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Chapter 1- Introduction

1.17 Thesis Goals

The objective of this study is to demonstrate the activation of chemical reactings

nano ormicro-sharp electrogs for the formation of nethermal plasma in high
pressure air and a condensed phase. Understandintheromal plasma chemical
activation of these reactions ogarew chemical synthesis pathways that previously
required thermal excitation or catalystsstgpply the activation enerdgr a reaction.

The advantage of driving chemical reactions electrically rather than through light,

thermal or catalytic stimulus will contribute tigher conversion, selectivity and

process efficiency

The first goalis to catalog the energy savings that arise from reducing the size of the

plasma to the microscal&his tends to softetihe plasmaelectron energy distribution

toward lower electron energiart of thisgoal is also to quantify the conditiongich

arenecessarin orderto create microscale fields of dc plasma emitter electrddhese

fields of emitters allow a dense uniform emission of electrically parallel microcoronas

to be activated in a single continuous flow deviceufs inchemical processing. This

is the first report of a activefield of dc coronas in a microchannel device in electrical
parallel at atmospheric pressure inaxiother gases. Thaurrentvoltage characteristic

of several nano anchicro-emittersis identified. Native electrochemicallabricated

metal microstructures and nanostructurgsown via thermal chemical vapor
deposition on an electrodeposited metal catalyate beertested for reliability in
flow-through microreactor conditions. Material constraints are identified and
subsegently addressedThe stages of corona, spark, glow discharge, and pulsed
discharges are identified and applied to the gases of interest for the generation of stable
nont her mal pl asma at 100 & m,electtofed separation2 5 0 € m &
distances The claracteristics associated with electrical transport within atmospheric
pressure gas are catalogued with respect to applied potential. The current is measured
continuously and thenicroplasma discharge gpectroscopically monitored through

transparenteacbr components.



The second goal of the atmospheric pressure plasmp®yed in a microreactds to

hydrocarbon couple methane feeds to valuable higher molecular weight feedstocks

This is performed using micgapswhich enables high conversion to be aeleid over
one or many paralleled emitteass the necessary ultrafast residence tinidss first
step is a platform from which to efficiently examine the possibility of generating non
thermal plasma environment® plasma microchannel devices for sustainale
chemistries. Dry reforming of methane with carbon dioxide is also studedtine

the practicality obxtending this microreactor plasmanversiorto other reaction sets.

The third goal is to characteriziee hydrocarbon couplingpicroreactolin detail and

model theprobablereactions as a finite element model that is fit using kinetic. data

This model is then used to predict a second set of data from the same wadetor
different conditions The second set of data can be produced by paranmegesizy
other process variable. The robustness of the model indicates the correctness of the

assumptions made regarding the plasmas reactive sizanargldistribution.

The fourth goal is thdegradatiomf traceorganic toxinsn ppm concentrations. doal

which is represented by the decoloration of RhodaminelBe application of an

identical pulse network to bothsiirred cuvette reactand a flow-throughplasma
microchannelreactorwill be used to demomste that microcorona dischargean
completly decolor Rhodamine B in the length of a single microchannel. The ability to
drive efficient dc microplasmas ihe liquid phasés developed as a platform to remove
trace organiccontaminantfrom groundwater. This advanced oxidation process is

proved b be effedive at reducingepresentative contaminants from ppm to ppb levels

These goals are unique to this dissertation. The ability to use-enatter arrays to
process and perform synthetic chemistry idcacoronamicroreactor has not been
accompished prior.Two groups worlewide have studied netihermal plasma using
nanostructures to achieve improved results in power consumption. These ssadies

dielectric barrier discharge at the half millimeter scakgas phase ardt high power



dischargse generated atanotube probe®er chemicalsensing in aqueous medium. No
study has attempted miniaturizelow energy stable, pulsed dc or constant dc corona
discharge to the scales required to treat microreactor flows in the liquid or gas phase
with naro or micreemitter electrodes. The microscale allows -tlsermal plasma to
activate at much lower potentiateereby achieving better reactivity per input energy

perfluid volumeandwhile activatingthe fluid uniformly at the emission site.

The coronalischarge produces an intense electric field at the interface of the plasma
liquid boundary. Solvated electrons from the intense fiblebrized togenerate
hydroxylradicals directly at the interface of the corona and the condensed @tase.
applicaton of the waveform results in energy savings because the lifetime of the most
active degradation species are limited in duration to several microseconds. Time must
be allowed to make full use of as many active species as possible before applying
another plse to maximize advanced oxidation process efficiencies. The dc voltage was
applied continuously and pulsednhile performing these studies on plasma
microreactors The pulse speed varies from several hundred microseconds to
nanoseconds in duration. Eitheehigh power dual spark gap with charging circuit or
IGBT solid state switch is employed to generate the applied waveforms. A signal
transformer is coupled to an oscilloscope in order to sample waveforms at 2Gs/s and
nanosecond resolution. The dc dischamye measureth several gases and above a

liquid as described in each of the goals sections.

1.27 Primary Objective

The ability to drive reactions in a plasma microreactor for energy production and clean
water is the primary objectivtbat will be sipported upon completing each of the goals
mentioned in this dissertatioft must be understood@thetherplasma microreactors
have the potential to performu@ C; conversion chemistry at high efficienciesiior
plasma microreactors can produce syngam foarbon dioxide, methane mixtures.

Microcorona flowthroughmicrochannel devices have never been studied for advanced



oxidation oftracetoxic organic contaminants. The ability of the corona discharge to
completely decolor a dye in a single pass throughicaochannel device is reported.
Reactions that are included in this study are hydrocarbon upgrading, methane dry
reforming and liquid dye decoloration. These reactionsaagdyzedusing Fourier
transform infrared attenuated reflectance (FANRR), optical spectroscopy, high
performance liquid chromatography, gas chromatography thermal and helium
ionizationdetector{GC-TCD/HID) and mass spectroscopy (MS).

The gas phase datadicates conversion aghethane indc microplasma filaments to
higher moleculaweight hydrocarbons thatesuccessively dehydrogenated. Attempts
to chemically catalog the conversion, selectivity, and efficiency of the plasma process

are performedhrough the use @jas chromatography.

The experimental liquid phase oxidation aganics in aqueous phase is conducted
with dyes as the chemimetric that represents rpasgibletoxic organic contaminants

and demonstrates the efficiency of the plasma microreactor process. Dyes have
frequently been treated in literature using other aded oxidation processesorder

to provide ausefultool for crosscomparison. One unique aspect of this liquid phase
study is that the same power application technology is applied to fundamentally
different types of plasma reactor configurations to @atal their performance in a
single study. In addition, this is the first study to treat nonthermal plasma from
microcorona discharges plasma microchannels. The majority of the data is compiled
using uwvis spectrophotometry. The effect pfocess paraners such agulse
duration, frequency, power, feed concentrations, flow rates and chemical
concentrationsre monitored, parameterized and reported. Conclusions were drawn

regarding reaction rate and pathway using the traditional chemical engineersgg. tool

A finite-element solution is developesb thatthe four coupled partial differential
equations describing plasma systems incair be simplifiedo reaction enginesng
rates and reaction volumes. These applied to design better plasma microreext

The computation time and requirements for the developed models are reported. Kinetic



parameters and flow profiles are usethform meaningful engineering decisions. The
mostimportantcontribution may be the application oficroplasmatechnology for
chemical synthesis and clean wa#gtrthe microscale. The ability to separate mass
transport frompreviousplasmatechnologiess only possible at the microscale. This
allows this dissertation tgeneratekinetics without mass transport limitationslew
generations of ultrefficient devicesare enabled through the hypothesis addressed in

this dissertation

1.37 Literature Review

The advent ofrecent advances inanoparticle and microatalyss dffers chemical
engineers new catalystgth extremely hgh surface areagser mass Thesecatalyst
improvements reduce the need for large quantitieexpensive andare catalytic

materials.

Microreactordevelopment efforts seak house theseano and micrdeterogeneous

catalysts in a reactor that afforoisth maximum productivity and processing rate. This

can be accomplished when the surface to volume ratio is very high. Many microreactors

can be designed with surface to volume ratios of 10,000. That is a large number when

compared to conventionahemicaltanks which may only hae a surface to volume

ratio of 3. Design and manufacturing fundamentals allow microreatddoe adapted

not only to catalysts but to other surface activated or surface transport dependent

reactions. The microreactor platform is@h useful tool for reaction kinetics extraction
and for enhanced control of chemical processes. A benefit of microreactors is improved
kinetic measuremergnd mass and heat transport bifering reduced length scales.

Microlength scales and timeincredble surface to volume ratio often improve the

reaction conversion efficiency of reactions that are surface mediated, such as when

using solidphase heterogeneous catalysts or when excellent heat treasfeafely
remove the maximum concentration limiitg safe chemical processing. This increase

in yield is typicallyaccompaniedy enhaned productivity. Producion ratecan be



increasedy increasing the numbef the devicesperating in parallel with each other.
In this way the processing capabilitgf microreactorg€an matctanyproductdemand.

ANumbering upis the term used fancreasingproductionin a microreactoprocess.

Figure 1: A microreactor design by Oregon State University (CBEE).

The advantages of microtechogies certainly necessitate exploration and their
intelligent design requires a thorough understandingistechnology platform. Many
microreactors can reduce reaction timéshr to 10s’ This is due tenhanced surface
mediated reactions by improgmroncentration gradients near the surfadeemicro-
width in a microreactor accelerates the diffusiont&sshorter dimensiah This leads

to uniform residence times and extraordinary product selectivity by eliminating non
uniform concentration profilesvhich have the potential taggravate competing
reaction pathways. Thisomogeirationis in the direction of the smallest dimenspn
allowing the fluid to be converted to produas it proceeds dowthe length of the
reactor This sequential treatment ohe fluid element improves the conversion
efficiency since regions of low concentration do not mix with regions of high
concentratioras in a batch or mixed flothrough reactorow concentration fluid at
the faster center of the microchannel is pres@ifitom interacting with slower moving

high concentration fluid at the wall by microreactor desigiéch distribuie the



velocity of the fluid through geometric path lengtiiis allows eachflow pathto
achieve an equal residence timmproving controlability and maximizing the
concentration driving force for the rate lafvs this way, yield can be enhanced over
batch processing due to contealflow uniformity that maximizes concentration
gradients Temperature controls allowven higher concentratns of potentially
explosive chemicals to be used safely. This increase in concentration makes reactions
begin more rapidlyln conclusion the evenresidence time offered by migeactors
improves product selectivity by eliminating side reactions thatidvoocur in larger

scale reactors that do not have excellent flow uniformity or heat uniformity.

In this dc corona microreator studyhe electrode gapequired to access certain
desirable plasma states at atmospheric pressure is only possiblerahselparations.
Essentially, his means that microtechnology is the only reactor sized to the scale of the
plasmalt is demonstrated in this study that the plasma regimes accessible previously
only at low pressure are achesat high pressure using microgtars and microgaps.
These microplasma reactors possess unique reaction productsobhaseduniform
residencetime, uniform concentration profileand the reduced electron energyf
microplasmasThese unique facets of plasma microreactors reshigimselectivity,
conversion and energy efficiencyhe distribution ofelectronenergiesn a plasma
determines probabilistically which reactions of thessible several hundred are
strongly activated. Microtechnology is necessary to control the plasmaatigeh
energy density itself based on electricdiahd charge density conditions. Thesults

in new possibilities for controllinthe chemicalproduct type and yieldf a reactar

The reactivity of a microplasmaliminishes rapidly from the point of imnation. It is
therefore useful to treat microplasmas within a microreactor platform that fully utilizes
the plasm surface to fluid volume ratidtmospheric pressure plasma can driveyve
usefulreactions to high conversion at remarkable efficiencietig applied at the
microscale This dissertation contains the first demonstration of large field activation
of multiple atmospheric pressure dc microplasmas in series @ndirother gases

These large fieldareused toactivate hydrocarbons, carbon xie and water.



It is commonly known that in a methane feed the degree of ionization is determined by

the reduced electric field. This degree of ionization is controlled by the electron energy
distribution present. The amount of metmgticals and the dege of dehydrogenation

is, in this way easily controlled by the scale of a dc discharge. The flow velocity

through the discharge is another parameter that strongly determines the yield of specific
product s. For exampl e, tdheéh yrda soigkeenradt @ otniomeo f
to ethylene and then to acetylene is®£10.0°sand 10* i 10°s respectively.Rapid

flow inducedcooling or addition of oxygen can suppress successive dehydrogenation

and higher hydrocarbon formation.

Microplasma can be udeto deposit metallic or dielectric films, nanotubes or
nanoparticles In the future, these processemy fuel the 3d printing of circuit
architecture. These chemistries can operate at atmospheric conditions. Typically, the
chemistry involved in these demtions is primarily oxidative. For example, in
depositing Si@morphologically pure amorphous films on a substrate, a gas precursor
such as BPTEOS (silane or siloxanepassedver the surface of the material which

is to becoatedwith silicon oxide. No-thermal atmospheric pressure plasma is highly
reactivewhencompared to low pressure analoggggh conversion of dilute streams
containing the silicon precursor is possible. A one weight percent siloxane in air is

sufficient for growth rate to be verypi (0.1 to 1um/min).

The mechanism for fracturingilanes(which depends on if it is ion or electron
mediateebut is most likely ozone mediated under these conditions) results in methyl
or siloxane radicals being formebh air, carbon tends toward G@nd H tends to

convert toH20 which forms while silicon is oxidized t8iO.

Plasma discharges into aqueous mixtures of alcohol form smaller molecules tending
towards lower molecular weight alcohols, methane, and hydrogen and provide an

inexpensive routto fuel a hydrogen economy from transportable fis¢rasch fuels.



For aqueous environmentslapma discharge is a promoter of radical generated
peroxides in aqueous environments. It is desirable to determine the reaction
engineering fundamentals of enbplasma hydroxyl mediated chemistry. A dye can be
used to extract pure kinetics from microreactors which unlike their mixeetfimugh

reactor counterparts are not hindered by mass transfer limitations which strongly dictate
the perceived kinetidhatare often reportedVithoutplasmamicroreactosstudies the
potential to reach ultrhigh conversion efficiencies is unguided. Using microplasma at
the microscale with dc plasma discharges to degrade a common tracer, the author is
removing misconceptionabout the maximum achievable efficiencies for advanced
oxidation processes that utilize plasma. The overall reagtodescribed bya
mechanism whiclprogressegargely via hydroxyradical scavenging peroxides for
severely mass transport limited systedusthe interface of the plasma and the liquid,
hydroxyl radicals themselves persist long enough to directly react withMbss
spectrometry can be used to detect the completeness of the mineralization of the dye
while uwspectroscopy detects the destimt of the electron conjugation along the

backbone of the main part of the photoactive organic molecule.

Atmospheric pressure plasma can be eithersseifaining or made up of short transient
bursts? There are five major types of atmospheric presplasma. The type of dc
plasma generated is dependent on the current density, pressure, distance and reduced
electric field. The lowest current regime is the dark regime which is composed of
Townsend streamers. These streamers can be constant or puldagimgext regime

with a higher curnet density is the corona regime, in whible tdischarge does not form

a complete conduction filament. Following the corona regime is the spark discharge
regime. Sparks are intense bursts which are rarely prolongedti#dteurrent density

(or distance is diminished) is increased further, the glow discharge region is reached.
This region has a very flat currevtltage relationship for gaps less than 1hmAs
opposed to a glow, aarc discharge is thermally intense anémpes at high currents.
Plasma can be generateding dc electric potentials, ac electric potentials,
inductively coupled fieldsmicrowave gigahertz technologies and eweggered or

excitedby lasers.
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Below are illustrations of a variety of atmosgpic pressure plasma types (dc corona,
ac DBD, an ac plasma jet and spark).

(a) (b)

1 mm

=z
& =)
o o
Jf-
o s

Valifge V(MY)
5
p—
o
() ‘1 weung

<

n

a
o
=)

&
=3

r
(w¥) | ueng

Voltage (MV)

-
tn

[s] 10 20
Time (us)

Figure 2: Images of example high pressure plasma. A corona dischangelateddimensions (top
left).8 An ac electric potential drigndielectric barrier discharg@lasma at large separation (tejght).®
A plasma jet (bottoreft)!° and a spark discharge (botteright).!!

Each of these types of plasnaggpear to beisually equivalent but actually can possess
very different propertiesthe structure of each plasroan be fundamentallgifferent
based on the driving electric field¥he locatios of the plasmagnost energetic
electronscanbe in a physically different locatisnFor example, onlyigahertz plasma
createsan oscillating ield so fast that heavy charged plasimas are confined to a

narrowzonenear the conductor
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All these types of plasma can be encountered in modibetbinationslepending on

the energy input modeFor example, alternating current can be applie@ toae
electrode and a shielded electraderder to supply the needed electric field for plasma
formation. While these discharges (termed dielectric barrier discharges) appear to be
unlike their dc current counterpart, they actually consist of Townsend strednat
transition to diffuse glow discharges as the waveform for the applied potential changes.
At atmospheric pressurthesedischarges happanany times a secondtaie kilohertz
frequenciesisedfor most ac plasmas. These rapid but discrete dischapgeear to be
single silent unique glosWke plasma while in actuality they are plasma which is
continually transitioning between tlsamilar types of plasm#&ound indc discharges.
Atmospheric pressure rf plasmas are plasmas undergoing restructurivegpddgma

at radio frequencies. Microwave plasma can activate microplasmas from a distant
energy source beamed to resonant electrdéesn more interesting is the superior

performance forisple plasma systems when waveforms combining dc and ac modes

w -l
:.“‘d

areemployed.

(a)No voltage (b) AC only
(c)DC only (d) AC and DC

Figure 3: A microwave microplasma array (Iefﬁ is shown through a protective grating. Improvements
in synergy between plasma excited with dc and ac signals have been recorded in literature for a few

limited systers (right).13
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Plasma can also be formed at atmospheric pressure by thermally populated higher
energy levels, by using chemicals whose rapid reactions invert the electron distribution
or by stimulated light emission from coherent monochromatic light amjpidita

technology.

Formation of stable dc nethermal plasma requires extensive engineeeugn if
microscale and nanoseakmitter electrodes are used. For this reasonthermal
plasmahas almost exclusivelybeen generated in noble gases. Stable plassna
generated at atmospheric pressure above metal holes at fields as IoW asglon. A
natural observation, which regards the transition to microscale reaction engineering,
points out that flow can be added to remove the heat generated during dischiarge tha
causes instable glow to arc transitions. The erosion of the electrodes during dc rather
than pulsedic operation is reported during observation of metal vapor lines from the
cathode emitter electrode on optical intensity spéétra.

Arl 3s3pds-3s 3pdp
150 |- GEM100, Ar, p = 150 torr 1 15000
1=0,1mA, Up = 208V

120 | - 12000

Intensity (a.u.)

Arll 3s3pds-3s3p dp

30 - - 3000
D‘HML_-‘./ L 0

a7 430 485 4% 485 T 740 TS0 Te0  TTO T8O

Wavelenght (nm)

Figure 4. Spectra of argon microdischarge array at 150Torr opesateparallel without individual

resistive ballast.

Onegroupis able to take their hot 1000K plasma system and sustain room temperature,
nontthermal plasmat pressureap to atmosphiéc at reduced voltages in Air, Ar,2H

and H/CHa for novel lithography electrode microscale systém3he spectral
emissive lines of microplasma in a variety of mediums and their spatial distribution in

dc pulsed microplasmas are reportedf.
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Figure 5: The microplasmaat 20em, 30em, 75 ¢gusethasanie appliedl eleatrid n  Ar / N
potentials from ReferencéT] (© [2013] IEEE).

It has been accurately observed that a sirejectrode point defines macroscopic
breakdown, but collective orgimensional nanostructures use fleonvergence
effects to intensify local electric fields which interact with lesser space scales through
a gain factor which relates the field intensitytlze surface to the macroscopic field
intensity® Uniform glows 1 crin area are sustained at 300V to a Paschen minimum
of 0.1Torrcm. Apparent diffuse discharge in an inhomogeneous electric field is easy
to realize in atmospheric pressure air, nitrogamj other gases with voltage pulse
durations ranging from nanoseconds to several tens of nanosétdualig the last
decade, microplasma has continued to astound the scientific community with advances
in the understanding and applications of microplaatna rapidly reducing scale and
improving pressure limitations. The driving research towards stable microplasma
desigrs in micrometer spacing have demonstrated Penning ionization in plasma at

scal es of 5em and bel ow.
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KrF (248 nm)
40ml, <1 ps

Figure 6: RF voltage plasma microchannisldirected along an ionization path by a spizosecond

KrF laser at University of lllimis (right). A 7600rr microplasma completelyfishe 50 separate, 5

silicon microchannels (Ieft?.O

Low voltage atmospheric pressure plasmalmaactivated ireven smaller microgaps

that are placedearlarger electrodgaps Afterglow initiation chage carriergrom the

smaller microgapstimulate reduced discharge potentialsthe large gaps. Stable
atmospheric pressure discharge at 270&em i s
predicted by Paschen0pglasmaunthe lager g#p prbduem gap s

turn-on electric potentials at 400V and sustaining potentials frorrfBROY.

Figure 7: Parallel electrodes separated by distance B are seeded by microdischarge gap A which

provides substantially reduced mimim sustaining voltage%%
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CAl and CAZ2 are the two cathodes which are shown next emtde. Figure is from
Reference2l].Di scharge is identified in the 10&em
seeded and discharges. The smaller gap is pulsed out ofvattatiee larger electrode

gap in ordeto continuously seed the largdectrode gaprlhe initiation of northermal

plasma isdemonstrated to occur through the formation of a spark streamer during dc
discharge. Thecurrent versus voltage har act eri sti c has been r
separations between cathode and anode emitter electrodes. The slightly negative
voltage response foncreasing current during breakdown shows hysteresis if the flat

glow regime is traced backwaftbm the subnormal glow regim@wards a corona

discharge The electric field for sustained generation of atmospherictmemmal

plasma from rounded wire tipsi r e p o r t e*dTheastbilif}y Uf/the discharge

depends on the external reactance of the circuit. The stability translates into operating

in a different regime of discharge while at the same current and voltage effectively

shifting thecurrent versusoltagecharacteristic. The transition from corona to glow

and glow to arc modes for nd@hermal plasma has been studiegsing nanosecond

pulsesat several distances and temperateres) upvards ofthe electron temperature.

This demonstrates that no sp&wkmation occurs during nanosecond psksed offers

great promise foplasma discharge tondensed phasé&sThe flow rate of gas passing

over the emitter electrode affects the regime of discharge fetheomal plasma with

higher flow shears injectinigstability in the discharg&. The distance is not the only

defining parameter for inception electric field. The emitter material is subject to

cathode column and surface emission barriers which for platinum yield onset potentials

of 277V and for copper ®¥.2° Light emission has been reported in silicon metal
microgapsof2l 5e m at potentials as | ow as 30V. Er
on the anode were reported for silicon surfaces and are thought to vaporize or sputter
surface material from interface tnterface. Rf plasma has been studie@lastrode

gap diminishes in size. The electric field of the sheath and bulk are compared to
determine foranyfrequency when thglow regime is reached. An intense increase in

sheath electric field is attainedserwh er e bet ween 102 to 318¢gm.
occupies nearly the entire 102em gap al most
RMS voltage is greatly reduced for substantially higher current derfSitiss
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microplasma regime clearly delineatéself from what is observed with larger
atmospheric pressure plassnahis does not however exclude rf from generating targe
area cold atmospheric pressure microplasmas in air at low powers in low flows of inert
gas.Rf plasma has been generated betwdaimless steel mesh and copper plates at
13.56MHz for 3mm separation gaps in open air for tube to plate configufafivthe
microscale plasma inevitably encounters the boundaries of the electrodes and in that
spatial confinement loses charge densitjcwimust be resupplied to sustain discharge.
This can be provided by nanostructured field emission from the cathode if the electric
fields are high enougH. Unstable glow discharge to arc transition is reported at
voltages from 300 to 600V for silicemetd or silicon-silicon electrode$® Non-
thermal plasma also produces solids from the vapor phase. Carbon moisoxide
reported tproduce suboxides on the surface of the emitt€he stability of the non
thermal microplasma results in a balance of thermalization in spots of locally
increasing current density and is typically accomplished by reducing the size of the
separation or providing external reactance to counter and smooth rapid internal changes
in the plasma. Parallel parasitic capacitance is edferss a tool to govern the thermal
characteristics of the plasma through changes in the electric field during discharge
whichareassociated with ionizatiottMicroscale antarger scales afielectric barrier
dischargeare contrasted and compared terms of discharge potential, current,
reactivity and gas throughptft.®® The stability of nanofibers other than carbon
nanotubes has been explored and their resuttimgent versus voltageharacteristics
reported. Emission over 1 hour records no change.a61¥ /*sTme.minimization of
electrode erosion during direct current film deposition is critical for various
applications. The analysis of @ plasma jet describes the possigpeitterprocesses in

low temperature plasma. EDX is used to identify impwitiased on changes in the
electrode geometry and SEM determines the presence of microclusters of iron from the
stainless steel electrode which are deposition primarily through high speed neutrals and
H chemical etching® Studies in ignition using transieplasma have determined that
electrode geometry does more to influence discharge than polarity of the discharge.
Streamers were observed to consistently leave the electrode with higher electric field

even after polarity reversal.
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Electrode damage hindenmany applications especially duringspark discharge
Electrode damage is not obsendrding nanosecond pulsed plasma used for reactive
ignition of a mixture. This leads to the conclusion that nanosecond pulsed transient
plasma is noithermal and will be ery useful ifmany industrial applications including
combustior’® Nanosecond impulses produce stable macroscopic glow discharges
using either controlled pulse durations or duty rati@srrespondinglythe minimum

pulse duration fothis behavior in anicroplasma discharge should be studi&ido,

the frequency of that discharge should be parameterized since a more rapid frequency
with yet the same pulse width will certainly affect charge transport in the intracavity

region.

(a) 400 Hz (b) 300 Hz

(¢) 200 Hz (d) 100 Hz

Figure 8: Nanosecond pulses from a dual spark gap transformer at 65kV for wires 4cni’apart.

A dielectric barrier nofthermal atmospheric pressure plasma jet has also been ignited
from a smaller dielectric barrier parallel ring discharge. More than 56% si/gtem
energy is consumed by the first discharge in the dielectric barrier discharge and the
time required to develop the peripheral plasma jet depends upon the applied electric

potential. Rapidlypulsed dielectric barrier plasma from the first dischaygeerates
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the plasma jet from which detaches a plasma bullet traveling away from the parallel
rings of the dielectric barrier discharge source in the direction of the helium gas flow.
Theplasmdarequencywhich is related to pulse duratiaa different n that it describes

the repetition rate of the pulses and in part defines a pulse duiRtlea duration is

the time for which a single pulse is applied and does not indicate thergpétaion
frequency. The frequency response of dc and ac breakdawesgses in micro and
nano gaps is of interest for high speed electronics operating at the GHz to THz range
and has implications in microplasma generation applications. Traditional vacuum
relationships between frequency and distance between electrodest tholch for
atmospheric pressure microplasmas. At very high frequencies the breakdown voltage
is usually three timel®wer than predictedihisis an effect of trapped ions whose low

drift velocity cannot transverse the distance of the gap within theftanee of the
rapidly reversing field. Nitrogen for example commonly displays dc breakdown
vol tages of 130V at 19em with <copper el e
frequency at 6.3GHZ

It is also possible to replace one of the plasma electrodescortiuctive waterA
potential can be applied tbe fluid with one electrode in the fluid and the other a
charged column of plasma or ttyo immersecelectrode$othin theliquid. An electric
potentialdifference ina liquid drives plasma electrochemystHow rapidly the electric
potential changedts peak intensity defines the electric overpotential and the

electroactive species that will be generated in largest quantity.

A schematic that demonstrates the most common electric discharge configwgation i
shown below. The reactor consists of a metal tank. An electrode is charged to the
opposite polarity of the liquid. Plasma forms at the interface and can penetrate into the
liquid once the peak applied voltage is sufficient for streamer propagation.ashe g
head space overhead is frequently charged with oxygen or argon or air. The electrode
itself is often sharp in order to reduce breakdown voltages. The liquid itself is well

mixed in terms of stable chemical species.
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Figure 9: A commonly studied reactor type for liquid interface plasmas is the mixed flow tank reactor.

Energy efficiency is typically reported in terms of the energy required to remove a
certain percentage of contaminahiG factor of Gowindicates that 50% of tretarting
concentration of anrganictoxin has been degraded. In the case of an orgkyejdt

is usuallycolorimetrically deactivated.

There are a variety of combined systems which have high reported effici&ias.
reasonable point of division tveeen different nosthermal plasma technologies is due

to the differing types of air/water interfaces. Jets, bubblers, droplet exchangers can
replace the plasma interface and affect surface discharge mass transport or even the
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discharge type itself. Exangd of discharge types are immersed glow discharge
electrolysis, gliding arc discharge, corona discharge, interfacial glow discharge,
dielectric barrier discharge, and immersed electric discharge and plasma jets. The
reaction kinetics associated with pulspdrtial discharge in the direct injection
configuration achieved 4.3 g/lkWhusing a 57kV peak impulse and ferrous sulfate and
carbon particle$® 4> Pulsed corona dischargehich is typically more efficient than
discharge electrolysitias been surpassby a nonpulsed diaphragm glow discharge
reactor in which conductive solution is separated from anode to cathode by a high
dielectric diaphragm with microscale hol e.
the microscale with conductive water on eithetesof the diaphragm acting as the
electrodes so that there is no damage to the actual electtdtldsed signals would

likely have caused discharge from the real electrodes since there is an effective
macroscopic time delay for charge to move from theahedectrode to the discharge
diaphragm unless the discharge could be limited by pulse duration. Glow discharge has
been improved by the addition of multiple anotfeEhe direct mineralization of certain
sulfonates has been demonstrdfdd.e n t o n 6 has bemrastutlied with respect to
glow discharge and the COD was found to decrease rdfiéllyapor sheath typically

forms around the discharge at the platinum electrode which is responsible for the metal
vapor emission spectra which are orangg.

Figure 10: Contact glow discharge electrolysis is depicted at a platinum electrode with fully developed

vapor sheath surrounding the electrode.
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The discovery of contact glow discharge electrolysis was made in liquid ammonia and
is one of the first studies that summarizes quite well the phenomena of contact

electrolysis?’

Figure11: The frame by frame development of a noble gas discharge above and entering the liquid from
the reverse electrode at 25Hz framate. Figure is from Referencg(.

The gadiquid reactors are treated thoroughly in literature. Typically one electrode is
in the gas above the liquf.The generation of peroxide recorded and monitode
during operation of nothermal plasma in an air/water syst&hin excellent study
which shows dc glow discharge extending throughout the gas and liquid even records
the formation of the glow at the electrode using a 2FHune rate® The
desulfurizationprocess has begrerformedusingpulsed plasm&n aquartz tubegas

liquid packed bed! The kinetics of nosthermal plasma desulfurizati@re explored

at reduced temperatuté Several atypical reactors have been developed and some

possess a very high &fiency. Nonthermal plasma electrospray pin to plate electrode
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configuration separated by 4cm and discharging with G factor of 2.5g/kWh can
completely remove phenol. This is the highest reported G factor in literature
currently>® A wettedwall reactor agmpted to incorporate carbon nanotubes for
improved phenol degradation using riblermal discharge¥.Drupe shaped discharges
were studied in a nethermal plasma suspended capillary drip discharge rexdar.
bubbles injected into discharge capillarieprovide stable low voltag discharge at
microscale anod&-cathode separations. The discharge curiert.6mA and the
discharge voltagis 500V. The typical energy per puls60nJ®® The study bsodium
emission spectra seertesrequire large amountsf vaporized fluid for long discharge
times®’ The ability to generate plasma in condensed phase at low power is largely due
to the application of pulsing technology. The yields of peroxide using 0.3 microsecond
pulse technology can be much lower than @dascales wherein the formation of gas

on the emitter during the onset of slower pulses of applied voltage made possible
streamer formation within the gas bubbles. Theoafactor of 8.2E9mol/J has been
achieved alarge and microscale electrodegapsi ng 20kV peak wavef or |
pulse durations involving gas/liquid systems at microsecond pulse durations. The
gradient in radical concentration drops off very rapidly from the discharge streamer.
Researchers have endeavored to determine if streaaretsecwidened so that their
producecklectronscan reach higher efficiencies in the production of free radicals. The
energy yield for plasma reactors ranks pulsing, air/water mediums, and reduced scale
(thin films of water) as the most critical when impiray efficiency®® Microtechnology
employs scales which are on the order of normal discharges which promotes efficient
utilization of nonthermal plasma. Mass and heat transfgrovementsncreasehe
reaction ate and reduce electrode damagiis not oy means a shorter space
residence time but longer performance lifetime. The majority of plasma applications in
microreactors pertain to purely gas phase studi€se design of microreactor plasma
systems depends on the flow, Alermal plasma interactipmaterial constraints and
separation distance of the anode and cathode. The distribution of ozone in a gas liquid
microreactor is performed for reactivit}y® Very recently, the benefits of
microtechnology been realized with regard to plasma formationeatmibroscale;

however, the successful application of the technology at high efficiencies wits not.
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The lifetime of an unprotected sharp metal emittéypgcally 10 to 20 minute&? The

slow microsecond discharges are fast enough to prevent arc formatmaventing

the streamer from propagating the full distance between the cathode and anode before
the applied voltage is removed. This can be seen best in a time resolved image of a
pulsed electrode. The separation distance is specifically selected &Qthes pulse
duration using a Marxbank generator so that the discharge was just beyond the anode.
The arc does not form and the fluid is treated entfitlythe scale is reduced to say
microscale, it is obvious the pulse duration must decrease lir@adg theplasma
velocity fronts for streamer formation are linearly related to distéhthe negative
discharge is much slower than the positive discharge and would most likely be very
useful at the microscale if larger voltages are needed fethesma plasma formation

on short norarcing time scales since voltaliee gap distancealso affects streamer

propagation speed.

Figure 12. The time scale for discharge in water at macroscopic scales shows slightly different

develpment rates for reversed polarity discharge from sharp electrode p‘?ﬁnts.

The electric potential for streamer formation at 10mm separation gaps is approximately
5kV. The corresponding point for 100mm is 20kV. The brightness of the discharge is
proportionalto the water resistivit§?

A detailed experimental study of ndimermal plasma generated between two tungsten
filaments specifically focuses on the growth and compression of the bubble formed
during discharge in aqueous media. The study relates welséo induced chemical

reactions that produce bubbles by clearly describing partition energies throughout each
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phase of bubble development. Accurate monitoring of radiative waveform from
photodiode and hydrophone with simultaneous 10MHz sampling andspegl
camera records at frame rates near 3000frames/s allows a clear picture of the discharge
event to be characterized energetically. Small and large bubbles behave differently.
During the growth phase, intense heat is generated as the optical integsithternal
temperatures are deduced from the St&alizmann Law regarding surface
temperature and thermal radiation. Estimates of this surface temperature peak at
18,000K which is relatively low compared to most studies. Temperatures and energy

partitions during each phase are repoffed.

Figure 13 The image of a bubble at its first maximum radius of 51.5mm from Refe6&hce [

Pulsed plasma formation in water can be enhancéuggddition of carbon nanotubes
within the condensed phase for pulses of 300 ns duration during 40kV peak applied
electric potentials. The streamer is twice as long as when no nanofiber is present subject
to the same impulse potentf4l.

Not frequency buduration of the pulse controls the development of thethermal

plasma. The frequency causes interaction between pulses by chemical means since it is
not on the time scale of the phenomena of interest. The pH, radical concentration or
local temperaturenay affect the next pulse but does not provide a direct effect on the
electronic emission. For pulse times much less than 50ns, it can be observed from

previous work that the discharge can be highly localized around the emission point to
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adi stance of 600em for a 20mm sepadration u
fact, it might be stated that the complete environment of the emitter is bathed in a

controlled homogenous glow.

Figure14: Sharpened point dihiarge shows glow characteristics at confined temporal scale. Secondary

mode branching of multiple streamers occurs after dths.

Research performed independently and concurrently with Oregon State has produced

similar findings. In 2008, the Drexel groupdaa studying noithermal plasma around

very sharp tips for spectroscoflater that year, isobs er ved-emissiar ffi el d
initiated negative coronas require nanoscale electrodes and are not observed when
macroscale electrodes or positive polarities aru s’ €Sdppadting photographs of the

emissionare supplied. The nonthermal plasmas generated with greatly reduced






































































































































































































































































































































































































