UiT

THE ARCTIC UNIVERSITY ØF NORWAY 2016 IIFET Scotland Conference 11-15 July 2016

STOCK PROXIES IN EFFICIENCY ANALYSIS OF FISHERIES

Nguyen Ngoc Duy – Nha Trang University, Vietnam Ola Flaaten – UiT Tthe Artic University of Norway

THE ARCTIC UNIVERSITY OF NORWAY

CONTENTS

1) Introduction

- 2) Theory and methodology
- 3) Model and data
- 4) Results
- 5) Conclusions

1. Introduction

UiT

- Estimating frontier production functions ideally requires information of both effort and stock
- Information of stock abundance is often unavailable
- Some proxy measures are thus required
- A composite stock index is required for multi-species fisheries
- Failure to take into account the stock effects will lead to the potential for bias.

THE ARCTIC UNIVERSITY OF NORWAY

UiT

Questions and objectives

1. Introduction

- How to know changes in fish stocks when lacking stock estimates?
- Which proxy measures of fish stocks can be used: CPUE or others?
- How to provide an appropriate fish stock proxy measure?
 - ➔ to analyze three technical efficiency (TE) estimation methods with three different fish stock proxy measures using the stochastic production frontier (SPF) approach

Geographical area

2. Theory and methodology

UiT

No restrictive assumptions on effort and stock.

3. Model and data (cont.)

THE ARCTIC UNIVERSITY 20 F NORWAY

UiT

Models 2 and 3

 lnY_{it}^*

 $= \beta_0 + \beta_1 ln HP_{it} + \beta_2 ln GEAR_{it} + \beta_3 ln DAY_{it}$

 $+ \beta_4 (lnHP_{it})^2 + \beta_5 (lnGEAR_{it})^2 + \beta_6 (lnDAY_{it})^2 + \beta_7 lnHP_{it} lnGEAR_{it}$

 $+ \beta_8 ln HP_{it} ln DAY_{it} + \beta_9 ln GEAR_{it} ln DAY_{it} + V_{it} - U_{it}$ (3),

Model 2: the dependent variable was modified by the formula

$$Y_{it}^* = Q_{it}/CPUE_t$$

Model 3: the dependent variable adjusted using the stock effect measure derived by DEA analysis is given by

$$Y_{it}^* = Q_{it}/M_o^{*s}$$
(5)

(4)

where M_o^{*s} is a composite stock index reflecting changes in stock.

UIT 3. Model a	nd dat	a (cor	nt.) (NTU)
UNIVERSITY OF NORWAY	utput dat	a	ĐẠ	1959
	Catch (tonnes)	Price (100	0 VND/kg)
	2011	2012	2011	2012
Gillnet (N = 57):				
Output 1: Striped and skipjack tuna	68.3 [22.2]	64.7 [22.1]	23.2	19.4
Output 2: Mackerel	12.3 [8.2]	12.4 [6.1]	65.0	56.0
Output 3: Others	17.6 [12.6]	11.2 [9.4]	6.3	4.7
Average total catch	98.2 [28.0]	88.3 [26.5]	-	-
Hand-line (N = 39):				
Output 1: Yellowfin and bigeye tuna	21.1 [4.7]	19.1 [4.7]	93.0	81.0
Output 2: Others	1.1 [0.3]	0.9 [0.2]	32.0	23.0
Average total catch	22.2 [4.9]	20.0 [4.9]		

Source: Own data and calculations.Note: Standard deviation in square brackets.

U I T THE ARCTIC UNIVERSITY OF NORWAY	3. M	odel *	and Input o	data data	a (co	ont.)	ĐẠI HỌC NHA TRANG 1959
		Gillnet (I	N = 57)			land-line	e (N = 39)
	20 ⁻	11	20	12	20	11	2012
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean S.D.
HP	311.9	117.7	311.9	117.7	264.2	96.6	264.2 96.6
GEAR	278.1	52.9	278.1	52.9	181.4	68.3	181.4 68.3
DAY	237.9	35.5	240.8	34.5	209.5	27.0	208.9 26.6

Source: Own data and calculations.

UiT 4.	Results	5		
UNIVERSITY DF NORWAY St	ock indices	• • • • • • • • • • • • • • • • • • •	DAI	1959
Estimates of t	he CPUE and	DEA indexe	S	
	Gill	Hand-line		
	2011	2012	2011	2012
Geometric mean of catch per unit of fishing day (kg/day)	207.744	189.520	97.529	88.221
CPUE _t	1	0.9123	1	0.9046
DEA index (M^{*S})		0.9265	1	0.9268

Stochastic production frontiers

	Gillnet			Hand-line		
	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3
Intercept	-4.432ª	-4.361 ^a	-4.250 ^a	-7.406 ^a	-7.404 ^a	-7.180 ^a
InCPUE	0.944 ^a	-	-	1.002 ^a	-	-
InHP	0.269 ^a	0.273 ^a	0.280 ^a	-2.227ª	-2.259 ^a	-2.605ª
InGEAR	0.719 ^a	0.692 ^a	0.706 ^a	-2.108 ^b	-2.082 ^b	-1.653 ^b
InDAY	0.595 ^a	0.607 ^a	0.563 ^a	7.085 ^a	7.092 ^a	7.006 ^a
(InHP) ²				-0.410 ^a	-0.408 ^a	-0.302 ^b
(InGEAR) ²				0.252	0.258	0.223
(InDAY) ²				-0.527 ^b	-0.537 ^b	-0.524 ^b
InHP*InGEAR				0.702 ^a	0.689 ^a	0.613 ^b
InHP*InDAY				0.603 ^c	0.621 ^c	0.543
InGEAR*InDAY				-0.760 ^b	-0.762 ^b	-0.701 ^b
Sigma-squared (σ^2)	0.054 ^a	0.055 ^a	0.055 ^a	0.015 ^a	0.015 ^a	0.017 ^b
Gamma (γ)	0.963 ^a	0.962 ^a	0.962 ^a	0.867 ^a	0.870 ^a	0.881 ^a
Mu (μ)	0.456 ^a	0.461 ^a	0.460 ^a	0.229 ^a	0.228 ^a	0.242 ^a
Eta (η)				-	-	-0.109 ^b
Log-likelihood	80.742	80.631	80.183	81.369	81.221	81.365
LR test of frontier	138.406	138.203	137.348	43.325	43.028	44.245

^a, ^b and ^c are significant at 1%, 5% and 10% levels respectively.

THE ARCTIC UNIVERSITY OF NORWAY

UiT

Test for assumptions

		Model 1		Мос	Model 2		Model 3	
		Elasticity	t-statistic	Elasticity	t-statistic	Elasticity	t-statistic	
	CPUE	0.944	10.340ª	-		-		
	HP	0.269	2.996 ^a	0.273	3.312 ^a	0.280	3.085 ^a	
Gillnet	GEAR	0.719	3.596 ^a	0.692	3.242 ^a	0.706	3.243 ^a	
	DAY	0.595	3.753 ^a	0.607	4.338 ^a	0.563	3.624 ^a	
	Total	2.526		1.571		1.549		
	CPUE	1.002	9.702 ^a	-				
Hand-	HP	0.076	0.986	0.085	1.131	0.114	1.552 ^b	
lino	GEAR	0.373	3.938 ^a	0.367	3.883 ^a	0.340	3.227 ^a	
	DAY	0.859	5.801ª	0.856	5.665 ^a	0.789	4.956 ^a	
	Total	2.310		1.308		1.243		

^a and ^b are significant at 1% and 15% levels.

UiT

Descriptive Statistics of the TE Scores and Comparison Tests

				Chi-squared (χ ²) value ^a		
Gillnet	Model 1	Model 2	Model 3	Kruskal-Wallis rank test	Friedman test	
Mean TE score	0.6354	0.6332	0.6339	0.0580	2.3889	
Median	0.6131	0.6112	0.6094			
Standard deviation	0.1396	0.1393	0.1388			
Spearman's rank cor	relation:					
Model 1	1.0000					
Model 2	0.9989***	1.0000				
Model 3	0.9983***	0.9980***	1.0000			

^a with 2 degrees of freedom. *** is significant at 1% level.

UiT

Descriptive Statistics of the TE Scores and Comparison Tests

				Chi-squared (χ ²) value ^a
Hand-line	Model 1	Model 2	Model 3	Kruskal-Wallis rank test	Friedman test
Mean TE score	0.7904	0.7916	0.7890	0.0690	0.3889
Median	0.7809	0.7815	0.7709		
Standard deviation	0.0806	0.0812	0.0812		
Spearman's rank cor	relation:				
Model 1	1.0000				
Model 2	0.9986***	1.0000			
Model 3	0.9716***	0.9690***	1.0000		~
				•••••	

^a with 2 degrees of freedom. *** is significant at 1% level.

5. Conclusion

THE ARCTIC UNIVERSITY OF NORWAY

UiT

Based on the assumptions of models, the DEA index provides more robust estimates of production elasticities. Based on the consistency conditions of the efficiency estimates, the CPUE measures can provide robust estimates of efficiency scores. The CPUE index can be a good empirical approximation for stock size changes Both the CPUE and DEA measures indicate decrease in stock abundances.

Thank you for your listening!

2. Theory and methodology UiT THE ARCTIC Efficiency estimation and SPF UNIVERSITY OF NORWAY The general SPF model (Battese and Coelli, 1992): $Y_{it} = X_{it}\beta + V_{it} - U_{it}$ (1)where Y_{it} is the (logged) output produced X_{it} is a (1×k) vector of (logged) input quantities β is a (k×1) vector of unknown parameters V_{it} are the random errors, U_{it} are non-negative random variables • The measure of TE: $TE_{it} = \frac{E(Y_{it}|U_{it},X_{it})}{E(Y_{it}|U_{it}=0,X_{it})} = e^{-U_{it}}$ Time-varying inefficiency measure: $U_{it} = U_i e^{-\eta(t-T)}$

4. Results

4.2. Test for specification of the models

For gillnet	Null hypotheses	Conclusion
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Accept Ho
Modal 1	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
Model I	+ Ho: $\eta = 0$ (Time invariant efficiency)	Accept Ho
	+ Ho: $\mu = 0$ (half-normal distribution)	Reject Ho
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Accept Ho
Madal 2	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
Model 2	+ Ho: $\eta = 0$ (Time invariant efficiency)	Accept Ho
	+ Ho: $\mu = 0$ (half-normal distribution)	Reject Ho
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Accept Ho
Madal 2	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
Model 5	+ Ho: $\eta = 0$ (Time invariant efficiency)	Accept Ho
	+ Ho: $\mu = 0$ (half-normal distribution)	Reject Ho

4. Results

4.2. Test for specification of the models

21

For hand-line	Null hypotheses	Conclusion
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Reject Ho
Model 1	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
IVIOUEI I	+ Ho: $\eta = 0$ (Time invariant efficiency)	Accept Ho
	+ Ho: $\mu = 0$ (half-normal distribution)	Reject Ho
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Reject Ho
Model 2	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
IVIOUEI 2	+ Ho: $\eta = 0$ (Time invariant efficiency)	Accept Ho
	+ Ho: $\mu = 0$ (half-normal distribution)	Reject Ho
	+ Ho: $\beta_{ij} = 0$ (Cobb Douglas function)	Reject Ho
	+ Ho: $\gamma = 0$ (No stochastic frontier)	Reject Ho
Model 3	+ Ho: $\eta = 0$ (Time invariant efficiency)	Reject Ho
	+ Ho: $\mu = 0$ (half-normal distribution) Aberdeen, Scotland, 11-15 July	Reject Ho
	+ Ho: $\eta = 0, \mu = 0$ 2016	Reject Ho

Reference

BATTESE, G. E. & COELLI, T. J. 1992. Frontier production functions,
technical efficiency and panel data: With application to paddy farmers in
India. In: GULLEDGE, T., JR. & LOVELL, C. A. K. (eds.) *International Applications of Productivity and Efficiency Analysis*. Springer,
Netherlands.

Thank you very much!