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Web applications are popular attack targets. Misuse detection systems use signature 

databases to detect known attacks. However, it is difficult to keep the database up to 

date with the rate of discovery of vulnerabilities. They also cannot detect zero-day 

attacks. By contrast, anomaly detection systems learn the normal behavior of the 

system and monitor its activity to detect any deviations from the normal. Any such 

deviations are flagged as anomalous. This thesis presents an anomaly detection system 

for web-based applications. The anomaly detection system monitors the attribute value 

pairs of successful HTTP requests received by webserver applications and 

automatically creates parameter profiles. It then uses these profiles to detect anomalies 

in the HTTP requests. Customized profiles help reduce the number of false positives. 

Automatic learning ensures that the system can be used with different kinds of web 

application environments, without the necessity for manual configuration. The results 

of the detection are also visualized, which enable the system administrator to quickly 

understand the state of the system and respond accordingly. 
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DATA PROCESSING FOR ANOMALY DETECTION IN WEB-
BASED APPLICATIONS 

 

1. CHAPTER ONE 

1.1 Introduction 

The following adage has been taken from the frequently asked questions section of the 

Alt.security newsgroup [1]: 

“The only system that is truly secure is one that is switched off and unplugged, 

locked in a titanium lined safe, buried in a concrete bunker, and is surrounded by 

nerve gas and very highly paid armed guards. Even then, I wouldn't stake my life 

on it.” 

As the World Wide Web grows rapidly on a daily basis, the number of new computer 

attacks is also growing at a matching rate. Securing computer systems and networks is 

not only important but it is also difficult. The importance aspect is due to the fact that 

there would be heavy losses both in monetary terms and also in terms of privacy, as a 

result of systems that are compromised. There could also be liabilities, both civil and 

criminal, for having failed to secure computer systems, as specified by the laws such as 

the Sarbanes-Oxley [2] and the Health Insurance Portability and Accountability Act of 

1996 [3,4]. 

The difficulty in providing security to the computer systems arises from the fact that 

the lists of computer vulnerabilities that become known, such as the list of Common 

Vulnerabilities and Exposures (CVE) [5] or the bugs discussed on forums such as 

Bugtraq [6] is ever-expanding. According to the National Institute of Standards and 

Technology [7], American companies have suffered losses, as much as 59.6 billion 

dollars following IT attacks, during the year 2004 alone [8]. Also, the nature of threats is 

very dynamic. Just during the last year, the kinds of vulnerabilities that were being 

exploited are very different from the ones that were exploited in the past [9]. 

The World Wide Web has become the ubiquitous application delivery medium. With 

the advent of Web 2.0, online communities, blogs and other such web-based applications, 

the influence of the web on the people has increased. It is easy to develop, deploy and 
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access these applications. Web-based applications such as Content Management Systems 

(CMS), Wikis, Portals, Bulletin Boards, and Discussion Forums are used by small and 

large organizations. A large number of organizations also develop and maintain custom-

built web applications for their businesses. 

For some of large-scale networks of computers that host web-applications, the number 

of attempted attacks can range from hundreds of thousands to even millions on a daily 

basis [9]. Of the 4396 total vulnerabilities reported by SANS (SysAdmin, Audit, 

Network, Security) Institute in their @RISK Database [10] from November 2006 to 

October 2007, nearly 50% are web application vulnerabilities, as indicated in Figure 1 

[9]. 

 

 

Figure 1. SANS @RISK Data from November 2006 to October 2007 – 4396 total 
vulnerabilities reported. 

 

Web frameworks and software used to create these frameworks such as PHP, .NET, 

J2EE, Ruby on Rails, ColdFusion, etc. and web applications of all types are at risk from 

web application security vulnerabilities, such as insufficient validation, application logic 

errors, etc [9]. Apart from web-applications every other part of the web infrastructure, 

including the host operating systems, the backend databases, the routers too are subject to 

attacks [11,12]. Even anti-virus software have been exploited for vulnerabilities. Since 

many of these applications require administrator privileges, the vulnerabilities present in 

these can be used to take total control of the target systems with little or no user 

interaction required [9]. 
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A zero-day vulnerability is a defect in software code that has been discovered and 

exploits of this defect appear even before any fix or patch program for that defect could 

be made available. Once the piece of code exploiting this vulnerability is unleashed on to 

the internet, until the time a software patch or some other form of fix to remove this 

vulnerability becomes available, users of the affected software will either have already 

been compromised or be at the risk of being compromised [9]. These attacks pose a major 

problem to businesses as they are not detected by the security systems/firewalls installed 

and as a result, cause heavy losses to these businesses. 

1.2 Intrusion Detection Systems 

Intrusion detection is defined in [13] as 

“the art of detecting inappropriate, incorrect, or anomalous activity” 

Intrusion detection systems (IDSs) are ideally intended to detect all kinds of attacks 

launched against either stand-alone computers or entire computer networks [14]. Also, a 

computer system or a network that is well-protected against attacks from the outside 

world can still be vulnerable to attacks from within the network itself. This is possible 

because either the authorized users themselves, or others posing as authorized users, 

abuse the existing privileges provided on these systems. These attacks should also be 

detected by the IDSs. 

1.3 Classification of Intrusion Detection Systems 

Intrusion detection systems are classified in 3 ways: based on the audit source 

location, the general detection strategy and the analysis mode [14,1]. 

1.3.1 Classification based on audit data location 

Based on the location of the audit data, IDSs are classified as host-based and 

network-based IDSs. Host-based detection systems operate on a single computer and 

perform their analysis on user activity or behavior of the programs, observed either at the 
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operating system level or at the application level to detect malicious activity on that host. 

So, the auditing process is done and the audit data is stored on the host computer itself. 

Network-based detection systems monitor the traffic in a network and analyze the 

headers and/or the payloads of the packets flowing through the network [13,15]. Here, the 

auditing can be done at different locations. A portion of the auditing can be performed at 

the network servers, while some of it can be done in the routers used in the network. 

Hence, in the case of a network-based intrusion detection system, the audit data is located 

in more than one place and comes from a variety of sources, like multiple operating 

systems, and different kinds of network servers. 

1.3.2 Classification based on detection strategy 

Based on the detection strategy used, IDSs are also classified as misuse-based and 

anomaly-based intrusion detection systems. Misuse-based systems use attack descriptions 

or signatures to identify the attacks. They analyze the stream of incoming data, and look 

for patterns or sequences of events that resemble any of the attack signatures. If a known 

attack pattern is detected, the data is flagged anomalous and an alarm is raised. 

Because the misuse-based systems detect known attack patterns, they have very 

low false positive rates and are also efficient. Anti-virus software is one such type of 

misuse-based systems that use signatures of known viruses, worms and other malicious 

programs, to detect and if possible remove those harmful data. The main disadvantage of 

the misuse-based systems is that they can only detect the attacks for which they have the 

models. So, any novel attacks/intrusions for which there are no signatures will go 

undetected. 

Anomaly based intrusion detection systems follow an approach that is 

complementary to that of the misuse-based systems. These systems analyze the data and 

create models, called ‘profiles’, to characterize the “normal” or attack-free data. Then, 

when they are deployed for detection purposes, they monitor the incoming data and 

compare it with the models of normal behavior, which they had created earlier. Any data 

that deviates from these models is considered as being associated with an attack. So the 

data is flagged as anomalous and an alarm is raised. 
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By defining the expected behavior of the normal, benign data, these systems can 

ideally detect any kind of abnormal data. Therefore, anomaly-based intrusion detection 

systems are capable of detecting even previously unknown attacks. But these systems 

have much higher false positive rates than the misuse-based systems. This increase in the 

false-positive rate can be attributed to a small extent to the fact that the data flagged as 

anomalous need not necessarily be malicious data. They can also be benign data that have 

abnormal behavior. 

1.3.3 Classification based on analysis mode 

Intrusion detection systems are classified as batch or real-time, based on the mode 

of analysis. Batch-mode detection systems have two separate stages of operation. The first 

stage involves the collection of the audit data. This is done at the source, which could 

either be a single host computer or it could be a network of computers and other systems. 

The second stage is the actual intrusion detection analysis, which is performed on the 

offline audit data that had been collected earlier. 

Batch-mode IDSs have the advantage that the analysis can be performed when the 

CPU usage is low and/or at a computing facility that is different from the audit source. 

Hence, a thorough analysis is possible with these systems. However, as the analysis is 

performed offline, they suffer from the disadvantage that they cannot prevent/preempt 

any attacks. The damage will be detected only after it has been done [1]. 

Real-time intrusion detection systems, as the name suggests, monitor the data 

stream for anomalies and raise alarms in real-time. These systems analyze the data at the 

time that they are being made available to the host computer or the network. Hence, these 

systems can detect the attacks as and when they are happening. This helps in the 

preemption of the attacks or at least the minimization of the impact due to the attacks. 

Because the real-time IDSs systems have to operate at the rate at which the data 

traffic flows in the system or the network, they have to be fast enough. To increase the 

processing speed, these systems compromise on the thoroughness of the analysis. This in 

turn would both affect the anomaly detection capability of the system and also increase 

the false positive rate of the system. Also, if a real-time analysis needs to be done at a 
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different location than the audit data source location, then a reliable, high-speed data 

channel is required between the target system and the analysis system [1]. 

Any system or a computer network that requires high security and cannot afford to 

have any kind of security breach, leading to loss or leakage of information, cannot use the 

batch detection systems. It would have to compulsorily use the real-time detection 

systems, so that such breaches can be avoided or preempted. They could also use batch 

mode systems to analyze the logs collected offline, to make sure that no breaches took 

place in the past. For large networks or organizations, a thorough post-analysis is also 

essential to ensure the integrity of the businesses and of the customers. 

1.4 Approaches to Intrusion Detection 

Intrusion detection tools use different approaches for their purposes. These approaches 

are: 

• Statistical anomaly detection tools. They perform statistical analyses to detect the 

variations in the data. These are further classified into 2 types: 

o Threshold-based detection tools. They record the features from each 

occurrence of a specific event. They then analyze these features to 

create threshold values for each of the features. The idea is that 

malicious data would have values that exceed these pre-determined 

threshold values. The detection capability of this system relies heavily 

on the threshold value used. 

o Profile-based anomaly detection tools. These tools analyze the audit 

data to create the expected normal behavior or profiles of the users or 

applications. The system then monitors the data stream to identify an 

anomaly by detecting any activity that deviates from the established 

profiles. These types of systems have the advantage that they don't need 

prior information about the security flaws of the target system. But 

these systems suffer from factors like false positive rates, false negative 

rates and gradual misbehaviors [1]. 
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• Rule-based anomaly detection tools. They analyze the incoming data just as in the 

case of the profile based systems, but instead of creating statistical profiles, they 

create sets of rules to represent and store the patterns of normal behavior. The 

advantages/disadvantages of this technique are similar to those of the statistical 

anomaly detection tools [1]. 

• Rule-based Penetration identification tools. These are based on the concept of 

expert systems which use properties to fire rules when they detect abnormal 

activities in the audit data [1]. 

All these approaches and their corresponding tools are discussed in greater detail in 

[16,1]. 

As the number of web-based systems developed and deployed with serious security 

vulnerabilities keeps increasing on a daily basis, security has become a basic requirement 

of these systems and additional steps have to be taken to protect these systems against 

attacks. Ideally, the security systems should be able to rapidly adapt to the changing web 

environments and be able to detect the various kinds of attacks/exploits. Hence, the 

anomaly detection system should ideally be able to self-train, operate in real-time mode 

and have low false positive rates. 

1.5 Thesis Overview 

This thesis is organized as follows: 

• Chapter 1 presents an overview of the importance of computer security. It also 

gives a brief introduction to the concept of intrusion detection and its 

classification. 

• Chapter 2 reviews the current literature and other related work on the topic of 

intrusion detection and anomaly detection systems. It also gives a brief 

introduction to HTTP, its structure and an overview of the attacks based on HTTP 

queries. 

• Chapter 3 describes the intrusion detection system proposed in this thesis. 
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• Chapter 4 describes the experimental setup, the evaluations performed on the 

system and the results of the evaluation. 

• Chapter 5 presents the conclusions and discusses some possible directions for the 

future work in this area. 
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2. CHAPTER TWO 

A system administrator has to be alerted whenever his or her webserver is under attack 

and has either been compromised already or is in the process of being compromised - this 

is known as intrusion detection [4]. Anomaly detection systems create models of the 

observed behavior, which is considered as ‘normal’ behavior and classify any deviation 

from this ‘normal’ behavior as anomalous [12,26]. These systems function under the 

assumption that the attack behavior patterns differ from the normal characteristics of the 

target system. 

The motivation behind anomaly detection is that this ‘difference’ can be identified by 

the detection systems when an anomalous occurrence is compared with the normal 

behavior [26]. This chapter surveys the existing literature on this topic. Some of the 

existing works related to anomaly detection for HTTP data are also discussed. This 

chapter also provides some background for the thesis, including some background about 

the HTTP protocol and its structure. Then a brief discussion of some HTTP query based 

attacks is also presented. 

2.1 Related Work 

The concept of computer based intrusion detection was introduced in 1972 by 

Anderson in his paper [11]. In his work, he emphasized the need for what are currently 

being termed as intrusion detection systems [4]. Initially, the anomaly detection systems 

were based on statistical analysis of the ‘normal’ behavior found in the audit records of 

the host system and also using other kinds of network data [13,14]. Porras [49] and Ilgun 

[1] proposed the State Transition Analysis concept for intrusion detection on computer 

systems. They monitor the states and change of states of the system. A penetration, as the 

term used by them to refer to the intrusions, is identified by the series of state changes 

which would lead the system from some initial state to a target state in which the system 

is compromised [49,1]. 
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As the usage of computer networks grew, techniques such as system call evaluation 

gained importance. In Warrender et al. [15] and Forrest [16], the sequence analysis is 

performed on system calls generated by applications to determine the ‘normal’ sequence 

of system calls for each application. These profiles are then used to detect anomalies, 

with the assumption that the anomalous behavior would generate previously unseen 

system call sequences. 

Lee [17] and Lee et al. [18] proposed a framework for constructing features and 

models for intrusion detection based on data mining approach. When the concept of 

webservers grew in popularity, the system call analysis technique was also extended to 

webservers, by Kruegel et al. [19]. However, these systems generated high false 

positives, in spite of the fact that they used much more sophisticated strategies for 

modeling the system call sequences than what Forrest et al. [15] had originally proposed 

[4]. 

Kruegel et al. [20] explored the concept of anomaly detection for specific services, 

namely DNS and HTTP. They extend beyond examining the header information and 

analyze the payload distribution as part of their detection process. Wang and Stolfo [21] 

also explored the concept of payload-based intrusion detection system. These work on the 

assumption that a malicious user would not be aware of the normal flow of the 

distribution of the application payload. 

Then a similar work analyzing the characteristics related to HTTP requests for 

webservers/web-based applications was developed by Kruegel and Vigna [26]. 

Subsequently, several papers have been published that discuss models for webservers and 

web-based applications [56,57,58,59]. Kruegel, Vigna et al. have researched this topic 

extensively and have made significant contributions in this area [26,27,28]. Recently, 

Kenneth Ingham’s dissertation [26] provided an exhaustive overview of the existing 

algorithms for HTTP Intrusion detection and a comparison of these algorithms. As part of 

the work, Ingham also created a large database of publicly available HTTP query related 

attacks [60]. Publications [22,23] based on the ECML/PKDD Conference's [24] Web-

Analyzing Traffic Challenge contest [25], also discuss algorithms for web-based 
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intrusion detection. But these algorithms are tailored specifically to the ECML/PKDD 

dataset. 

The idea of using Visualization as a tool for aiding intrusion detection has not gained 

much popularity even though it had been proposed quite sometime ago. A majority of the 

research work has been done on visualizing the network traffic to identify attacks such as 

Denial of Service, Port scans [29,30,31,32,33]. In addition to visualizing network traffic 

to detect anomalies, Kim and Reddy [34], used “motion prediction” techniques to 

understand the patterns of some of the attacks and also to predict any impending attacks 

on the network system. 

Visualization of webserver log based HTTP data has been analyzed in great detail by 

Stefan Axelsson [35,36,37,38,39], as part of his PhD dissertation work [40]. His research 

work mainly focuses on visualizing the requests as a whole. By contrast, the focus of our 

research work is on the query portion of the HTTP request. We use visualization as a tool 

to display the results of our anomaly detection system, in order to help the network 

administrator gain a quick understanding of the state of the system. 

2.2 HTTP 

The Hypertext Transfer Protocol (HTTP) has been described in RFC 2616 [41] as 

“a generic, stateless, application-level protocol” 

It works based on a request-response model. A client sends an HTTP request to a 

server. The request would contain a request method, a “Uniform Resource Identifier” 

(URI), and protocol version, followed by a request message header. The server sends 

back an HTTP response that contains a status line, including the protocol version of the 

message and a status code, indicating the success of the request or error, followed by a 

response message header [41]. 

The client sends the HTTP request for a specific resource on the server. These clients 

are typically web browsers, like Internet Explorer or Firefox, for example, or, they could 

also be automated programs such as bots, used for such purposes as indexing the web 
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pages on the internet. The request can be for a specific file hosted by the webserver or for 

a program running on the webserver. The URI identifies this resource. The request 

method indicates the desired action to be performed on that resource [42]. The most 

common request methods are GET, POST and HEAD. 

A web application program accepts inputs from a client through HTTP requests. This 

is done using the optional query portion of the HTTP request. The query is the 

component of the request following a ‘?’. It contains parameter-value pairs, of the form 

p1=v1&p2=v2&...&pn=vn, where p1, p2, ..., pn are the parameters and v1, v2, ..., vn are 

the corresponding values. Figure 2 shows an example of an HTTP request containing the 

query portion, taken from the 1999 MIT Lincoln Labs dataset [43]. 

 

 

Figure 2. Example HTTP Request 

 

Upon receiving the request, a webserver performs some processing if necessary, and 

sends back an HTTP response. As mentioned earlier, the response consists of a status line 

that indicates the success or failure of the request, using status codes. These status codes 

are of 5 classes [44]: 

1. 1xx - Information, 

2. 2xx - Success, 

3. 3xx - Redirection, 
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4. 4xx - Client Error, 

5. 5xx - Server Error. 

 

Specifically, the status codes of the form 2xx indicate a success. If the HTTP request 

was for a specific file on the server, this response code means that the requested file was 

found on the server and that it is being sent as part of the response (usually as part of the 

response message body). If the request was for a program on the server, then the success 

code means that the requested program was executed successfully, and the response 

message body might contain anything that the webserver program returned at the end of 

its execution. Figure 3 shows an example of a successful HTTP response taken from the 

1999 MIT Lincoln Labs dataset [43]. 

 

 

Figure 3. Example HTTP Response 

 

2.3 HTTP query based attacks  

Our research work focuses on successful HTTP requests that use the GET method and 

contain the query component. Using the parameter-value portion of the query, malicious 

inputs can be sent to a web application. In such a case, an unsuccessful request cannot do 

much harm to the web application as the returned error code indicates that the requested 

operation was not performed successfully. But a success response means that the 

malicious request had been processed successfully. Because of the success response 
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generated by the server, these attacks might most likely remain unnoticed, though, the 

webserver program might have been compromised. In this section, we present a few 

attacks that make use of the query portion of the request, to supply malicious input to the 

webserver application program. 

2.3.1 Nimda worm  

One of the most famous attacks in the Microsoft platform, that spreads using the 

query portion of a request, is the Nimda worm and its variants [45]. It is capable of 

affecting both the clients that use any version of Windows as the host operating system, 

like Windows 95, 98, ME, NT, or 2000 and also the servers running Windows NT or 

2000 [45]. 

The default configuration of the Windows operating system has a vulnerability, 

which is exploited by this worm. Using this vulnerability, the worm enables any user with 

a malicious intent to execute arbitrary system commands on the operating system of the 

host machine running the webserver. Figure 4 shows an example of a Nimda worm attack 

[46]. 

 

 

Figure 4. Nimda worm example 

 

This attack has several known variants, all of them exploiting the vulnerability in 

the Windows operating system. The popularity of this worm, along with the presence of 

several variants for it indicates the successful nature with which it has infected several 

systems. Despite the fact that the signature for this worm and its variants have been part 

of the signature based intrusion detection systems whenever they become known, the 

worm, with the help of its variants has successfully evaded the detection by these 

signature based systems. 
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2.3.2 Cross-site scripting attacks 

Another popular attack type is the Cross-site scripting attack [47]. This 

vulnerability enables the malicious user to use a web application program to inject code, 

most likely as client (browser) side scripts, into the web pages viewed by a lot of other 

users, who then become the victims of this attack. The malicious user causes a legitimate 

webserver to send a response page to a client's browser that contains malicious script or 

HTML that the attacker chooses. 

The client cannot distinguish between the legitimate portion of the response that 

was actually sent by the webserver and the malicious piece of code that the attacker sent 

as part of this page. Hence, the client would execute the entire page, including all the 

harmless and harmful scripts that it may contain. The malicious script runs with the same 

permissions as that of the legitimate script sent by the webserver. This gives the 

malicious code access to sensitive information on the page such as personalized cookies, 

any passwords or other sensitive information such as credit card numbers that maybe 

present as part of that web page. Figure 5 shows an example of a cross-site scripting 

attack: 

 

 

 

Figure 5. Cross-Site Scripting attack example 

 

The malicious code is present in the parameter value for the mycomment parameter, 

embedded between the <SCRIPT> and </SCRIPT> tags. This attack example shows 

how a malicious code injected as part of the parameter value of a HTTP request can cause 

harm to the target system. 
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2.3.3 Apache Information Disclosure vulnerability 

The Apache webserver was vulnerable to an information disclosure attack. Apache 

webserver version 1.3.20 with the Multiviews option enabled, allows remote attackers to 

list the contents of its directories and bypass the index page by using a URL containing 

the “M=D” query string [48]. Google used this vulnerability to index pages that had no 

externally accessible links to them [48,4]. Figure 6 shows an example of this 

vulnerability [4]. Though at first sight, this seems like a harmless attack, the severity of 

this vulnerability depends on the kind of sensitive information stored as part of the files 

that get listed. In case these files contain private information or information that should 

not be revealed to anyone except authorized users, this vulnerability poses a serious 

problem. This is an example of an attack, where the default parameter options have not 

been properly taken care of. Figure 5 shows an example query for this vulnerability. 

 

 

Figure 6. Apache M=D Information Disclosure attack 

 

2.3.4 Powerscripts PlusMail Poor Authentication vulnerability 

The Powerscripts PlusMail Web Control Panel is a web based administration suite 

that can be used to manage mailing lists, websites, etc [61]. As part of the administration 

features, it provides the facility to change the administration password from remote 

clients, using HTTP requests. But because of the password file has public permission by 

default (which is a grave mistake/bug), it is possible for an intruder to craft a HTTP 

request to the PlusMail CGI script and create a new username and password on the 

system. The intruder could in fact create the new user account with administrator 

privileges and take complete control of the system! This vulnerability highlights the risks 
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introduced by software whose default installation configurations are not modified 

properly. A sample attack string for this vulnerability is shown in Figure 7 [61]. 

 

 

Figure 7. PowerScripts PlusMail Web Control Panel vulnerability 

 

2.4 HTTP as a universal transport protocol 

HTTP has become the universal transport protocol for almost all kinds of webserver 

applications [4]. Earlier, for any new service provided by a webserver, a custom protocol 

for communicating with this service was developed and some port was assigned to be 

used for communications with this service. But due to issues related to security associated 

with many new protocols developed in this manner, network administrators blocked 

access to these services/ports with the help of firewalls [50,51]. But HTTP passes through 

most of these firewalls, with little or no trouble at all. Hence web application developers 

started using HTTP as a transport protocol for their new software [4]. Some of the 

examples for this include SOAP [52], tunneling secure shell (SSH) connections [53], 

Apple’s QuickTime multimedia [54], and Microsoft RPC for accessing Exchange (email) 

servers [55]. The creation of all these new services over the HTTP protocol creates 

additional opportunities for the intruders [4]. They also create a lot of variations in the 

characteristics of the HTTP requests. 
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2.5 Motivation 

The motivation for our proposed algorithms is based on the nature of the attack 

requests. A review of the HTTP query based attacks reveals abnormalities such as 

unusual length, usage of system commands and default webserver variables, usage of 

special characters as part of the attack string. We use this knowledge of the attacks to 

create models for our anomaly detection system, which is discussed in the next chapter. 
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3. CHAPTER THREE 

The attacks related to web application programs manifest themselves in many different 

forms as seen in the previous chapter. These attacks can vary greatly in terms of their 

characteristics, such as the length of the attack portion of the request, the grammar (or the 

lack of it) in the attack pattern, etc. It is difficult to capture such variations in the attack 

patterns using any single model. The term model, as used for the purposes of anomaly 

detection, is defined by Kruegel et al. [27] as: 

“a set of procedures used to evaluate a certain feature of a query” 

Any single feature of a query or its parameter value would only reveal a certain 

amount of information about the query or the parameter. So a detection model based on 

that feature would only be helpful in identifying any anomalies related to that particular 

feature of the parameter value or the query. Moreover, any intrusion detection system 

based on a single model would fail to identify several potential attacks in the HTTP 

request. Therefore, it is necessary to use a number of different models, in order to enable 

the system to effectively detect as many kinds of attacks as possible. 

The anomaly detection system proposed as part of this thesis is one such multi-model 

system that attempts to capture as much information as possible from the query and its 

parameters. The system captures this with the help of a variety of features extracted from 

the query and its parameter values. It also attempts to detect many different kinds of 

attacks by applying multiple models to classify the HTTP request based on the extracted 

features. Most of the processes involved in this system are performed automatically, 

involving minimal amount of human effort. This chapter discusses the set of 

models/heuristics used as part of our anomaly detection system, namely: 

1. Unknown program identification 

2. Unknown parameter identification 

3. Attribute Length and 

4. Attribute Character Distribution 
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These models can be based on either the whole query or on the individual parameters 

of the query. The unknown program identification and unknown parameter identification 

models listed above classify the query as a whole while the attribute length and character 

distribution models are based on the individual parameters of the queries and hence, 

classify each of the parameter values as benign or anomalous. The cumulative effect of 

the set of these detection models is that the entire HTTP request gets classified based on 

the results for the individual parameter values. 

Each anomaly detection model, whether based on the whole query or on the individual 

query parameters, operates on the URL portion extracted from successful HTTP requests 

that contain query parameter values. As mentioned in Chapter 2, successful HTTP 

requests are those that invoke a response from the webserver containing the status code of 

the form 2xx. An example of such a response is shown in Figure 3 in that chapter. These 

HTTP request URLs are further partitioned into subsets based on the directory path and 

the web application program to which they are addressed. The system then processes 

each subset of queries independently. 

The anomaly detection system operates in two modes, namely, learning and detection, 

in that order. During the learning phase, each model builds a profile of the “normal” 

characteristics of the corresponding feature of the parameter values, like the length of the 

attribute value, for example. The profile is then used by the corresponding model to 

determine a detection threshold for that parameter. The model performs this process for 

all the programs that it encounters during the learning phase. 

During the detection phase, the model extracts the necessary features from the query 

parameter values of incoming HTTP requests, using the same procedures that it used in 

the learning phase. But this time, instead of creating profiles with the extracted features, 

it compares the features with the corresponding profile, created during the training phase, 

using either a simple threshold value comparison or by using some statistical methods to 

compare the two quantities and returns an “anomaly score” for each observed parameter 

value. The anomaly score is nothing but a probability value in the interval [0,1] indicating 

how normal or abnormal the observed value is when compared with the established 
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profile for that attribute. A score close to one indicates a normal instance, or in other 

words, an instance drawn from the expected distribution for that parameter, while a score 

close to zero indicates a highly anomalous value. 

Each detection model in the system returns one such anomaly score, if applicable, for 

each of the parameter values in the incoming HTTP request. Based on these values, the 

request is reported either as a potential attack or as a normal event. Even if one of these 

scores lies outside the corresponding detection threshold value, the associated HTTP 

request is reported as anomalous. Although classifying a request based on the outcome of 

any single model may seem to portray the system as being over-cautious, this is essential 

as the attacker might try to embed a single malicious parameter value in the query and 

mask the value in such a way that it looks like a normal query as much as possible. 

The models of the anomaly detection system are built independently and can also be 

tuned, if applicable, independently of the other models. Tuning is necessary to adjust the 

sensitivity of the model, in terms of the number of true positive and false positive rates. 

These rates are explained further in the next chapter. This tuning can depend on the 

policies of the organization of which the web application server is a part. 

Some organizations might require a high rate of success in detecting the anomalies, 

but they maybe lenient with the number of false alarms generated. Some other 

organizations might be fine with a system that misses some of the anomalies, but would 

ideally not want any false alarms to be generated. All these factors need to be considered 

thoroughly when tuning the sensitivity of the anomaly detection system. The tuning of 

the system can be performed by adjusting the threshold values associated with the models 

of that system. 
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The following sections describe the models used as part of our anomaly detection 

system. 

3.1 Unknown Program Identification 

A web application server hosts a set of applications or programs as part of its system. 

These programs provide a set of services to the client machines over a network. An 

HTTP request that contains a query sent to a web application server is actually a request 

for service addressed to one such program or application that is hosted by the server. The 

webserver itself will have a set of programs which would enable the system administrator 

to configure the server properties and maintain its operations. 

The webserver operations could include creating server logs, providing an 

administration page to change the settings for the webserver and even to change the 

system administration password or other security features. All these functionalities would 

be provided as part of the default installation options for the webserver. They would be 

available in standard directory locations, determined by the developers of the webserver 

software, and would usually be accessible over the network for ease of use. 

If the server has not been configured properly and/or if the default settings have not 

been properly taken care of, then any user with a malicious intent who has some 

knowledge about the kind of server software being used, can attempt to exploit these 

vulnerabilities, using properly crafted HTTP requests. Therefore, any request that targets 

a new or an unknown program can most likely be targeting something not related to the 

applications that are being provided as services by the webserver. Such requests could 

either be exploiting the vulnerabilities present in the webserver. 

In most of the cases, these webservers also provide functionalities to run host 

operating system commands, with the privileges of the webserver administrator, who 

would most likely also have administrator privileges in the host operating system. Hence, 

a webserver that is vulnerable can also be used to exploit the operating system on which 

the server is hosted. In certain cases, these HTTP requests could also be targeted at some 
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malicious code that has somehow been placed in the server previously. Hence, such 

requests addressed to unknown applications or programs should be flagged as anomalous. 

This technique is motivated by the unknown parameter heuristic that Kruegel and Vigna 

proposed in their system [26]. 

3.1.1 Learning 

During the training phase, the model extracts the web application program name, 

from each of the HTTP requests that it encounters. It then creates a unique list of all these 

programs. The assumption is that when sufficient amount of data has been used during 

the training phase, all services considered a part of the normal day to day activities of the 

web application server would have been covered completely. This in turn would imply 

that all the programs and applications hosted by the server to provide these services 

would have at least one HTTP request addressed to each of them (note that a single 

request, though enough for this particular model, is not at all considered as sufficient data 

for those models that build profiles of the query parameter values). Ideally, by the end of 

the training phase, this process would have created the list of all the “known programs”, 

that is the list of all the programs or applications that the server is hosting. 

3.1.2 Detection  

During this phase, the system identifies the program to which the request is 

directed to, by extracting the program name. The system then checks this name against 

the list of all known programs that it created during the training phase. If this program 

name is found on the known list of programs, the incoming request is considered normal. 

If not, the algorithm flags the request as anomalous. It is possible that, in reality, a new 

program has been added to the webserver recently. The HTTP request could have been 

addressed to that new program and hence, is in fact a benign request. But, in this case, it 

is the responsibility of the system administrator to train the detection system on this new 

program, before making the program available to the clients of the webserver. This 

ensures that web application security system is properly updated. 
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Proper updating and maintenance of the anomaly detection system is essential for 

the effectiveness of the system in ensuring the security of the web application server. 

3.2 Unknown Parameter Identification 

As mentioned in Chapter 2, the web application programs accept user inputs through 

the HTTP requests. They do this by using the query portion of the request, which 

contains the parameters of the programs and the corresponding values. Since these 

parameters are nothing but the inputs that the programs hosted on the server accept, they 

cannot vary drastically across the requests. A few parameters maybe optional for a 

program, so they may or may not be present in all the queries addressed to that program. 

But a query cannot have any parameter that the target program cannot accept or is not 

expected to accept. This is the motivation behind this model of the anomaly detection 

system. 

Kruegel and Vigna [26] state that the unusual presence of one or more parameters in a 

query might indicate some malicious content in the query. As mentioned in the previous 

section, some of the programs exist as part of the installation of the webserver software. 

These programs may have certain default parameter values that can be used to change the 

configuration of the webserver. Or they can be used by the webserver to obtain inputs 

from the system administrator for other functionalities such as creating the server logs. A 

previously unseen parameter present in the HTTP request might in fact be exploiting the 

presence of these default parameters that come as part of the web applications. 

Just like the case of the unknown program identification model, sometimes default 

parameters come as part of the webserver software. Depending on the popularity of the 

webserver software used, the presence of these parameters would be well-known not only 

to the system administrator, but also to the people who have some knowledge about the 

server software. These parameters could be as harmful as resetting the password of the 

server application, as seen in the PowerScripts PlusMail vulnerability mentioned in the 

previous chapter [61]. 
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At the least, the default parameters could be exploited to list the contents of the 

webserver directories, as shown in the Apache M=D vulnerability mentioned in Chapter 

2 [48]. These directories might actually be private, containing important information. The 

contents of such directories would never have been meant to get listed. So, even though 

this directory listing seems to be a harmless vulnerability, in reality it is not so. Hence, all 

requests containing unknown parameters should be flagged as anomalous by the model. 

This heuristic was proposed as part of the anomaly detection work by Kruegel and Vigna 

[26].  

3.2.1 Learning 

In the training phase, the model creates a list of all the unique parameters that it 

notices as part of the requests sent to each of the programs or applications on the 

webserver. It records the program to which the request was made along with the 

parameters that were present in the query portion of that request. As with the previous 

model, here too we make the assumption that when a sufficient number of requests per 

web application program exist in the training datasets, all the parameters that are 

associated with that program get covered in the set of requests. 

3.2.2 Detection  

In the detection mode, the algorithm extracts the name of the program to which the 

incoming request was addressed and the set of parameters that were part of that request. It 

then verifies these parameter names with the parameter list that it maintains for that 

particular application. If it encounters a parameter that is not present in the list, it flags 

the parameter as anomalous. 

It is possible that the “unknown” parameter could actually be a genuine one. This 

means that the parameter was either never present in the training dataset, or was added to 

the program recently, after the system switched to the detection phase. The first case in 

turn implies that the training dataset was insufficient. If so, we need to ensure that the 

system is retrained on a set of requests that contain this parameter. In the second case, in 

the event of any modification to the webserver software, the system administrator should 
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ensure that the anomaly detection system is updated properly, as this is necessary for 

ensuring the security of the server. 

3.3 Attribute Length 

This heuristic was proposed as part of the anomaly detection system work done by 

Kruegel, Vigna et al. [26,28,27]. In practice, the length of parameter values sent as part of 

the HTTP requests does not vary greatly. In some cases, the web application itself would 

have length restrictions to be adhered to. For example, a login application might require 

that the login id have a minimum length of 8 and a maximum of 15 alphanumeric 

characters. Fields accepting credit card numbers have an exact length requirement of 16 

digits while US phone numbers must have 10 digits, when they expect the numbers 

including the area codes. 

For some of the malicious inputs, the length of the parameter value deviates greatly 

from the normal. For example, in order to overflow a buffer in a target web application 

program, the entire shell code and extra padding based on the length of the target buffer, 

needs to be sent as part of the request. Therefore, that parameter value maybe several 

hundred bytes long [27]. As another example, in the case of some cross-site scripting 

attacks, in which malicious scripts are included in pages whose content is determined by 

the data supplied by a user, the amount of data that is sent as part of the parameter value 

of a request can significantly exceed the length of normal parameter values [27]. Such 

anomalies can be detected by learning the unknown distribution of the attribute lengths 

[26]. 

In many of these cases, the situation can actually be avoided if the web application 

developer had proper length checks in place, whenever such application-based 

restrictions are relevant. But as is the case with many existing applications, sometimes, 

code necessary to perform such checks get missed out, when developing the application. 

Also, for many of these parameters, there may not be any length restrictions imposed by 

the web application system. In such cases, length checks will not be performed. 



27 
 

 

As mentioned in the previous section, the parameters are actually inputs that the web 

application program accepts. The programming or scripting language that was used to 

create this program would have data type related length restrictions, which would apply 

to these parameters. The size restriction can also depend on the host operating system 

used by the server. In any case, extremely long inputs might violate these length 

restrictions and if proper checks are not in place, this could crash the program or even the 

operating system itself. This could also overwrite or reveal the memory contents in the 

server/host operating system, as with the case of the buffer overflow attacks [63]. 

Minor deviations from the normal can be expected from genuine request parameter 

values too. For certain parameters, the benign data can also be expected to have large 

variance. The intention of this model is only to capture significant deviations from the 

normal length of parameter values. This reduces the number of false positives generated 

by the model, while still retaining the ability to detect obvious length related 

abnormalities. 

3.3.1 Learning 

The system records the lengths of the values for each of the parameter present in 

the incoming HTTP requests. It stores this information separately for every program that 

it encounters during the training phase. Suppose the system observed n requests 

containing a certain parameter for a particular web application program during the 

training phase. Let the lengths of the observed values be l1, l2, ..., ln. The anomaly 

detection system then approximates the mean µ  and variance 2σ  of the real attribute 

length distribution by calculating the sample mean and the sample variance of the 

observed lengths. 
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3.3.2 Detection  

Once the system has calculated the sample mean and variance of the observed 

parameter values, during the detection phase, the heuristic monitors the parameter value 

of an incoming request and determines its length l. It has to then check if the observed 

length is “normal”. The probability that the observed length l is from the distribution of 

the parameter’s length values, is calculated using a modified version of the Chebyshev 

inequality, proposed in [26] as shown below: 

 

p = ( )2

2

µ
σ
−l

 

 

In case the observed length l equals the mean length µ , the denominator is 

replaced by a small, insignificant value, in order to avoid divide-by-zero error. The closer 

the value of p is to one, the higher the probability that the observed length is normal. A 

threshold value is determined and used to classify the length as normal or anomalous. 

The bound computed by the Chebyshev inequality is, in general, very weak and is 

independent of the underlying distribution [26]. As a result of this weak bound, our 

detection model has a high degree of tolerance to variations in attribute length, and it 

flags only obvious outliers as anomalous [28], as desired. 

3.4 Attribute Character Distribution 

The character distribution model is motivated by the observation that attribute values 

are usually regular in their structure, in general, contain only printable characters and can 

usually be understood by humans [28]. To quote the login application again, many of 

these programs require that people create login ids and passwords only with 

alphanumeric characters. They may also include a very restricted set of special symbols 

(usually just 2 or 3 different special symbols). Hence, the values of this login parameter 

tend to have similar character distributions. 
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By character distribution, we mean the relative frequencies of the alphabetical 

characters, numbers and special symbols. Unlike the normal data, buffer overflow 

attacks, for example, often have a distinct character distribution [4]. These attacks 

sometimes use special characters (mostly whitespace characters) to pad the string in order 

to overflow the buffer. Some other attacks, like cross-site scripting, use script related tags 

and other symbols as part of the scripting code that are embedded into the parameter 

values. Thus all these values tend to have more than the usual number of special 

characters as part of the string. 

The attribute character distribution model creates profiles to detect these kinds of 

deviations in the parameter values. The assumption behind this model is that there is a 

marked distinction between the character distributions of the parameter values that are 

benign and those of parameter values that are anomalous and that this distinction can be 

captured by the detection model. 

3.4.1 Learning 

During the learning phase, the anomaly detection system counts the number of 

alphabetical characters, numerical characters and special symbols found in each of the 

values associated with a specific parameter of a web application program. It then 

normalizes these values to get the relative counts or frequencies. These counts are binned 

into 3 bins, one each for alphabetical characters, numbers and special symbols. At the end 

of the learning phase, the system calculates the average of all the observed values for 

each of these 3 bins. Because the individual character distributions sum up to unity, the 

sum of the averages of these will also be equal to one. Therefore, the final character 

distribution is well-defined [26]. 

As an example, consider the word pas123!@#, as a sample value for the parameter 

‘password’ of a login application. The bin counts for the alphabetical characters, numbers 

and special character bins would be 3, 3, 3. The relative character distribution would be 

0.33, 0.33, 0.33. These relative bin counts are stored for the ‘password’ parameter and in 

the end, the average bin count is calculated for these three bins over all the observed 

values. 
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3.4.2 Detection  

During the detection phase, the algorithm counts the number of alphabetical 

characters, numbers and special symbols for each of the parameter values in the incoming 

request and normalizes these values to get the relative counts. Then the system has to 

determine the probability that the obtained distribution is a sample drawn from the 

expected character distribution of the associated parameter. In order to achieve this, the 

detection algorithm uses a variant of the Pearson 2χ -test as a ‘goodness-of-fit’ test [62]. 

The variant to this test was proposed by Kruegel and Vigna as part of their anomaly 

detection system work [26]. 

The counts obtained in the detection phase can be considered as the set of observed 

frequencies Oi for the corresponding parameter. The expected frequencies Ei for the three 

bins of the corresponding parameter have already been calculated during the learning 

phase. The 2χ  value is then calculated as 

 

2χ  = 
( )
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The degrees of freedom of this 2χ test are equal to the number of bins used for the 

calculation minus one, which yields the value two [26]. The probability p that the 

observed parameter value comes from the expected character distribution is obtained by 

looking up a predefined 2χ  table using the calculated 2χ  value for two degrees of 

freedom. The higher the value of p, the greater the probability that the parameter value 

belongs to the expected character distribution. Thus, the p value obtained from the 2χ  

table is used to classify the parameter as normal or anomalous. 
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3.5 Implementation of 6-Bin Character Distribution algorithm 

For comparing the performance of our proposed character distribution algorithm, we 

implemented the 6-Bin Character Distribution algorithm (from now on, we shall call our 

algorithm, described in the previous section as the 3-Bin Character Distribution 

algorithm) proposed by Kruegel, Vigna et al. [26,28,27]. 

In this model, a character distribution is considered to be the relative frequencies of 

the 256 ASCII character values sorted in descending order [28]. The motivation for this 

algorithm is that for normal inputs, the relative character frequencies are expected to have 

a slow decrease in the values, while malicious inputs, can have either an extreme drop-off 

due to a lot of repetition of a single character, or little drop-off because random characters 

were used [28]. 

The frequency counts for each of the 256 ASCII characters, for the given parameter 

value is determined. These counts are then sorted in descending order. The example 

string used in their paper [26] is passwd. The absolute frequency counts in descending 

order of frequencies are 2 for s, 1 each for a, d, p and w, and 0 for all the other characters. 

The relative frequencies obtained with these counts are 0.33, 0.17, 0.17, 0.17, 0.17, 

followed by 0 occurring 251 times. 

They called the character distribution of an attribute that is perfectly normal the 

idealized character distribution (ICD), induced from the training data and noted that 
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As mentioned earlier, the ICD is sorted in the descending order of the relative 

frequencies. So the largest frequency is denoted as ICD(1) and the least is denoted as 

ICD(256). 
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3.5.1 Learning 

The ICD is calculated during the training phase. For each of the observed query 

parameter values, the character distribution is determined and stored. The idealized 

character distribution is then approximated by calculating the average of all these stored 

character distributions. 

Similar to the case of the 3-bin Character Distribution, in this model too, the 

individual character distributions sum up to unity, and in turn, their averages would do so 

as well. Hence, the idealized character distribution is also well-defined [26]. 

3.5.2 Detection  

For testing, they binned the ICD (the expected distribution) and the distribution of 

the incoming request (observed distribution) into six bins as shown in the table 1 below. 

 

Table 1. Bin distribution for calculating the ICD 

Bin 1 2 3 4 5 6 

I 1 2-4 5-7 8-12 13-16 17-256 

 

where i ∈ [1, 256]. For example, bin 4 contains 
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Once these values have been binned, they used a 2χ  test to check if the character 

distribution of the parameter values is similar to that of the expected values. The 

modified 2χ  test as proposed by them is 
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where Ei is the value in bin i for the ICD, and Oi is the value in bin i for the 

observed distribution. The degrees of freedom for this test is five (one minus the number 

of bins used in the test). The 2χ  value so obtained is used to lookup the values from a 

table for five degrees of freedom and the corresponding probability value p is obtained. 

As in the case of the 3-Bin Character Distribution test, the higher the value of p, the 

greater the probability that the observed parameter value is a sample drawn from the 

idealized character distribution. 
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4. CHAPTER FOUR 

4.1 Experimental Setup 

In order to perform rigorous testing and evaluation in a simulated environment, the 

data used for the testing purposes should be as similar as possible to the actual traffic and 

actual attacks found in real-world computer networks. Usually, such a kind of data is 

difficult to obtain because the real-world data would contain personal and/or private 

information. The real-world data would also reveal the potential vulnerabilities present in 

the networks which were used to gather this data, thereby putting those networks under 

the risk of attacks.  

4.1.1 The MIT Lincoln Laboratory IDS dataset  

Because of these factors, the MIT Lincoln Laboratory’s 1998 intrusion detection 

evaluation was performed with sponsorship from DARPA, to create the first standard 

corpus of labeled datasets that could be used to evaluate intrusion detection systems 

[64,43]. Subsequent evaluations were also conducted in 1999 and 2000 creating more 

datasets of this kind. 

These datasets contain host-based and network-based labeled attacks. The datasets 

are available in tcpdump format [68]. But none of the HTTP requests in the tcpdump 

datasets contain the attacks in the parameter values of the queries. As our anomaly 

detection system is based on the concept of creating profiles of the parameter values and 

then using these to detect anomalies, the attacks present in the MIT Lincoln labs dataset 

were not relevant to our research work. 

4.1.2 The ECML/PKDD 2007 Discovery Challenge dataset  

One of the most recent publicly available labeled HTTP dataset is the web traffic 

dataset created for the ECML/PKDD 2007 Discovery Challenge, held in September 2007 

[25]. This dataset contains around 50000 requests of which nearly 20000 are attack 

requests. The data is available in XML format [69]. Figure 8 shows a sample HTTP 

Request from the ECML dataset. 
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Figure 8. Sample HTTP Request from the ECML dataset. The request is stored in XML 
format. The portion of the query containing the attack is marked with a rectangle. The 

header portion has been truncated to reduce size 

 

Each portion of the HTTP request is stored using appropriately named XML tags, 

as shown in Figure 8. The tags also indicate whether the particular request has an attack 

or not. If the request contains an attack, then the XML tags also indicate the portion of 

the request that contains the attack and another set of tags indicate the exact byte offsets 

within that portion of the request in which the attack is found. In Figure 8, the attack 

portion of the query has been marked with a rectangle. The attack requests belong to one 

of the following 7 categories: 

 

1. Cross-Site Scripting  

2. SQL Injection  

3. LDAP Injection  

4. XPATH Injection  



36 
 

 

5. Path traversal  

6. Command execution  

7. Server-Side Include (SSI) attacks 

 

The main objectives of the challenge were classification of the attacks based on the 

context and isolation of the attack patterns from the requests. Except for the attack 

portion of the request, the remaining portions have been randomly generated, to the 

extent that no two requests in the dataset are addressed to the same host/same application 

and the requests themselves don't convey any meaning. As our research work is based on 

learning the characteristics of each application of a server, we need a lot of requests per 

application program in order to build the profiles for that program. But since this dataset 

does not contain more than one request per web application program, this dataset too 

could not be used for our evaluation. 

4.1.3 Dr. Kenneth Ingham's HTTP attack dataset  

An attack dataset containing the attacks that are delivered as part of HTTP requests 

was recently published on the internet by Dr. Kenneth Ingham [60]. This is a collection 

of 63 attack requests that Dr. Ingham collected as part of his recent PhD dissertation work 

[4]. He had collected these data from various online security forums and other online 

sources. 

The site details the type of the attack, gives a description of how the attack is 

performed, what vulnerabilities the attack exploits and includes a sample HTTP request 

containing the attack. Quite a few of these attacks are delivered as part of the query 

portion of the HTTP requests. Hence, these attacks are relevant to our research work. But 

this dataset only contains HTTP requests containing attacks. There is no data for the 

normal or genuine HTTP requests. Hence, we cannot use this dataset to build the profiles 

during the training phase, which is crucial for our anomaly detection system.  
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4.1.4 Synthesis of the evaluation dataset  

We did not have access to any relevant labeled datasets that we could use as-is for 

our evaluation. Though the MIT dataset was not useful as-is for our purposes, the dataset 

was organized into different weeks of data. Also, since none of the attacks in that dataset 

were present in the query portion of the request, those attacks are not relevant to our 

evaluation. Hence, these attack requests can also be considered as benign requests for the 

purposes of our evaluation. Since the dataset was organized as three weeks of training 

data and two weeks of testing data, this dataset would have been ideal for our purposes, if 

only the test datasets contained attacks relevant to our work. 

We solved this issue by synthesizing our own testing dataset containing labeled 

attacks by merging the attacks from the ECML dataset and the attacks from Dr. Ingham's 

database into the 1999 MIT Lincoln labs' fourth week dataset (one of the two test 

datasets). We randomly picked ten attack requests each from the seven categories of the 

ECML dataset. The attack portion of the query parameter values were then isolated from 

these requests. We also isolated the attack portion of the query parameter values from the 

relevant attack queries in Dr. Ingham's database. 

Then we replaced the normal query parameter values from some of the queries in 

the fourth week of the 1999 MIT dataset with the extracted attacks. Figure 9 shows a 

sample attack request created in this manner. The query parameter idx in the sample 

request shown in Figure 9 had originally contained some alphanumeric character string as 

its value. That value was replaced with the attack pattern, which marked with a 

rectangular box in the figure. 

 

 

Figure 9. Sample attack request. The attack portion of the request has been marked with a 
rectangle. 
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We modified queries that were relevant to the attacks being performed. For 

example, if an attack was exploiting a vulnerability in Microsoft’s ASP server, we used 

this attack to modify a request in the MIT dataset that was addressed to an ASP page 

(which implies that the server running the ASP page is actually an ASP server). 

Similarly, if the attack was exploiting a vulnerability in the Apache server, we chose a 

request from the MIT dataset that was addressed to an application running on an Apache 

server. 

This way we ensured that the attacks we injected into the HTTP requests were 

actually relevant to the environment of the requests. We also took care to replace normal 

values with attacks of comparable lengths in most of the cases. This ensured that a 

majority of the attacks did not get flagged as abnormal simply because of length 

mismatches. The synthesized dataset contained 1753 normal queries and 149 attack 

queries in total. 

4.2 ROC and ROC Convex Hull Plots 

Traditionally, IDS results have been reported using a receiver operating characteristic 

(ROC) curve which indicates the trade-off between identifying genuine attacks (true 

positives) and incorrectly classifying non-attack requests as attacks (false positives) 

[4,65]. ROC graphs are suitable for visualizing the performance of the classifiers [66]. 

The graph is obtained by plotting the false positive rates against the true positive rates. 

False positive rate is calculated as the fraction of the normal dataset that is incorrectly 

classified as attack data. True positive rate is calculated as the fraction of the attack 

dataset that is correctly classified as attack data.  

 

Number of normal requests incorrectly identified as attacks 
False Positive Rate =  

Total number of normal requests 
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Number of attacks correctly  identified 
True Positive Rate =  

Total number of attack requests 

 

The ROC Convex Hull (ROCCH) method uses a combination of the methodologies 

from ROC analysis, decision analysis and computational geometry [67]. The ROC 

convex hull separates the classifier performance from distributions specific to a class or 

to the associated costs. It also provides a common ground for the comparison of several 

classifiers at the same time [67]. We used the ROCCH plot to compare the performance 

of our 3-Bin character distribution algorithm with that of the 6-Bin character distribution 

technique. 

4.3 Evaluation and Results  

The evaluation consisted of two phases: training and testing. For the training phase, 

we used the first three weeks of data from the 1999 MIT datasets. Each week in turn, has 

five datasets, one each for the five weekdays from Monday to Friday. During this phase, 

the system learnt the characteristics of all the applications that it encountered. 

In the testing phase, we switched the system to the detection mode. First, we ran our 

detection system on the normal data, which did not contain any attacks. All the requests 

that were classified as anomalous by our system, during this step, were counted as false 

positives. Next, we ran our detection system on the attack data and all requests classified 

as anomalous were counted as true positives. Thus, we obtained the true and false 

positive rates. 



40 
 

 

4.3.1 ROC and ROC Convex Hull plots of the results  

Once we obtained the true and false positive rates, we created the ROC plots. As 

mentioned in section 4.2, this graph is obtained by plotting the true positive rates vs. the 

false positive rates. Each point on the plot indicates a different p value (similarity 

threshold value). For the purpose of the evaluation, we created two sets of plots, each set 

containing three ROC Curves, one each for the length, 3-Bin and 6-Bin Character 

distribution algorithms.  

For the first set of plots, we created the graphs for the true and false positive rates 

based on the total number of parameter values in the entire dataset. For each parameter 

value present in all the queries in the dataset, we obtained the p value for the three 

algorithms. We then used these p values to obtain the true and false positive rates and 

plotted the curves. Figure 10 shows the ROC plot and the convex hull for the length test. 

 

Figure 10. ROC plot and Convex Hull obtained by applying the length test on parameter 
values 
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Figure 11. ROC plot and Convex Hull obtained by applying the 3-Bin Character 
distribution tests on parameter values 

 
Figure 11 shows the ROC plot and its corresponding convex hull for the 3-Bin 

Character distribution test, while Figure 12 does the same the 6-Bin Character 

distribution test.  
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Figure 12. ROC plot and Convex Hull obtained by applying the 6-Bin Character 
distribution tests on parameter values 

 

In order to compare these two character distributions, we plotted the corresponding 

convex hulls in a single plot, which is shown in Figure 13. 
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Figure 13. ROC Convex Hull plots obtained by applying the 3-Bin and 6-Bin Character 
distribution tests on parameter values 

 

Though the anomaly detection system classifies each parameter value as being 

normal or anomalous using its constituent models, the end result is that the entire request 

gets classified based on the classification of each of its parameter values. For example, 

consider a request containing three parameter values and the p values obtained using the 

length test for these three values are: 1, 0.95 and 0.33. Since 0.33 is the least amongst the 

three values, the classification of the query as normal or abnormal would depend on 

whether this value is above or below the threshold value respectively. 
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Therefore, it is enough if we consider this value alone when classifying the query 

as a whole. Using this observation, we created a second set of ROC plots, in which the 

true and false positive rates were based on the number of queries in the dataset. Figure 14 

shows this plot and corresponding convex hull for the length test and Figure 15 and 16 

for the 3-Bin and 6-Bin character distribution tests respectively. 

 

 

Figure 14. ROC plot and Convex Hull obtained by applying the length test on queries 
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Figure 15. ROC plot and Convex Hull obtained by applying the 3-Bin Character 
distribution tests on queries 
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Figure 16. ROC plot and Convex Hull obtained by applying the 6-Bin Character 
distribution tests on queries 

 

Again, for comparison of the two character distribution tests, we plotted the 

corresponding convex hulls in a single plot, which is shown in Figure 17. 
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Figure 17. ROC Convex Hull plots obtained by applying the 3-Bin and 6-Bin Character 
distribution tests on queries 
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4.3.2 Discussion of the results  

From the two ROC plots for the length test (Figures 10 and 14), we see that the true 

positive rate, at its best, is still less than 0.8, when the (1,1) point is not considered. This 

implies that the length test has low accuracy. But we use the length test to detect buffer 

overflow type of attacks, which have huge deviations from the normal values. So, we 

need not maintain a tight bound on the threshold value used for the length test. By 

relaxing this threshold, we can bring down false positive rate to an acceptable level, while 

still retaining the algorithm's ability to detect the major deviations. 

From the two ROC Convex Hull plots in Figures 13 and 17, we can notice that 

except for a very minor region near the (0,0) position, the true positive rate for the 3-Bin 

character distribution test increases faster than its false positive rate, when compared to 

the 6-Bin test rates. Also, the 3-Bin test has more area under the ROC Curve when 

compared to the 6-Bin test. Hence, the 3-Bin test performs better than the 6-Bin test. 
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4.3.3 Visualization of the identified alerts  

 

 

Figure 18. Visualized anomaly counts for Week 4 Friday data. “Unknown Parm” refers to 
the “Unknown Parameter” test 
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Figure 19. Visualized anomaly counts for a single program in Week 4 Friday data 

 

Figure 16 shows the visualized anomaly counts that we obtained using the anomaly 

detection system for the Friday dataset of Week 4 (the test week), as bar graphs. The bars 

represent the absolute counts of the alerts for each of the algorithms. The “Length 3-Bin” 

bar in the figures represents the count of all parameter values that were flagged as 

anomalous by both the length and the 3-Bin character distribution tests. Figure 17 shows 

the visualized anomaly counts for a single program. This visualized representation 

provides a quick understanding of the current state of the system to the administrator or 

whoever is monitoring the system. 
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5. CHAPTER FIVE 

This chapter presents the conclusions that were arrived at, as part of this thesis work. It 

also discusses the future research opportunities that exist in this area, some of which are 

extensions to the current work.  

5.1 Conclusions 

Web-application related vulnerabilities/attacks have become a major concern in recent 

times. This has led to the development of several web-application based intrusion 

detection systems. The concept of intrusion detection system and its different types were 

discussed in this thesis. A brief introduction to HTTP, its structure and some HTTP query 

related attacks were also described. 

A web-application based anomaly detection system was proposed and the approach 

was discussed in detail. The system learns the characteristics of web applications by 

creating parameter profiles of the associated HTTP queries. It then uses these profiles to 

monitor the incoming requests and classifies them as benign or anomalous. The system 

makes use of features that help distinguish anomalous queries from genuine ones, like 

requests to previously unknown programs, or requests with previously unseen 

parameters, abnormal length of the parameter values and unusual distribution of 

symbols/characters in these values. The system learns these characteristics with minimal 

human intervention. The detection capability and false positive rate can be adjusted to 

suit the specific needs of the business, by tuning the threshold values used for the 

detection process. 

To evaluate the algorithms, a labeled database of HTTP queries containing training 

data and attack data was needed. But a good database that contained all of these did not 

exist. Therefore as part of this thesis work, an evaluation dataset was created. The MIT 

Lincoln labs 1999 tcpdump dataset [43] was used. The first 3 weeks of data was used as 

is for training the system. Attack data, obtained from Kenneth Ingham's database of 

HTTP attacks [60] and the ECML/PKDD 2007 discovery challenge dataset [25], and was 
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merged with the fourth week's data from the MIT dataset, to get the test data for our 

system. The results of the experiments have been presented in the thesis. For comparing 

the performance of the proposed technique, an existing algorithm that performs character 

distribution based analysis was implemented. With the given dataset, our approach 

performed better than the existing one. The results of the comparison have been 

presented. The alerts from the anomaly detection system have been visualized as bar 

graphs. This helps the system administrator quickly understand the state of the system 

and enables him/her to easily identify the attacks.  

5.2 Future Work 

There exists a lot of scope in terms of future research in this area. The algorithms 

proposed in this work can further be investigated to reduce the number of false positives 

to the minimum possible. Also, the current number of false positives and success rates 

indicate that no single technique provides a good rate of detection. Therefore, better 

detection techniques need to be identified. The current work focuses on HTTP query 

parameters alone. Future work can examine all portions of the request and response to 

provide a more complete HTTP based anomaly detection system. Moreover, systems that 

work on protocols other than HTTP can also be developed. Apart from the detection 

systems, work can be done to create a large database of attack and non-attack labeled 

data. This needs to be created with a network setup that reflects the current network 

configurations as much as possible. This would greatly aid the researchers in 

understanding the attacks, identifying any patterns and to come up with better detection 

techniques.  
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