A STUDY OF GRADE DISTRIBUTION IN LARGE AND SMALL CLASS GROUPS, COVERING THE SAME STUDENTS AND THE SAME CLASSWORK
 by
 LAWRENCE EDWIN RUCH

A THESIS
submitted to the
OREGON STATE AGRICULTURAL COLLEGE

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
July 1937

APPROVED:

Redacted for privacy

Head of Department of Industrial Arts
In Charge of Miajor

Redacted for privacy

Chairman of School Graduate Committee

Redacted for privacy

Chairman of College Graduate Council

ACKNOWLEDGEMENTS

The writer wishes to express his appreciation to Dr. Willibald Weniger for his helpful interest and cooperation during the time that the graduate program was being carried on and to Professor Edwin D. Meyer for the use of his shop and equipment.

The author wishes to express especial gratitude to Professor George B. Cox, Head of the Department of Industrial Education at Oregon State College, whose patience and continued willingness to give assistance made this study possible.

TABLE OF CONTENTS

> PAGE

INTRODUCTION
Statement of Problem 1
Significance of Prohlem 1
Method of Procedure 2
ORIGINAL PROJECTS IN SMALI GROUPS
Source of Material 3
Number of Instructors and Projects 3
Number of Projects and When Used 4
Construction of the Project 5
Equivalent-Grade-and-Score Chart 8
Normal Curve Grade Distribution 9
Number of Grades in Each Group
by Normal Curve 11
REDISTRIBUTING GRADES IN THE LARGE GROUP
Range of Length for Each Grade 13
Range of Width for Each Grade 15
Information in Chart Form 18
Grades Changed by Redistribution 28
Correlation by Spearman Method 30
SUMMARY 46PAGE
CONCLUSION 49
RECOMIENDATIONS 51
BIBLIOGRAPHY 53

LIST OF TABLES AND FLGURES

PAGE
Number and Size of Classes and
Number of Instructors Involved 3
Number of Projects and When Used 4
Fquivalent-Grade-and-Score Chart 8
Graphical Representation of Rescoring Original Projects 10
Redistribution of Grades in Large Group 12
Distribution of Grades Averaged in
One Large Group 18
Grades Chenged by Redistribution 28
Summary of Grades Changed by
Redistribution 29
Grades in Woodworking Class 32
Spearman Method of Rank Differences 36
Charts of Grades Changed 43

A STUDY OF GRADE DISTRIBUTION IN LARGE AND SMALL CLASS GROUPS, COVERING THE SAME STUDENTS AND THE SANE CLASSWORK

INTRODUCTION

STATEMENT OF THE PROBLEM

In grading student accomplishment, it is desirable to maintain a high degree of validity and objectivity. It is the purpose of this study to determine how well this has been done on a given project assigned to the beginning sections of an elementary woodworking course at the Oregon State College.

SIGNIFICANCE OF THE PROBLEM
The normal curve system of grading (4:242)* used at the Oregon State College makes it possible to locate with a high degree of accuracy the position of individual student grades when the students are members of large classes. When the students are members of small classes, however, the curve system proves inadequate. For example, a class of twelve or thirteen students

[^0]would, under the curve system, include one A grade and one F grade. But it might easily happen that two or three outstanding students were enrolled in such a class. If the "Hormal" distribution were rigidy applied, one of these students would receive an A grade, and the others would receive grades of B or less. Likewise one F would have to be given, under the distribution curve, even though the poorest students in the class might, if members of a large group, merit a grade of D or even a C. For the small class, then, an absolute adherence to the normal grade curve may often be inadequate and unfair.

METHOD OF PROCEDURE

In pursuing the problem presented in this thesis, 133 examples of a beginning woodworking project were secured and numbered, and a record was made of their original grades. These were then fearrenged in one group and graded according to the normal curve. Figures were then compiled to show the number of grades changed at each grade level. A meastring device was evolved which, the author believes, will assist in making the future grading of the project more accurate, more objective, and more just.

ORIGINAL PROJECTS IN SMALI GROUPS

SOURCE OF MATERIAL
Although the woodworking project selected serves the primary purpose of providing a means of applying the early instruction of the course, it is customarily used as a cutting board to protect the woodworking table during chiseling, gouging, or other operations that would deface the table top. Over a period of years, however, these boards, together with a complete record of the original grades recorded on each, have been collected. It is this collection that was used in the preparation of this study.

NUMBER OF INSTRUCTORS AND PROJECTS COMPLETED UNDER EACH

The following tabulation indicates the number and size of classes studied and the number of instructors involved.

Number of Students Per
 Instructor

Instructor Number Number of Students

1	94
2	20
3	16
4	3

NUMBER OF PROJECTS AND WHEN USED
The number of the projects, together with the time when they were used, is indicated in the following:

TINE
PROJECTS
Fall 1929-1930* 26
Fall 1931-1932 49

Fall 1932-1933 10

Winter 1933-1934 20
Winter 1935-1936 18

Summer 1931 8

Summer 19332

Total No. of Projects 133

* Dates refer to the school year.

CONSTRUCTION OF THE PROJECT

In preparation for this beginning project in woodworking, white pine boards of $3 / 4^{n}$ to $7 / 8^{\prime \prime}$ in thickness were cut to a width of $5 \frac{1}{2} "$ and a length of 12". Care was taken to see that these were made of uniform clear, straight-grained wood. The two sides of these boards were planed parallel with each other, one edge being jointed square with the sides. The two ends were sawed square with the jointed edge. The second edge was saw-sized parallel to the jointed edge. The thickness was not considered in either the manual operations or the grading.

After a complete demonstration on the procedure to use in squaring this project, each student was given a board to use as his project material. He was told to select either side as a working face and to hand-joint either edge until he considered it was straight and square with the working face. This completed, he presented the project to the instructor for an inspection. If the edge met the standard required by the instructor, he initialed it, and the student continued with the next step. If it did not meet the standard, the student was required to try again. This edge was used as a working edge in the next two operations. It is to be noted that although
the jointed edge was already straight and square with the working face, the student was required to use a hand plane on the surface for the purpose of removing all machine-tool marks.

After the jointed edge was completed, one end was planed square with the working edge and working face; next, the seand end was likewise finished. The final operation was the jointing of the second edge square with the working face and parallel to the working edge.

When these four surfaces had been initialed by the instructor, an acceptable standard of accuracy was thus indicated, and the project was considered to be completed and ready for grading.

At some time early in each term and after all these projects had been completed, they were collected and graded. The primary consideration in the grading was the length and width measurement of each board. It is assumed that the instructor maintained a uniform standard in his checking of the various operations. It then becomes unnecessary for him to check further on the squareness of the project.

The student who has squared the project with the least loss of material is judged to have best followed instructions and to have exhibited the best craftsman-
ship in the class. In like manner, the student who planed away excessive material in length or in width or in both is considered a poorer craftsman, his standing in the class being determined by the relative amount of material he has used up in the process of finishing his project.

The longest of these boards, according to measurement indicated on a ruler, was given the highest grade on length, and the shortest board was given the lowest grade. Likewise, the widest board was given the highest grade on width, and the narrowest one, the lowest grade. A composite was made of the length and width grades, by the use of the "Equivalent-Grade-and Score Chart." The letter grades given for the length and width were transferred into a numerical value and added together. This sum was divided by two and the quotient was used to establish a new letter grade for the project as a whole.

As an example, let us assume that the letter grade for length was B plus and for the width was C. Upon referring to the "Equivalent-Grade-and-Score Chart," we find that B plus is the equivalent of four and that C is the equivalent of eight. The sum of four and eight divided by two is equal to six. Six transfers into B minus as a final grade on the finished project.

EQUIVALENT-GRADE-AND-SCORE CHART

"NORNAL" CURVE GRADE DISTRIBUTION
The system used in regrading these 133 prowects (See Figure I, Page 10) is as follows: The projects were arrenged on a straight, flat surface in such a manner that the longest board was on the right and the shortest on the left end of the completed group of 133 pieces. A straight edge was then placed on top of the projects, and those that held the straight edge above the others were moved toward the right. Those that were somewhat below the general level of the straight edge were moved to the left. This process was continued until there was a gradual drop from the longest on the right to the shortest on the left.

Following the iniform distribution of the projects, from the longest to the shortest, the various letter grade groups were selected on a percentage basis, in agreement with the modified normal distribution system recognized at Oregon State College. This distribution was as follows:

A	B	C	D	F
7%	24%	38%	24%	7%

NUMBER OF GRADES IN EACH GROUP BY NORMAL CURVE
Applying these percentages to the 133 projects in the group, we have the following number of grades in each group:

A	B	C	D	F
9.31	31.92	50.54	31.92	9.31

It is obvious that these boards cannot be divided into fractions and still retain their usefulness; therefore an arbitrary adjustment in the number of the various grades was made in order to eliminate the fractions. It will be noted that such an adjustment would have to be made unless the total number of projects equalled 100 or some multiple thereof. This arrangement was as follows:

A	B	C	D	F
9	32	51	32	9

Since the original grades awarded in the small groups made use of plus and minus following the letter grades, as a further means of a finer differentiation
(and of averaging the letter grades on a numerical basis, as explained on page 9) in the small groups, these distributions in the larger group (133 total) could be further compared as follows:

A Plus 3

A	3	Total A grades
A Minus	3	

B Plus $\quad 11$
B 10
B Minus 11

C Plus $\quad 17$
C $\quad 17$
C Minus
17

D Plus 11
D 10
D Minus
11

F Plus $\quad 3$
F
F Minus 3

REDISTRIBUTING GRADES IN THE LARGE GROUP

A measuring device was prepared with which to record the length or width of the boards that separate the various grade groups established by the arrangement of the 133 boards. Two pieces of aluminum angle were cut and riveted together in such a manner that the shorter one made an angle of ninety degrees with and near the end of the longer one, making the whole similar to a "T" square.

LENGTH FOR EACH GRADE

At this point, the entire 133 boards were divided into sections, the size of which had been determined in accordance with the standard grade distribution curve used at Oregon State College.

Since there were to be nine boards in the A-grade group, the tenth board (from the right end of the line) was selected as a measure of the limit between the A and B groups and was placed on the measuring device with one end against the base and its side against the upright. A sharp, thin scriber point was used to cut a narrow line across the upright aluminum angle, the end of the board serving as a guide. This line marked the lower limit for boards in the A group, and the upper limit for those in the B group.

Any board that covered more of this line than did the tenth board was to be an A grade in length; any board that did not partially cover this line was worthy of only a B grade, or less, in lendth, according to the standards set by the 133 cases of this study. The tenth board was used for this measurement because the line had to be drawn outside the end of the board. If the ninth board had been used, the line would have been off the end of the board and would thus have left the ninth board in the B group, and only eight A grades would have been allowed.

Adaing nine boards in the A group to the thirtytwo in the B group gave the forty-first board as the shortest one in the B group. The next, or forty-second board, was the longest in the C group and was, therefore, removed and used as a measure for determining the line separating the B and C sections.

Adding nine, thirty-two, and fifty-one, the number of boards in the A, B, and C groups respectively, showed the ninety-second board to be the shortest one in the C section and the ninety-third board to be the longest one in the D group. This was used to establish the dividing line between the C and D sections.

In a like manner, the sum of nine, thirty-two, fifty-one, and thirty-two showed the-one-hundred-twenty
fourth board to be the shortest in the D group and the one hundred and twenty-fifth to be the longest in the F group. nThis, therefore, was the board to be used in setting a dividing line between the D and the F grades.

The 133 boards were given a letter grade for length in accordance with the divisions as indicated on page 12, and a record of these was made in column 3 on pages 18 to 27 inclusive.

WIDTH FOR EACH GRADE

The next procedure was to rearrange the boards so that the widest was at the extreme right and the narrowest was at the extreme left. The boards marking the dividing lines between the various grades, for width, were selected in the same manner as were those establishing corresponding lines for length.

Each board was in turn placed on the measuring device, with one side against the base. The other side was used as a gague to strike a line on the upright. This line was, in each case, the dividing point between the two grades under consideration. In grading for width, these four lines are to serve as will the other four for length.

A regrading of these 133 projects for width was then conducted in the same manner as was employed in the regrading for length. The grades were recorded by letters
placed in column 5 on pages 18 to 27 inclusive. The "Equivalent-Grade-and-Score Chart" on page 8 was used in the calculation of the scores for columns 4 and 6 . The total equivalent score was found by ading the scores in columns 4 and 6 . The average equivalent score for column 8 was found by dividing the total score in column 7 by two. The "Equivalent-Grade-and-Score Chart" was used to convert the average equivalent score into a letter grade in column 9.

For example, student number six had a letter grade of B on length, as recorded in column 3. Upon reference to the "Equivalent-Grade-and-Score Chart" we found the B was valued at five points, and so recorded it in column 4. Likewise a C Plus (column 5) in the width of the board gave a score of seven in column 6. The sum of the equivalent scores of four and six was recorded in column 7. The average equivalent score was placed in column 8. This average of six was the equivalent of a re-evaluated grade (column 9). When the job was completed, the student had received a grade of B Minus; in his case, therefore, the grade was changed but little by the revaluation.

Let us now consider the scores on student number fourteen. The length grade was D Minus and the width
grade C Plus, producing a total equivalent score of nineteen. The average was nine point five (9.5), or just slightly higher than C Minus. In this study, the half point on the average equivalent score has been consistently omitted because it was never of sufficient value to raise the grade to the next level.

COLUMN	1	2				$: 6$	$: 7$	8	9 :
	71	$\mathrm{B}-$	$\therefore \mathrm{c}$	$: 8$	$: D$	$: 11$	$\vdots 19$	$: 9$	C-:
		$\vdots \mathrm{A}$	$: C-$	$\vdots 9$	$: B t$	4	$: 13$	$: 6.5$	B-
	73	$: C+$	$: C-$: 9	$\therefore B$: 5	$: 14$	$: 7$	C+:
	74	: A-	$: C$	$: 8$	$: A=$	3	$\therefore 11$	$\therefore 5$	B :
	75	$: C t$	$: B+$	4	$: D-$	$: 12$	$: 16$	$: 8.6$	C
	76	$: C+$	$\therefore \mathrm{C}$	8	$: F$	$: 15$	$: 23$	$: 11.5$	D :
	77	$\vdots \mathrm{B}$: C-	: 9	$: B-$: 6	: 15	$: 7.5$	Ct:
	78	$\vdots B+$	$: D t$	$: 10$	$: B-$: 6	: 16	$: 8.0$	C :
	79	$: C t$	$: C-$: 9	$: C$	8	$\vdots 17$	$: 8.5$	C
	80	: C-	: Ct	7	$: C-$	9	16	$: 8.0$	C
	81	$: B$	$: \mathrm{D}_{t}$	$: 10$	$: B+$: 4	$: 14$	$: 7.0$	C-:
	82	$: \mathrm{Ct}$	$\vdots D-$	$: 12$	$: F-$	$: 18$	$: 26$	$: 13$	Ft :
-	83	$: B-$	$: B-$	$\begin{aligned} & 6 \\ & \hline \end{aligned}$	$: C+$: 7	$: 13$	$: 6.5$	B-:
	84	$: A-$	$: A-$		$: C-$		$: 12$	$: 6.0$	B-:

								$\begin{aligned} & 0 \\ & H \\ & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & \text { O } \\ & 0 \\ & H \\ & \text { H } \\ & \text { E } \\ & 1 \\ & Z \end{aligned}$
	2	$: 3$	4	$: 5$	6	$: 7$	8	9
$: 127$: A	: A	2	A	2	$i 4$	2	A :
:128	$\therefore \mathrm{C}$: B-	6	$C+$	7	$: 13$: 6.5	B-:
$: 129$	$\vdots D$: C-	9	D	11	: 20	: 10	D+:
$\vdots 130$	$\therefore B$: B-	6	: B-	6	$: 12$: 6	$\mathrm{B}-$:
$: 131$	$\vdots D$	$\vdots D$	$: 11$	$: c$	8	$: 19$: 9.5	C-:
$: 132$	$\vdots D$	$: C-$	9	$: \text { Dt }$:10	:19	: 9.5	C-:
$: 133$	$\vdots \text { B }$	i B	: 5	: At	1	$i 6$	$: 3$	A-:

NUMBER OF GRADES CHANGED BY THE REDISTRIBUTION

SUMMARY OF GRADES CHANGED BY THE REDISTRIBUTION

Total grades changed $47+17$ 64
Per Cent of Totalgrades changed48.12
Per Cent of Total grades lowered 35.34
Per Cent of Total grades raised 12.78

It will be noted that approximately three times as many grades were lowered as were raised.

CORRELATION BY SPEARMAN'S IIETHOD OF RANK DIFFERENCES
The correlation of the beginning grade in woodworking with the final grade in the course is found by use of the data given on pages 32 to 38 inclusive. The students were arranged in descending order according to the grades received on the first project. A rank, equal to the average from the top, was given for each student. (See second column, page 36). The third column shows the rank positions of the students when they were arranged in descending order according to the final grade in the course. The D column shows the individual differences between the ranks in the beginning and in the final grades. The last column (D) is the square of the difference in each case.

SPEARMAN FORMULA FOR ATTAINING CORRELATIONS

$$
\begin{aligned}
P & =1-\frac{6 \sum D^{2}}{N(N-1)^{2}} \\
& =1--6 \times \frac{x}{2,32,25,501^{2}-75} \\
& =1-(.618)=.382
\end{aligned}
$$

Referring to Garrett "Statistics in Psychology and Education", page 192, Table $X X$, we find that the value of .382 for ρ gives a value of .40 for r. Thus there is shown to be a positive correlation of. 40 . This is not regarded high by most authorities. It is usual to consider that values up to . 20 are useless for showing systematic relationship.

Although correlations up to plus or minus . 20 are considered valueless by most writers on the subject, the present positive . 40 does show that the exercise has some predicative value.

GRADES IN WOODWORKING CLASS

Student No.	$\begin{aligned} & \text { First } \\ & \text { :Grade } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { : Grade } \end{aligned}$		Studen No.	$\begin{aligned} & \text { First } \\ & \text { : Grade } \end{aligned}$:	$\begin{aligned} & \text { Final } \\ & \text { Grade } \end{aligned}$
1	B-	$\vdots 0$	$\begin{aligned} & \vdots \\ & \vdots \end{aligned}$	21	C-	:	B-
2	: A-	: ct	! :	22		!	B
3	\vdots	C	! :	23	- 0	!	-
	\vdots		: :		:	.	
4	: B	B	: :	24	\pm Dt	:	C
5	: B-	: Ct		25	\vdots	:	
	\div	- of	\div		:	.	
6	: B-	: Dt	: :	26	: C_{+}	:	ct
7		: D	! :		! Bt	!	
	$!$:	! :	27	: B+	:	ct
8	: A-	: Ct	\vdots	28	: B-	:	B-
9		Ct		29		:	c
	:	:	:		:	!	
10	: Bt	: B-	: :	30	: A	-	B
11	: A	! B-		31	D +	:	B
12	C-	! Bt	: :		:	:	
	C-	: Bt		32	: B	:	$\mathrm{A}-$
13	; B	: Bt	!	33	$\square \mathrm{C}$:	D
	: B-	! C-	$\vdots!$:	!	
	: B-	C-	:	34	: C	:	B
15	1 C	: C-	: :	35	: D	!	C
	! Dt	!	!		!	!	
	: Dt	\vdots D	:		$:$ A-	:	A-
17	: A	: B	:	37	: Dt	\vdots	Ct
18	: $:$ D-	: D	!	38	\vdots B+	,	
	:	:	:		\div	\vdots	
19	: B-	: ${ }^{\text {c }+}$: :	39	: B +	!	A-
20	C-			40		!	B

student No.	$\begin{aligned} & \text { First } \\ & \text { : Grade } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { : Grade } \end{aligned}$	$\begin{aligned} & \text { Student } \\ & : \quad \text { No. } \end{aligned}$	$\begin{aligned} & \text { First } \\ & \text { :Grade } \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { :Gra de } \end{aligned}$
41		B-	$\begin{array}{ll} \vdots \\ \vdots \end{array}$	$\mathrm{C}-$	$\therefore \quad \mathrm{C}-$
42	: C -	$\vdots \quad \mathrm{C}$	62	\vdots B	\therefore \vdots
43	$\vdots \mathrm{Ct}$! 0		: B-	\vdots A
44	: C+	: Ct	$\begin{array}{l:} 1 \\ \vdots \end{array}$: C	\vdots D
45	: A-	\vdots Bt	$\begin{array}{ll} : & \\ \vdots & 65 \\ \hline \end{array}$	$\vdots \mathrm{C}$: Ct
46	: C	: B-	$\begin{aligned} & 1 \\ & \vdots \\ & \hline \end{aligned}$	$:$ \vdots	: D
47	\vdots C	\vdots A	67	$\vdots \mathrm{B}-$	\vdots D
48	$\vdots \mathrm{C}$: F	$\begin{aligned} & 1 \\ & \vdots \\ & \hline \end{aligned}$	$: \quad c+$	\vdots B
49	\vdots B	$\vdots \quad \mathrm{C}$	$\begin{array}{ll} \hline \vdots \\ \vdots \end{array}$	$: \quad D+$: C -
50	: B	$\vdots \mathrm{Cf}_{4}$	70	: A-	: B
51		\vdots F	71	: B-	: B
52	$\vdots \mathrm{Ct}$	$\vdots \mathrm{C}$	72	: A	$\mathrm{C}-$
53	$\begin{array}{ll} \hline \vdots \\ : & C \\ \hline \end{array}$	\vdots B	$\begin{array}{l:l} \vdots \\ \vdots \end{array}$: Ct	: $:$ B
54	: B-	\vdots B	$\begin{array}{ll} : \\ \vdots \\ \hline \end{array}$: A-	: B-
55	\vdots D	$: F$	$\begin{array}{l:l} \hline \vdots: \\ \vdots \\ \hline \end{array}$: Ct	\vdots D
56	$\therefore \mathrm{C}$	\vdots B	76	$: \mathrm{C}+$	$\bigcirc \mathrm{C}$
57	: $:$ B-	: C +	$\begin{array}{r:} \hline \vdots \\ \vdots \\ \hline \end{array}$	\vdots B	\vdots A
58	\vdots D	\vdots F	$\begin{array}{r} \vdots \\ \vdots \\ \hline \end{array}$	\vdots Bt	\vdots B
59	\vdots B	: A	$\begin{aligned} & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$: C+$: C
60	: D	: B+	$\begin{array}{ll} \vdots \\ \vdots \end{array}$: C -	: C

SPEARMAN METHOD OF RANK DIFFHRENCE

APPLIED TO

GRADES IN WOODWORKING CLASS

Student\qquad	:First Rank : Final Rank			
	50	83	$\vdots 33$	$: 1089$
105	50	6.5	$: 43.5$	$: 1982.25$
1	50	83	$: 33$	$: 1089$
6	50	112	62	$: 3844$
9	50	60.5	10.5	110.25
14	50	105	55	$: 3025$
19	50	60.5	10.5	110.25
28	50	60.5	10.5	$: 110.25$
54	50	32	18	$: 324$
57	50	60.5	10.5	$: 110.25$
63	50	6.5	43.5	:1892.25
67	50	120	60	$: 3600$
5	50	60.5	10.5	110.25
71	50	32	18	$: 324$
83	50	105	55	$: 3025$
75	64.5	120	55.5	$: 3080.25$
73	64.5	32	32.5	$: 1056.25$
68	64.5	32	32.5	$: 1056.25$
44	64.5	60.5	4	16
43	64.5	83	18.5	$: 342.25$
101	64.5	83	18.5	$: 342.25$
103	64.5	120	55.5	:3080.25

Stuaent No.	:First Rank	Final Rank	D	2	D^{2}		
116	\vdots	122.5	\vdots	47	\vdots	75.5	5700.25
102	\vdots	132.5	\vdots	105	\vdots	27.5	756.25
18	\vdots	132.5		120	\vdots	12.5	156.25

Figure 2. Curve A represents grades according to modified curve.
Curve B represents grades as originally assigned.

Figure 3. Curve A represents grades given to $z 1$ students for a first project done in fall 1931-32. Curve B represents grades given for the same projects graded in a larger group.

SUMMARY

This study was made to determine the relationship between grades given in small groups and those given for the same work to students of the same class in a large group, and, in addition, to set up a standard measuring device which will assist in grading the beginning woodworking project covered by the study.

For several years a uniform beginning project has been required in the first course of woodworking given by the Industrial Arts Department of the Oregon State College. Examples of this project and the grades originally assigned to them had been collected since 1929. The examples were arranged in a large group and the grades redistributed by application of the modified normal curve, as it is used by the college in its grading system.

After the student had witnessed a demonstration of the procedure in doing the work on this project, he was given a piece of board that had previously been cut to the standard size $\left(5 \frac{1}{2}{ }^{\prime \prime} \times 12^{\prime \prime}\right)$. The student did his work in such a way that the grading of the project required only the taking of the length and width measurements and the evaluating of them in terms of letter grades. The small size of the classes frequently
made it very difficult to grade these projects objectively and in accordance with the normal curve.

A system was devised whereby 133 examples of this project were arranged, first according to length and second according to width. They were then graded in the larger group. New grades, to accord with the normal grade curve, were then assigned to the rearranged examples. These new values were transferred into composite letter grades by means of an equivalent-grade-and-score chart. A chart was then prepared to show the relationship between the grades originally given in the small groups and the reassigned grades in the larger group.

A measuring device was made by riveting two pieces of aluminum angle together in such a manner that the shorter piece made an angle of ninety degrees across the end of the longer piece. Boards representing the dividing points between the various grade levels, in both length and width, were selected and used as measuring devices in establishing standard grade-limit lines on this upright angle. Any project made in the future may be more easily graded objectively by testing it for length and width on this standardized measuring device, and, by the use of the "Equithe alent-Grade and-Score Chart", evaluating this length
and width into a composite letter score.
In this new distribution, grades were changed from the original as follows:

Total grades changed out of 13364
Per cent of total grades changed 48.12
Per cent of grades lowered 35.34
Per cent of grades raised 12.78
This study shows how unlikely it is that a normal curve can be followed in grading unless a standardized device is available for use as a check. The device here presented not only makes it possible to follow the normal curve, regardless of the size of the class, but also gives to the measurements a higher degree of objectivity by indicating the position of a particular project with reference to a standard established from a large number of examples of such a project.

The study also shows the correlation between the grades given for the first project in woodworking and those for the final grade. This is done by means of the Spearman Rank Difference Method of calculation.

CONCLUSION

Although there is a considerable variation in the grading of the examples during the years indicated in the table formulated on page 4 of this stuad, this should not be taken as casting any reflection on the ability of any instructor, or instructors. It is commonly recognized that considerable variation is inevitable whenever examples of a project of this type are graded in a small group and without the aid of a standardized device with which to ascertain the grades in comparison with those of a larger group.

Through the checking of 133 finished examples of a project, the writer has developed a standardized device which is herewith presented as a part of this study. By checking such a large number of finished examples, it has been possible to establish grade levels which are ifdicated by lines drawn on an aluminum tee. These lines designate the upper and lower limits of grades, in length and in width, for each major grade division. A finished article do ne by a member of a small group may, therefore, be checked by means of this device to give it a rating comparable with the average rating of a large group. Although the change in the rank of the original projects when graded in the
larger group is not great, it is hoped that the use of this measuring device will assist in smoothing out some of the irregularities in grading that have heretofore existed.

In grading an exercise of this type in junior or senior high school, classes, the device could also be used with but slight modification. The lines that indicate the various grade levels for a college group would naturally require changing to apply to boys of the high school age. In fact, because of difference of ability found in droups of junior and senior high school age, it would probably be necessary to determine two sets of lines for grade indicators.

Establishment of various grade levels for junior and senior high school pupils would become accurate only as a large number of examples of a project were accumulated to give the weight of numbers. It is probable that a higher degree of accuracy could be secured from the younger groups, since their ability would show a greater variation than that of the senior high school groups, and a greater distance would, therefore exist between the various grade divisions.

RECOMNEANDATIONS

It is recommended that the device herewith submitted be used as a supplementary measuring stick in the future grading of the project considered in this study.

In view of the difficulty involved in measuring the length grades of A, B, and C, even with the present standardized device - the three lines eeparating these grades being so close together - it is further recommended that a change be made in this project by cutting one end of each board at an angle of five degrees in such a manner that one side of the board is slightly longer than the other. The student will be required to hand plane the angled end of the board, as well as the squared end, until they are both square with the working face and the working edge. The test of the quality of workmenship will still be the measuring of the product for length and width. This increase in difficulty of the operation will, it is expected, increase the variation in length of the boards and thus make it easier to separate the students into the grade levels.

A new set of lines with which to test the length
of the finished projects will be needed on the measuring device. These can be accurately established only after a large number of projects are collected with Which to determine what can be expected for each grade level.

It is further recommended that, if the necessary data are available, a study be made to correlate the grades given to the first three projects of the course under consideration wi th the final grade in that course.

If such data are not available, it is recommended that future records of this course be kept in such a manner that the grades on the cutting board and on the two projects immediately following will be readily obtainable.

BIBLIOGRAPHY

1. Garrett, H. E. Statistics in Psychology and Education. Longmans, Green, \& Co., New York, 1934.
2. Ruch, G. M. The Objective or New-Type Examination. Scott Forsman \& Co., Chicago, 1929.
3. Ruch, G. M. and Stoddard, P. D. Tests and Measurements in High School Instruction. World Book Co., Chicago, 1928.
4. Symonds, P. M. Measurements in Secondary Education. The Nacmillan Co., New York, 1929.

[^0]: * This refers to number 4 of the bibliography, page 242 .

