role in modern economy and exert a vital influence in our

daily lives. The Stanford Project on the Evolution of Nonprofits reports that 183,769

NPOs in the U.S. expended $686.5 billion and accounted for 6.9% of the U.S. GDP

in 2000 (Gammal et al. 2005). The Comparative Nonprofit Project at Johns Hop-

kins University shows that the NPO sector contributed more to the U.S. GDP than
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industries such as construction, transportation, communication, electricity, gas and

water supply in 2003 (Center for Civil Society Studies 2007).

The biggest distinction between NPOs and their for-profit counterparts is the

distribution of “pure earnings” (Hansmann 1987), also referred to as “pure profits”.

While profit accumulation is permissible for NPOs, unlike for-profits who aim at max-

imizing the earnings, the profit gains of NPOs must be devoted entirely to support

future and further services or purposes based on the NPOs’ foundational missions.

Therefore, profit maximization is not the ultimate or rational goal for NPOs. The

connection between nonprofits and for-profits does exist even though their names

seem quite disjoint. For-profit firms make charitable or private donations to NPOs.

Furthermore, NPOs such as day-care centers or nursing homes have both for-profit

and nonprofit providers.

Classifications of NPOs diverge among different economists. In this paper, we

adopt the categorization by Henry B. Hansmann (1980). He grouped NPOs by

their financing operations and controlling administrations. NPO finances are divided

in two ways, donative and commercial. “Donative” finance refers to NPOs that

receive the majority of the income from grants and donations; examples include

the Red Cross. “Commercial” finance describes NPOs that obtain earnings from

charging the services they give. Nursing homes and hospitals are of this type. In

terms of controlling administrations, NPO are grouped as “mutual”, which means

the NPOs are controlled by their patrons, and “entrepreneurial”, which means the

NPOs are controlled by a self-perpetuating board of directors. The intersection of the

divisions mentioned above yields four forms of NPO: donative and mutual, donative

and entrepreneurial, commercial and mutual, commercial and entrepreneurial. In
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this paper, we are particularly concerned about NPOs with donative financing with

either controlling administrations.

During a tight economy, many NPOs that heavily depend on contributions to sup-

port their missions and programs see a big decrease in donations, which primarily

come from corporate donors and sponsorships, individual households, and private

foundations. The decline in income leads to many financial risks for NPOs. Con-

sequently NPOs either try to fundraise more during economic down times, which

normally turns out to be difficult, or cut back on benefiting services. However at the

same time, the demand for nonprofit services becomes high as unemployment and

other economic woes rise during tough cycles. Suffering such a dilemma, NPOs have

sought risk assessment to set back the negative effects.

Nonetheless, analytical research regarding this aspect is relatively little. The need

to establish a scientific model for NPO revenue management is only increasing. In

this paper, the NPO model seeks to provide a framework to address the following

key issues:

(1) What is the chance that an NPO runs out of money to fund their programs?

(2) What type of spending patterns apply better to NPOs? Should they prefix

a spending amount or change spending rate based on a cut-off reserve level?

What are the comparative features for both spending types?

We apply queueing theory and actuarial risk theory for the commercial companies

to the nonprofit side of the world. In response to the first question, we introduce the

notion of “dysfunction probability” to characterize, both quantitatively and practi-

cally, the probability that the NPO reserve equals to zero. We are able to determine
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explicit forms of the dysfunction probability in continuous time. The results are re-

lated to donations and expenditures. Hence NPO management decision makers can

target the risk of dysfunction by adjusting parameters from these two perspectives.

It should be noted that unlike the case of insurance companies that are subject

to ruin when capital drops below zero, NPOs can rebound when the next donation

arrives. Thus the dysfunction state for NPOs is not absorbing. As a result, it

is possible to determine conditions for a steady state to exist, i.e. a stationary

distribution of the NPO reserve. Our first task is to find such conditions.

As for types of spending schemes, we develop two expenditure scenarios noted

as Type I and Type II in Section 3. They will be compared under steady state

conditions. Upon equating the same risk measure of dysfunction, we compute the

means and the variances of the respective two types of spending. We show the mean

in Type I can be higher or lower than that in Type II in steady state given the

same dysfunction probability. If given the same dysfunction probability and the

same mean reserve in steady state, we show the variance in Type II is lower than in

Type I if the cut-off level and the lower spending rate in Type II are adjusted within

certain ranges. Therefore, if the risk of fluctuations in the reserve level is a concern,

the NPO may prefer Type II spending strategy. However such preference will also

depend on other spending objective and opportunities.

The remainder of the paper is organized as follows. Section 2 will explain the

preliminaries needed from Markov process and stationary distribution. Section 3

will dive into the NPO model in continuous time, where we compute the stationary

distribution of the mean reserve and compare the two methods of spending. Section

4 is a case study that applies the theorems derived from Section 3 to the data set of
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expenditures by a real Chinese NPO. Finally, Section 5 investigates the possibilities

of future research directions.

Below are the summarized results of this thesis:

(1) A risk model on the surplus process of NPOs.

(2) The Explicit form of dysfunction probability in continuous times.

(3) A comparison of spending strategies under considerations of dysfunction risk

measures, reserve levels and fluctuations in the stationary distribution.

(4) A case study illustrating Type I strategy where we also compute the average

amount of income per day needed for a given dysfunction probability.
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2. Preliminaries

This section introduces the basic definitions and propositions on Markov processes.

Most of them are standard foundations. We will only sketch proofs and leave the

details to text books, e.g. Bhattacharya and Waymire (2009).

Definition 2.1. Given an index set I, a stochastic process indexed by I is a collection

of random variables {Xλ : λ ∈ I} on the probability space (Ω,F , P ) taking values in

a set S, where S is called the state space of the process.

Definition 2.2. A stochastic process {X0, X1, ..., Xn, ...} having state space S equipped

with a σ−field S has the Markov property with regular transition probabilities if for

each n ≥ 0,

P (Xn+1 ∈ B|σ{X0, X1, ..., Xn}) = pn(Xn, B)

where B ∈ S, and

for each n

(1) For each B ∈ B, x→ pn(x, B) is a measurable function on S.

(2) For each x ∈ S, B → pn(x, B) is a probability measure on S.

A stochastic process having the Markov property with regular transition probabilities

is call a Markov process with transition probabilities pn(x, dy), n ≥ 0.

We assume stationary transition probabilities, i.e., pn(x, dy) ≡ p(x, dy) do not

depend on n. If {Xn}∞n≥0 has the Markov property, then we can write the distribution

at m ≥ 1 time points into the future inductively for B1, B2, ..., Bm ∈ S, as

Pµ(Xn+m ∈ Bm, ..., Xn+1 ∈ B1|σ{X0, X1, ..., Xn})

=

ˆ

B1

...

ˆ

Bm

p(xm−1, dxm)...p(x1, dx2)p(Xn, dx1).
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Definition 2.3. A probability π on S is said to be an invariant probability or steady

state distribution for a Markov process {Xn}n≥0 with transition probabilities p(x, dy)

if and only if
ˆ

S

p(x, B)π(dx) = π(B)

for all B ∈ S.

Next, we consider what we mean by a continuous time model. For this, we use the

discrete structure defined above. We consider a process which, starting in a given

state x ∈ S, holds for an exponentially distributed length of time T0 with parameter

λ(x), depending on x, and then makes a transition to a new state Y1 in S, randomly

selected from a probability k(x, dy) on S, also depending on x. Conditionally, given

the value of Y1 = y1, an independent exponential holding time (clock) with parameter

λ(y1) is reset and, at the end of this time T1, a new state Y2 is selected in S. The

lifetime L is defined by the possibly infinite random variable

L =
∞∑

n=0

Tn

Definition 2.4. Let λ : S → (0,∞) be a measurable function and let {k(x, dy) :

x ∈ S} denote a collection of probabilities on S such that x→ k(x, E) is measurable

for each E ∈ S and such that S contains all singletons {x} and k(x, {x}} = 0 for all

x ∈ S. λ(x) and k(x, dy) are called infinitesimal parameters. Symbolically, one may

write

pdt(x, dy) := P (X(t + dt) ∈ dy|X(t) = x) ≈ λ(x)k(x, dy)dt

Definition 2.5. Let λ(x), k(x, dy) be infinitesimal parameters defined by Definition

2.4. Let π be a probability on (S, S). Let {Yn}∞n=0 and {Tn}∞n=0 be two sequences of
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random variables defined on a probability space (Ω,F , Pπ) such that both sequences

are jointly measurable and

(1) {Yn}∞n=0 is a discrete parameter Markov process on S with initial distribution

π(dy) and homogenous transition probability k(x, dy).

(2) Conditionally given {Yn}∞n=0 , T0, T1, T2, ... are independent exponentially dis-

tributed with parameters λ(Y0), λ(Y1), ..., respectively.

Then the process {X(t) : 0 ≤ t ≤ L :=
∑∞

n=0 Tn} defined by

X(t) =






Y0, 0 ≤ t ≤ T0

Yk, T0 + ... + Tk−1 ≤ t ≤ T0 + ... + Tk, k ≥ 1,

0 ≤ t ≤ L is referred to as a jump process on S with initial distribution π and

infinitesimal parameters λ(x), k(x, dy). The random variable L is the explosion time

of the process {X(t) : 0 ≤ t < L}. The sequence {Tn}∞n=0 is the holding time

structure.

In the context of this paper, the parameter λ(x) = λ for all x is constant. Thus

one has the following:

Proposition 2.6. For i.i.d. exponential random variables T0, T1, T2, ... with param-

eter λ > 0, the explosion time L =
∑∞

n=0 Tn =∞ with probability one.

Proof. P (L > t) = P (
∑∞

j=1 Tj > t) ≥ P (
∑n

j=1 Tj > t) for all n. We want to

show that P (
∑n

j=0 Tj > t) → 1. Since T0, T1, T2, ... are i.i.d. exponential random

variable with parameter λ, the sum
∑n

j=0 Tj has Gamma distribution with density
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λ
(k−1)!(λx)k−1e−λx. Thus we rewrite the probability as

P (
n∑

j=1

Tj > t) =

ˆ ∞

t

λ

(k − 1)!
(λx)k−1e−λxdx

By a change of variable y = x− t,

=

ˆ ∞

0

λ

(k − 1)!
λk−1(y + t)k−1e−λ(y+t)dy

=

ˆ ∞

0

λ

(k − 1)!
[λ(y + t)]k−1e−λ(y+t)dy

By the Binomial Theorem,

=

ˆ ∞

0

λ

(k − 1)!

k−1∑

j=0



 k − 1

j



 (λy)j(λt)k−1−je−λ(y+t)dy

=
k−1∑

j=0

{
ˆ ∞

0

λ(λy)j

j!
e−λydy

(λt)k−1−j

(k − 1− j)!
}e−λt

Note that all the integrals integrate to 1 since each is the probability density function

for the Gamma distribution. Thus, as n→∞,

P (L > t) ≥ ((1 + λt +
(λt)2

2!
+ ... +

(λt)n

n!
)e−λt → 1

!

Definition 2.7. A semi-group {Tt : t ≥ 0} for a Markov process {Rt : t ≥ 0} is

defined as the operator such that

(2.1) Ttf(u) = Euf(Rt) = E(f(Rt)|R0 = u)

for bounded and measurable functions f .
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Definition 2.8. The infinitesimal generator of the semi-group {Tt : t ≥ 0} is an

operator L with domain DL, defined by

Lf(u) = lim
t↓0

Ttf(u)− f(u)

t

where u ∈ S and DL is defined for functions f on which the limit exists.

Proposition 2.9. If a probability measure π is a stationary distribution for {Rt :

t ≥ 0}, then for any f ∈ DL, we have

ˆ

S=[0,∞)

Lf(u)π(du) = 0

Proof. (sketch of a proof) If π(dx) is a stationary distribution

ˆ

S=[0,∞)

Euf(Rt)π(du) =

ˆ

S

Euf(R0)π(du) =

ˆ

S

f(u)π(du)

then
ˆ

S

Eu[f(Rt)− f(u)]π(du) = 0

for t ≥ 0. Divide by t and let t→ 0.

ˆ

S

Lf(u)π(du) = 0

!

3. The NPO Model in Continuous Time

The main focus of the paper is to compare the features of two types of spending

strategies.

3.1. The Model. We now introduce the NPO model in continuous time
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(3.1) Rt = u + St −
ˆ t

0

r(Rs)ds

We assume the following:

(1) u is the initial capital of the NPO.

(2) St =
∑Nt

i=1 Di is a pure jump process where the counting process {N(t)}t≥0

is a Poisson process with i.i.d. interarrival times T1, T2, ... and with arrival

intensity β.

(3) The sequence {Di}i>0 are i.i.d. exponentially distributed random variables

with density function p(d) = δe−δd, denoting donation sizes.

(4) The sequence of random variables {Di}i>0 and {Ti}i≥1 are independent.

(5) The rate of expenses is denoted by the function r(Rt). This implies in between

the upward jumps, {Rt : t ≥ 0} should satisfy the differential equation

Ṙ = −r(R)

where Ṙ denotes the left derivative. We assume further that r(0) = 0.

(6) If the distribution of Rt is given by the invariant probability π, then assume

the process is in steady state.

We define a new term dysfunction probability by first defining the time of dysfunction

by

(3.2) T = min{t : Rt = 0}

and let π0 denote the dysfunction probability for the process {Rt : t ≥ 0} in steady

state.
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Remark 3.1. Recall that in actuarial risk theory, the surplus model for insurance

companies is

U(t) = u +

ˆ t

0

c(s)ds−
Nt∑

n=1

Cn

where u is the initial fund of the company, c(t) is the premium rate, Nt is a Poisson

counting process, and {Cn : n ≥ 1} are i.i.d. random variables, denoting the claim

sizes. This sequence of random variables is independent from N(t). Claims arrive

at random times 0 < T1 < T2 < .... The probability of ruin, denoted by Ψ(u) is

the probability that the time of ruin Tu := inf{t : U(t) ≤ 0} is finite, i.e. Ψ(u) =

P (Tu < ∞|U(0) = u). The notion of dysfunction probability is similar to that

of ruin probability since both measure the probability when the reserve becomes

zero. However, for dysfunction probability, we are assume the surplus process to

be in steady state. We call it the dysfunction probability for NPO because, unlike

insurance companies who have to make claim payments and become bankrupt if

they cannot, NPOs can stop functioning when the reserve is zero. They are able

to refunction when the next donation arrives. We call the time when the NPO is

not functioning the event of dysfunction and the probability of when this occurs the

dysfunction probability.

We use the idea of applying semi-group property to compute the density in sta-

tionary distribution. Consider

(3.3) Euf(Rt) = f(u− tr(u))e−βt

+[

ˆ ∞

0

f(u + v − r(u + v)t)b(v)dv]βte−βt + o(t)
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The first term refers to the case when there is no donation, the second term refers

to the case where there is a donation with pdf b(v) = δe−δv. Then

Euf(Rt)− f(u)

= Euf(Rt)− (f(u)e−βt + f(u)(1− e−βt)

By plugging everything in Eq. (3.3) and the fact that 1 − e−βt = βte−βt + o(t), we

have

= [f(u− tr(u))− f(u)]e−βt +

ˆ ∞

0

[f(u+ v− r(u+ v)t)− f(u))b(v)]dv(1− e−βt)+ o(t)

Divide by t throughout,

Euf(Rt)− f(u)

t

= −r(u)
[f(u− tr(u))− f(u)]e−βt

−tr(u)
+

o(t)

t
+

ˆ ∞

0

[f(u + v − r(u + v)t)− f(u))b(v)]dv(1− e−βt)

t

As t→ 0, we get

Lf(u) = −r(u)f ′(u) + β

ˆ ∞

0

(f(u + v)− f(u))b(v)dv

for u ≥ 0.

Theorem 3.2. The infinitesimal generator for the continuous time NPO model is

Lf(u) = −r(u)f ′(u) + β

ˆ ∞

0

(f(u + v)− f(u))b(v)dv

for u ≥ 0.

Following Harrison and Resnick (1976), we will use the next lemma for computing

the steady state distribution for the NPO model.



RISK MANAGEMENT FOR NONPROFIT ORGANIZATIONS 14

Lemma 3.3. Let DL be the domain such that f ∈ DL has a nonnegative density f ′.

For f ∈ DL, we have

Lf(x) = β

ˆ ∞

x

Q(y − x)f ′(y)dy − r(x)f ′(x)

where x ≥ 0, Q(x) = 1−B(x), and B(x) is the distribution of the donations.

Proof. We write f(x + y)− f(x) as an integral of f ′. Thus for any x > 0,

Lf(x) = −r(x)f ′(x) + β

ˆ ∞

0

(f(x + y)− f(x))b(y)dy

= −r(x)f ′(x) + β

ˆ ∞

0

ˆ x+y

x

f ′(z)b(y)dzdy

= −r(x)f ′(x) + β

ˆ ∞

x

f ′(z)

ˆ ∞

z−x

b(y)dy

(3.4) = −r(x)f ′(x) + β

ˆ ∞

x

f ′(z)Q(z − x)dz

Change z to y. Equation (3.4) becomes

Lf(x) = β

ˆ ∞

x

Q(y − x)f ′(y)dy − r(x)f ′(x)

In particular since r(0) = 0, Lf(0) = β
´∞

0 Q(y)f ′(y)dy holds at x = 0. !

Proposition 3.4. The stationary distribution π for {Rt : t ≥ 0} on the state space

S = [0,∞) is given by

π(dx) = π0δ{0}(dx) + g(x)dx

with density g(x) of the form

g(x) =
β

r(x)
{π0Q(x) +

ˆ x

0

Q(x− y)g(y)dy}
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where x ≥ 0.

Proof. We will apply Proposition (2.9) and Lemma (3.3) .

0 = Lf(0)π0 +

ˆ ∞

0

Lf(x)π(dx)

= π0β

ˆ ∞

0

Q(y)f ′(y)dy +

ˆ ∞

0

[β

ˆ ∞

x

Q(y − x)f ′(y)dy − r(x)f ′(x)]π(dx)

= π0β

ˆ ∞

0

Q(y)f ′(y)dy +

ˆ ∞

0

β

ˆ y

0

Q(y − x)π(dx)f ′(y)dy −
ˆ ∞

0

r(x)f ′(x)π(dx)

= β

ˆ ∞

0

[

ˆ y

0

Q(y − x)π(dx)]f ′(y)dy −
ˆ ∞

0

r(x)f ′(x)π(dx)

Then we have

ˆ ∞

0

r(x)f ′(x)π(dx) =

ˆ ∞

0

{ β

r(x)

ˆ x

0

Q(x− y)π(dy)}r(x)f ′(x)dx

Any π satisfying the above equation is a stationary distribution. And

g(x) =
β

r(x)
{π0Q(x) +

ˆ x

0

Q(x− y)g(y)dy}

!

3.2. Theorems Regarding the NPO Model.

Theorem 3.5. Assume a NPO spends at a constant rate c > β/δ. Let π0(c) be the

atom at 0. The stationary distribution has density

(3.5) g(x) =
π0(c)β

c
e−(δ−β

c )x

Proof. By Proposition (3.4), g(x) = β
r(x){π0Q(x) +

´ x

0 Q(x − y)g(y)dy}. Under the

assumptions of the continuous-time NPO model, Q(x) = e−δx, Q(x− y) = e−δ(x−y),
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r(x) = c. Then,

g(x) =
βπ0

c
e−δx +

β

c

ˆ x

0

e−δ(x−y)g(y)dy

Multiply through by eδx and define g̃(x) ≡ eδxg(x). We have g̃(x) = π0β/c +

β/c
´ x

0 g̃(y)dy. Or the ODE

(3.6) g̃(x) = eδxg(x)

g̃(0) =
βπ0

c

Solving Equation (3.6) yields

g̃(x) =
βπ0

c
e

β
c x

Thus

g(x) =
βπ0

c
e−(δ−β

c )x

The equilibrium condition is c > β
δ ; thus β

c − δ < 0, otherwise
´∞

0 g(x)dx =∞. !

Remark 3.6. The condition c > β
δ might seem surprising since people do not make

ends meet when spending beyond their earnings. But if we examine the parameters

more carefully, c and β/δ refer to the average spending and income per unit time.

The condition c > β/δ means, in order to achieve a steady state, on average, rather

than consistently, the nonprofits should spend more than what flows in on average.

Otherwise, the reserve will keep accumulating, contradicting the process {Rt : t ≥ 0}

being in a steady state. Further, the essence of NPOs supports the idea of the

equilibrium condition. NPOs are established to help the needed instead of earning

profits. This point of view also strengthens that c > β/δ is a valid assumption.
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Theorem 3.7. For a given constant spending rate c > β
δ and assuming β, δ are

known, there is a unique dysfunction probability given by

(3.7) π0(c) = 1− β/(cδ)

that assumes all values in (0, 1], a unique corresponding steady mean given by

(3.8) µ(c) = β/(δ(cδ − β))

and a unique corresponding steady state variance given by

(3.9) σ2(c) = (−β2 + 2cβδ)/(δ(−β + cδ))

Proof. Since the stationary distribution is a mixture of the Dirac function δ{0} and

an absolute continuous part g(x), we must have

(3.10) π0 +

ˆ ∞

0

g(y)dy = 1

where

g(x) =
π0β

c
e−(δ−β

c )x

Thus,

π0(c) = 1− β/(cδ)

We can see that as c increases from β/δ, π0 is a continuous function of c and takes

values from 0 as c→∞ and 1 as c ↓ β/δ.

Now use the definition of expectation and compute the mean reserve

µ =

ˆ ∞

0

xg(x)dx = β/(δ(cδ − β))
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Similarly by the definition of variance, we have

σ2 = E(X2)− µ2

=

ˆ ∞

0

x2g(x)dx− µ2

= (−β2 + 2cβδ)/(δ(−β + cδ))

Thus for a given spending rate c, and assuming the parameters β, δ are known, the

dysfunction probability, mean reserve in the steady state and variance in the steady

state are uniquely determined. !

3.3. Management Decision: Two Types of Spending Strategies. As men-

tioned in Section 1, the motivation for this thesis comes from some real life NPOs’

inability to function well during economic downturns. One approach on this issue

concerns the spending strategies. Here lies the management question: How should

an NPO plan its spending? Should the NPO always spend at a fixed rate or should it

adjust the rate according to some certain level of its reserve. We first mathematically

describe the two types of spending schemes for comparison.

• Type I: r(Rt) = c, i.e. the NPO spends money at an invariable rate. See

Figure 3.1 for surplus plot.

• Type II: r(Rt) =






c0, Rt ≤ x0

c1, Rt > x0

, where c0 ≤ c1, i.e. the NPO maintains

at an expenditure rate c1 if its reserve is about the level x0 and lowers its

spending rate to c0 if the reserve drops below x0. See Figure 3.2 for surplus

plot.

Under stationary distribution π, there are three aspects - dysfunction probability,

mean reserve and variances to compare for the two types. Dysfunction probability



RISK MANAGEMENT FOR NONPROFIT ORGANIZATIONS 19

Figure 3.1. Surplus plot for Type I

Figure 3.2. Surplus plot for Type II

measures the risk that an NPO runs out of money and the lower one is more desirable.

Variances in stationary distribution, another kind of risks, measure the fluctuations

of the mean reserve in stationary distribution and the less they diverge from the

mean reserve, the more accurate the estimate of the mean is. The mean reserve

itself, not regarded as a measure of risk, reports how much money in equilibrium the

NPO will have.

Theorem 3.8. Assume an NPO follows Type II spending with β
δ < c0 and let

π0(c0, c1, x0) denote the dysfunction probability. The stationary distribution has den-

sity

(3.11) g(x) =






π0βexp(−(δ−β/c0)x)
c0

, x ≤ x0

π0βexp(β(1/c0−1/c1)x0)exp(−(δ−β/c1)x
c1

, x > x0
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Proof. If x ≤ x0, this is the same as spending at a constant rate c0. Thus we apply

the result from Theorem (3.5). If x > x0,

g(x) =
π0β

c1
e
´ x0
0

1
c0

dy+β(
´ x
x0

1
c1

dy−δx)

=
π0β

c1
eβ( 1

c0
− 1

c1
)x0e

( β
c1
−δ)x

!

Theorem 3.9. Assume a NPO follows Type II spending with c0 > β
δ . Then the

dysfunction probability π0(c0, c1, x0) is given by

(3.12) π0 =
1

(1 + a0
b0

+ a1
b1

exp(−b1x0)− a0
b0

exp(−b0x0)

The mean reserve µ(c0, c1, x0) in stationary distribution under Type II is given by

(3.13) µ(c0, c1, x0) =
a0(1− e−b0x0(1 + b0x0)π0)

b2
0

+
a1e−b1x0(1 + b1x0)π0

b2
1

and the variance σ2(c0, c1, x0) is given by

σ2(c0, c1, x0) = a0b

+ a0e
−b0x0(−2 + 2eb0x0 − b0x0(2 + b0x0))π0

+ a1e
−b1x0(2 + b1x0(2 + b1x0)π0

− (
a1e−b1x0(1 + b1x0)π0

b2
1

+
a0(1− e−b0x0(1 + b0x0))π0

b2
0

)2

where

(3.14) a0 = β/c0
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(3.15) b0 = −(β/c0 − δ)

(3.16) a1 = β/c1 exp[β(
1

c0
− 1

c1
)x0]

(3.17) b1 = −(β/c1 − δ)

Proof. We use the equation

π0 +

ˆ x0

0

h(x)dx +

ˆ ∞

x0

h(x)dx = 1

Then 1− π0 = (a1
b1

e−b1x0 − a0
b0

e−b0x0 + a0
b0

)π0. So

π0 =
1

(1 + a0
b0

+ a1
b1

exp(−b1x0)− a0
b0

exp(−b0x0)

We can check that when c0 = c1, we get π0 = 1− β
c0δ , i.e. Type II collapses to Type

I. We use the definition of expectation and variance to compute µ and σ2. !

3.3.1. Limiting Behaviors. Before comparing Type I and Type II spending strategies,

we want to examine further the NPO model under Type II via looking at some

limiting behaviors. Since the general expressions for the dysfunction probability,

mean, and variance are relatively complicated, this will give some simple insight

on their structures. We will also include some plots to demonstrate dependence on

parameters. First we consider the two-dimensional case where we assume the cut-off

reserve level x0 = 1. To simplify the computation, we let β = δ = 1.

Observation 1. The limiting behaviors of the dysfunction probability as one of the

spending rates changes are the following:

(3.18) lim
c1→∞

π0(c0, c1) =
(−1 + c0)e

c0e− e1/c0
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Figure 3.3. The 3D Plot of π0.

Figure 3.4. The Contour plot of π0(c0, c1)

(3.19) lim
c0→∞

lim
c1→∞

π0(c0, c1) = 1

(3.20) lim
c0→1+

π0(c0, c1) =
c1 − 1

c1

Remark 3.10. The contour plot of the dysfunction probability π0(c0, c1) shows the

level curves are convex to the origin. (3.18) implies that the dysfunction probability

when spending at a very large c1 is bigger than the dysfunction probability spending

at c0 under Type I because (−1+c0)e
c0e−e1/c0

= −1+c0
c0−e1/c0−1 > 1 − 1

c0
= π0(c0). Moreover, as

c0, c1 → ∞, π0 → 1. In practice, if an NPO spends at high rates regardless of the

cut-off reserve level, the possibility of running out of money is most likely to happen.

(3.20) implies if c0 ↓ β
δ = 1, Type II spending scheme becomes Type I with c = c1.

Now we consider the 3-D case of the dysfunction probability π0(c0, c1, x0).
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Figure 3.5. 3-D plot limc1→∞ π0(c0, c1, x0) .

Figure 3.6. Contour plot limc1→∞ π0(c0, c1, x0) .

Observation 2. limx0→∞ π0(c0, c1, x0) = 1− 1
c0

Remark 3.11. The dysfunction probability as x0 →∞ coincides with the dysfunction

probability in Type I. It makes sense because as we consider the cut-off level is set

extremely high, the NPOs with less reserve money will hardly reach that cut-off level

and consequently will not change spending to c1 rate. Thus the NPOs will only spend

at c0 rate, which is Type I spending.

Observation 3. limc1→∞ π0(c0, c1, x0) = (−1+c0)e
c0e−e1/c0x0

. The plot and contour plot of

the limit are shown in Figure (3.5) and (3.6). We can see that as c0 → ∞, π0 goes

to 1. Furthermore, (−1+c0)e
c0e−e1/c0x0

= −1+c0
c0−e1/c0−1x0

> −1+c0
c0

. Hence regardless of what the

cut-off level x0 is, Type II under c1 → ∞ has higher chance of dysfunction than at

constant spending rate c0 under Type I.
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Figure 3.7. Contour Plot of limc0→1+ π0(c0, c1, x0)

Figure 3.8. Contour Plot of π0 as c0 → 1+.

Figure 3.9. limc1→∞ µ(c0, c1).

Observation 4. limc0→1+ π0 = −1+c1
c1−x0+c1x0

. The plot and contour plot of the limits

are shown in Figure (3.7) and (3.8).

The limiting behaviors of the mean reserve are also interesting to look at. First

we consider x0 = β = δ = 1

Observation 5. limc1→∞ µ(c0, c1) = e
1
c0 +c0(e−2e

1
c0 )

(−1+c0)(c0e−e
1
c0 )

. As shown in Figure (3.9), when

c0 →∞, µ→ 0.

Observation 6. limc0→1+ µ(c0, c1) = −1+2c1+c21
2−6c1+4c21
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Figure 3.10. The 3D plot of the reserve limiting behavior

Figure 3.11. Contour of limc1→∞ µ(c0, c1, x0)

Observation 7. limc1→∞ µ(c0, c1, x0) = exp(x0/c0)x0+c0(exp(x0)−exp(x0/c0)(1+x0)
(−1+c0)(c0 exp(x0)−exp(x0/c0) and the

3-D plot and contour plot are shown in Figure (3.10) and Figure (3.11). We can

see that the higher the cut-off level x0 and the lower rate c0 are set, the higher the

reserve can be because it will be harder for the NPO to actually spend at c1 rate.

Observation 8. limc0→1+ limc1→∞ µ(c0, c1, x0) =

lim
c0→1+

exp(x0/c0) + c0(exp(x0)− exp(x0/c0)(1 + x0)

(−1 + c0)(c0 exp(x0)− exp(x0/c0)

=
x2

0

2 + 2x0

Observation 9. limc0→1+ µ(c0, c1, x0) = 1
c1−1 + (−1+c1)x2

0
2(c1−x0+c1x0) and the plots are shown

in Figure (3.12) and (3.13).
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Figure 3.12. 3D plot of limc0→1+ µ(c0, c1, x0)

Figure 3.13. Contour plot limc0→1+ µ(c0, c1, x0)

Figure 3.14. Plot of σ2(c0, c1)

Now we examine the limiting behavior of the variance. In the case of x0 = 1,

σ2(c0, c1) has the plot shown in Figure (3.14). It is interesting to note that if we

spend at a higher rate when the surplus exceeds 1, there appears less fluctuation.

Observation 10. limc0→1+ σ2 = −11+64c1−126c21+80c31+5c41
12(1−3c1+2c12 )2 and the plot of the limit is

shown in Figure (3.15).
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Figure 3.15. limc0→1+ σ2(c0, c1)

Figure 3.16. Plot of limc1→∞ σ2(c0, c1)

Observation 11.

lim
c1→∞

σ2(c0, c1) = −c0(3 exp(1 + 1/c0) + c2
0 exp(−2 exp +5 exp(1/c0)

(−1 + c0)2(−c0e + exp(1/c0))2

+
c0(c0(exp(2)− 6 exp(1 + 1/c0)− exp(2/c0))

(−1 + c0)2(−c0e + exp(1/c0))2

and Figure (3.16) shows that as c0 gets bigger, the variance gets smaller. Recall that

the mean under c1 → ∞ and c0 → ∞ goes to zero; hence it makes sense to see less

fluctuations around the mean.

Now we discard the assumption x0 = 1 and consider σ2(c0, c1, x0).

Observation 12. limc1→∞ σ2(c0, c1, x0) = (c0(− exp((−1+c0)x0/c0)x0(2+x0)
(−1+c0)2(−1+c0 exp((−1+c0)x0/c0)2

+
c2
0 exp((−1 + c0)x0/c0)(−2 + 2 exp((−1 + c0)x0/c0)− 2x0 − x2

0

(−1 + c0)2(−1 + c0 exp((−1 + c0)x0/c0)2
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Figure 3.17. 3-D plot limc1→∞ σ2(c0, c1, x0)

Figure 3.18. Contour Plot of limc1→∞ σ2.

+
c0(1− exp(2(−1 + c0)x0/c0) + 2 exp(−1 + c0)x0/c0(2 + x0)

(−1 + c0)2(−1 + c0 exp((−1 + c0)x0/c0)2

and the plots and contour plots are shown in Figure (3.17) and (3.18)

3.3.2. Management Decision: Type I or Type II. For an NPO, comparison of types

of spending strategies may be useful in weighing which to choose.

Theorem 3.12. Given the same dysfunction probability and assuming c0 > 1 and

β = δ = 1, the expenditure rates must satisfy 1 < c0 < c < c1, where c, c0, c1 are the

rates defined in Type I and Type II.

Proof. Let π0(c0, c1, x0) = π0(c). We solve for c1.

c1 =
−β(c exp(x0δ)β + c0 exp(x0β/c0)δ − cc0 exp(x0β/c0)δ − c0 exp(x0δ)δ

δ(− exp(x0β/c0) + c exp(x0β/c0)β − c exp(x0δ)β + c0 exp(x0δ)δ
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To simplify the computation, we take β = δ = 1, i.e. the average income β/δ = 1.

Thus we can simplify c1 as the following

c1 = −c exp(x0) + c0 exp(x0/c0)− cc0 exp(x0/c0)− c0 exp(x0)

− exp(x0/c0) + c exp(x0/c0)− c exp(x0) + c0 exp(x0)

= −exp(x0)(c− c0) + c0 exp(x0/c0)(1− c)

(c− 1) exp(x0/c0) + exp(x0)(c0 − c)

Compute

c1 − c = − (−1 + c)(c− c0)(exp(x0)− exp(x0/c0))

−c0 exp(x0) + exp(x0/c0) + c(exp(x0)− exp(x0/c0)

= −(−1 + c)(c− c0)(ex0 − e
x0
c0 )

(c− c0)ex0 + (1− c)e
x0
c0

Since c0 > 1, 1
c0

< 1. Then x0
c0

< x0 , which implies exp(x0/c0) < exp(x0). Also,

−1 + c > 0 by the equilibrium condition.

If c0 > c, that is c− c0 < 0, we would have

c1 − c < 0

which is a contradiction since by the definition of Type II, c0 ≤ c1.

Thus we assume c0 < c. Then the denominator is

−c0 exp(x0) + exp(x0/c0) + c(exp(x0)− exp(x0/c0)) >

−c0 exp(x0) + c0 exp(x0/c0) + c0 exp(x0)− exp(x0/c0)

= (c0 − 1) exp(x0/c0) > 0

The signs in the denominator stay the same. Hence we have c1− c > 0. The range

is 1 < c0 < c < c1. !
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Theorem 3.13. Given the same dysfunction probability, the mean reserve in Type

I can be adjusted to equal to the mean in Type II.

Proof. Given the same dysfunction probability,

c1 = −c exp(x0) + c0 exp(x0/c0)− cc0 exp(x0/c0)− c0 exp(x0)

− exp(x0/c0) + c exp(x0/c0)− c exp(x0) + c0 exp(x0)

Plug c1 into the expression for mean reserve for Type II and take the difference

between µ1 and µ2. We get

(3.21)

− (c− c0)e−
x0
c0 (e

x0
c0 x0(e

x0
c0 x0 + c0(ex0 − e

x0
c0 (1 + x0) + c(−e−x0 + e

x0
c0

(1+(−1+c0x0))

(−1 + c)c(−1 + c0)2

Now we want to check the sign of the part

− cex0 + c0e
x0 + ce

x0
c0 − c0e

x0
c0 + e

x0
c0 x0 − ce

x0
c0 x0 − c0e

x0
c0 x0 + cc0e

x0
c0 x0

If this were zero, Type I and Type II will have the same mean. In other words,

given a fixed c, c0 and x0 must also satisfy

c =
c0ex0 − c0e

x0
c0 + e

x0
c0 x0 − c0e

x0
c0 x0

ex0 − e
x0
c0 + e

x0
c0 x0 − c0e

x0
c0 x0

!

Theorem 3.14. Given the same dysfunction probability and the same mean reserve,

the variance in Type II is lower than that in Type I for x0 > −
ln(1− 2

c0
)

1− 1
c0

and c0 > 2.
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Proof. Plug

c1 = −c exp(x0) + c0 exp(x0/c0)− cc0 exp(x0/c0)− c0 exp(x0)

− exp(x0/c0) + c exp(x0/c0)− c exp(x0) + c0 exp(x0)

and

c =
c0ex0 − c0e

x0
c0 + e

x0
c0 x0 − c0e

x0
c0 x0

ex0 − e
x0
c0 + e

x0
c0 x0 − c0e

x0
c0 x0

into the difference of the variances

(3.22) σ2
2 − σ2

1 = −e
x0
c0 x2

0 + (−(ex0 + e
x0
c0 )x0 + c0(ex0(−2 + x0) + e

x0
c0 (2 + x0))

(ex0 − e
x0
c0 )(e

x0
c0 x0 + c0(ex0 − e

x0
c0 (1 + x0)))

Multiply by e
x0
c0 e−x0

e
−x0

c0 +e−x0

through the expression

(3.23) (−(ex0 + e
x0
c0 )x0 + c0(e

x0(−2 + x0) + e
x0
c0 (2 + x0)

Expression (3.23) becomes

(3.24)
e−x0

e
−x0

c0 + e−x0

(2c0 − x0 + c0x0) +
e−

x0
c0

e−
x0
c0 + e−x0

(−2c0 − x0 + c0x0)

Let p = e−x0

e
−x0

c0 +e−x0

and q = e
−x0

c0

e
−x0

c0 +e−x0

. Then p + q = 1. Moreover p < q, since we

assume c0 > 1.

We can rewrite Expression (3.24) as

p(2c0 − x0 + c0x0) + q(−2c0 − x0 + c0x0)

= 2c0(p− q)− x0 + c0x0

= 2c0(p− q)− (c0 − 1)x0
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Similarly multiply
e

x0
c0 e−x0

e−
x0
c0 + e−x0

through the expression

e
x0
c0 x0 + c0(e

x0 − e
x0
c0 (1 + x0))

Then we have
e−

x0
c0

e−
x0
c0 + e−x0

c0 +
e−x0

e−
x0
c0 + e−x0

(x0 − c0 − x0c0)

= qc0 + p(x0 − c0 − x0c0)

= (q − p)c0 + x0p(1− c0)

If 2c0(p− q)− (c0 − 1)x0 > 0 and (q − p)c0 + x0p(1− c0) > 0, i.e.

(3.25)
2(q − p)c0

c0 − 1
< x0 <

(q − p)c0

p(c0 − 1)

Note this is valid because p = e−x0

e
− c0

x0 +e−x0

< e−x0

e−x0+e−x0
= 1

2 . Then σ2
1 − σ2

2 > 0.

Now it remains to solve explicitly the inequality (3.25). Plug back p, q and gather

x0-terms on one side.

(3.26)
e−

x0
c0 − e−x0

(e−
x0
c0 + e−x0)x0

<
c0 − 1

2c0

(3.27)
e−

x0
c0 − e−x0

e−x0x0
>

c0 − 1

c0

In order to solve (3.26), multiply by e−x0

e−x0
and notice the left hand side is the

newton quotient. Let k = 1 − 1
c0

. Note that k > 0. Then we have kex0k > 1, i.e.,

x0 > −
ln(1− 1

c0)

1− 1
c0

.
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To solve (3.27), we multiply the left hand side by ex0

ex0
, then it becomes 1−e−kx0

1+e−kx0
=

e−kx0−e0

−kx0
1+e−kx0

< 1
2k. Solving for x0, we get x0 > − ln(2k−1)

k . Since c0 > 0, k − 1 < 0,

then − ln(2k − 1) > − ln(k). Thus when x0 > − ln(2k−1)
k = −

ln(1− 2
c0

)

1− 1
c0

and c0 > 2, the

variance under Type II is smaller than that in Type I. !

Remark 3.15. The Type II scheme allows the NPO the opportunity to spend on

large projects. This is consistent with how current NPOs design their budgets. In

an interview with a chairman of a local library1, he said that if the library is going

to spend lots of money on a big project, they will spend less before implementing

the project and spend lot more for the project.

1The short interview with Mr. Keane McGee took place after the Lonseth Lecture on May 11, 2010
at Oregon State University.
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Figure 4.1. Plot on monthly expenditure

means

4. Case Study on a Nonprofit Organization in China

In this section, we use the data of expenditures2 for disaster relief from a Chinese

NPO China Youth Foundation. The expenditures were the rescue aid for the heavily

damaged regions due to the 2008 Great Sichuan Earthquake3. We compute the

average expenditures ct of each month and then by using the formula developed to

compute the average income this NPO should have in order to stay active.

We only consider the first four months’ expenditures and regard the spending as

Type I. The expenditure rate c is approximately 8080 RMB per day. If a dysfunction

risk measure is given, say 8%, i.e. the chance of running out of money is 8%, then

by the formula π0 = 1 − β
δc , we can compute the average amount of income rate

β
δ = (1− π0)c = 92% · 8080 = 7433. Then for the first four months, this NPO needs

to raise 7433 RMB per day.

2Data from http://jiuzai.cctf.org.cn/sys/html/lm_33/2010-02-09/141453.htm
3The 8.0 Mc earthquake occurred on May 12, 2008 in Sichuan Province of China and killed at least
68,000 people.
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Figure 4.2. Histogram on expenditures per

month

5. Future Research

Under the NPO model Rt = u + St −
´ t

0 r(Rs)ds, we only concerned the expendi-

ture rates as constants when comparing spending strategies. We intend to expand

the results to more general expenditure functions. We also want to investigate the

behaviors of the variances under Type I and II if we set x0 in a different range, for

example 0 < x0 < −
ln(1− 1

c0
)

(1− 1
c0

)
.

Our model in this paper is for NPOs’ surplus with no investment. Nowadays more

NPOs invest in both risk-free and risky assets. We develop the NPO model with

risk-free investment at an interest rate r and a constant spending rate c as

(5.1) R(t) = uert +
N(t)∑

j=1

Dj exp(r(t− Tj)−
c

r
(exp(rt)− 1)

The first term means investing the initial capital u at time 0 and the money will

accumulate to uert at time t. The second term denotes the donation values arriving

at different times and invested continuously at (t− Tj), where Tj is the jth donation
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arrival time. The third term c
´ t

0 ersds = c ert−1
r implies that expenditures will be

continuously flowing out, thus the interest return will also be missing.

It is also natural to modify Equation (5.1) to model the surplus of an NPO, which

invests all the donations continuously into a risky financial market whose price follows

a nonnegative stochastic process.
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