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DATA PROCESSING FOR ANOMALY DETECTION IN WEB-
BASED APPLICATIONS

1. CHAPTER ONE

1.1 Introduction

The following adage has been taken from the fretip@sked questions section of the

Alt.security newsgroup [1]:

“The only system that is truly secure is one tlsadwitched off and unplugged,
locked in a titanium lined safe, buried in a corterbunker, and is surrounded by
nerve gas and very highly paid armed guards. Ehen,tl wouldn't stake my life

on it.”

As the World Wide Web grows rapidly on a daily lsashe number of new computer
attacks is also growing at a matching rate. Segucomputer systems and networks is
not only important but it is also difficult. The partance aspect is due to the fact that
there would be heavy losses both in monetary temasalso in terms of privacy, as a
result of systems that are compromised. There caldd be liabilities, both civil and
criminal, for having failed to secure computer sys$, as specified by the laws such as
the Sarbanes-Oxley [2] and the Health Insurancéabitity and Accountability Act of
1996 [3,4].

The difficulty in providing security to the computgystems arises from the fact that
the lists of computer vulnerabilities that becommwn, such as the list of Common
Vulnerabilities and Exposures (CVE) [5] or the bugjscussed on forums such as
Bugtraq [6] is ever-expanding. According to the ibiaél Institute of Standards and
Technology [7], American companies have sufferessds, as much as 59.6 billion
dollars following IT attacks, during the year 20&léne [8]. Also, the nature of threats is
very dynamic. Just during the last year, the kioflsrulnerabilities that were being
exploited are very different from the ones thatevexploited in the past [9].

The World Wide Web has become the ubiquitous agptio delivery medium. With
the advent of Web 2.0, online communities, blogs atfver such web-based applications,

the influence of the web on the people has incrba$es easy to develop, deploy and
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access these applications. Web-based applicatiaisas Content Management Systems
(CMS), Wikis, Portals, Bulletin Boards, and DisdossForums are used by small and
large organizations. A large number of organizaialso develop and maintain custom-

built web applications for their businesses.

For some of large-scale networks of computerstibat web-applications, the number
of attempted attacks can range from hundreds afsénods to even millions on a daily
basis [9]. Of the 4396 total vulnerabilities regoitby SANS (SysAdmin, Audit,
Network, Security) Institute in their @RISK DatabaglO] from November 2006 to
October 2007, nearly 50% are web application valbidities, as indicated in Figure 1

[9].

B VWeb Application
Vulnerabilities

| Other Vulnerabilities

Figure 1. SANS @RISK Data from November 2006 toobet 2007 — 4396 total
vulnerabilities reported.

Web frameworks and software used to create theseefvorks such as PHP, .NET,
J2EE, Ruby on Rails, ColdFusion, etc. and web aafiins of all types are at risk from
web application security vulnerabilities, such @sufficient validation, application logic
errors, etc [9]. Apart from web-applications evetyer part of the web infrastructure,
including the host operating systems, the backeabdses, the routers too are subject to
attacks [11,12]. Even anti-virus software have berploited for vulnerabilities. Since
many of these applications require administratorilpges, the vulnerabilities present in
these can be used to take total control of theetasystems with little or no user
interaction required [9].
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A zero-day vulnerabilityis a defect in software code that has been disedvand
exploits of this defect appear even before anyofiypatch program for that defect could
be made available. Once the piece of code expipitirs vulnerability is unleashed on to
the internet, until the time a software patch omsoother form of fix to remove this
vulnerability becomes available, users of the affécsoftware will either have already
been compromised or be at the risk of being com@e9]. These attacks pose a major
problem to businesses as they are not detectelebsetcurity systems/firewalls installed
and as a result, cause heavy losses to these bssine

1.2 Intrusion Detection Systems

Intrusion detections defined in [13] as
“the art of detecting inappropriate, incorrect, anomalous activity”

Intrusion detection systems (IDSs) are ideallyndted to detect all kinds of attacks
launched against either stand-alone computers toe @omputer networks [14]. Also, a
computer system or a network that is well-protecigdinst attacks from the outside
world can still be vulnerable to attacks from witlthe network itself. This is possible
because either the authorized users themselvesthers posing as authorized users,
abuse the existing privileges provided on thesd¢esys. These attacks should also be
detected by the IDSs.

1.3 Classification of Intrusion Detection Systems

Intrusion detection systems are classified in 3svagsed on the audit source

location, the general detection strategy and tladyars mode [14,1].

1.3.1 Classification based on audit data location
Based on the location of the audit data, IDSs #&assidied as host-based and
network-based IDSs. Host-based detection systerasatgppon a single computer and

perform their analysis on user activity or behawbthe programs, observed either at the
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operating system level or at the application legadetect malicious activity on that host.
So, the auditing process is done and the auditisatared on the host computer itself.
Network-based detection systems monitor the traffia network and analyze the
headers and/or the payloads of the packets flowraugh the network [13,15]. Here, the
auditing can be done at different locations. A orof the auditing can be performed at
the network servers, while some of it can be donéhe routers used in the network.
Hence, in the case of a network-based intrusioeatien system, the audit data is located
in more than one place and comes from a varietgoairces, like multiple operating

systems, and different kinds of network servers.

1.3.2 Classification based on detection strategy

Based on the detection strategy used, IDSs areckdssified as misuse-based and
anomaly-based intrusion detection systeltisuse-based systerase attack descriptions
or signatures to identify the attacks. They analymestream of incoming data, and look
for patterns or sequences of events that resemplefahe attack signatures. If a known
attack pattern is detected, the data is flaggedhalmis and an alarm is raised.

Because the misuse-based systems detect knowk g@#ierns, they have very
low false positive rates and are also efficienttiAdrus software is one such type of
misuse-based systems that use signatures of knowses, worms and other malicious
programs, to detect and if possible remove thosmfliddata. The main disadvantage of
the misuse-based systems is that they can onlgtdée attacks for which they have the
models. So, any novel attacks/intrusions for whibkre are no signatures will go
undetected.

Anomaly based intrusion detection systerfdlow an approach that is
complementary to that of the misuse-based syst€hese systems analyze the data and
create models, called ‘profiles’, to characteripe tnormal” or attack-free data. Then,
when they are deployed for detection purposes, thewitor the incoming data and
compare it with the models of normal behavior, wihisey had created earlier. Any data
that deviates from these models is considered iag lBssociated with an attack. So the

data is flagged as anomalous and an alarm is raised
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By defining the expected behavior of the normahitpe data, these systems can
ideally detect any kind of abnormal data. Therefam@omaly-based intrusion detection
systems are capable of detecting even previoustypawn attacks. But these systems
have much higher false positive rates than the seiaased systems. This increase in the
false-positive rate can be attributed to a smakkmixto the fact that the data flagged as
anomalous need not necessarily be malicious daty §an also be benign data that have

abnormal behavior.

1.3.3 Classification based on analysis mode

Intrusion detection systems are classified as bataleal-time, based on the mode
of analysisBatch-mode detection systeh®/e two separate stages of operation. The first
stage involves the collection of the audit dataisTie done at the source, which could
either be a single host computer or it could betavark of computers and other systems.
The second stage is the actual intrusion detearmalysis, which is performed on the
offline audit data that had been collected earlier.

Batch-mode IDSs have the advantage that the asatgsi be performed when the
CPU usage is low and/or at a computing facilityt tisadifferent from the audit source.
Hence, a thorough analysis is possible with thgseems. However, as the analysis is
performed offline, they suffer from the disadvamtadat they cannot prevent/preempt
any attacks. The damage will be detected only &fteas been done [1].

Real-time intrusion detection systenas the name suggests, monitor the data
stream for anomalies and raise alarms in real-tithese systems analyze the data at the
time that they are being made available to the bostputer or the network. Hence, these
systems can detect the attacks as and when theyageening. This helps in the
preemption of the attacks or at least the mininozadf the impact due to the attacks.

Because the real-time IDSs systems have to opatdtee rate at which the data
traffic flows in the system or the network, theywédo be fast enough. To increase the
processing speed, these systems compromise ohdtmighness of the analysis. This in
turn would both affect the anomaly detection calitghnf the system and also increase

the false positive rate of the system. Also, ifealitime analysis needs to be done at a
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different location than the audit data source liocatthen a reliable, high-speed data
channel is required between the target systemrandrtalysis system [1].

Any system or a computer network that requires Isigturity and cannot afford to
have any kind of security breach, leading to lasieakage of information, cannot use the
batch detection systems. It would have to compiljsarse the real-time detection
systems, so that such breaches can be avoidect@empted. They could also use batch
mode systems to analyze the logs collected offioenake sure that no breaches took
place in the past. For large networks or orgaromati a thorough post-analysis is also

essential to ensure the integrity of the busineasdf the customers.

1.4 Approaches to Intrusion Detection

Intrusion detection tools use different approadbesheir purposes. These approaches
are:

» Statistical anomaly detection toolBhey perform statistical analyses to detect the

variations in the data. These are further classifi¢o 2 types:

o Threshold-based detection toolBhey record the features from each
occurrence of a specific event. They then analymsd features to
create threshold values for each of the featurdse iea is that
malicious data would have values that exceed tipesedetermined
threshold values. The detection capability of gystem relies heavily

on the threshold value used.

o Profile-based anomaly detection toolBhese tools analyze the audit
data to create the expected normal behavior oil@sodf the users or
applications. The system then monitors the datastrto identify an
anomaly by detecting any activity that deviatesrirthe established
profiles. These types of systems have the advantage¢hey don't need
prior information about the security flaws of therget system. But
these systems suffer from factors like false pasitates, false negative

rates and gradual misbehaviors [1].
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Rule-based anomaly detection todibey analyze the incoming data just as in the
case of the profile based systems, but insteadeattiog statistical profiles, they
create sets of rules to represent and store therpsitof normal behavior. The
advantages/disadvantages of this technique ardasitoi those of the statistical

anomaly detection tools [1].

Rule-based Penetration identification toolRhese are based on the concept of
expert systems which use properties to fire ruléerwthey detect abnormal

activities in the audit data [1].

All these approaches and their corresponding tamsdiscussed in greater detail in

[16,1].

As the number of web-based systems developed guidyael with serious security

vulnerabilities keeps increasing on a daily basesurity has become a basic requirement

of these systems and additional steps have tolem i protect these systems against

attacks. ldeally, the security systems should be @mbrapidly adapt to the changing web

environments and be able to detect the variousskimidattacks/exploits. Hence, the

anomaly detection system should ideally be ablgetbtrain, operate in real-time mode

and have low false positive rates.

1.5 Thesis Overview

This thesis is organized as follows:

Chapter 1 presents an overview of the importanceoafputer security. It also
gives a brief introduction to the concept of intoms detection and its

classification.

Chapter 2 reviews the current literature and otleéated work on the topic of
intrusion detection and anomaly detection systethsalso gives a brief
introduction to HTTP, its structure and an overvigiithe attacks based on HTTP

gueries.

Chapter 3 describes the intrusion detection sygt@posed in this thesis.
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Chapter 4 describes the experimental setup, thkiai@ns performed on the

system and the results of the evaluation.

Chapter 5 presents the conclusions and discusses possible directions for the

future work in this area.



2. CHAPTER TWO

A system administrator has to be alerted wheneigeorhher webserver is under attack
and has either been compromised already or isipthcess of being compromised - this
is known as intrusion detection [4]. Anomaly dei@ttsystems create models of the
observed behavior, which is considered as ‘norin@liavior and classify any deviation
from this ‘normal’ behavior as anomalous [12,26he$e systems function under the
assumption that the attack behavior patterns diftan the normal characteristics of the

target system.

The motivation behind anomaly detection is thas thifference’ can be identified by
the detection systems when an anomalous occurrsncempared with the normal
behavior [26]. This chapter surveys the existirigréiture on this topic. Some of the
existing works related to anomaly detection for HTdata are also discussed. This
chapter also provides some background for theghesiluding some background about
the HTTP protocol and its structure. Then a bristassion of some HTTP query based

attacks is also presented.

2.1 Related Work

The concept of computer based intrusion detecti@s witroduced in 1972 by
Anderson in his paper [11]. In his work, he empbedithe need for what are currently
being termed as intrusion detection systems [4fially, the anomaly detection systems
were based on statistical analysis of the ‘norrhahavior found in the audit records of
the host system and also using other kinds of né&tdata [13,14]. Porras [49] and llgun
[1] proposed the State Transition Analysis condeptintrusion detection on computer
systems. They monitor the states and change @fsstétthe system. A penetration, as the
term used by them to refer to the intrusions, entdied by the series of state changes
which would lead the system from some initial stat@a target state in which the system

is compromised [49,1].
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As the usage of computer networks grew, techniguet as system call evaluation
gained importance. In Warrender et al. [15] andrésir[16], the sequence analysis is
performed on system calls generated by applicatiommetermine the ‘normal’ sequence
of system calls for each application. These prefdee then used to detect anomalies,
with the assumption that the anomalous behaviorldvgenerate previously unseen

system call sequences.

Lee [17] and Lee et al. [18] proposed a framewak donstructing features and
models for intrusion detection based on data mirapgroach. When the concept of
webservers grew in popularity, the system call ymsaltechnique was also extended to
webservers, by Kruegel et al. [19]. However, thesstems generated high false
positives, in spite of the fact that they used muebre sophisticated strategies for
modeling the system call sequences than what Fated. [15] had originally proposed
[4].

Kruegel et al. [20] explored the concept of anoma@dyection for specific services,
namely DNS and HTTP. They extend beyond examinirg teader information and
analyze the payload distribution as part of theitedtion process. Wang and Stolfo [21]
also explored the concept of payload-based intnudeiection system. These work on the
assumption that a malicious user would not be awsdrdhe normal flow of the

distribution of the application payload.

Then a similar work analyzing the characteristietated to HTTP requests for
webservers/web-based applications was developedKhyegel and Vigna [26].
Subsequently, several papers have been publishediftuss models for webservers and
web-based applications [56,57,58,59]. Kruegel, ¥igt al. have researched this topic
extensively and have made significant contributionghis area [26,27,28]. Recently,
Kenneth Ingham’s dissertation [26] provided an estiae overview of the existing
algorithms for HTTP Intrusion detection and a congmn of these algorithms. As part of
the work, Ingham also created a large databaseldicpy available HTTP query related
attacks [60]. Publications [22,23] based on the EGNKDD Conference's [24] Web-
Analyzing Traffic Challenge contest [25], also diss algorithms for web-based
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intrusion detection. But these algorithms are tatlospecifically to the ECML/PKDD

dataset.

The idea of using Visualization as a tool for aglintrusion detection has not gained
much popularity even though it had been proposdée gometime ago. A majority of the
research work has been done on visualizing thearkttvaffic to identify attacks such as
Denial of Service, Port scans [29,30,31,32,33Jaddition to visualizing network traffic
to detect anomalies, Kim and Reddy [34], used “orotprediction” techniques to
understand the patterns of some of the attacksabsodto predict any impending attacks

on the network system.

Visualization of webserver log based HTTP datalbeen analyzed in great detail by
Stefan Axelsson [35,36,37,38,39], as part of hiB Eissertation work [40]. His research
work mainly focuses on visualizing the requesta aghole. By contrast, the focus of our
research work is on the query portion of the HT&guest. We use visualization as a tool
to display the results of our anomaly detectiontesys in order to help the network
administrator gain a quick understanding of théesté the system.

2.2HTTP

The Hypertext Transfer Protocol (HTTP) has beerasd in RFC 2616 [41] as
“a generic, stateless, application-level protocol”

It works based on a request-response model. Atciends an HTTP request to a
server. The request would contain a request methdtl/niform Resource ldentifier”
(URI), and protocol version, followed by a requestssage header. The server sends
back an HTTP response that contains a statusifinkiding the protocol version of the
message and a status code, indicating the suctélss pequest or error, followed by a

response message header [41].

The client sends the HTTP request for a speciouece on the server. These clients
are typically web browsers, like Internet ExploocerFirefox, for example, or, they could
also be automated programs such as bots, usedidbrmirposes as indexing the web
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pages on the internet. The request can be forafiepile hosted by the webserver or for
a program running on the webserver. The URI idegtithis resource. The request
method indicates the desired action to be perforoedhat resource [42]. The most
common request methods are GET, POST and HEAD.

A web application program accepts inputs from antlithrough HTTP requests. This
is done using the optional query portion of the IHTTequest. The query is the
component of the request following a ‘?’. It contiparameter-value pairs, of the form
pl=v1&p2=v2&...&pn=vn, wherepl, p2, ..., prare the parameters audl, v2, ..., vrare
the corresponding values. Figure 2 shows an exaaf@e HTTP request containing the
query portion, taken from the 1999 MIT Lincoln Ladetaset [43].

GET /cgl-bin/chat/chat _entry?area=helpchat%2Esomesite%2Ecom HTTR/1.0
Accept: 1mage/gif, image/x-xbitmap, 1mage/]peg, 1mage/pjpeq, */*
Accept-Language: en

Host: www.someslte.com

Referer: http://www.someslte.com/main/help/

User-Agent: Mozillas2.0 (compatible; MSIE/3.01; Windows 95)
Ua-Color: color3z

UA-CPU: 1686

UA-0S: wWindows 95

UA-Pixels: 1024x768

Figure 2. Example HTTP Request

Upon receiving the request, a webserver performsesprocessing if necessary, and
sends back an HTTP response. As mentioned edhleresponse consists of a status line
that indicates the success or failure of the requssng status codes. These status codes

are of 5 classes [44]:
1. 1xx - Information,
2. 2XX - Success,

3. 3xx - Redirection,
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4. 4xx - Client Error,

5. 5xx - Server Error.

Specifically, the status codes of the foPxx indicate a success. If the HTTP request
was for a specific file on the server, this resgoosde means that the requested file was
found on the server and that it is being sent asqfahe response (usually as part of the
response message body). If the request was favgagm on the server, then the success
code means that the requested program was exesuteeéssfully, and the response
message body might contain anything that the websgrogram returned at the end of
its execution. Figure 3 shows an example of a |sfgeHTTP response taken from the
1999 MIT Lincoln Labs dataset [43].

200 0K

Cache-Control: private

Connection: Keep-Alive

Date: Mon Mar 1 13:37:54 UTC 1999
Server: Microsoft-IIS/ 4.0
Content-Length: 28828

Content-Type: text/html

Expires: Thu, 04 Feb 1999 23:20:03 GMT

Figure 3. Example HTTP Response

2.3 HTTP query based attacks

Our research work focuses on successful HTTP régjtiest use the GET method and
contain the query component. Using the parameteevaortion of the query, malicious
inputs can be sent to a web application. In sucas&, an unsuccessful request cannot do
much harm to the web application as the returneat eode indicates that the requested
operation was not performed successfully. But acesg response means that the

malicious request had been processed successBdlgause of the success response
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generated by the server, these attacks might iy Iremain unnoticed, though, the
webserver program might have been compromisedhif dection, we present a few

attacks that make use of the query portion of dygiest, to supply malicious input to the
webserver application program.

2.3.1 Nimda worm

One of the most famous attacks in the Microsoftfpien, that spreads using the
guery portion of a request, is the Nimda worm atsdvariants [45]. It is capable of
affecting both the clients that use any versioMndows as the host operating system,
like Windows 95, 98, ME, NT, or 2000 and also tleevers running Windows NT or
2000 [45].

The default configuration of the Windows operatsystem has a vulnerability,
which is exploited by this worm. Using this vulnkeitdy, the worm enables any user with
a malicious intent to execute arbitrary system camas on the operating system of the

host machine running the webserver. Figure 4 stmwesxample of a Nimda worm attack
[46].

GET fscripts/root.exe?/c+dir HTTP/1.0
Host: wwe

Connnection: close

Figure 4. Nimda worm example

This attack has several known variants, all of thexploiting the vulnerability in
the Windows operating system. The popularity o$ thorm, along with the presence of
several variants for it indicates the successfiingawith which it has infected several
systems. Despite the fact that the signature fierwlorm and its variants have been part
of the signature based intrusion detection systefmsnever they become known, the

worm, with the help of its variants has succesgf@Vaded the detection by these
signature based systems.
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2.3.2 Cross-site scripting attacks

Another popular attack type is the Cross-site $sagp attack [47]. This
vulnerability enables the malicious user to useeéd wapplication program to inject code,
most likely as client (browser) side scripts, ithe web pages viewed by a lot of other
users, who then become the victims of this attdble malicious user causes a legitimate
webserver to send a response page to a clientigsbrdhat contains malicious script or
HTML that the attacker chooses.

The client cannot distinguish between the legitenpbrtion of the response that
was actually sent by the webserver and the makcmece of code that the attacker sent
as part of this page. Hence, the client would etetiie entire page, including all the
harmless and harmful scripts that it may contahme malicious script runs with the same
permissions as that of the legitimate script seytthe webserver. This gives the
malicious code access to sensitive informationhenpiage such as personalized cookies,
any passwords or other sensitive information sultradit card numbers that maybe
present as part of that web page. Figure 5 showsxample of a cross-site scripting
attack:

GET /Jcomment.cgl?mycomment=<SCRIPT=rm++-rf</SCRIFT> HTTP/1.0
Accept: 1mage/gif, 1mage/x-xbitmap, 1mage/jpeg, 1mage/plpeg, */*
Host: http://example.com

Referer: http://example.com/

User-Agent: Mozilla/2.01 (Win3.1; I;)

Figure 5. Cross-Site Scripting attack example

The malicious code is present in the parametervia@uthemycommenparameter,
embedded between theSCRIPT> and </SCRIPT> tags. This attack example shows
how a malicious code injected as part of the patamwlue of a HTTP request can cause

harm to the target system.
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2.3.3 Apache Information Disclosure vulnerability

The Apache webserver was vulnerable to an infoonadisclosure attack. Apache
webserver version 1.3.20 with the Multiviews optiemabled, allows remote attackers to
list the contents of its directories and bypassitidex page by using a URL containing
the “M=D" query string [48]. Google used this vutability to index pages that had no
externally accessible links to them [48,4]. FiguBe shows an example of this
vulnerability [4]. Though at first sight, this seeriike a harmless attack, the severity of
this vulnerability depends on the kind of sensitiv®rmation stored as part of the files
that get listed. In case these files contain peivatormation or information that should
not be revealed to anyone except authorized usi@ss,vulnerability poses a serious
problem. This is an example of an attack, wheredéfault parameter options have not

been properly taken care of. Figure 5 shows an pkaquery for this vulnerability.

GET /~1mmsec/data/sSM/CERT/7M=D HTTP/1.0
Host: www.cs.unm.edu

User-Agent: msnbot/0.3

fccept: text/html, text/plain, applicationg*
Accept-Encoding: i1dentity;qg=1.0

From: bot(at)somesite.com

Figure 6. Apache M=D Information Disclosure attack

2.3.4 Powerscripts PlusMail Poor Authentication vuherability

The Powerscripts PlusMail Web Control Panel is & Wwased administration suite
that can be used to manage mailing lists, webste§61]. As part of the administration
features, it provides the facility to change themadstration password from remote
clients, using HTTP requests. But because of tissward file has public permission by
default (which is a grave mistake/bug), it is pbkesifor an intruder to craft a HTTP
request to the PlusMail CGI script and create a meername and password on the
system. The intruder could in fact create the neseruaccount with administrator

privileges and take complete control of the systé&his vulnerability highlights the risks
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introduced by software whose default installatioonfgurations are not modified

properly. A sample attack string for this vulnef@pis shown in Figure 7 [61].

GET /cgi-bin/plusmail?login=pluz&password=pluz&passwordl=pluz&new login=Login HTTP/1.0

Figure 7. PowerScripts PlusMail Web Control Panghgrability

2.4 HTTP as a universal transport protocol

HTTP has become the universal transport protocoblmost all kinds of webserver
applications [4]. Earlier, for any new service pd®d by a webserver, a custom protocol
for communicating with this service was developed some port was assigned to be
used for communications with this service. But tlusssues related to security associated
with many new protocols developed in this manna&twork administrators blocked
access to these services/ports with the help eivétls [50,51]. But HTTP passes through
most of these firewalls, with little or no trouldé all. Hence web application developers
started using HTTP as a transport protocol forrtimeiw software [4]. Some of the
examples for this include SOAP [52], tunneling secshell (SSH) connections [53],
Apple’s QuickTime multimedia [54], and Microsoft RRor accessing Exchange (email)
servers [55]. The creation of all these new sesvioger the HTTP protocol creates
additional opportunities for the intruders [4]. Thalso create a lot of variations in the

characteristics of the HTTP requests.
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2.5 Motivation

The motivation for our proposed algorithms is basedthe nature of the attack
requests. A review of the HTTP query based attaek®als abnormalities such as
unusual length, usage of system commands and tefeblserver variables, usage of
special characters as part of the attack string.udéethis knowledge of the attacks to

create models for our anomaly detection systemchvisi discussed in the next chapter.
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3. CHAPTER THREE

The attacks related to web application programsif@strthemselves in many different
forms as seen in the previous chapter. These atteank vary greatly in terms of their
characteristics, such as the length of the attackgm of the request, the grammar (or the
lack of it) in the attack pattern, etc. It is diffit to capture such variations in the attack
patterns using any single model. The term modelsasl for the purposes of anomaly

detection, is defined by Kruegel et al. [27] as:
“a set of procedures used to evaluate a certainuieaof a query”

Any single feature of a query or its parameter galould only reveal a certain
amount of information about the query or the patameo a detection model based on
that feature would only be helpful in identifyingyaanomalies related to that particular
feature of the parameter value or the query. Maggoany intrusion detection system
based on a single model would fail to identify salgotential attacks in the HTTP
request. Therefore, it is necessary to use a nupfldifferent models, in order to enable

the system to effectively detect as many kindsttaicks as possible.

The anomaly detection system proposed as partisothhbsis is one such multi-model
system that attempts to capture as much informatgpossible from the query and its
parameters. The system captures this with the dfedpvariety of features extracted from
the query and its parameter values. It also attertgptdetect many different kinds of
attacks by applying multiple models to classify Hi€TP request based on the extracted
features. Most of the processes involved in thistesy are performed automatically,
involving minimal amount of human effort. This chap discusses the set of

models/heuristics used as part of our anomaly tetesystem, namely:
1. Unknown program identification
2. Unknown parameter identification
3. Attribute Length and
4

. Attribute Character Distribution
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These models can be based on either the whole gueny the individual parameters
of the query. The unknown program identificatiord amknown parameter identification
models listed above classify the query as a whaldevihe attribute length and character
distribution models are based on the individualapeeters of the queries and hence,
classify each of the parameter values as benigganomalous. The cumulative effect of
the set of these detection models is that theeehtIrTP request gets classified based on

the results for the individual parameter values.

Each anomaly detection model, whether based owhiode query or on the individual
guery parameters, operates on the URL portion etetsiafrom successful HTTP requests
that contain query parameter values. As mentiomeChapter 2, successful HTTP
requests are those that invoke a response fronveghserver containing the status code of
the form2xx An example of such a response is shown in Figurethat chapter. These
HTTP request URLs are further partitioned into stbdased on the directory path and
the web application program to which they are askird. The system then processes

each subset of queries independently.

The anomaly detection system operates in two madasely,learninganddetection
in that order. During the learning phase, each hbdéds a profile of the “normal”
characteristics of the corresponding feature ofpdw@meter values, like the length of the
attribute value, for example. The profile is thesed by the corresponding model to
determine a detection threshold for that paramdtee. model performs this process for

all the programs that it encounters during theniegy phase.

During the detection phase, the model extractsduwessary features from the query
parameter values of incoming HTTP requests, usiegsame procedures that it used in
the learning phase. But this time, instead of angagprofiles with the extracted features,
it compares the features with the correspondinfjlpr@reated during the training phase,
using either a simple threshold value comparisobyousing some statistical methods to
compare the two quantities and returns an “anorsatye” for each observed parameter
value. The anomaly score is nothing but a prolghiklue in the interval [0,1] indicating
how normal or abnormal the observed value is whempared with the established
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profile for that attribute. A score close to onelicates a normal instance, or in other
words, an instance drawn from the expected dididhiuor that parameter, while a score

close to zero indicates a highly anomalous value.

Each detection model in the system returns one anomaly score, if applicable, for
each of the parameter values in the incoming HTdquest. Based on these values, the
request is reported either as a potential attacksax normal event. Even if one of these
scores lies outside the corresponding detectioeskimid value, the associated HTTP
request is reported as anomalous. Although clasgify request based on the outcome of
any single model may seem to portray the systebesmy over-cautious, this is essential
as the attacker might try to embed a single malgiparameter value in the query and

mask the value in such a way that it looks likeoammal query as much as possible.

The models of the anomaly detection system ard ingdiependently and can also be
tuned, if applicable, independently of the otherdels. Tuning is necessary to adjust the
sensitivity of the model, in terms of the numbettrole positive and false positive rates.
These rates are explained further in the next emafthis tuning can depend on the

policies of the organization of which the web apaiion server is a part.

Some organizations might require a high rate otesg in detecting the anomalies,
but they maybe lenient with the number of falsermata generated. Some other
organizations might be fine with a system that esssome of the anomalies, but would
ideally not want any false alarms to be generaddidhese factors need to be considered
thoroughly when tuning the sensitivity of the antyndetection system. The tuning of
the system can be performed by adjusting the tbidsfalues associated with the models

of that system.
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The following sections describe the models usegas$ of our anomaly detection
system.

3.1 Unknown Program Identification

A web application server hosts a set of applicationprograms as part of its system.
These programs provide a set of services to thantclinachines over a network. An
HTTP request that contains a query sent to a webcagion server is actually a request
for service addressed to one such program or atialicthat is hosted by the server. The
webserver itself will have a set of programs whigkuld enable the system administrator

to configure the server properties and maintaiopesrations.

The webserver operations could include creatingveserlogs, providing an
administration page to change the settings forwebserver and even to change the
system administration password or other securdyufes. All these functionalities would
be provided as part of the default installationia for the webserver. They would be
available in standard directory locations, detesdilby the developers of the webserver
software, and would usually be accessible oven#dteork for ease of use.

If the server has not been configured properly @nid/the default settings have not
been properly taken care of, then any user with aicrous intent who has some
knowledge about the kind of server software beisgdy can attempt to exploit these
vulnerabilities, using properly crafted HTTP regsed herefore, any request that targets
a new or an unknown program can most likely beetémg something not related to the
applications that are being provided as serviceshbywebserver. Such requests could

either be exploiting the vulnerabilities presenthia webserver.

In most of the cases, these webservers also prdudetionalities to run host
operating system commands, with the privilegeshef webserver administrator, who
would most likely also have administrator privilsga the host operating system. Hence,
a webserver that is vulnerable can also be useaptit the operating system on which

the server is hosted. In certain cases, these H&qirests could also be targeted at some
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malicious code that has somehow been placed irséimeer previously. Hence, such
requests addressed to unknown applications or anmegyshould be flagged as anomalous.
This technique is motivated by the unknown paramegeristic that Kruegel and Vigna

proposed in their system [26].

3.1.1 Learning

During the training phase, the model extracts tled @&pplication program name,
from each of the HTTP requests that it encountetien creates a unique list of all these
programs. The assumption is that when sufficienbwarh of data has been used during
the training phase, all services considered agddhe normal day to day activities of the
web application server would have been covered tetedp. This in turn would imply
that all the programs and applications hosted ley dbrver to provide these services
would have at least one HTTP request addresse@do ef them (note that a single
request, though enough for this particular modehat at all considered as sufficient data
for those models that build profiles of the queaygmeter values). Ideally, by the end of
the training phase, this process would have creedist of all the “known programs”,

that is the list of all the programs or applicatidhat the server is hosting.

3.1.2 Detection

During this phase, the system identifies the pnogta® which the request is
directed to, by extracting the program name. Tratesy then checks this name against
the list of all known programs that it created dgrihe training phase. If this program
name is found on the known list of programs, tleming request is considered normal.
If not, the algorithm flags the request as anomgldiuis possible that, in reality, a new
program has been added to the webserver recertey HT TP request could have been
addressed to that new program and hence, is irafaenign request. But, in this case, it
is the responsibility of the system administratotraiin the detection system on this new
program, before making the program available to ¢hents of the webserver. This

ensures that web application security system ipgatp updated.
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Proper updating and maintenance of the anomalyctil@iesystem is essential for

the effectiveness of the system in ensuring tharggof the web application server.

3.2 Unknown Parameter Identification

As mentioned in Chapter 2, the web application mots accept user inputs through
the HTTP requests. They do this by using the qumostion of the request, which
contains the parameters of the programs and theespwnding values. Since these
parameters are nothing but the inputs that therpmg hosted on the server accept, they
cannot vary drastically across the requests. A parnameters maybe optional for a
program, so they may or may not be present irhallqueries addressed to that program.
But a query cannot have any parameter that thettgmgpgram cannot accept or is not
expected to accept. This is the motivation behhnd model of the anomaly detection
system.

Kruegel and Vigna [26] state that the unusual presef one or more parameters in a
guery might indicate some malicious content indbery. As mentioned in the previous
section, some of the programs exist as part ofrtbimllation of the webserver software.
These programs may have certain default paramatees that can be used to change the
configuration of the webserver. Or they can be usgdhe webserver to obtain inputs
from the system administrator for other functioti@d such as creating the server logs. A
previously unseen parameter present in the HTTRestgmight in fact be exploiting the

presence of these default parameters that comarsfghe web applications.

Just like the case of the unknown program idemiiftcy model, sometimes default
parameters come as part of the webserver softlagending on the popularity of the
webserver software used, the presence of thesmptaes would be well-known not only
to the system administrator, but also to the peagie have some knowledge about the
server software. These parameters could be as hlaasifresetting the password of the
server application, as seen in the PowerScriptsNRil vulnerability mentioned in the
previous chapter [61].
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At the least, the default parameters could be dtguloto list the contents of the
webserver directories, as shown in the Apache MaDerability mentioned in Chapter
2 [48]. These directories might actually be privantaining important information. The
contents of such directories would never have lmeeant to get listed. So, even though
this directory listing seems to be a harmless vnaliéity, in reality it is not so. Hence, all
requests containing unknown parameters shoulddggdld as anomalous by the model.
This heuristic was proposed as part of the anomelgction work by Kruegel and Vigna
[26].

3.2.1 Learning

In the training phase, the model creates a listlliothe unique parameters that it
notices as part of the requests sent to each ofptbgrams or applications on the
webserver. It records the program to which the esgjuwvas made along with the
parameters that were present in the query portiadhat request. As with the previous
model, here too we make the assumption that wheuffecient number of requests per
web application program exist in the training datss all the parameters that are

associated with that program get covered in thefsetquests.

3.2.2 Detection

In the detection mode, the algorithm extracts twaa of the program to which the
incoming request was addressed and the set of ptgesrihat were part of that request. It
then verifies these parameter names with the pdeanfist that it maintains for that
particular application. If it encounters a paramébat is not present in the list, it flags
the parameter as anomalous.

It is possible that the “unknown” parameter coubdually be a genuine one. This
means that the parameter was either never prasém training dataset, or was added to
the program recently, after the system switchethéodetection phase. The first case in
turn implies that the training dataset was inswght. If so, we need to ensure that the
system is retrained on a set of requests that icottis parameter. In the second case, in

the event of any modification to the webservervgafe, the system administrator should
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ensure that the anomaly detection system is updaiperly, as this is necessary for

ensuring the security of the server.

3.3 Attribute Length

This heuristic was proposed as part of the anordatgction system work done by
Kruegel, Vigna et al. [26,28,27]. In practice, thagth of parameter values sent as part of
the HTTP requests does not vary greatly. In sorses;ahe web application itself would
have length restrictions to be adhered to. For @ana login application might require
that the login id have a minimum length of 8 andanaximum of 15 alphanumeric
characters. Fields accepting credit card numbers ha exact length requirement of 16
digits while US phone numbers must have 10 digitsen they expect the numbers
including the area codes.

For some of the malicious inputs, the length of paeameter value deviates greatly
from the normal. For example, in order to overflavibuffer in a target web application
program, the entire shell code and extra paddisgdan the length of the target buffer,
needs to be sent as part of the request. Therdftat parameter value maybe several
hundred bytes long [27]. As another example, indhse of some cross-site scripting
attacks, in which malicious scripts are includegages whose content is determined by
the data supplied by a user, the amount of datagtsent as part of the parameter value
of a request can significantly exceed the lengtmaimal parameter values [27]. Such
anomalies can be detected by learning the unknasiritaition of the attribute lengths
[26].

In many of these cases, the situation can actialyvoided if the web application
developer had proper length checks in place, whemesuch application-based
restrictions are relevant. But as is the case wi#my existing applications, sometimes,
code necessary to perform such checks get misseavben developing the application.
Also, for many of these parameters, there may eary length restrictions imposed by
the web application system. In such cases, lergghbks will not be performed.
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As mentioned in the previous section, the pararseteg actually inputs that the web
application program accepts. The programming oipsieg language that was used to
create this program would have data type relategtierestrictions, which would apply
to these parameters. The size restriction can dgépend on the host operating system
used by the server. In any case, extremely longiténgnight violate these length
restrictions and if proper checks are not in plaais, could crash the program or even the
operating system itself. This could also overwatereveal the memory contents in the
server/host operating system, as with the cadeedbaffer overflow attacks [63].

Minor deviations from the normal can be expectainfrgenuine request parameter
values too. For certain parameters, the benign cktaalso be expected to have large
variance. The intention of this model is only tgitae significant deviations from the
normal length of parameter values. This reducesitireber of false positives generated
by the model, while still retaining the ability tdetect obvious length related

abnormalities.

3.3.1 Learning

The system records the lengths of the values foh eh the parameter present in
the incoming HTTP requests. It stores this infororaseparately for every program that
it encounters during the training phase. Suppose dy5stem observed requests
containing a certain parameter for a particular vegiplication program during the
training phase. Let the lengths of the observedieslbell, 12, ..., In The anomaly

detection system then approximates the mgaand variances® of the real attribute

length distribution by calculating the sample meard the sample variance of the
observed lengths.
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3.3.2 Detection

Once the system has calculated the sample mearvarahce of the observed
parameter values, during the detection phase, éhagstic monitors the parameter value
of an incoming request and determines its lehgthhas to then check if the observed
length is “normal”. The probability that the obsedviengthl is from the distribution of
the parameter’s length values, is calculated uaimgodified version of the Chebyshev
inequality, proposed in [26] as shown below:

In case the observed lengthequals the mean lengtpy, the denominator is

replaced by a small, insignificant value, in ortteavoid divide-by-zero error. The closer
the value ofp is to one, the higher the probability that theeslsed length is normal. A

threshold value is determined and used to claskdylength as normal or anomalous.
The bound computed by the Chebyshev inequalityinisgeneral, very weak and is
independent of the underlying distribution [26]. Asresult of this weak bound, our
detection model has a high degree of toleranceat@tons in attribute length, and it

flags only obvious outliers as anomalous [28], esireéd.

3.4 Attribute Character Distribution

The character distribution model is motivated by toservation that attribute values
are usually regular in their structure, in generahtain only printable characters and can
usually be understood by humans [28]. To quotelden application again, many of
these programs require that people create login add passwords only with
alphanumeric characters. They may also includery nastricted set of special symbols
(usually just 2 or 3 different special symbols).nide, the values of this login parameter

tend to have similar character distributions.
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By character distribution, we mean the relativeqfiencies of the alphabetical
characters, numbers and special symbols. Unlike ninenal data, buffer overflow
attacks, for example, often have a distinct charadistribution [4]. These attacks
sometimes use special characters (mostly whitesgamacters) to pad the string in order
to overflow the buffer. Some other attacks, likess-site scripting, use script related tags
and other symbols as part of the scripting codé &n@a embedded into the parameter
values. Thus all these values tend to have mora tha usual number of special

characters as part of the string.

The attribute character distribution model cregtesfiles to detect these kinds of
deviations in the parameter values. The assumjadrind this model is that there is a
marked distinction between the character distrangiof the parameter values that are
benign and those of parameter values that are doomand that this distinction can be

captured by the detection model.

3.4.1 Learning

During the learning phase, the anomaly detecticstesy counts the number of
alphabetical characters, numerical characters prdia symbols found in each of the
values associated with a specific parameter of & wapplication program. It then
normalizes these values to get the relative coambiequencies. These counts are binned
into 3 bins, one each for alphabetical charactarsibers and special symbols. At the end
of the learning phase, the system calculates tleeage of all the observed values for
each of these 3 bins. Because the individual charalstributions sum up to unity, the
sum of the averages of these will also be equain®. Therefore, the final character
distribution is well-defined [26].

As an example, consider the wgrds123!@#as a sample value for the parameter
‘password’ of a login application. The bin counts the alphabetical characters, numbers
and special character bins would be 3, 3, 3. Ttaive character distribution would be
0.33, 0.33, 0.33. These relative bin counts anedttor the ‘password’ parameter and in
the end, the average bin count is calculated fesdhthree bins over all the observed

values.
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3.4.2 Detection

During the detection phase, the algorithm counts tumber of alphabetical
characters, numbers and special symbols for eattteqfarameter values in the incoming
request and normalizes these values to get théveeleounts. Then the system has to
determine the probability that the obtained disiiitn is a sample drawn from the
expected character distribution of the associatadrpeter. In order to achieve this, the
detection algorithm uses a variant of the Peargbsiest as a ‘goodness-of-fit’ test [62].
The variant to this test was proposed by Kruegel ¥igna as part of their anomaly
detection system work [26].

The counts obtained in the detection phase camhsidered as the set of observed
frequencie®i for the corresponding parameter. The expectediéecjesti for the three

bins of the corresponding parameter have alrea@éy lbalculated during the learning

phase. They? value is then calculated as

v=3 (oi ;iEi)z

2
i=0
The degrees of freedom of thjg’test are equal to the number of bins used for the

calculation minus one, which yields the value tv&®][ The probabilityp that the

observed parameter value comes from the expectm@ater distribution is obtained by
looking up a predefinedy® table using the calculategt® value for two degrees of
freedom. The higher the value pfthe greater the probability that the parameténeva
belongs to the expected character distribution.sThiwep value obtained from the?

table is used to classify the parameter as normahomalous.



31
3.5 Implementation of 6-Bin Character Distribution algorithm

For comparing the performance of our proposed cheralistribution algorithm, we
implemented the 6-Bin Character Distribution alon (from now on, we shall call our
algorithm, described in the previous section as #Bin Character Distribution

algorithm) proposed by Kruegel, Vigna et al. [26223.

In this model, a character distribution is constdeto be the relative frequencies of
the 256 ASCII character values sorted in descendidgr [28]. The motivation for this
algorithm is that for normal inputs, the relativeacacter frequencies are expected to have
a slow decrease in the values, while malicioustspran have either an extreme drop-off
due to a lot of repetition of a single characteijtte drop-off because random characters

were used [28].

The frequency counts for each of the 256 ASCII abi@rs, for the given parameter
value is determined. These counts are then sontedescending order. The example
string used in their paper [26] masswd The absolute frequency counts in descending
order of frequencies are 2 fgrl each for, d, pandw, and O for all the other characters.
The relative frequencies obtained with these cowamés 0.33, 0.17, 0.17, 0.17, 0.17,

followed by 0 occurring 251 times.

They called the character distribution of an attréb that is perfectly normal the

idealized character distributioiCD), induced from the training data and noted that

256

Z ICD(i) = 1.0

As mentioned earlier, th&CD is sorted in the descending order of the relative
frequencies. So the largest frequency is denotel€B§1) and the least is denoted as
ICD(256).
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3.5.1 Learning

The ICD is calculated during the training phase. For esfcthe observed query
parameter values, the character distribution irdéhed and stored. The idealized
character distribution is then approximated by waliing the average of all these stored
character distributions.

Similar to the case of the 3-bin Character Distidny in this model too, the
individual character distributions sum up to unapd in turn, their averages would do so

as well. Hence, the idealized character distribbutsoalso well-defined [26].

3.5.2 Detection
For testing, they binned tHED (the expected distribution) and the distributidn o

the incoming request (observed distribution) inkolsns as shown in the table 1 below.

Table 1. Bin distribution for calculating the ICD

Bin 1 2 3 4 5 6

I 1 2-4 S-7 8-12 13-16 17-256

where il] [1, 256]. For example, bin 4 contains
12
> 1CD(i)
i=8

Once these values have been binned, they usgdtast to check if the character
distribution of the parameter values is similar ttat of the expected values. The

modified y? test as proposed by them is
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= Z (oi ;iEi)z

6
=1
whereEi is the value in bin for the ICD, andOi is the value in bin for the
observed distribution. The degrees of freedomHa test is five (one minus the number
of bins used in the test). Thg® value so obtained is used to lookup the values fao
table for five degrees of freedom and the corredpmnprobability valuep is obtained.
As in the case of the 3-Bin Character Distributtest, the higher the value of the
greater the probability that the observed paramedéwe is a sample drawn from the

idealized character distribution.
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4. CHAPTER FOUR

4.1 Experimental Setup

In order to perform rigorous testing and evaluatiora simulated environment, the
data used for the testing purposes should be akses possible to the actual traffic and
actual attacks found in real-world computer networldsually, such a kind of data is
difficult to obtain because the real-world data VWoaontain personal and/or private
information. The real-world data would also revibed potential vulnerabilities present in
the networks which were used to gather this datexreby putting those networks under

the risk of attacks.

4.1.1 The MIT Lincoln Laboratory IDS dataset

Because of these factors, the MIT Lincoln Laborgsod 998 intrusion detection
evaluation was performed with sponsorship from DARR create the first standard
corpus of labeled datasets that could be used atu&e intrusion detection systems
[64,43]. Subsequent evaluations were also conducatel®99 and 2000 creating more
datasets of this kind.

These datasets contain host-based and network-beseldd attacks. The datasets
are available intcpdumpformat [68]. But none of the HTTP requests in tbpdump
datasets contain the attacks in the parameter yvalfidhe queries. As our anomaly
detection system is based on the concept of ceepptiofiles of the parameter values and
then using these to detect anomalies, the attadsept in the MIT Lincoln labs dataset

were not relevant to our research work.

4.1.2 The ECML/PKDD 2007 Discovery Challenge datate

One of the most recent publicly available labeledlTR dataset is the web traffic
dataset created for the ECML/PKDD 2007 Discovergli@mge, held in September 2007
[25]. This dataset contains around 50000 requektahich nearly 20000 are attack
requests. The data is available in XML format [6Bigure 8 shows a sample HTTP

Request from the ECML dataset.
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<type=0sCommanding=/type=
<1nContext=>TRUE=/1nContext>
<attackIntervall=query:21-39</attackIntervalls
</class>

<reguests=

- rotocol>

[COoRTA[/pQXQWa/dnatfysVIE] /g4Y reerhholm/wedDUFDs - 6 o0mf1cXte /HN/ Gwdk DI tFOxp_2@Z/dSay2Z1Py9- D/dBM] - EaPVDBsHLsVh/
ri=
[cpaTallehr=
LLoakne

<Uri
nQlhp.gif]l=

Bgll2freplacety 14231125
z ckCrKBD wehrat=tnph-adminiframe] l=</query=

Client-1p: 214.70.
Dat Sun, 25 Mar ©
nt: Mozilla/

B:12 Urc
Machintosh; U; Mac 05 X 8.6; 7d-yQ; rv:9.9.8] Gecko/S51561068

Figure 8. Sample HTTP Request from the ECML datddet request is stored in XML
format. The portion of the query containing thaeltis marked with a rectangle. The
header portion has been truncated to reduce size

Each portion of the HTTP request is stored usiny@miately named XML tags,
as shown in Figure 8. The tags also indicate whdttesparticular request has an attack
or not. If the request contains an attack, thenXhi tags also indicate the portion of
the request that contains the attack and anothef $ags indicate the exact byte offsets
within that portion of the request in which theaalt is found. In Figure 8, the attack
portion of the query has been marked with a red¢arithe attack requests belong to one

of the following 7 categories:

Cross-Site Scripting
SQL Injection
LDAP Injection
XPATH Injection

0N PR
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5. Path traversal
6. Command execution
7. Server-Side Include (SSI) attacks

The main objectives of the challenge were clas#in of the attacks based on the
context and isolation of the attack patterns frdm tequests. Except for the attack
portion of the request, the remaining portions hheen randomly generated, to the
extent that no two requests in the dataset areeadéd to the same host/same application
and the requests themselves don't convey any ngeakinour research work is based on
learning the characteristics of each applicatiom server, we need a lot of requests per
application program in order to build the profifes that program. But since this dataset
does not contain more than one request per wehcapph program, this dataset too

could not be used for our evaluation.

4.1.3 Dr. Kenneth Ingham's HTTP attack dataset

An attack dataset containing the attacks that aligated as part of HTTP requests
was recently published on the internet by Dr. Kélhriegham [60]. This is a collection
of 63 attack requests that Dr. Ingham collectegaatof his recent PhD dissertation work
[4]. He had collected these data from various @nkecurity forums and other online
sources.

The site details the type of the attack, gives scdption of how the attack is
performed, what vulnerabilities the attack expla@itsl includes a sample HTTP request
containing the attack. Quite a few of these attamies delivered as part of the query
portion of the HTTP requests. Hence, these attakselevant to our research work. But
this dataset only contains HTTP requests contaimittgcks. There is no data for the
normal or genuine HTTP requests. Hence, we cars®this dataset to build the profiles

during the training phase, which is crucial for amomaly detection system.
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4.1.4 Synthesis of the evaluation dataset

We did not have access to any relevant labeledsetstahat we could use as-is for
our evaluation. Though the MIT dataset was notulses-is for our purposes, the dataset
was organized into different weeks of data. Alson¢e none of the attacks in that dataset
were present in the query portion of the requdsise attacks are not relevant to our
evaluation. Hence, these attack requests can alsorsidered as benign requests for the
purposes of our evaluation. Since the dataset wganzed as three weeks of training
data and two weeks of testing data, this datasatditave been ideal for our purposes, if
only the test datasets contained attacks relewamirt work.

We solved this issue by synthesizing our own tgstiataset containing labeled
attacks by merging the attacks from the ECML ddtasd the attacks from Dr. Ingham's
database into the 1999 MIT Lincoln labs' fourth wekataset (one of the two test
datasets). We randomly picked ten attack requests ffom the seven categories of the
ECML dataset. The attack portion of the query patemvalues were then isolated from
these requests. We also isolated the attack pasfitihe query parameter values from the
relevant attack queries in Dr. Ingham's database.

Then we replaced the normal query parameter vdioes some of the queries in
the fourth week of the 1999 MIT dataset with theéracted attacks. Figure 9 shows a
sample attack request created in this manner. Tieeygparameterdx in the sample
request shown in Figure 9 had originally contaisethe alphanumeric character string as
its value. That value was replaced with the attaeittern, which marked with a

rectangular box in the figure.

GET /adverts/imp/c04379/103x62po129109. gif7q=r4086c=a1980481 dxs60+rm+ - rf+%2F+%60| HTTP/1.0
Accept: 1mage/gif, 1mage/x-xbitmap, 1mage/jpeqg, image/pjpeq, */*
Host: ads2.xyz.com

Referer: http://www.xyz.com/

User-Agent: Mozilla/2.01 (wWin3.1; I;)

Figure 9. Sample attack request. The attack podidhe request has been marked with a
rectangle.
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We modified queries that were relevant to the &Habeing performed. For
example, if an attack was exploiting a vulnerapiiit Microsoft's ASP server, we used
this attack to modify a request in the MIT datahett was addressed to an ASP page
(which implies that the server running the ASP pageactually an ASP server).
Similarly, if the attack was exploiting a vulnerktyi in the Apache server, we chose a
request from the MIT dataset that was addressea &pplication running on an Apache
server.

This way we ensured that the attacks we injectéd the HTTP requests were
actually relevant to the environment of the regaiedte also took care to replace normal
values with attacks of comparable lengths in mdsthe cases. This ensured that a
majority of the attacks did not get flagged as abvad simply because of length
mismatches. The synthesized dataset contained @©@G®al queries and 149 attack

gueries in total.

4.2 ROC and ROC Convex Hull Plots

Traditionally, IDS results have been reported usingceiver operating characteristic
(ROC) curve which indicates the trade-off betwedantifying genuine attacks (true
positives) and incorrectly classifying non-attagdquests as attacks (false positives)
[4,65]. ROC graphs are suitable for visualizing fregformance of the classifiers [66].
The graph is obtained by plotting the false positigtes against the true positive rates.
False positive rate is calculated as the fractibthe normal dataset that is incorrectly
classified as attack data. True positive rate isutaied as the fraction of the attack

dataset that is correctly classified as attack.data

Number of normal requests incorrectly identifieda#tscks

False Positive Rate =
Total number of normal requests
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Number of attacks correctly identified
True Positive Rate =

Total number of attack requests

The ROC Convex Hull (ROCCH) method uses a comlonatif the methodologies
from ROC analysis, decision analysis and computatiqygeometry [67]. The ROC
convex hull separates the classifier performanem fdistributions specific to a class or
to the associated costs. It also provides a comgnound for the comparison of several
classifiers at the same time [67]. We used the RB@Dt to compare the performance
of our 3-Bin character distribution algorithm wittat of the 6-Bin character distribution

technique.

4.3 Evaluation and Results

The evaluation consisted of two phasiaining andtesting For the training phase,
we used the first three weeks of data from the 18P datasets. Each week in turn, has
five datasets, one each for the five weekdays fkbonday to Friday. During this phase,

the system learnt the characteristics of all th@iegtions that it encountered.

In the testing phase, we switched the system taléftection mode. First, we ran our
detection system on the normal data, which didcootain any attacks. All the requests
that were classified as anomalous by our systemnglthis step, were counted as false
positives. Next, we ran our detection system oratteck data and all requests classified
as anomalous were counted as true positives. Tlwaspbtained the true and false

positive rates.
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4.3.1 ROC and ROC Convex Hull plots of the results

Once we obtained the true and false positive ratescreated the ROC plots. As
mentioned in section 4.2, this graph is obtainegloyting the true positive rates vs. the
false positive rates. Each point on the plot ingisaa differentp value gimilarity
threshold valug For the purpose of the evaluation, we createxigets of plots, each set
containing three ROC Curves, one each for the kengtBin and 6-Bin Character
distribution algorithms.

For the first set of plots, we created the gramhgtie true and false positive rates
based on the total number of parameter valueserettire dataset. For each parameter
value present in all the queries in the dataset,obt@ined thep value for the three
algorithms. We then used thegevalues to obtain the true and false positive rates

plotted the curves. Figure 10 shows the ROC pldttha convex hull for the length test.
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Figure 10. ROC plot and Convex Hull obtained bylgpg the length test on parameter
values
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Figure 11. ROC plot and Convex Hull obtained bylgpg the 3-Bin Character
distribution tests on parameter values

Figure 11 shows the ROC plot and its correspondimigvex hull for the 3-Bin
Character distribution test, while Figure 12 doé® tsame the 6-Bin Character

distribution test.
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Figure 12. ROC plot and Convex Hull obtained bylgpg the 6-Bin Character
distribution tests on parameter values

In order to compare these two character distrilmstiove plotted the corresponding

convex hulls in a single plot, which is shown igiiie 13.
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Figure 13. ROC Convex Hull plots obtained by appdyihe 3-Bin and 6-Bin Character
distribution tests on parameter values

Though the anomaly detection system classifies gmehmeter value as being
normal or anomalous using its constituent modaks.end result is that the entire request
gets classified based on the classification of e#Hcls parameter values. For example,
consider a request containing three parameter saod the values obtained using the
length test for these three values are: 1, 0.950a3@l Since 0.33 is the least amongst the
three values, the classification of the query asmab or abnormal would depend on

whether this value is above or below the threskalde respectively.
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Therefore, it is enough if we consider this vallena when classifying the query
as a whole. Using this observation, we createdcarskset of ROC plots, in which the
true and false positive rates were based on théauof queries in the dataset. Figure 14
shows this plot and corresponding convex hull f@ kength test and Figure 15 and 16
for the 3-Bin and 6-Bin character distribution tegspectively.
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Figure 14. ROC plot and Convex Hull obtained bylgpg the length test on queries
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Figure 15. ROC plot and Convex Hull obtained bylgpg the 3-Bin Character
distribution tests on queries
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Figure 16. ROC plot and Convex Hull obtained bylgipg the 6-Bin Character
distribution tests on queries

Again, for comparison of the two character disttit tests, we plotted the

corresponding convex hulls in a single plot, whkhown in Figure 17.
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Figure 17. ROC Convex Hull plots obtained by appdyihe 3-Bin and 6-Bin Character
distribution tests on queries
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4.3.2 Discussion of the results

From the two ROC plots for the length test (Figut@sand 14), we see that the true
positive rate, at its best, is still less than &Ben the (1,1) point is not considered. This
implies that the length test has low accuracy. Betuse the length test to detect buffer
overflow type of attacks, which have huge deviaidrom the normal values. So, we
need not maintain a tight bound on the thresholdevaised for the length test. By
relaxing this threshold, we can bring down falssitie rate to an acceptable level, while
still retaining the algorithm's ability to detebetmajor deviations.

From the two ROC Convex Hull plots in Figures 131 dv, we can notice that
except for a very minor region near the (0,0) posjtthe true positive rate for the 3-Bin
character distribution test increases faster tkeamfalse positive rate, when compared to
the 6-Bin test rates. Also, the 3-Bin test has mamea under the ROC Curve when
compared to the 6-Bin test. Hence, the 3-Bin tesgfopms better than the 6-Bin test.
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4.3.3 Visualization of the identified alerts
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Figure 18. Visualized anomaly counts for Week 4l&yidata. “Unknown Parm” refers to

the “Unknown Parameter” test
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Figure 19. Visualized anomaly counts for a singlegpam in Week 4 Friday data

Figure 16 shows the visualized anomaly countswlegabbtained using the anomaly
detection system for the Friday dataset of Weetkhd fest week), as bar graphs. The bars
represent the absolute counts of the alerts fdn eathe algorithms. The “Length 3-Bin”
bar in the figures represents the count of all patar values that were flagged as
anomalous by both the length and the 3-Bin charat$éribution tests. Figure 17 shows
the visualized anomaly counts for a single progrdrhis visualized representation
provides a quick understanding of the current sthtie system to the administrator or

whoever is monitoring the system.
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5. CHAPTER FIVE

This chapter presents the conclusions that weneedrat, as part of this thesis work. It
also discusses the future research opportunitagsettist in this area, some of which are

extensions to the current work.

5.1 Conclusions

Web-application related vulnerabilities/attacks énéecome a major concern in recent
times. This has led to the development of severab-application based intrusion
detection systems. The concept of intrusion detrcystem and its different types were
discussed in this thesis. A brief introduction t6THP, its structure and some HTTP query

related attacks were also described.

A web-application based anomaly detection systers praposed and the approach
was discussed in detail. The system learns theactarstics of web applications by
creating parameter profiles of the associated H@jUi€ries. It then uses these profiles to
monitor the incoming requests and classifies themenign or anomalous. The system
makes use of features that help distinguish anamsatueries from genuine ones, like
requests to previously unknown programs, or reguesith previously unseen
parameters, abnormal length of the parameter vahres unusual distribution of
symbols/characters in these values. The systemddhese characteristics with minimal
human intervention. The detection capability andefgositive rate can be adjusted to
suit the specific needs of the business, by turimg threshold values used for the

detection process.

To evaluate the algorithms, a labeled databaseTdfPFHqueries containing training
data and attack data was needed. But a good dat#imtscontained all of these did not
exist. Therefore as part of this thesis work, aal@ation dataset was created. The MIT
Lincoln labs 1999 tcpdump dataset [43] was usee. first 3 weeks of data was used as
is for training the system. Attack data, obtaineoif Kenneth Ingham's database of
HTTP attacks [60] and the ECML/PKDD 2007 discovelnallenge dataset [25], and was
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merged with the fourth week's data from the MITadat, to get the test data for our
system. The results of the experiments have beesepted in the thesis. For comparing
the performance of the proposed technique, aniegiatgorithm that performs character
distribution based analysis was implemented. Wit given dataset, our approach
performed better than the existing one. The resofteshe comparison have been
presented. The alerts from the anomaly detecti@tesy have been visualized as bar
graphs. This helps the system administrator quickigierstand the state of the system
and enables him/her to easily identify the attacks.

5.2 Future Work

There exists a lot of scope in terms of future aede in this area. The algorithms
proposed in this work can further be investigatededuce the number of false positives
to the minimum possible. Also, the current numblefatse positives and success rates
indicate that no single technique provides a goateé of detection. Therefore, better
detection techniques need to be identified. Theeotirwork focuses on HTTP query
parameters alone. Future work can examine all gustof the request and response to
provide a more complete HTTP based anomaly detesystem. Moreover, systems that
work on protocols other than HTTP can also be dgped. Apart from the detection
systems, work can be done to create a large da&taifasttack and non-attack labeled
data. This needs to be created with a network setapreflects the current network
configurations as much as possible. This would tireaid the researchers in
understanding the attacks, identifying any pattemmd to come up with better detection

techniques.
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