Valence Change Ability and Geometrical Occupation of Substitution Cations Determine the Pseudocapacitance of Spinel Ferrite XFe₂O₄ (X = Mn, Co, Ni, Fe)

Chao Wei,†‡ Zhenxing Feng,‡§ Murat Baisariyev,† Linghui Yu,† Li Zeng,† Tianpin Wu,§ Haiyan Zhao,‖ Yaqin Huang,Δ Michael J. Bedzyk,¶§ Thirumany Sritharan,† and Zhichuan J. Xu††

†School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
‡School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
§Graduate Program of Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
¶Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
∥X-ray Science Divisions, Argonne National Laboratory, Lemont, Illinois 60439, United States
*Chemical and Materials Engineering Department, University of Idaho, Idaho Falls, Idaho 83401, United States
ΔCollege of Materials Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China

Supporting Information

In recent years, spinel ferrites have attracted much attention as a merging material for oxygen reduction reaction (ORR),¹ as an advanced battery electrode,² and as supercapacitors.³,⁴ Generally, the spinel structure can be described by a formula \([X^{2+}_2\text{Fe}^{3+}_2\text{O}_4\]) where \(X^{2+}\) can be various cations (tetrahedral and octahedral sites, respectively. Depending on the cation distribution, a spinel can be normal (\(\lambda = 1, 100\% \ X \text{ in tetrahedral sites}\)), inverse (\(\lambda = 0, 100\% \ X \text{ in octahedral sites}\)), or partially inverse (\(0 < \lambda < 1\)). Recent studies also showed that this substitution affects their electrochemical performance. For example, Mn substituted ferrites show nearly the same ORR activity as Pt/C in alkaline and Mn substitution also influences the capacitance more than other metal ion substituted ferrites.¹,¹⁰ Such difference on electrochemical performance could be ascribed to the type of substituent cations and their influence. However, no systematic mechanistic investigation has been carried out. This lack of knowledge hinders the understanding of the substitution effects on the performance and, thus, the development of spinel ferrites as energy materials.

In this communication, we report an investigation on the pseudocapacitance performance of spinel ferrites using an in situ X-ray absorption technique. As the pseudocapacitive behavior is associated with redox reactions of metal ions in the near-surface regions of oxides,¹¹,¹² ferrite nanoparticles with diameters less than 10 nm were chosen to ensure the dominant contribution of the surface to X-ray absorption signals. In situ X-ray near edge structure (XANES) analysis was first conducted to screen the substitutions of Mn, Co, Ni, and Fe. The ability of the substitution cations to change their valence state within the spinel ferrite frame was found critical for offering pseudocapacitance. The rational was then given to the inversion degree, \(\lambda\). The occupation of Mn cations in MnFe₂O₄ was further varied by heat treatment and investigated by extended X-ray absorption fine structure (EXAFS). The occupation of Mn cations was found influential in determining the pseudocapacitive performance of MnFe₂O₄.

\[
\text{XFe}_2\text{O}_4 \ (X = \text{Fe, Ni, Co, and Mn}) \text{ nanoparticles were synthesized by a modified thermal decomposition method.}^{13} \text{ The electrodes were made by loading nanoparticles onto Vulcan carbon and the nickel foam was used as the current collector. Transmission electron microscopy (TEM) images (Figure 1a–d) show that these nanoparticles are well-dispersed on carbon and the size of nanoparticles is in the range of 7–9.5 nm (Figure S1). Synchronous X-ray diffraction confirms their phase purity (Figure 1e). Figure 2a shows the representative cyclic voltammetry of these ferrites at a scan rate of 5 mV s⁻¹ in 1 M Na₂SO₄. Clearly, MnFe₂O₄ has the largest capacitive area of all four ferrites. Figure 2b shows the specific capacitance of these ferrites normalized by particle mass and by specific surface area, respectively. The double layer capacitance contribution of Vulcan carbon (Figure S2) was subtracted according to the method we reported before.}^{14} \text{ The mass specific capacitance of MnFe₂O₄ is ~7 times higher than that of either Fe₂O₃ or NiFe₂O₄ and ~5 times higher than that of CoFe₂O₄. To exclude the surface area impact, the specific surface area of nanoparticles was measured by BET method and the capacitance of nanoparticles (after subtraction of carbon contribution) was normalized by their surface area to give the specific capacitance. Again, MnFe₂O₄ is remarkably higher than others. CoFe₂O₄ and NiFe₂O₄ show slight improvement in surface specific capacitance over Fe₂O₃.}

Received: February 19, 2016
Revised: June 11, 2016
Published: June 13, 2016
These results indicate that the substitution of Mn in X of XFe2O4 increased the capacitance significantly.

To understand the underpinning mechanism, we performed in situ XAS measurements using a cell as shown in Figure S3. Because the contribution from the surface and near surface regions of the nanoparticles is dominant in our case, XAS can be employed to investigate the local chemistry changes of both Fe and the substitution cations X associated with the pseudocapacitive electrochemistry. Figure 3 shows K-edge XANES of these ferrites at applied potentials from 0 to 0.9 V vs Ag/AgCl. Clearly, only Mn exhibits significant edge shifts with the variation of potential. Figure 3a shows the Mn XANES of MnFe2O4 at the potential of 0.084, 0.484, and 0.884 V (the spectra collected at the potentials of 0, 0.284, and 0.684 V are in Figures S4 and S5). The standard powder samples of Mn2+ (MnO), Mn3+ (Mn2O3), and Mn4+ (MnO2) were also measured for comparison. The Mn XANES edge at 0.084 V lies between those of MnO and Mn2O3. To determine the Mn valence state, we used the integral method to analyze the edge shift of X-ray absorption near edge structure (XANES), which is more accurate than the traditional flat point method.

As the applied potential increased, the Mn XANES edge shifted gradually toward higher energy, indicating that the Mn valence state increased. As the potential reached 0.884 V, the Mn XANES edge shifted close to that of Mn2O3, indicating an oxidation state of ∼2.9+. Therefore, the lower capacitance of MnFe2O4 compared to MnO2 may be partially attributed to the limited change of Mn oxidation state within the spinel frame. In addition, the high capacitance of MnO2 is also due to its crystal features. For example, the channels among MnO2 layers provide the space for accommodating charged species, whereas there is no such a space in spinels. Interestingly, the valence state of Fe in MnFe2O4 did not change as the applied potential varied (Figure S6).

For CoFe2O4 and NiFe2O4, both Co and Ni remained their valence states at ∼2+ (Figure 3b,c) within the applied potential window. Fe cations in these two ferrites also remained their valence state unchanged (Figure S4). Similarly, the Fe valence state of Fe3O4 did not change as the applied potential varied (Figure S6).

These results indicate that the substitution of Mn in X of XFe2O4 increased the capacitance significantly.
state of pure ferrite, Fe3O4 stayed the same (Figure 3d). For better comparison, Figure 3ef shows the K-edge changes for Mn, Co, Ni, and Fe. It can be seen that only Mn exhibited a significant change in valence state, while all other metals remained unchanged. Note that the potential window employed in our tests covers the redox potential of some of these cations, e.g., Co3+/Co2+ at ~1.1 V vs RHE and Co2+/Co3+ at 1.4 V vs RHE. However, the oxidation of Co cations relies on the high pH value (in KOH). At a neutral electrolyte (pH = 7), the oxidation of Co cations cannot be seen in the same potential window (1.5 V vs RHE). This signifies that the low capacitance of other ferrites is mainly due to the lack of redox change within this potential window in our case. In addition, the specific capacitances per surface area of Fe3O4, CoFe2O4, and NiFe2O4 are within the electrical double layer capacitor range (<10 μF/cm2) and therefore no pseudocapacitance occurs, which probably explains why no Fe, Co, Ni redox takes place as indicated by in situ XANES data.

Because MFO shows the highest capacitance among these spinel ferrites, extended X-ray absorption fine structure (EXAFS) analysis was performed to quantify further its atomic structure changes. There was negligible change in Fe EXAFS. However, significant increase of the Fourier transformed amplitude of Mn EXAFS was observed (Figure S7), particularly in the first shell region (1 Å < R < 2 Å). To quantify these atomic structure changes, detailed analysis of Mn and Fe EXAFS (Figure S8) as a function of applied potentials were performed and Table S1 lists these results. It is not surprising to see no change of Fe←O bond distances and coordination numbers, which is consistent with XANES measurements, and again suggests that Fe does not contribute to capacitance. Interestingly, the Mn←O bond distances remain the same, but an increase of the Mn←O coordination number is apparent as the applied potential is increased. It should be noticed that the coordination numbers for both Mn in octahedral and tetrahedral sites are lower than the standard numbers, i.e., 6 for Mn in octahedron and 4 for Mn in tetrahedron. This is because EXAFS signals are mainly from the surface region that has most under-coordinated cations, which is also postulated as one of origins for oxides’ charge storage. The coordination number increase is consistent with the valence state increase of Mn as observed by in situ XANES measurements, as higher oxidation states of Mn need more coordination to balance the charge. Attention was further given to the second shell region (2 Å < R < 4 Å) from in situ EXAFS (Figure S7), which shows negligible changes and suggests that the occupation of Mn remained unchanged. It further indicates that there is no occupation switch of Mn cations between the two geometry sites upon the applied potentials.

It is known that octahedral MnOx is the basic unit of MnO2, in which the redox change between Mn3+ and Mn4+ is associated with its pseudocapacitance. Recent studies also demonstrated that the octahedral MnOx unit is the active site of Mn-based perovskite oxides for oxygen electrocatalysis. However, in spinel MnFe2O4, Mn cations can occupy both tetrahedral and octahedral sites, depending on the inversion degree λ. In particular, recent studies have shown that the site-occupation in spinel cobalt oxides can influence OER activity and Mn substituted Co3O4 can improve capacitance. To investigate further the influence of the Mn occupation, we varied the inversion degree by treating MnFe2O4 in air at 200, 300, and 400 °C for 6 h. The heat treatment can switch Mn cations from tetrahedral sites to octahedral sites and oxidize Mn2+ to Mn4+ at the same time. Figure 4a shows the specific capacitance of heat-treated MnFe2O4 (their CVs are shown in Figure S9). The double layer capacitance contribution by Vulcan carbon has been subtracted to give the contribution of oxides only. It can be seen that the MnFe2O4 capacitance increased with the increase of heat treatment temperature. In particular, the capacitance per surface area increased ~64% from 200 to 300 °C and ~192% from 200 to 400 °C. It should be noted that this increase is much higher than attributable to decrease of the specific surface area. The specific surface area decrease from 200 to 400 °C is only 23.7% (Figure S10) and the mass specific capacitance increased as well. Although this treatment can result in slight stoichiometry change, namely some excess oxygen, the spinel crystal structure is preserved (Figure S11) and the major consequence is Mn cation redistribution, which is reflected by the XANES prepeaks and EXAFS analysis. For 3d transition metal K edge XANES, the pre-edge peaks are assigned to the forbidden 1s→3d transition and the change of the pre-edge peak intensity is indicative of the changes in the site occupation in tetrahedral and octahedral symmetry, namely narrower and more intense for the former and broader and less intense for the latter. This is primarily because tetrahedral symmetry is highly noncentrosymmetric and this enables p→d transitions that contribute to the pre-edge peak. When both tetrahedral and octahedral sites are occupied, the pre-edge peak will be the sum of these contributions, and the increase in intensity will be directly proportional to the tetrahedral site occupation. As shown in Figure S12, the decrease of Mn K-edge prepeak intensities when annealing temperature goes up indicates more octahedral site occupations, whereas the
increase of Fe K-edge prepeak intensities suggests more tetragonal site occupations after higher temperature annealing. Figure 4b and Figure S13 show Fourier transforms (FT) of Mn and Fe K-edge EXAFS spectra of MnFe2O4 treated at different temperatures. The remarkable differences of EXAFS indicate the different inversion degree of MnFe2O4. The significant difference in EXAFS spectra is also indicative of complicated changes after heating treatment (e.g., stoichiometry change and strong local disordering due to Mn redistribution). Figure 4c shows the occupation of Mn cations obtained by EXAFS analysis. For MnFe2O4 treated at 200 °C, ~49% of Mn cations are in octahedral sites and ~51% of them are in tetrahedral sites. For heat treatment at 300 °C, ~70% of Mn cations are in octahedral sites and ~30% of them stay in tetrahedral sites. Heat treatment at 400 °C further increased octahedral site occupation to ~91% and very little amount in tetrahedral sites. The site occupation result is consistent with XANES observations and those reported previously.31,32 Figure 4d shows the specific capacitance per surface as a function of the fraction of Mn in octahedral sites. The near-linear relationship suggests a strong correlation between the spinel capacitance and fraction of Mn in octahedral sites. The near-linear relationship behavours of XFe2O4 (X = Mn, Fe, Co, and Ni) ferrite nanoparticles with diameters less than 10 nm. MnFe2O4 showed the highest specific capacitance among all the ferrites. The specific capacitance of MnFe2O4 is also the highest among reports to date due to its small particle size. To understand the mechanism that determines spinel capacitance, we performed detailed in situ XANES and EXAFS. We found that only Mn cations exhibited a significant valence state change. We attribute this change to the dominant contribution of the high pseudocapacitance in MnFe2O4. Co, Ni, and Fe remained with their valence states unchanged within the potential window, and therefore their capacitances are much lower than the Mn substituted ferrite. Fe cations in ferrites are stable and contribute nearly nothing to the pseudocapacitance. Analysis of in situ EXAFS shows that Mn cations simultaneously increased their oxygen coordination number to balance the Mn charge changes. The site occupation of Mn cations was further varied by heat treatment. We found that more Mn in octahedral sites resulted in higher capacitance. This is similar to MnO2 and Mn-based perovskites, in which the octahedral MnO6 unit is the active site. Although most Co (89%) and Ni (88%) locate at the octahedral site of CoFe2O4 and NiFe2O4 (Figures S15 and Table S4), the poor capability of changing valence state limits their capacitances. Therefore, we conclude that the ability of cation to change its oxidation state and its occupation of octahedral site (or the inversion degree) are influential in determining the spinel’s pseudocapacitance. Our findings should be helpful to the prediction and the design of spinels for other electrochemical processes.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b00713.

Materials synthesis, TEM analysis, XRD, XANES/EXAFS spectra and analysis of the ferrite nanoparticles (PDF).

■ AUTHOR INFORMATION

Corresponding Author

E-mail: xuzc@ntu.edu.sg (Z. Xu).

Author Contributions

These authors (Z. Feng, C. Wei) contributed equally.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Singapore Ministry of Education Tier 1 Grants (RG13/13 and RG131/14) and the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) programme. LZ and MJB were supported by the MRSEC funded by NSF under DMR-1121262. The Advanced Photon Source (APS) at Argonne National Laboratory is supported by DOE under DE-AC02-06CH11357. Authors thank Charles Kurtz at APS 111D and the APS 33BM beamline staffs.

■ REFERENCES

