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ABSTRACT

The climate sensitivity uncertainty of global climate models (GCMs) is partly due to the spread of in-

dividual feedbacks. One approach to constrain long-term climate sensitivity is to use the relatively short

observational record, assuming there exists some relationship in feedbacks between short and long records.

The present work tests this assumption by regressing short-term feedback metrics, characterized by the 20-yr

feedback as well as interannual and intra-annual metrics, against long-term longwave water vapor, longwave

atmospheric temperature, and shortwave surface albedo feedbacks calculated from 13 twentieth-century

GCM simulations. Estimates of long-term feedbacks derived from reanalysis observations and statistically

significant regressions are consistent with but no more constrained than earlier estimates.

For the interannual metric, natural variability contributes to the feedback uncertainty, reducing the ability

to estimate the interannual behavior from one 20-yr time slice. For both the interannual and intra-annual

metrics, uncertainty in the intermodel relationships between 20-yr metrics and 100-yr feedbacks also con-

tributes to the feedback uncertainty. Because of differences in time scales of feedback processes, relationships

between the 20-yr interannual metric and 100-yr water vapor and atmospheric temperature feedbacks are

significant for only one feedback calculation method. The intra-annual and surface albedo relationships show

more complex behavior, though positive correspondence between Northern Hemisphere surface albedo

intra-annual metrics and 100-yr feedbacks is consistent with previous studies. Many relationships between

20-yr metrics and 100-yr feedbacks are sensitive to the specific GCMs included, highlighting that care should

be taken when inferring long-term feedbacks from short-term observations.

1. Introduction and background

Earth’s radiative energy balance is an important

framework for understanding climate change. Any net

positive (negative) imbalance DR of the global energy

flux at the top of the atmosphere (TOA) averaged over

a number of years leads to a warming (cooling). Changes

in the TOA energy balance are given by

DR5DG1 lDT , (1)

where DG is the external radiative forcing; DT is the

temperature response; and l is the feedback parameter,

which is inversely proportional (and of opposite sign) to

the climate sensitivity (Bony et al. 2006). The range in

estimates of equilibrium climate sensitivity to a doubling

of CO2 for atmospheric global climate models (GCMs)

from phase 3 of the World Climate Research Pro-

gramme (WCRP) Coupled Model Intercomparison Pro-

ject (CMIP3) multimodel dataset is 2.1–4.4K with a mean

value of 3.2K (Randall et al. 2007). This range is due

primarily to uncertainties of the individual feedbacks

that make up the total feedback parameter.

There are many ways to decompose l into individual

components (Held and Shell 2012). Here, we decompose

the feedback parameter as

l5 lQ
LW

1 lQ
SW

1 lTS1 lTA1 la 1 lC 1 � , (2)

where lQLW
and lQSW

are the longwave and shortwave

water vapor feedbacks; lTS and lTA are the surface and
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atmospheric temperature feedbacks; la is the surface

albedo feedback; lC is the cloud feedback; and � con-

tains the cross-feedback terms and is assumed to be

small, ’10% (Shell et al. 2008; Jonko et al. 2012). The

atmospheric temperature feedback consists of the Planck

response l0 and lapse rate feedback lL. Since l0 is es-

sentially constant (Soden and Held 2006), model dif-

ferences in lTA result from lL. Of the two water vapor

feedbacks, lQLW
dominates lQSW

. The cloud feedback,

while the largest source of uncertainty, requires complex

treatment (Sanderson and Shell 2012) beyond the scope

of this paper. Thus, we constrained our analysis to three

feedbacks: namely, lQLW
, lTA, and la.

The relatively short satellite observational record can

be used to constrain modeled feedback estimates over

the same time period (i.e., a few decades). Measure-

ments from the Earth Radiation Budget Experiment

(ERBE; Barkstrom 1984) indicate that the observed

water vapor feedback associated with El Ni~no–Southern

Oscillation (ENSO) variability (Soden 1997) and the

Mt. Pinatubo eruption (Forster and Collins 2004), as well

as global-mean radiative damping rates derived from in-

terannual variability (Chung et al. 2010), are consistent

with GCM estimates. Dessler (2010, 2013) finds good

agreement between feedbacks calculated from a decade

of observations and from a GCM control simulation.

On the other hand, Hall and Qu (2006) find that most

modeled snow albedo seasonal cycle feedback strengths

are outside the range of observed estimates, and Flanner

et al. (2011) find that models underestimate the ob-

served Northern Hemisphere (NH) albedo feedback as

derived from a 30-yr record.

If the spatial structures of short-term and long-term

climate variable changes are similar, then feedback pa-

rameters derived over short-term periods are likely

representative of long-term climate change (Forster and

Gregory 2006; Colman and Hanson 2013; Boer and Yu

2003). Interannual variability may provide some infor-

mation about climate change feedbacks (Colman and

Power 2010), and the constraint of long-term climate

sensitivity by observed seasonal sensitivity may be jus-

tified if the two are governed by similar processes

(Knutti et al. 2006; Hall andQu 2006). However, estimates

from short-term observations may not be appropriate

for long-term inferences if the fast feedback compo-

nents do not represent the total climate feedback pa-

rameter (Lin et al. 2011). For example, the feedback

parameter calculated from observed tropical variabil-

ity and ENSO can vary from the climate change feed-

back parameter (Forster and Gregory 2006). The

representativeness of the short-term observations may

depend based on the particular processes and locations

considered.

To what extent can long-term (e.g., 100 yr) feedbacks

of the actual climate system be estimated by a short

period (e.g., 20 yr) of observations? Since only GCMs

have the luxury of long records, several studies have

compared GCMs feedbacks over different time scales.

Some results are encouraging, such as relationships be-

tween NH springtime snow albedo change per tempera-

ture change and theApril albedo change per temperature

change between the twentieth and twenty-second centu-

ries in CMIP3 models (Hall and Qu 2006) and between

NH temperature seasonal cycle amplitude and climate

sensitivity (Knutti et al. 2006). However, other studies

find that feedbacks operating under shorter time scales

(e.g., ENSO; unforced variability) overestimate or un-

derestimate those operating under longer time scales

(Dessler and Wong 2009; Colman and Power 2010),

while others have found no or weak relationships be-

tween short- and long-term feedbacks (Dessler 2010,

2013; Colman and Hanson 2013). Furthermore, Armour

et al. (2013) suggest that feedbacks operate on different

time scales, based on the pattern of surface warming,

with the implication that using short-term feedbacks to

estimate long-term climate change is not always feasible.

Assuming there is a relationship between short-term

and long-term behavior in models, the short-term mod-

eled behavior can be compared with observations to

constrain estimates of feedbacks over the longer period

(e.g., Knutti et al. 2006; Hall and Qu 2006). Model im-

provements can focus on better representation of, for

example, the seasonal snow cycle (Hall and Qu 2006) to

narrow the spread in climate change feedback strength.

Note, however, that this framework assumes the mod-

eled relationship between short-term and long-term

feedbacks exists in the actual climate.

We test three short-term feedback variability metrics

as ‘‘proxies’’ for long-term water vapor, atmospheric

temperature, and surface albedo feedbacks. First, we

quantify short-term twentieth-century feedbacks and

interannual and intra-annual feedback variability in an

ensemble of GCM simulations, and then we compare

these short-term characteristics with modeled long-term

twentieth-century feedbacks.We use an ensemble, rather

than a single model, because we are searching for re-

lationships that hold across many models, suggesting

some fundamental process within the actual climate

system that is adequately captured by most models. We

also calculate the uncertainty due to the natural vari-

ability internal to each model, indicating how represen-

tative one short-term observation is of natural variability

calculated from a longer period. Finally, we compare

modeled short-term feedback variability with the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Interim Re-Analysis (ERA-Interim)
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product and estimate long-term feedbacks based on the

significant relationships from the models and our esti-

mates of internal variability.

2. Data and methods

We analyze feedback in twentieth-century simula-

tions from 13 fully coupled atmosphere–ocean GCMs

from the CMIP3 archive (Table 1). We use twentieth-

century simulations instead of runs with natural vari-

ability alone [i.e., preindustrial simulations as in Colman

and Hanson (2013) and Dessler (2013)] because the

observations do not reflect purely natural variability, but

the superimposed externally forced warming as well.

The twentieth-century experiment attempts to recreate

the observed forcings of the actual climate system and

is the most appropriate dataset for comparison with re-

cent observations.

We first analyze the entire 100-yr period 1901–2000

(or 1900–99) as the long-term climate information.

Then we divide the 100-yr period into five sequential,

nonoverlapping 20-yr slices and perform the same

analysis on each slice for each ensemble member of

every model. These 20-yr slices may be thought of as

separate realizations of a short-term period analogous to

the record length of reliable satellite or reanalysis ob-

servations. By analyzing several 20-yr periods, we can

determine the inherent variability and uncertainty of

using a single short period of observations to constrain

future long-term projections.

We calculate three metrics of short-term feedback

variability are 1) 20-yr feedback, 2) an interannual

metric, and 3) and intra-annual metric for three feed-

back variables: water vapor, atmospheric temperature,

and surface albedo. We also calculate 100-yr feedbacks.

Note that the water vapor metrics only consider the

longwave (LW) effects. Feedback metric calculation

methods are summarized in Table 2 and discussed further

in sections 2b–2d. Since Colman and Hanson (2013)

recently performed a comparison of short-term and

TABLE 1. Abbreviation, name, and number of ensemble members (runs) of the 13 coupled atmosphere–ocean global climate models used

in this study.

Abbreviation Expanded model name Runs

CCSM3 (CCSM) NCAR Community Climate System Model, version 3 8

CGCM3.1(T47) (CGCMT47) Canadian Centre for Climate Modelling and Analysis (CCCma)

Coupled General Circulation Model, version 3.1 (T47 resolution)

5

CGCM3.1(T63) (CGCMT63) Canadian Centre for Climate Modelling and Analysis (CCCma)

Coupled General Circulation Model, version 3.1 (T63 resolution)

1

ECHAM Max Planck Institute for Meteorology ECHAM, version 5 3

GFDL CM2.0 (CM20) Geophysical Fluid Dynamics Laboratory Climate Model, version 2.0 3

GFDL CM2.1 (CM21) Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 3

GISS-AOM (GISSAOM) National Aeronautics and Space Administration (NASA)

Goddard Institute for Space Studies, Atmosphere–Ocean Model

1

GISS-E2-H (GISSEH) NASA Goddard Institute for Space Studies Model E2, coupled with the Hybrid

Coordinate Ocean Model (HYCOM)

5

GISS-E2-R (GISSER) NASA Goddard Institute for Space Studies Model E2, coupled with the Russell

ocean model

9

INM-CM3.0 (INM) Institute of Numerical Mathematics Coupled Model, version 3.0 1

IPSL-CM4 (IPSL) L’Institut Pierre-Simon Laplace Coupled Model, version 4 1

MIROC3.2 (hires) (MIROCHI) Model for Interdisciplinary Research on Climate, version 3.2 (high resolution) 1

MIROC3.2 (medres) (MIROCMED) Model for Interdisciplinary Research on Climate, version 3.2 (medium resolution) 3

TABLE 2. Feedback calculation methods and metrics of feedback variability. [For intra-annual feedback variables, the seasonal values are

June–August (JJA), December–February (DJF), July–September (JAS), and January–March (JFM).]

Metric Description

Feedback, M1 Regression of deseasonalized TOA flux against Tas anomalies

Feedback, M2 Difference between first and last 20-yr averages of deseasonalized

TOA flux anomalies divided by difference of Tas anomalies

Interannual Standard deviation of deseasonalized, detrended TOA flux anomalies

Intra-annual Seasonal cycle amplitude of feedback variables

Water vapor Global: JJA 2 DJF; NH: JAS 2 JFM; SH: JFM 2 JAS

Atmospheric temperature Global: JJA 2 DJF; NH: JJA 2 DJF; SH: jJJA 2 DJFj
Surface albedo Global: FM 2 JA; NH: jJune 2 Aprilj; SH: August 2 June
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long-term longwave feedbacks with a goal similar to

ours, we highlight relevant similarities and differences in

metric definitions below.

a. TOA flux anomalies

The radiative kernel technique (Soden et al. 2008;

Shell et al. 2008) decomposes each feedback into two

components: the TOA flux change due to a standard

change in the feedback variable at each horizontal lo-

cation and vertical level (radiative kernel; Kx 5 ›Rx/›x)

and the change in the feedback variable in response

to a surface air temperature change (climate response;

dx/dTas). Note that we normalize the feedback by the

standard anomaly used to compute the kernel (Shell

et al. 2008) but omit that notation for simplicity. The

feedback strength for variable x is given by

lx5
DRx

DTas

’
›Rx

›x

0
@ dx

dTas

1
A’Kx

�
Dx

DTas

�
. (3)

We use the precalculated National Center for Atmo-

spheric Research (NCAR) Community Atmosphere

Model (CAM; approximately 2.88 latitude by 2.88 longi-
tude with 17 vertical levels) kernel (Shell et al. 2008), so

only the change in the climate variableDx, given a change
in climate DTas, is needed to calculate the feedback

strength. Limiting our use to only one model’s kernel is

unlikely to substantially affect our results (Soden et al.

2008). In a similar study to ours, Colman and Hanson

(2013) find little dependence of feedback estimates on

two different kernels. Additionally, the focus of this pa-

per is to identify the variations in climate responses of

models resulting in variations in climate feedbacks, not to

obtain specific values for feedbacks. The standard kernel

technique uses the differences inmean variables between

two climate states. We use a modified technique by in-

stead considering anomalies in specific humidity, atmo-

spheric temperature, and surface albedo from the mean

climate, as in Dessler (2013). Because absorption of ra-

diation by water vapor behaves like the natural log of

specific humidity (Cess 1974; Thompson and Warren

1982), we use the natural log of the specific humidity as

the water vapor variable, as in Soden et al. (2008).

For each variable, wefirst subtract the average seasonal

cycle from each year of the corresponding 20- or 100-yr

time series. Then, we multiply these feedback variable

anomalies by the radiative kernel at each grid point and

level (for atmospheric temperature and water vapor) to

produce the TOA flux anomalies (DRx 5 KxDx). Finally,
we sum the flux anomalies from the surface to the top of

themodel’s atmosphere, resulting in the cumulativeTOA

radiative effect. Converting feedback variable anomalies

to TOA flux anomalies preserves the spatial pattern of

anomalies and accounts for their contribution to the TOA

energy balance. In contrast, Colman and Hanson (2013)

sum only up to the tropopause. Thus, their feedbacks

omit stratospheric effects while ours can be more di-

rectly compared to, for example, observed TOA flux

changes.

In the clear-sky test (Shell et al. 2008), clear-sky TOA

fluxes are compared to the sum of the kernel-derived

radiative effects of feedback variables and the CO2 ra-

diative forcing. We find good agreement for both the

CMIP3 climate models and the ERA-Interim dataset.

The largest differences occur where the radiative effect

of sulfate aerosols is large. This supports the assumption

that the cross-feedback term in Eq. (2) is small not only

for large climate changes but also for monthly anoma-

lies. Other studies have shown the usefulness of this

technique with satellite data (Dessler et al. 2008).

We then average the time series of deseasonalized

TOA flux anomalies for each variable over the globe,

NH, and Southern Hemisphere (SH). While important

features that affect the global energy balance should be

discerned globally (Trenberth et al. 2010), there are

different and competing processes due to differences in

land configuration and atmospheric circulation in each

hemisphere that are important to understand separately.

b. Feedback calculations

We calculate feedbacks from the area-averaged TOA

flux and surface temperature anomalies in two ways

(Table 2). The first method (M1) consists of regressing

deseasonalized monthly TOA flux anomalies onto de-

seasonalized monthly Tas anomalies, a commonly used

technique (e.g., Dessler 2013) similar to that introduced

by Gregory et al. (2004). The second method (M2)

consists of dividing the difference between the first and

last 20-yr averages of the deseasonalized TOA flux

anomaly time series by the corresponding difference in

the deseasonalized Tas anomalies, similar to the method

of Soden et al. (2008). Colman and Hanson (2013) use

this method to calculate transient feedbacks between

10-yr periods, rather than 20-yr periods. However, we

find little difference in 100-yr M2 feedback values cal-

culated using 10- or 20-yr averages. Table 3 lists the

global 100-yr feedback values for both methods, which

are within each other’s standard errors.

For comparison, we include the twenty-first-century

feedback estimates derived from Soden and Held (2006).

The twentieth-century values are close to the twenty-first-

century estimates, though markedly smaller for the at-

mospheric temperature and surface albedo feedbacks.

Soden and Held (2006) sum feedbacks from the surface

to the tropopause rather than throughout the entire
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atmosphere, which may account for the difference in

atmospheric temperature feedbacks. As the tropo-

sphere warms, the stratosphere cools, thus reducing

the outgoing longwave radiation and damping the

negative temperature feedback. The surface albedo

feedback is small in the twentieth century; while most

models exhibit a positive albedo feedback, some models

actually have a negative feedback, unlike for the twenty-

first century. In addition, Soden and Held (2006) use

a different subset of CMIP3 models, resulting in a dif-

ferent ensemble mean.

There is general positive correspondence betweenM1

and M2 feedbacks for all variables and regions (Fig. 1).

For water vapor and atmospheric temperature, M1

feedbacks are generally smaller in magnitude than M2

feedbacks. Thus, the processes omitted by M2 tend to

decrease feedbacks (making M2 feedbacks larger in

magnitude than M1), indicating nonlinearities in these

feedbacks. On the other hand, there is close to a one-to-

one correspondence betweenM1 andM2 surface albedo

feedbacks, suggesting that the feedback calculation meth-

odology is less important. In all cases, though, individual

models may display anomalous behavior. ECHAM in

particular stands out, especially for the SH and globe, as

having much larger M1 feedbacks for water vapor and

atmospheric temperature and a much larger M2 feed-

back for surface albedo.

Differences in long-term feedback values between

M1 and M2 are due to the nonlinear behavior of some

models. Because monthly perturbations of TOA flux

anomalies and surface air temperature anomalies are

correlated, M1 feedbacks capture more of the inherent

variability of feedback behavior throughout the record

on month-to-month and year-to-year time scales. In

contrast, M2 aggregates 20 yr of these monthly pertur-

bations to capture the overall change with less attention

to shorter-scale variability. Thus, M1 incorporates re-

lationships over time scales ranging from years to de-

cades, while M2 includes only relationships that operate

on long-term (roughly 80 yr) time scales. If feedback

behavior varies across time scales, then these two cal-

culations will produce different results. In fact, Armour

et al. (2013) find that the apparent time variation of

feedbacks within a model is actually due to a changing

influence of different regions on the global-average

temperature change. Similarly, Winton et al. (2010) sug-

gest that the climate system can be interpreted to have

a time-varying ‘‘efficacy’’ of ocean heat uptake, which

influences the transient response of climate to a forcing.

In both these frameworks, the pattern of temperature

response is important. To the extent that the tempera-

ture change between 1900 and 2000 has a different hori-

zontal structure than interannual temperature anomalies

(e.g., those found for ENSO), we expect that M1 andM2

will differ. Additionally, M2 feedbacks may be biased by

decadal internal variability if the start and end years for

averaging happen to fall during opposite phases of de-

cadal variability. The use of 10-yr averages, as opposed

to 20-yr averages, increases the likelihood of this type

of bias.

M2 (based on differences in beginning and ending

averages) assumes that changes in feedback variables

occur only in response to temperature anomalies and

thus includes the ‘‘fast responses’’ (Gregory and Webb

2008) excluded byM1 (the radiative kernel-regression

technique). However, Andrews and Forster (2008) find

that the noncloud fast responses contribute little to

differences in feedbacks calculated using their ‘‘direct’’

method (similar to our M2) and their ‘‘climate’’

method (similar to our M1). Colman and McAvaney

(2011) also find insignificant or small rapid responses

by water vapor, lapse rate, or surface albedo in a GCM.

Thus, we do not expect fast responses to contribute to

the differences between methods for the feedbacks we

consider, especially across the ensemble average.

Long-term feedbacks are calculated by both methods,

but short-term feedbacks are only calculated with M1.

Since division by small (close to zero) temperature

changes over 20-yr results in unrealistically large feed-

back values, M2 is inadequate for short records.

c. Interannual metric

The interannual metric of feedback variability is the

standard deviation of deseasonalized, detrended global,

NH, or SH TOA flux anomalies. A linear least squares

trend is removed from the 20-yr time periods and, be-

cause of nonlinearity, a quadratic trend is removed from

the 100-yr periods. We then calculate the standard de-

viations of detrended TOA flux anomalies in an attempt

to summarize the general state of month-to-month

variability of a particular time period in a single value

(e.g., if the time series behaves wildly with a large range

TABLE 3. Global twentieth-century longwave water vapor,

longwave atmospheric temperature, and shortwave surface albedo

feedbacks (Wm22K21) calculated using both methods, described

in Table 2 and in the text. Twenty-first-century feedback estimates

derived from Soden and Held (2006) are listed in the bottom

row. Values given are the multimodel mean with one standard

deviation.

Water

vapor

Atmospheric

temperature

Surface

albedo

M1 1.69 6 0.28 22.73 6 0.40 0.20 6 0.13

M2 1.79 6 0.26 22.69 6 0.44 0.20 6 0.16

Soden and Held 1.8 6 0.18 23.2 6 0.3 0.26 6 0.08
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FIG. 1. Comparison of 100-yr feedbacks (Wm22K21) calculated with M1 and M2 for all three regions and variables: (left)–(right) the

globe, NH, and SH; (top)–(bottom) water vapor, atmospheric temperature, and albedo. Each dot represents one ensemble member. The

asterisks indicate the mean metric for each of the 13 models (colors). The blue line indicates the one-to-one correspondence. The re-

gression coefficients (rc) and significances (sig) of the nonzero regression slope using themodel-mean values (black line) are listed for each

comparison.
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of values or if it varies more calmly with values generally

closer to the zero mean). We use this metric to examine

whether large interannual swings in TOA flux anomalies

are indicative of larger long-term feedbacks. In contrast,

the interannual feedback ofColman andHanson (2013) is

calculated by regressing radiative perturbations between

adjacent 1-yr averages onto equivalent surface air tem-

perature perturbations (similar toM1) and thus estimates

feedbacks dealing with variability on 2-yr time scales.

d. Intra-annual metric

The intra-annual metric is the amplitude of the sea-

sonal cycle of a feedback variable that is removed before

the TOA flux anomaly calculation. We calculate the

seasonal cycle by averaging all the Januarys, Februarys,

and so on, over the length of each 20-yr slice or 100-yr

period. For the atmospheric variables, we use the sea-

sonal cycle at 850 hPa to avoid very large variability due

FIG. 2. The 100-yr-average seasonal cycle of (top) natural log of specific humidity at 850 hPa, (middle) atmospheric temperature at

850 hPa, and (bottom) surface albedo for CCSM3 (blue), GFDL CM2.0 (green), and GISS-E2-R (red) for the (left) the globe, (center)

NH, and (right) SH.
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to localized surface processes while still retaining the

large seasonal cycle in the lower troposphere compared

with higher altitudes. Figure 2 shows the seasonal cycles

averaged over the 100-yr period for three models. We

use this metric to examine whether large changes over

the seasonal cycle are indicative of large long-term

feedbacks: that is, whether the seasonal cycle is repre-

sentative of climate change (e.g., Hall and Qu 2006;

Knutti et al. 2006). Note that this metric is different

from the seasonal metric of Colman andHanson (2013),

which is calculated from radiative perturbations over

2-monthly steps.

We define the amplitude differently for each variable

and geographic area, with the goal of capturing the

maximum seasonal change signal. Seasonal amplitude

definitions are listed in Table 2. For water vapor and

atmospheric temperature, we use the difference between

the summer and winter seasons; for surface albedo, we

use the greatest seasonal rate of change. While the NH

dominates the global seasonal cycle for water vapor and

atmospheric temperature, for the surface albedo, the

NH controls the global cycle in the boreal winter and

spring, whereas the SH dominates the rest of the year.

Thus, we define the global seasonal surface albedo am-

plitude (Fig. 2g) as the average of the two maximum

months [February and March (FM)] minus the average

of the twominimummonths [July andAugust (JA)],We

define the NH seasonal amplitude as the change in

surface albedo between April and June because this

period has the largest (negative) rate of change (Fig. 2h).

This is similar to the definition used by Hall and Qu

(2006). We define the SH surface albedo seasonal am-

plitude as the change from June to August, the largest

(positive) rate of change (Fig. 2i). Since Hall and Qu

(2006) find a relationship by normalizing the percent

snow albedo change by the temperature change of the

same period, we also divide the albedo seasonal am-

plitudes by the corresponding surface air temperature

amplitudes and compute regressions with this ‘‘nor-

malized’’ seasonal amplitude metric.

e. Ensemble members and 20-yr time slices

Each model has a spread of metric values across en-

semble members and 20-yr slices. Ensemble members

from a singlemodel are not independent, nor are the five

20-yr slices within a member. The range among 20-yr

slices represents the uncertainty due to internal vari-

ability on the short time scale, cautioning the use of a

single 20-yr period to make inferences about a longer

period. To quantify this internal variability, we define

the spread for each model as the standard deviation of

the 20-yr values from all ensemble members of the

model divided by the average of the 20-yr values, expressed

as a percentage. This value is used as an estimate for

observational uncertainty when estimating long-term

feedback from reanalysis observations.

To examine the extent to which 20-yr metrics (intra-

annual, interannual, or feedback) can be used to estimate

corresponding 100-yr feedbacks, we perform regressions

between the short-term and long-term modeled quan-

tities. The significance of the regression coefficient is

determined by the p value for a two-tailed Student’s t

test using a t statistic and degrees of freedom of the re-

gression line and tested against the null hypothesis that

the regression coefficient is zero (i.e., the metrics are

unrelated). Results are judged to be significant at.95%

significance of a nonzero slope. The significant re-

gression slopes are subsequently used to estimate long-

term feedbacks from reanalysis observations.

We regress each model’s ensemble-average 20-yr

metric against the corresponding ensemble-average

100-yr feedback values (indicated by the 13 asterisks

shown in Figs. 1, 3–7, with solid black regression lines).

Our goal is to identify any relationships betweenmetrics

that hold across most models. No single model can be

identified as the ‘‘best’’ model; furthermore, individual

models tend to have limited ranges of feedback and

other metric values, increasing uncertainty in regression

calculations. Thus, we have more confidence in common

behavior in intermodel versus intramodel ensembles,

under the assumption that similarities across models are

more likely to correspond to actual climate behaviors.

Regressions through all 20- and 100-yr points (not

shown) yield similar slopes. These slopes have greater

significances and smaller standard errors; certain models

with more ensemble members counter the effects of

outliers, reducing the apparent uncertainty. However,

this regression methodology effectively makes the (un-

supported) assumption that models with more ensemble

members are closer to reality. We also calculate the

regressions using the first ensemble members of each

model. Again, this results in smaller standard errors

and higher significances for most cases. However, this

method has the disadvantage of excluding infor-

mation that would improve the behavior of some

models.

Also, since there is variance in both the 20- and 100-yr

data, we ideally could weigh each average model value

by the variance in both dimensions when computing the

linear regression coefficient for the 13 model points.

Attaching weights to eachmodel based on the inverse of

the variance of the 20-yr data (we could not incorporate

the variance of the 100-yr data since not all models have

multiple ensemble members), we find little difference

in the regressions compared with the unweighted

regressions. Thus, we focus on the regressions with
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the unweighted ensemble-average values. In this way,

all models are treated equally rather than giving more

weight to models with more ensemble members. We

note below when conclusions are sensitive to the specific

methodology.

Our analysis uses multiple ensemble members, whereas

most other studies select one ensemble member per

model (e.g., Colman and Hanson 2013), effectively

underestimating the amount of internal variability and

thus the uncertainty. Among other factors, Masson and

Knutti (2013) demonstrate that care should be taken in

the interpretation of short-term to long-term relation-

ships across models when the ensembles are small.

Some relationships between short-term feedback met-

rics and long-term feedbacks are sensitive to the method

by which feedbacks are calculated; others depend on

which models are included. Given the lack of an objec-

tive technique to justify exclusion of models, we include

all the models available to us. A thorough analysis of

the dependence of these relationships on which models

are included is beyond the scope of this paper, but re-

gressions excluding certain outlier models are noted

below.

f. Estimating long-term feedbacks using
reanalysis data

We estimate long-term feedbacks from observations,

assuming the modeled relationships between 20-yr met-

rics and 100-yr feedbacks also hold for the actual climate

system. We use relationships with regressions signifi-

cantly different from zero at the 95% level, along with

reanalysis observations, to estimate long-term feedbacks,

accounting for approximate error in the reanalysis data

and the standard error in the regression slope and y in-

tercept. We use the ERA-Interim product, derived by

assimilating observational data into a forecast model to

produce the global state of the atmosphere from 1979 to

the present (Dee et al. 2011), as the ‘‘truth.’’ We analyze

20yr (1989–2008) ofmonthly averages of specific humidity

and atmospheric temperature from 1000 to 10mb and

surface fields of forecast albedo and 2-m above-surface air

temperature in the same way we analyze the model data.

As an estimate of the reanalysis uncertainty due to the

limited observational period, we use the spread in 20-yr

model values. Our simple methodology is similar to but

underestimates the total uncertainty of the feedback es-

timation framework in Masson and Knutti (2013).

3. Results and discussion

Our goal is to test how well three short-term feedback

metrics (20-yr feedback, standard deviation of TOA flux

anomalies, and amplitude of seasonal cycle of feedback

variables) represent long-term feedbacks. We discuss

relationships first between 20- and 100-yr values for the

same metric and then between 20-yr metrics and 100-yr

feedbacks. Long-term feedback estimates, when appro-

priate, are presented within each section.

a. Short-term metrics

The most desirable short-term metric would be rela-

tively insensitive to the particular 20-yr slice used, be-

cause then one 20-yr period of observations (e.g., the

existing short record) would be sufficient for exploring

relationships with long-term feedbacks. Table 4 sum-

marizes the 20–100-yr comparisons for the feedback,

interannual metric, and intra-annual metric. The spread

(percent ratio between the standard deviation and mean

of 20-yr values) of the 20-yr feedbacks (M1) is large

(14%–47%), indicating that a single 20-yr observation

cannot be used to estimate the 100-yr feedbacks with

much confidence. However, the correspondence between

the 20- and 100-yr feedbacks usingM1 is encouraging and

discussed further in section 3b.

TABLE 4. Regression slopes (unitless) with standard errors for 20- (short term) to 100-yr (long term) same-metric comparisons for all

variables and regions using the 13 model means. All significances are.99.99% unless otherwise noted. Regular and normalized [section

3d(2)] regressions are listed for the intra-annual surface albedo metrics.

Metric Water vapor Atmospheric temperature Surface albedo

M1 feedback

Global 0.38 6 0.12 (98.9%) 0.41 6 0.15 (98.0%) 1.21 6 0.34 (99.6%)

NH 0.45 6 0.18 (97.4%) 0.43 6 0.23 (91.0%) 0.97 6 0.26 (99.7%)

SH 0.28 6 0.11 (97.6%) 0.34 6 0.13 (97.6%) 1.41 6 0.25 (99.9%)

Interannual

Global 1.01 6 0.02 1.00 6 0.02 1.07 6 0.09

NH 1.01 6 0.02 1.01 6 0.02 1.04 6 0.05

SH 1.01 6 0.01 1.00 6 0.02 1.13 6 0.15

Intra-annual Normalized

Global 1.06 6 0.04 0.99 6 0.03 0.97 6 0.05 0.88 6 0.04

NH 1.00 6 0.00 1.00 6 0.00 1.00 6 0.00 1.00 6 0.00

SH 1.01 6 0.01 1.00 6 0.00 0.99 6 0.04 0.85 6 0.04
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The spread in the 20-yr standard deviation (approxi-

mately 10%) suggests that one 20-yr period of obser-

vations of this metric may be better, though still not

ideal, for representing the 100-yr feedback. Figure 3

shows examples of interannual, as well as intra-annual,

comparisons for the NH and all three variables. While

the regression lines in Figs. 3b,d,f indicate near one-to-

one correspondence, the 20-yr standard deviation un-

derestimates the 100-yr standard deviation, as indicated

by the position of the points above the one-to-one line.

This is likely because one 20-yr period does not capture

all the extremes and low frequency cycles of the longer

period. However, the regressions are all significant at

.99.9%, and a slope of 1 is within the standard errors.

The reanalysis 20-yr standard deviation is marked by

the vertical black line, which is within the range of

modeled standard deviations for all variables and re-

gions, except NH surface albedo.

The spread in the 20-yr seasonal cycle amplitude for

each model is smaller still (about 1%). Also, the sea-

sonal cycles differ more between models than within

a single model, as seen in Figs. 3a,c,e. Almost all com-

binations of regions and variables show near one-to-one

correspondence (regression slopes of 0.97–1.06), signif-

icant at .99.9%. The normalized surface albedo sea-

sonal cycles for the SH and global regions have

regression slopes ,1: 0.85 and 0.88, respectively (Table

4). These smaller regression slopes are due to the in-

fluence of one or two models; most models fall on the

one-to-one line. The vertical black lines mark the am-

plitudes of the 20-yr reanalysis data, which lie within the

model spread for water vapor and atmospheric temper-

ature seasonal amplitudes, but are less than almost all

models’ surface albedo amplitudes.

Because of the small spread in 20-yr seasonal ampli-

tude values (i.e., 20-yr seasonal amplitude is a relatively

stationary measure), we might have more confidence in

any relationship found between the seasonal amplitude

and 100-yr feedbacks than using other metrics that are

more sensitive to the time slice. However, as shown

below, many of the relationships found between 20-yr

seasonal amplitudes and 100-yr feedbacks depend on

the inclusion of a few models that behave differently

from the rest. Since models have distinct seasonal am-

plitudes, these can be easily validated against observa-

tions, but the best performingmodel in terms of seasonal

amplitude does not necessarily predict the correct long-

term feedback (Knutti 2010).

b. 20-yr feedbacks versus 100-yr feedbacks

Regression slopes between 20- and 100-yr feedbacks

calculated with M1 (the combined radiative kernel

technique-regression approach) along with standard

errors and significances are summarized in Table 4 and

shown in Fig. 4. In general there is positive correspon-

dence, and M1 produces relationships with positive

slopes significantly different from zero at the 95% level

for all variables and regions except NH atmospheric

temperature. Note, however, that, because of the large

intramodel spread of the 20-yr feedbacks (14%–47%),

we cannot accurately calculate feedbacks, despite the

highly significant relationships between 20- and 100-yr

feedbacks.

1) WATER VAPOR AND ATMOSPHERIC

TEMPERATURE

The regression slopes are positive and ,1 for all

water vapor and atmospheric temperature feedbacks

calculated using M1, suggesting that stronger 20-yr

feedbacks correspond to stronger 100-yr feedbacks. In

contrast, Colman and Hanson (2013) find negative,

though not significant, global relationships for their water

vapor and lapse rate decadal versus transient feedbacks.

One reason for this apparently conflicting result could

be the fact that the decadal feedback (similar to M1) in

Colman and Hanson (2013) is computed in a different

way than the transient feedback (similar toM2), whereas

our short-term and long-term feedbacks are calculated

with the same method (M1). Another difference is that

several models have positive decadal lapse rate feed-

backs in Colman and Hanson (2013), whereas our atmo-

spheric temperature short-term feedbacks are all negative.

For a majority of models, 20-yr feedbacks are smaller

than 100-yr feedbacks, as indicated by the position of the

points on the left (right) side of the blue equal-strength

line for water vapor (atmospheric temperature) in

Figs. 4a–f. The two CGCMs have much larger differ-

ences between 100- and 20-yr feedbacks compared with

other models, as indicated by the greatest horizontal

distances from the one-to-one lines, and omitting them

from the regression calculation results in larger slopes.

Slopes remain below 1 because models with high 20-yr

water vapor or atmospheric temperature feedbacks tend

to have similar or stronger 20-yr feedbacks compared

with 100-yr feedbacks, while models with smaller 20-yr

feedbacks are more likely to have weaker 20-yr feed-

backs than 100-yr feedbacks.

2) SURFACE ALBEDO

The surface albedo slopes are positive, and most

models fall on or near the one-to-one line, indicating

near-equal strength in 20- and 100-yr feedbacks calcu-

lated with M1. Obvious exceptions include both CGCMs

and GISS-AOM. Global and NH regression slopes in-

cluding all models are within the standard error of a slope

of 1, but the SH regression slope is.1 by more than the
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FIG. 3. Comparison of 20- and 100-yr (left) seasonal cycle amplitude (unitless) and (right) standard

deviation (Wm22) for NH: (top) water vapor, (middle) atmospheric temperature, and (bottom)

surface albedo. See Fig. 1 for conventions. The vertical lines indicate the reanalysis values.
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standard error. For the globe and NH, the CGCMs

have near-zero or negative 100-yr feedbacks and

positive but relatively small 20-yr feedbacks. Excluding

these models decreases the global and NH regression

slopes slightly while retaining significance. For the SH,

omitting the CGCMs alters the slope little. However,

exclusion of GISS-AOM, which has a much smaller

20-yr feedback than 100-yr feedback in the SH and is

FIG. 4. Comparison of 20- and 100-yr feedbacks (Wm22K21) calculated using M1 for (top)–(bottom) water vapor, atmospheric

temperature, and surface albedo for (left)–(right) the globe, NH, and SH. See Fig. 1 for conventions.
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an obvious outlier in other SH albedo regressions as

well, slightly decreases the regression slope, bringing

it closer to 1.

Surface albedo regression slopes are closer to 1 than

the water vapor and atmospheric temperature regression

slopes. Most models have similar albedo feedback mag-

nitude between 20- and 100-yr feedbacks or are evenly

split between those having larger 100- or 20-yr feedbacks.

However, onemust be careful in the consideration of the

models that do not fit the general pattern of near-equal

strength between 20- and 100-yr feedbacks.

c. 20-yr interannual metric versus 100-yr feedbacks

The interannual metric shows less intramodel spread

and thus may be a more promising proxy for 100-yr

feedbacks. Regression slopes between 20-yr standard

deviations of TOA flux anomalies and 100-yr feedbacks,

along with their standard errors and significances, are

summarized in Table 5. For water vapor and atmo-

spheric temperature, M1 regressions are significantly

different from zero at the 95% level, except for NH at-

mospheric temperature. For surface albedo, the only

relationship significantly different from zero is for the

SH M2 feedback. Using 10- and 20-yr averages for M2

produces slightly different values but does not alter the

results. For the significant relationships, we incorporate

the spread to estimate a range of feedbacks based on the

reanalysis data.

1) WATER VAPOR AND ATMOSPHERIC

TEMPERATURE

Regressions between 20-yr standard deviations and

100-yr feedbacks for water vapor are positive in all re-

gions for both methods but only significant at the 95%

level for M1. The NH and SH regressions with M1

feedbacks are shown in Figs. 5a,b and the global plot

(not shown) is qualitatively similar. The positive re-

gression slopes indicate that models with larger inter-

annual variability, as measured by the standard deviation

of monthly LWwater vapor TOAflux anomalies, tend to

have larger 100-yr water vapor feedbacks. Again, the

CGCMs visually stand apart from the rest of the models

in the NH (Fig. 5a), and excluding those models from the

regression yields a steeper slope of 1.91 (99.9%)

Wm22K21 per Wm22. Note that the magnitude of

100-yr water vapor feedbacks tends to be larger in the

SH (and globe) than in the NH.

Regressions of 20-yr standard deviations and 100-yr

M1 feedbacks for atmospheric temperature are negative

for all regions, implying that models with larger inter-

annual variability tend to have larger negative feed-

backs, but the slopes are only significantly different from

zero for the globe and SH. The regression slopes for M2

are positive but not significantly different from zero

because of large scatter. The NH and SH regressions

with M1 feedbacks are shown in Figs. 5c,d, and the

global plot (not shown) is qualitatively similar. The mag-

nitudes of SH (and global) 100-yr M1 feedbacks tend to

be slightly larger than NH values. The CGCMs behave

differently than the rest of the models in both the NH

and SH. Excluding these models increases the magni-

tude of the regression slopes and the significances to

21.70 (99.9%), 21.25 (99.4%), and 21.61 (99.9%)

Wm22K21 per Wm22 for the globe, NH, and SH, re-

spectively, corresponding to slope increases ranging

from 0.4 to 0.7Wm22K21 per Wm22.

For both water vapor and atmospheric temperature,

significant slopes were obtained only using M1 (radia-

tive kernel-regression method). M2 (difference in be-

ginning and ending values) results in much more scatter

of the points around the regression line. This association

also holds regardless of the specific regression method-

ology (model-mean points, all 20-yr slices, or first en-

semble member of each model) and is a reflection of

the differences between M1 and M2 100-yr feedbacks

(Fig. 1), suggesting that the interannual metric is

more representative of the year-to-year feedback var-

iability behavior measured by M1 as opposed to the

TABLE 5. Regression slopes (Wm22K21 per Wm22) with standard errors (and significances) for 20-yr standard deviations of monthly

TOA flux anomalies and 100-yr feedbacks for all three regions and variables and both feedback methods. Regressions with .95%

significance are in boldface.

Region Water vapor Atmospheric temperature Surface albedo

Global

M1 1.48 6 0.49 (98.8%) 21.11 6 0.49 (95.5%) 0.57 6 1.74 (25.2%)

M2 0.43 6 0.60 (51.5%) 0.26 6 0.65 (29.8%) 1.04 6 2.12 (36.7%)

NH

M1 1.55 6 0.59 (97.7%) 20.54 6 0.56 (64.3%) 1.32 6 0.90 (82.8%)

M2 0.99 6 0.76 (78.4%) 0.05 6 0.73 (5.6%) 0.51 6 1.05 (36.3%)

SH

M1 1.34 6 0.39 (99.5%) 21.19 6 0.47 (97.2%) 1.66 6 1.00 (87.5%)

M2 0.35 6 0.58 (44.0%) 0.43 6 0.70 (45.0%) 3.09 6 1.27 (96.6%)
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FIG. 5. Comparison of 20-yr standard deviations of monthly TOA flux anomalies (Wm22) and

100-yr feedbacks (Wm22K21) calculated using M1 for (top) water vapor, (middle) atmospheric

temperature, and (bottom) surface albedo in the (left) NH and (right) SH. The vertical lines indicate

the reanalysis values. See Fig. 1 for conventions.
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century-scale behavior quantified by M2. That is, regress-

ingTOAflux andTas anomalies capturesmore of the year-

to-year feedback variability behavior (e.g., ENSO) than

M2 does. Since the twentieth-century anomalies do not

correspond to a large climate trend, the interannual

variation stand out more in the M1 calculation. Note

that this result may differ for simulations with a larger

climate trend component.

Since there are significant regressions and the re-

analysis values fall within the range of modeled values

for all regions for water vapor, we calculate the long-

term feedback using the reanalysis values and regression

relationships (e.g., solid lines in Figs. 5a,b). We estimate

values of 1.67 (1.48–1.91), 1.24 (0.99–1.53), and 1.8 (1.6–

2.04)Wm22K21 for the globe,NH, and SH, respectively,

where the ranges correspond to minimum and maximum

feedbacks calculated using the best-fit slopes 61 stan-

dard error, uncertainty in the y intercept, and the spread

in the 20-yr model values as an estimate of the obser-

vational error. For atmospheric temperature, feedback

estimates for the globe, NH, and SH are22.75 (22.52 to

22.91),22.36 (22.0 to22.62), and22.67 (22.45 to22.84)

Wm22K21, respectively.

2) SURFACE ALBEDO

Regressions between 20-yr standard deviations and

100-yr feedbacks for surface albedo are positive; models

with large interannual variability tend to have large

100-yr feedbacks. However, only the SH slope using M2

is significantly different from zero. The M1 regression

slopes are smaller than M2 regression slopes globally

and in the SH, but the reverse is true for the NH. We

showNH and SH regressions withM1 feedbacks in Figs.

5e,f for consistency with atmospheric temperature and

water vapor.

For the NH, theM1 regressions slopes are over twice

the magnitude of the M2 slopes. In both cases, the

CGCMs have negative surface albedo feedbacks as

opposed to the other models (Fig. 1h). Excluding CGCMs

results in increased significance and a lower slope for M1

(1.12; 99.7%); the M2 slope also decreases.

Using the 100-yr M2 feedback (not shown) instead

of M1 (Fig. 5f) for the SH regression, the slope nearly

doubles, and the significance increases to.95%. This is

due almost entirely to the fact that the magnitude of

ECHAM’s 100-yr M2 feedback is twice as large as the

M1 feedback (see Fig. 1i); most other models closely

follow one-to-one correspondence between M1 and M2

feedbacks. Thus, inclusion of ECHAM results in

a steeper and more significant slope for M2 regressions

with 20-yr SH surface albedo standard deviation, high-

lighting the high sensitivity of the albedo feedback es-

timates on model choice.

d. 20-yr intra-annual metric versus 100-yr feedbacks

Colman and Hanson (2013) do not find significant re-

lationships between transient climate change and decadal

or interannual and feedbacks, but they find weak positive

correlations between seasonal and transient feedbacks for

global LWwater vapor andNH lapse rate, significant at the

90% level. They also find that seasonal hemispheric feed-

backs are closer to those on longer time scales than global

feedbacks are. We find significant relationships between

the intra-annual metric and long-term water vapor and

temperature feedbacks, though we use a fundamentally

differentmetric. UnlikeHall andQu (2006), we do not find

a significant relationship for surface albedo. Table 6 sum-

marizes regression slopes and significances for 20-yr

seasonal amplitude and 100-yr feedback comparisons.

1) WATER VAPOR AND ATMOSPHERIC

TEMPERATURE

For water vapor, regression slopes of 20-yr seasonal

cycle amplitudes versus 100-yr M2 feedbacks are positive

TABLE 6. Regression slopes with standard errors (and significances) for 20-yr seasonal cycle amplitudes and 100-yr feedbacks for all

three regions and variables and both methods. Units are Wm22K21 per natural log of maximum specific humidity divided by minimum

specific humidity, Wm22K21 per K, and Wm22K21 per percent albedo change for water vapor, atmospheric temperature, and surface

albedo, respectively. Units for the normalized surface albedo regressions are Wm22K21 per percent albedo change. Regressions with

.90% significance are italicized, and those with .95% significance are in boldface.

Region Water vapor Atmospheric temperature Surface albedo

Global Normalized

M1 2.66 6 1.89 (81.5%) 20.19 6 0.31 (44.4%) 0.00 6 0.04 (1.3%) 0.08 6 0.11 (53.8%)

M2 3.48 6 1.57 (95.2%) 0.02 6 0.35 (4.9%) 20.05 6 0.05 (67.7%) 20.01 6 0.14 (6.9%)

NH Normalized

M1 1.55 6 0.78 (92.6%) 20.22 6 0.11 (93.0%) 0.04 6 0.04 (71.0%) 0.48 6 0.27 (90.3%)

M2 2.09 6 0.76 (98.2%) 20.27 6 0.14 (91.5%) 0.01 6 0.04 (13.2%) 0.33 6 0.31 (68.9%)

SH Normalized

M1 1.34 6 1.12 (74.2%) 20.13 6 0.13 (67.2%) 20.01 6 0.03 (31.6%) 0.03 6 0.01 (89.9%)

M2 2.68 6 0.96 (98.2%) 20.30 6 0.13 (95.7%) 20.04 6 0.03 (77.3%) 0.02 6 0.02 (53.6%)

15 DECEMBER 2013 DALTON AND SHELL 10065



and significantly different from zero at the 95% level in all

regions (Fig. 6); large short-term seasonal cycle ampli-

tudes correspond with large long-term feedbacks. M1

regressions are also positive but slightly smaller in mag-

nitude and less significant. Interestingly, this is in contrast

to the interannual metric, where we find more significant

and larger magnitude slopes using M1 as opposed to M2

(discussed more below). The global regression slope is

larger, but it is less significant than the hemispheric re-

gressions because the global seasonal amplitude is es-

sentially a residual between the NH and SH seasonal

cycles, which are out of phase. The global plot (not

shown) is qualitatively similar to the NH plot (Fig. 6a)

since the NH dominates the global water vapor seasonal

cycle (note the larger values in Fig. 6a versus Fig. 6b).

For atmospheric temperature, NH and SH relation-

ships between 20-yr seasonal amplitude and 100-yr

feedback are negative, indicating again that models with

larger 20-yr seasonal cycle amplitudes tend to have

larger (more negative) 100-yr feedbacks. Again, there is

no significant global relationship. In the NH, regression

slopes are similar between feedback calculation methods

and significantly different from zero at the 90% level.

However, using 10-yr averages instead of 20-yr averages

decreases the significance of the NH M2 regression,

suggesting that there may be some decadal variability

biasing the NH M2 feedbacks. In the SH, the M2 re-

gression is significantly different from zero at the 95%

level, but the slope is twice as large as the M1 regression

slope, which is not significant. Using 10-yr averages in

M2 calculations reduces the significance in the SH by

only about 1%. This difference in M2 versus M1 slopes

is partly due to the fact that the M2 SH atmospheric

temperature feedback in ECHAM is markedly smaller

than the M1 feedback, as noted earlier (Fig. 1e). In Figs.

6c,d, we present regressions with M2 feedback calcula-

tion for consistency with the water vapor plots.

Based on the relationship between 20-yr seasonal

amplitude and 100-yr M2 feedback, we estimate the NH

and SHwater vapor feedbacks to be 1.70 (1.09–2.31) and

1.95 (1.51–2.40) Wm22K21, respectively. Estimated

atmospheric temperature feedbacks are 22.58 (21.03

to 24.11) Wm22K21 for the NH and 22.65 (22.12 to

23.17) Wm22K21 for the SH. Because the intramodel

spread is small for the intra-annual metric, the uncer-

tainty related to using a single 20-yr observation is re-

sponsible for only a small part of this range.

When we use model-mean points for the intra-annual

metric (seasonal cycle), M2 results in more significant

relationships than M1. However, using all 20-yr slices or

just the first ensemble member results in significant

(.99%) regressions for both M1 and M2 for all water

vapor and NH and SH atmospheric temperature

feedbacks. Since models have different numbers of en-

semble members, this suggests that a fewmodels may be

responsible for the discrepancy between M1 and M2

feedback regressions. Thus, we do not have confidence

that feedback calculation methodology has a consistent

influence on the significances of the regressions, though

it may matter for some regions.

Figure 1 indicates that M1 feedbacks are generally

weaker and have smaller ranges than M2 feedbacks,

which tends to decrease the M1 regression slopes com-

pared with M2 (regardless of the regression methodol-

ogy). For seasonal amplitude, the difference between

the M1 and M2 regression slopes can be largely ex-

plained by the slope of the M1 to M2 feedback re-

gression (Fig. 1), but this cannot explain the larger M1

slopes for the interannual metric. Many of the differ-

ences between methods, however, can be related to

anomalous feedback behavior of one or twomodels. For

example, ECHAM has a smaller water vapor feedback

in SH for M2 compared with M1. Since ECHAM’s in-

terannual metric is on the large side (Fig. 5b), the M2

interannual regression has a smaller slope than M1. The

intra-annual metric for ECHAM is on the smaller side

(Fig. 6b), resulting in a higher slope for M2.

2) SURFACE ALBEDO

We do not find any significant (95%) relationships

between 20-yr surface albedo seasonal amplitude and

100-yr feedbacks for either feedback calculationmethod

(Table 6). Regressions with M2 for the NH and SH are

shown in Fig. 7 for consistency with Fig. 6. The global

relationship (not shown) is similar to that of the SH.

Note that the slopes and significances are highly sensi-

tive to model selection and regression methodology.

Regression slopes using the normalized seasonal am-

plitude metric are significantly different from zero at the

90% level for both the NH and SH via M1. Regression

slopes for M2 are not significant but within standard

errors of M1 slopes. The positive relationship in the NH

is weaker than but consistent with the results of Hall and

Qu (2006). Our results may beweaker becausewe use all

NH points, including both snow cover and sea ice con-

tributions. Hall andQu (2006) focus on snow cover using

only NH land points. In fact, Colman (2013) finds a sig-

nificant positive relationship between seasonal and cli-

mate change for NH snow albedo feedbacks but not for

the NH sea ice albedo feedback. Snow feedbacks are

more dominant in the NH, where there is more land

area, while the SH ismore dominated by sea ice changes,

which respond to more than local temperature (Robock

1980). This may explain why normalizing the SH sea-

sonal amplitude does not improve the relationship with

M2 feedbacks.
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4. Conclusions

The uncertainty in the climate sensitivity of current

GCMs is due in part to the spread of individual climate

feedbacks (Bony et al. 2006). One approach to constrain

long-term climate sensitivity is to use short-term satel-

lite data. For an observational metric to be useful, both

a strong physical relationship and a strong correlation

between the short-term metric and long-term feedback

are needed. We test three short-term (20 yr) feedback

metrics (20-yr feedbacks, standard deviation of TOA

flux anomalies, and amplitude of seasonal cycle of

feedback variables) to see how well they represent long-

term (100yr) feedbacksusing twentieth-century simulations

from 13 GCMs. Several realizations of the short-term

metrics are compared with long-term LW water vapor,

LW atmospheric temperature, and shortwave surface al-

bedo feedbacks calculated via two methods.

The first method (M1) regresses the deseasonalized

monthlyTOAfluxanomalies against surface air temperature

FIG. 6. Comparison of 20-yr seasonal cycle amplitudes and 100-yr feedbacks (Wm22K21) calculated using M2 for

(top) water vapor and (bottom) atmospheric temperature in the (left) NH and (right) SH. The vertical lines indicate

the reanalysis values. See Fig. 1 for conventions.
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anomalies. For the second method (M2), we divide the

difference in the 20-yr TOA flux anomalies between the

end and beginning of the run by the corresponding dif-

ference in surface air temperature anomalies. While

mean feedbacks are similar between the two techniques,

water vapor and atmospheric temperature M2 feed-

backs are generally larger than M1 feedbacks, and the

spread in intramodel means is larger as well. M2 cap-

tures only long-term feedback processes, while M1 in-

cludes the effects of some shorter-scale variability. The

fact that the two methods produce different results

suggests that feedbacks behave differently on different

time scales. Surface albedo feedbacks tend to be similar

for the two methods, suggesting that nonlinearities in

albedo feedbacks with respect to time scale are small.

However, some models have very different M1 versus

M2 albedo feedbacks. Thus, attention should be paid to

the specific methodology used to calculate feedbacks.

Note though that we expect the two to converge

somewhat as the climate change signal gets larger and

dominates shorter-term variability in the twenty-first

century.

FIG. 7. (top) Comparison of 20-yr seasonal cycle amplitudes and 100-yr feedbacks (Wm22K21) calculated using

M2 for surface albedo in the (left) NH and (right) SH. (bottom)As in (top), but with seasonal amplitudes normalized

by the respective seasonal amplitudes in surface air temperature. The vertical lines indicate the reanalysis values. See

Fig. 1 for conventions.
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The short-term intra-annual metric may be useful

because it is relatively stationary over the twentieth

century as exemplified by the small (,1%) spread

(Fig. 3). Thus, it can be closely estimated from a single

20-yr observation, and there will be less observational

uncertainty for any relationship found between the

seasonal cycle amplitude and 100-yr feedback than for

other relationships. The spreads in the 20-yr interannual

metric and feedbacks are .10%, and the metrics over-

laps considerably among models. For the later calculation

of feedback estimates, we use these spreads as error esti-

mates for the uncertainty in reanalysis observations

due to the short time period.

The relationships between the 20-yr interannual

metric and 100-yr feedbacks are significant for water

vapor and global and SH atmospheric temperature but

only for feedbacks calculated with M1. On the other

hand, the only significant relationship for albedo is in the

SH using M2, suggesting processes operating on differ-

ent time scales.

Relationships between 20-yr seasonal cycle ampli-

tudes and 100-yr feedbacks are significantly different

from zero (.95%) for water vapor for all three regions

but only for feedback calculation M2. Intra-annual

atmospheric temperature relationships with M2 are

significant at the 90% level but only for NH and SH.

More regression slopes are significant when all 20-yr

points or just the first ensemble members of each model

are used rather than the model means, but we have less

confidence in these methodologies, since they either

emphasize particular models or include fewer data. We

choose to be conservative and use the regression meth-

odology indicating the lowest significances. We do not

find any significant intra-annual relationships for surface

albedo for any region, though our NH results using M1

are generally consistent with the results of Hall and Qu

(2006).

Many of these relationships depend on the inclusion of

a few models that behave differently from the rest. Even

though several relationships are improved by excluding,

for example, the CGCMs, we cannot exclude any model

from the analysis on the grounds that they behave differ-

ently from the rest of the models. Without further in-

formation, they remain legitimate representations of the

climate system. Additionally, the outlier models vary for

the particularmetrics and regions.Development of robust,

objective criteria to select proper models to include is

outside the scope of this paper but important (B. M.

Sanderson and R. Knutti 2012, personal communication).

Based on the seasonal amplitude regressions, estimates

of the NH and SH water vapor feedbacks are 1.70 (1.09–

2.31) and 1.95 (1.51–2.40) Wm22 K21, respectively,

compared with interannual regression estimates of 1.24

(0.99–1.35) and 1.8 (1.6–2.04) Wm22K21. Note that

different feedback calculation methods are used for the

seasonal (M2) and interannual (M1) estimates. For at-

mospheric temperature, estimated M2 feedback values

from seasonal amplitudes are 22.58 (21.03 to 24.11)

Wm22K21 for the NH and 22.65 (22.12 to 23.17)

Wm22K21 for the SH; M1 estimates derived from in-

terannual regressions are 22.36 (22.0 to 22.62) and

22.67 (22.45 to 22.84) Wm22K21. These values are

within the range of Table 3 values, so the method pro-

duces reasonable feedback estimates. Unfortunately,

the range of model behavior results in a large un-

certainty. In the case of the interannual metric, natural

variability within each model contributes to the uncer-

tainty, reducing our ability to estimate the interannual

behavior fromone 20-yr time slice. For both the interannual

and intra-annual metrics, uncertainty in the intermodel re-

lationships between 20-yr metrics and 100-yr feedbacks

contributes to the feedback uncertainty. Thus, this method

cannot provide a more constrained feedback estimate

without an objective methodology for weighing the

importance or correctness of different models.

Finally, we highlight that many of the 20-yr metric

versus 100-yr feedback regressions differed based on the

100-yr feedback calculation method. Interannual metric

regressions are better with M1 feedbacks because the

standard deviation of TOA flux anomalies (interannual

metric) characterizes the year-to-year variability, and

theM1 feedback calculation is based on the year-to-year

covariability of TOA flux anomalies and surface air

temperature anomalies. On the other hand, the more

significant regression slopes for the intra-annual metrics

could be with either M1 or M2, depending on the specific

regression methodology and region.

Though some of the differences between methods

1 and 2 can be explained by the difference in feedback

magnitudes for a model, this work highlights that care

should be taken when drawing conclusions about long-

term climate change feedbacks from short-term ob-

served climate feedbacks, since the feedback methods

are emphasizing somewhat different time scales and

processes. In particular, the feedback method resulting

in the more significant regression slopes may change

with time, as century-scale anthropogenic warming be-

comes more important in the twenty-first century.
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