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ABSTRACT

Direct determination of the irreversible turbulent flux of salinity in the ocean has not been possible because
of the complexity of measuring salinity on the smallest scales over which it mixes. Presented is an analysis of
turbulent salinity microstructure from measurements using a combined fast-conductivity/temperature probe on
a slowly falling vertical microstructure profiler. Four hundred patches of ocean turbulence were selected for the
analysis. Highly resolved spectra of salinity gradient C exhibit an approximate k11 dependence in the viscous–Sz

convective subrange, followed by a roll-off in the viscous–diffusive subrange, as suggested by Batchelor, and
permit the dissipation rate of salinity variance xS to be determined. Estimates of irreversible salinity flux from
measurements of the dissipation scales (from xS, following Osborn and Cox) are compared to those from the
correlation method (^w9S9&), from TKE dissipation measurements (following Osborn), and to the turbulent heat
flux. It is found that the ratio of haline to thermal turbulent diffusivities, dx 5 KS/KT 5 xS/xT(dT/dS)2 is 0.6 ,
dx , 1.1.

1. Introduction

Despite the two order of magnitude discrepancy be-
tween the molecular diffusivities of heat (DT . 1027

m2 s21) and salt (DS . 1029 m2 s21), it is commonly
assumed that turbulent transports of heat and salt are
equal. It is presumed that turbulent fluxes are dominated
by the motions of the largest-scale eddies and that mo-
lecular processes (which produce the irreversible mix-
ing) occur at a rate consistent with the large-scale tur-
bulence production. In calculating salt fluxes, this has
been a necessary assumption because it has not been
possible to directly measure the turbulent flux of salt or
the dissipation rate of salinity variance.

It is well known that double-diffusive processes trans-
port heat and salt at different rates (Schmitt 1979). The
unique dynamics associated with these structures are a
direct consequence of the large value of the ratio DT/
DS . 100, but only occur when turbulence is weak and
for a limited range of dT/dS. Having potentially broader
implications are the poorly understood processes in tur-
bulent mixing events that may lead to a differential
transport of heat and salt (Gargett 2002). Both labora-
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tory (Turner 1968; Altman and Gargett 1990) and nu-
merical experiments (Merryfield et al. 1998; Holloway
et al. 2001) indicate that heat is transported more ef-
fectively than salt in weak, stratified turbulence. This
discrepancy in mixing efficiencies has been attributed
to the incomplete mixing of salt. Since all previous re-
search represents mixing in weak, low Reynolds number
turbulence, it remains an open question as to whether
the turbulent transports of heat and salt are significantly
different in high Reynolds number ocean turbulence
(Gargett 2002). Only scaling arguments have been avail-
able to estimate the role salinity plays in the eddy dif-
fusivity for mass (or buoyancy) and its importance in
the generation of entropy (Gregg 1984).

While estimates of KT (the eddy diffusivity for heat)
using the methods of Osborn and Cox (1972) have been
made over the past 30 years, KS (the eddy diffusivity
for salt) has eluded measurement. In particular, it has
not been possible to measure the spectrum of salinity
gradient C nor determine its integral, the dissipationSz

rate of salinity variance xs, for two reasons. First, the
spectrum of salinity gradient peaks at scales 10 3 small-
er than that of temperature gradient. Salinity must be
measured at submillimeter scales to resolve the salinity
gradient at typical turbulent kinetic energy dissipation
rates. Second, salinity (S) cannot be measured directly.
Instead, independent, collocated measurements of con-
ductivity (C) and temperature (T) must be combined to
determine S. As a result, the spectrum of salinity gra-
dient must be formed as the composite spectrum of tem-
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perature gradient, conductivity gradient, and their cos-
pectrum—each of which must be adequately resolved.

The basic assumption that all scalars are transported
equally by turbulence, regardless of their molecular dif-
fusivities, stems from the reasoning that turbulent trans-
ports generally occur at scales much larger than the
scales of molecular processes. This separation of scales
is often a fundamental premise of high Reynolds number
turbulence theory and analysis. Assuming the typical
cascade of energy, turbulent fluctuations are produced
at the scales of the largest eddies and break down into
smaller and smaller eddies where they are eventually
dissipated by molecular diffusion.

Assuming homogeneous turbulence, the equation
governing the evolution of fluctuating scalar variance
^u92& is (Osborn and Cox 1972)

D
2^u9 & 2 P 5 2x , (1)u uDt

where Pu 5 22^ u9&^du/dxi& represents the gradientu9i
production of ^u92& and xu 5 2Du^(=u)2&. Since most
of the variance of and u9 occurs at scales associatedu9i
with the largest eddies, the effect of molecular diffu-
sivity on Pu should be small. It is hence believed that
the turbulent transport of all scalars should be equal
because it is governed by the evolution of the large-
scale velocity field acting on mean gradients, (Pu, the
production) and not by molecular diffusion (xu, the dis-
sipation). A fundamental assumption is that molecular
diffusion occurs at a rate governed by the largest-scale
motions in order to fulfill the Pu 5 xu balance. For the
case of steady-state, homogeneous, high-Re turbulence,
this condition should indeed be satisfied. In the ocean,
however, it is likely that this balance is seldom achieved
due to the inherent space–time variability of geophysical
turbulence. Numerical simulations of a Kelvin–Helm-
holtz billow (Smyth 1999) illustrate one such evolution.
Our inadequate sampling further precludes the full ac-
counting of terms in Eq. (1).

The assumption of Pu 5 xu provides one means of
estimating xS from xT and the mean gradients of T and
S. Since Pu results entirely from turbulent overturns act-
ing on mean gradients, then PT/PS 5 (dT/dS)2. This has
led to the convenient scaling of xS in the past (Gregg
1984, 1987; Gargett and Moum 1995):

2dS
x 5 x . (2)S T1 2dT

Following Osborn and Cox (1972), we define the
eddy diffusivity by considering Eq. (1) for the case of
isotropic turbulence where the background state has
only a mean vertical gradient. The vertical eddy flux
^w9u9& may be expressed in terms of the turbulent dif-
fusivity Ku, such that ^w9u9& 5 Ku^]u/]z&. Substituting
this into Eq. (1), the eddy diffusivity is

x /2uK 5 . (3)u 2^(]u /]z)&

As a result of Eqs. (2) and (3), the eddy diffusivities of
heat KT and salt KS have been assumed equal. However,
recent numerical investigations by Merryfield et al.
(1998) suggest that these may indeed be different, es-
pecially at low turbulence intensities.

Of fundamental importance to the turbulent transport
of salinity is the determination of the spectral shape of
salinity gradient fluctuations and the dissipation rate of
salinity variance. Quantification of C and xS is theSz

primary goal of this analysis. Measurements of highly
resolved salinity also permit direct estimation of salinity
flux ^w9S9& (Moum 1990).

This paper is organized as follows. In section 2, the
general form of the spectrum of salinity gradient is de-
veloped, and the experimental and analytical procedures
used to obtain it are described. Observations of gradient
spectra, scalar dissipation rates, and covariance fluxes
are presented in section 3. In the discussion (section 4),
normalized spectra are presented, and the turbulent flux-
es of salinity and temperature are compared in terms of
dissipation flux coefficients Go and Gd and diffusivity
ratios do and dx. We discuss how our flux estimates and
the observed spectral shapes may be consistent with
differential diffusion. We conclude (section 5) that the
spectrum of salinity gradient has a shape similar to that
of temperature gradient (except extending to higher
wavenumbers) and approximately follows Kraichnan’s
universal form. The ratio of the eddy diffusivity of salt
to that of heat is found to have an average slightly less
than one. As discussed in the appendix, errors arise
primarily from corrections for thermistor response and
the shape of the scalar gradient spectrum at high wav-
enumbers; bias is also introduced due to anisotropy of
weakly turbulent, buoyancy-influenced patches. As a
result, the ratio dx 5 KS/KT is estimated to be 0.6 , dx

, 1.1. While suggestive that dx , 1, these results do
not rule out the possibility that KS 5 KT. Consequences
of this study are presented in section 6.

2. Methodology

a. Theory

1) SCALAR SPECTRA

We are concerned primarily with the dissipation range
of turbulence, which contains most of the variance of
gradient spectra (Nash and Moum 1999). Gradients of
scalars are intensified and shifted to higher wavenumbers
as a result of strain by the turbulent velocity field. This
cascade of energy in the inertial subrange depends only
on the dissipation rate of TKE, e, leading to the classic
k25/3 dependence of the velocity spectrum. Kolmogorov
(1941) reasoned that viscosity only becomes important
at wavenumbers of O(kh), where kh 5 (e/n3)1/4. At higher
wavenumbers, velocity fluctuations are heavily damped
by molecular viscosity.

Since the values of the molecular diffusivities of heat
DT and salt DS are much smaller than that for momen-
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FIG. 1. Components of the salinity gradient spectrum C for aSz

theoretical turbulent patch. While each of the gradient spectra are
necessarily positive, the cospectrum C may take either sign de-C Tz z

pending on the local T–S relation. In the lower panel, for example,
dS/dT 5 20.5 psu K21, and as a result, C is negative for largeC Tz z

nondimensional wavenumbers (aS . 5 3 1022). For this figure, it
has been assumed that T and S are coherent and have constant phase
at all wavenumbers.

tum, fluctuations of T and S extend to much higher
wavenumbers than fluctuations of velocity. Batchelor
(1959) used this fact when he assumed that the evolution
of scalars with Pr [ n/Du k 1 are governed solely by
the mean least principal strain rate g ; 2(e/n)1/2, the
strain associated with convergent motions in the tur-
bulent velocity field.

A balance between the turbulence-induced strain and
molecular diffusion occurs at a wavenumber near

1/4|g | e
u; [ k . (4)b21 2!D nDu u

Batchelor (1959) calculated the spectral shape for scalar
fluctuations in the viscous ranges. For the range of wav-
enumbers where molecular diffusion is not important (k
K ), the spectrum of scalar gradient C may be writ-ukb uz

ten as (Corrsin 1951; Gibson and Schwarz 1963)

xuC (k) 5 k. (5)ux |g |

This is referred to as the viscous–convective subrange.
At the higher wavenumbers of the viscous–diffusive
subrange, where molecular diffusion is important,
Batchelor (1959) assumed that scalar fluctuations evolve
in a spatially uniform field of strain and determined that
the gradient spectrum roll off is proportional to e .22k

Kraichnan (1968) derived an alternate form for the the-
oretical spectrum by assuming a spatially intermittent
strain field, which produces a less steep diffusive roll-
off (proportional to e2k). Although only subtly different
at low wavenumbers, the peak of Kraichnan’s form has
less amplitude and is located at a lower wavenumber
than that of Batchelor’s form. Recent studies using direct
numerical simulations have found the Kraichnan spec-
trum to be more representative of scalar variance spectra
(Bogucki et al. 1997; Smyth 1999).

Assuming homogeneous, stationary, and isotropic
turbulence, the dissipation rate of variance of a scalar
u is defined in terms of vertical gradients and the one-
dimensional scalar spectrum

2 `]u
x 5 6D 5 6D C (k) dk. (6)u u u E uz71 2 8]z 0

While geophysical flows are generally considered iso-
tropic in the dissipation subrange of turbulence (Smyth
and Moum 2000), we address concerns about possible
biases in estimating xS and xT from one-dimensional
vertical gradient spectra in the appendix (sec. e).

2) APPLICATION TO SALINITY

The following methodology differs slightly from that
of Nash and Moum (1999) and Washburn et al. (1996),
in which C was interpreted in terms of the spectraCz

C and C , and the T–S cross-spectrum C . SinceS T S Tz z z z

C cannot be directly measured, we instead determineS Tz z

the salinity spectrum C explicitly in terms of T and CSz

spectra and their cospectrum.
We begin by linearizing conductivity in terms of S

and T:

C(T, S) 5 C 1 aS 1 bT,o (7)

where a and b are slowly varying functions of S, T, and
P. For seawater at 35 psu and 108C, a ; 0.097 S m21

psu21 and b ; 0.095 S m21 K21. This indicates that a
1 K change in T has about the same effect on C as a 1
psu change in S. In addition, neither a nor b changes
by more than 0.05% for a 1 psu change in S or a 1 K
change in T, justifying this linearization. From Eq. (7)
the vertical gradient in salinity (]S/]z) may be expressed
in terms of the temperature and conductivity gradients
(]T/]z, ]C/]z):

]S 1 ]C b ]T
5 2 . (8)

]z a ]z a ]z

The gradient spectrum of salinity C is then related toSz

the gradient spectra of temperature C and conductivityTz

C and the T–C gradient cospectrum C asC C Tz z z

21 2b b
C (k) 5 C (k) 2 C (k) 1 C (k). (9)S C C T Tz z z z z2 2 2a a a

If measurements of T and C are fully resolved and col-
located, then C may be determined from three mea-Sz

surable spectra and xS calculated from Eq. (6). The the-
oretical form and wavenumber extent of each spectral
component is shown in Fig. 1. Note that the sign of
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FIG. 2. A side view of the upper inch of the microconductivity–
temperature (mCT) probe (left, 2 3 mag). The fast-response FP07
microbead thermistor (T) is separated by 1 mm from the conductivity
(mC) tip, a cross section of which is shown at right, magnified 1003.
The conductivity probe consists of two current-supplying ( I2, I1) and
two voltage-measuring spherical platinum electrodes (V2, V1) sup-
ported by a fused glass matrix (G). The sensor averages conductivity
over a bipolar volume of radial extent ;3 mm and has a 23 dB
power attenuation near k ; 300 cpm. (Photographs courtesy Mike
Head, Precision Measurement Engineering.)

C cannot be guaranteed, and depends on the slopeC Tz z

of the local T–S relation.

b. Experimental details

To calculate C , all of C , C , and C must beS T C C Tz z z z z

fully resolved. This requires a fast-response sensor that
measures T and C at the same location. The microcon-
ductivity–temperature (mCT) probe (manufactured as
the fast conductivity and temperature probe by Precision
Measurement Engineering; Head 1983) is one such sen-
sor (Fig. 2). The probe consists of a four-electrode con-
ductivity sensor (mC) separated by 1–2 mm from a Ther-
mometrics’ FP07 fast-response microbead thermistor.
The conductivity measurement averages over an ;(3
mm)3 volume and its response is wavenumber-limited
(3 dB attenuation at 300 cpm; see appendix of Nash and
Moum 1999). The FP07 response is limited by the rate
of heat transfer into the thermistor bead (through the
hydrodynamic boundary layer and glass coating), which
translates to a frequency-limited response (double pole
with f c 5 29 Hz for the thermistors used here; see Nash
et al. 1999). The response function for the thermistor
was calculated by comparing spectral amplitudes of the
FP07 to that of our ultrafast-response thermocouple sen-
sor and to the mC sensor for selected patches where
salinity fluctuations were negligible (see appendix, sec.
a). Such spectral corrections extend the useful range of
the FP07 to ;60 Hz.

The mCT probe was installed on Chameleon, our
loosely tethered microstructure profiler, in addition to
the regular suite of microstructure sensors: a pitot tube
used to measure the fluctuating vertical velocity and
estimate ^w9T9&, ^w9S9&, and ^w92& (Moum 1990); airfoil
shear probes used to estimate e, the dissipation rate of
TKE (Moum et al. 1995, e.g.); a second fast-response
FP07 thermistor; and a stable Neil-Brown conductivity

cell, used to calibrate the mC sensor in situ. Casts using
the ship’s SeaBird CTD were periodically made for
comparison with Chameleon’s temperature and conduc-
tivity measurements.

Because the mCT probe is designed for laboratory
use, it is susceptible to fouling and damage, and it is
difficult to obtain a stable laboratory calibration. As a
result, we calibrate the sensor in situ: polynomial cal-
ibration coefficients are determined by fitting a low-pass
filtered mC signal to the conductivity measured by the
Neil-Brown cell. The coefficients obtained are then ap-
plied to the unfiltered mC signal and its derivative. Care
is taken not to include mC data that contain nonphysical
spikes or steplike features, which are not present in the
conductivity time series from the Neil-Brown cell and
likely represent an impact of the sensor with biology.
After patches are selected, the mC and Neil-Brown sig-
nals are again compared; records which differ signifi-
cantly are discarded.

The mC sensor was sampled at 409.6 Hz and its de-
rivative at either 819.2 or 409.6 Hz, depending on the
experiment. Thermistor temperature and its derivative
were sampled at 102.4 and 204.8 Hz, respectively. Four-
pole analog Butterworth filters were used for antialias-
ing before digitizing at 16 bits; filter cutoff frequencies
of 32, 64, 132, and 245 Hz were used for signals sam-
pled at 102.4, 204.8, 409.6, and 819.2 Hz, respectively.
The transfer functions of the filters and analog differ-
entiators were determined in the laboratory and spectral
corrections to restore lost variance were applied to the
data during processing.

To measure 80% of the variance of C and C inT Sz z

an energetic turbulent patch (e 5 1 3 1026 m2 s21,
e.g.), the mCT probe must resolve dT9/dz from 0 to 200
cpm and dC9/dz from 0 to 2000 cpm. In an attempt to
achieve this, an instrument profiling speed of Wo 5 25–
35 cm s21 was selected by adjusting the buoyancy and
drag elements on Chameleon. As a result, the average
resolved wavenumber during the experiment was 215
cpm for dT9/dz and 710 cpm for dC9/dz. This choice of
fall speed was a compromise between adequately re-
solving the scalar spectra while still allowing Taylor’s
frozen-flow hypothesis to be invoked (permitting the
conversion of temporal to spatial derivatives; i.e.,

d/dt → d/dz). Sensitivity of the shear probes and21W o

the pitot tube is high at these profiling speeds.
Several hundred vertical profiles (from the surface to

the bottom at depth 50–200 m) were acquired on two
separate occasions on Oregon’s continental shelf on the
southern flanks of Heceta Bank on 23 August 1998 and
over Stonewall Bank on 15 April 1999. Measurements
of turbulent vertical velocity w9 were obtained only dur-
ing the Heceta Bank experiment. During the Stonewall
Bank experiment, a third temperature sensor (an ultra-
fast-response thermocouple: Nash et al. 1999) was in-
stalled on Chameleon and used as a benchmark to de-
termine the thermistor frequency-response transfer func-
tion in situ.
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FIG. 3. A 25-cm vertical segment of (a) du9/dz, (b) dT 9/dz, and (c)
dC9/dz within a turbulent patch at depth 120 m near Heceta Bank.
The spatial scales of conductivity gradient are dominated by the sa-
linity gradient and are ;10 times smaller than those of temperature
gradient, as indicated by the number of zero crossings in a given
spatial interval, and is consistent with / ; 10. The scales of du9/S Tk kb b

dz are larger than either dT 9/dz or dC9/dz.

The dominant currents at Heceta Bank follow local
isobaths. Near the crest of the bank, the flow is mostly
to the southeast and mixing is dominated by bottom-
boundary processes. Offshore of the bank, the southeast
flowing surface currents are opposed by a northwest-
ward flowing undercurrent, which combine to produce
an intensified shear region near depth 70 m. The strat-
ification near the surface is mostly due to temperature;
at depth, where temperature inversions and salinity in-
trusions are common, salinity plays a more dominant
role.

At Stonewall Bank, currents were dominated by a
strong southwestward (.0.5 m s21) internal hydraulic
flow (Moum and Nash 2000; Nash and Moum 2001).
This flow produced interfacial shear instabilities be-
tween a plunging lower layer and the near-stagnant up-
per layer; intensified bottom boundary mixing and hy-
draulic jumps were also observed. Between the two ex-
periments, a wide variety of T–S relations was observed
at a range of turbulence intensities.

1) PATCH SELECTION

Single spectra of turbulence tend to be highly vari-
able; in order to produce significant results, spectra must
be ensemble-averaged to reduce the uncertainty and nat-
ural variability of the individual spectral estimates. Av-
eraging is even more important to reduce the variability
of composite spectra, which may rely on the difference
between two spectral components of similar magni-
tudes. To increase the degrees of freedom of spectral
estimates, the components C , C , and C were en-T C C Tz z z z

semble averaged within a homogeneous region before
combining to form C .Sz

Turbulent patches were selected with regard to ho-
mogeneity of du9/dz, dC9/dz, and dT9/dz signals and
uniformity of the mean gradient dS/dT. The T–S relation
was required to be linear so that the relative contribu-
tions of T9 and S9 to C9 would remain constant. To
illustrate how C and xS are calculated, data from aSz

sample patch are shown in Fig. 3 (time–spatial series)
and Fig. 4 (spectra).

Figure 3 illustrates the range of the spatial scales of
the smallest velocity, temperature, and salinity fluctu-
ations. For this patch, dC9/dz approximately represents
dS9/dz, because the contribution of salinity gradient to
conductivity gradient is much greater than that of tem-
perature gradient. Note that the turbulent signal of dC9/
dz in Fig. 3c is contained within the 20-cm band between
118.9 and 119.1 m; the lack of strong fluctuations out-
side this region indicates that the signal-to-noise ratio
is high within the 20 cm layer.

2) ESTIMATING SCALAR DISSIPATION RATES FROM

SPECTRA

If scalar spectra are fully resolved, then xu is simply
the complete integral of Eq. (6). In practice, measure-

ments are limited by sensor response or noise at the
smallest scales (or highest frequencies) and prevent
complete integration of the scalar gradient spectrum. We
define as the maximum wavenumber at which spec-ukmax

tral estimates are resolved and unaffected by noise. The
choice of depends on the magnitude of e and xukmax

relative to the sensor noise; for the purposes of this
analysis, we have found it prudent to select byukmax

hand.1 At wavenumbers near , spectral levels mayukmax

be contaminated by sensor noise; the effect of this con-
tamination on biasing xT is discussed in the appendix
(sec. b) and found to be negligible.

A discussion of the frequency response of the micro-
bead thermistor is given in Nash et al. (1999) and in
the appendix (sec. a). The spatial response of the mC
sensor is described in Nash and Moum (1999). For each
of these sensors, corrections are applied in the frequen-
cy–wavenumber domain in order to restore lost vari-
ance. In addition, corrections were applied to account
for the antialiasing filters and the imperfect response of
the analog differentiators. Error and bias associated with
the response corrections are discussed in the appendix
(sec. a).

In practice we determine xu by integrating C (k) overuz

the subrange 0 , k , . In order to account forukmax

variance not resolved by the probe, we assume a uni-

1 Here is selected as the wavenumber where a given spectrumukmax

intersects the noise continuum, defined from spectra where the tur-
bulence signal is weak.
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FIG. 4. Gradient spectra of velocity, temperature, and salinity associated with a turbulent patch 3-m-thick (the data
shown in Fig. 3 is contained within this patch). Smooth curves represent the universal forms of Nasmyth (for shear
spectra) and Kraichnan (for scalar gradient spectra). The upper-left panel shows the two orthogonal components of
velocity shear C , C . Temperature gradient spectra C from two thermistors (upper right) indicate that the high-u y Tz z z

frequency noise from one probe (that on the mCT probe used in this analysis) is significantly less than the other. In
the center panel, the components of the composite salinity gradient spectrum C (thick solid line) are shown in unitsSz

of salinity gradient: the contribution from C, a22C (thin solid line); the contribution from T, a22b2C (dotted); andC Tz z

that from the cospectrum, | 2a22bC | (dashed). Note that the cospectrum is positive at low wavenumbers andC Tz z

negative at high-k, as shown in the plot of T–C phase (lower right; circles indicate significant phase). The T–C
coherence is shown in the lower middle panel, with the 95% significance level indicated (dotted line). The T–S relation
is shown to the lower left; this represents a type C patch, as described in section 3b.

versal form for the scalar spectrum at unresolved wav-
enumbers; the variance contained in the measured
[C (k)]obs and theoretical [C (k)]theory spectra at re-u uz z

solved wavenumbers is assumed to be equal.2

u uk kmax max

[C (k)] dk 5 [C (k)] dk. (10)E u obs E u theoryz z
u uk kmin min

Two different forms of the theoretical scalar spectra are
used for the above integration correction: that by Batch-
elor (1959) and Kraichnan (1968). The wavenumber

2 One-dimensional spectra are calculated by dividing the patches
into ;0.5 m, 50% overlapped segments that are Hanning windowed,
Fourier transformed, and ensemble averaged. Frequencies are con-
verted to wavenumber using Taylor’s hypothesis: k 5 f /Wo.

extent of the theoretical scalar gradient spectrum de-
pends on e (determined from two independent shear
probe estimates) and the value of the universal constant
q. The effect of the value of q on our estimates is ex-
plored in the appendix (sec. f ).

We remove the dependence of the theoretical shape
on q by forming the nondimensional wavenumber au 5

(k/ ). For our well-resolved temperature gradientuÏ2q kb

spectra, the method of Luketina and Imberger (2001)
can be adapted to determine / . This method min-Tk Ï2qb

imizes the error between the theoretical and observed
scalar spectra while constraining the total variance of
the theoretical form to be that of the data.3 Using the

3 This method is typically used to estimate e from slowly profiling
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FIG. 5. Summary of 407 nondimensionalized spectra of temperature
gradient as a function of temperature-normalized wavenumber aT 5

(k/ ). Error bars represent 95% bootstrap confidence intervalsTÏ2q kb

on the mean. The distribution of spectral estimates is indicated by
shading: progressively darker regions contain 95%, 90%, 75%, and
50% of the spectral estimates in a given wavenumber band (5 3 104

estimates in total; each contains a minimum of 50 degrees of free-
dom). The smooth lines represent the theoretical spectral shapes of
Batchelor (dashed) and Kraichnan (solid). Most temperature gradient
spectra are resolved to aT 5 4; all are resolved at aT 5 2. The
approximate dimensional wavelength is indicated above the figure;
these values are within a factor of 2 of the actual wavelengths.

Kraichnan universal form as a benchmark, this com-
parison indicates that qk is variable and averages ;7.5
(see Fig. A7).

3. Observations

a. Temperature gradient spectra

To estimate xS, temperature fluctuations must be re-
solved in order to remove the contribution of C fromTz

C to form C through Eq. (9). NondimensionalizedC Sz z

spectra of temperature gradient are shown in Fig. 5. To
avoid bias in the spectral estimates in the viscous–dif-
fusive subrange, the value of q is calculated following
the method of Luketina and Imberger (2001) and is
determined individually for each patch. Such a nor-
malization by / , which depends only on the wave-Tk Ï2qb

number extent of C and not on an independent measureTz

of e, collapses spectral estimates to a universal form at
high wavenumbers. This is because the variability in q
(discussed in the appendix, sec. f ) is accounted for.
Otherwise, in regions where the spectrum decreases rap-
idly with wavenumber, uncertainty introduced into the
wavenumber normalization (through variability in the

devices without shear probes if one assumes a fully resolved tem-
perature gradient spectrum and constant value for q.

relationship between e and C ) increases the spread inTz

spectral estimates and biases the ensemble-average high.
Spectra of temperature gradient closely follow the

theoretical shape of Kraichnan (1968) especially near
aT ; 1, the scales which contain most of the gradient
variance. At the lower wavenumbers of the convective–
diffusive subrange (aT ; 0.1), spectral amplitudes are
significantly greater than those predicted by either the
Batchelor or Kraichnan forms. Many investigators have
observed a deviation in the convective–diffusive sub-
range, which may be attributed to remnant background
vertical temperature structure. Dillon and Caldwell
(1980) found that the deviation is greatest for small Cox
numbers ( 5 ^(dT9/dz)2&/^dT/dz&2) and that observedTC x

spectra approach the theoretical form for . 2500.TC x

However, this deviation may also result if a small frac-
tion of variance near the spectral peak cascades to lower
wavenumbers in a reverse cascade (discussed further in
section 4d.)

b. T–C cospectrum, coherence, and phase

The collapse of the normalized temperature gradient
spectrum to Kraichnan’s theoretical form gives us con-
fidence that our temperature measurements are fully re-
solved. We will proceed to calculate the salinity gradient
spectrum, which, using Eq. (9), depends on both CTz

and C . Since C is fully resolved, we assume thatC T Tz z z

C is also resolved because the cospectrum extendsC Tz z

to wavenumbers , 1.5 times that of temperature in the
extreme case of perfect T–C correlation.

The cospectrum C is not strictly positive nor isC Tz z

the cross-spectrum, in general, real; both depend on the
local T–S relation. However, if T and S are highly cor-
related, as we would expect (at least at the largest scales)
from a turbulent overturn, then the phase between T and
C approaches the limiting values of f 5 08 or f 5 1808
at low wavenumbers. We use the T–S diagram in Fig.
6 to illustrate three distinct cases. A summary of the
average phase and coherence of our observations is
shown in Fig. 7 for three different ranges of the density
ratio

a dT /dzoR 5 2 ,r b dS /dzo

where ao is the thermal expansion coefficient and bo is
the haline contraction coefficient. Here Tz and Sz are
found to be either in phase or out of phase, with a ;
208 spread in the distribution. Note that Rr 5 20.22
represents a line of constant conductivity.

Case A: T9, C9, and S9 are in phase. The fluctuations
in T9 and S9 are positively correlated on large scales,
so that positive fluctuations occur simultaneously in
both T9 and S9 and give rise to a positive fluctuation in
C9. Even as T9 is attenuated at high wavenumbers (near
k ; ), T9 and C9 remain positively correlated. ThisTkb

results because C9 is dominated by S9 at wavenumbers
k . so that S9 and C9 are both positively correlatedTkb
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FIG. 6. An aid to understanding T–C phase and coherence. Indicated
on a T–S diagram are lines of constant conductivity (dotted) and three
distinct regions (shaded) with T–S slopes that give rise to different
T–C phase. The segments of the circle represent regions in T–S space
where turbulent fluctuations (T 9, S9, and C9 relative to the origin, 33
psu, 98C) could occupy. The large-scale turbulent fluctuations rep-
resented on this diagram are generally aligned with the slope of the
local T–S relation and form a line segment passing through the origin.
Each of the three regions ( , , and ) are discussed in detail in theA B C
text.

FIG. 7. Shading indicates the distribution of coherence (top) and phase (bottom) between dT9/dz and dC9/dz; error
bars represent 95% bootstrap confidence intervals. Patches have been averaged over the three different ranges of Rr

identified in Fig. 6 which characterize the distinct trends in phase and coherence described in the text. The phase has
been plotted only for estimates where the coherence is significant; the average significance level is 0.15, and varies with
patch length.

with T9. This gives rise to the high T–C coherence and
zero phase in Fig. 7 (case A).

Case B: T9 is out of phase with both C9 and S9. This
is the case where salinity dominates the conductivity
signal on the overturning scale. Since T9 becomes at-
tenuated at higher wavenumbers, S9 must also dominate

C9 at the smallest scales. Hence, as long as T9 and S9
remain anticorrelated, T9 and C9 should also remain
anticorrelated, as shown in Fig. 7 (case B). Note that
the coherence is much lower for case B than for case
A. This is an indication that T9 and S9 are, in fact,
decorrelating from each other at scales near ; 0.2 .TkB

For case A, the coherence represents that between T9
and a possibly temperature-dominated C9; for case B,
the coherence represents that between T9 and a salinity-
dominated C9, and is decreased due to a decrease in T–
S coherence.

Case C: S9 is out of phase with both C9 and T9 on
large scales. Conductivity is dominated by temperature
on the energy-containing scales. However, above the ther-
mal–diffusive wavenumbers (near ; 0.5 ), T9 is atten-TkB

uated and S9 dominates C9. Since S9 is anticorrelated with
T9, C9 is also anticorrelated with T9 at the smallest scales.
Hence the phase changes from 08 to 1808 in many spectra
at the location where C9 undergoes a transition between
T9 dominance and S9 dominance, as shown in Fig. 7 (case
C). The sample patch in Figs. 3 and 4 has T–S charac-
teristics corresponding to case C.

The cospectrum C may therefore represent etherC Tz z

a positive or negative contribution to C in Eq. (9),Sz

depending on the C–T phase. The value of Rr therefore
helps to determine the shape of the T–C cospectrum and
its contribution to C .Sz

c. Salinity gradient spectra and dissipation

In the previous sections, we identified and charac-
terized the components of C that result from temper-Cz

ature microstructure. In this section, we remove those
contributions in order to estimate C .Sz

The nondimensionalized spectrum of salinity gradi-
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FIG. 8. Summary of 350 nondimensionalized spectra of salinity
gradient as a function of salinity-normalized wavenumber aS 5

(k/ ) (a). Error bars represent 95% bootstrap confidence inter-SÏ2q kb

vals on the mean; the shading indicates the distribution of spectral
estimates. The smooth lines represent the theoretical spectral shapes
of Batchelor (dashed) and Kraichnan (solid). A histogram of the
resolved wavenumber kmax (which represents the Nyquist wavenumber
or the wavenumber at which each spectrum was truncated because
of noise) is shown in the inset (b); wavenumber is scaled to match
that of the larger figure. Only patches with | Rr | , 1 were used for
this analysis.

FIG. 9. Comparison of the direct estimate of salinity variance dis-
sipation xS with its proxy formed from xT and the square of the mean
T–S gradient (dS/dT )2.

ent, shown in Fig. 8, approximately follows the uni-
versal form of Kraichnan. Only spectra with | Rr | , 1
were used in this analysis (350 patches). These represent
patches where the temperature contribution is less than
20 times the salinity contribution to the conductivity
gradient spectrum. For | Rr | . 1, the contribution of
C to C is overwhelming: the conductivity gradientT Cz z

spectrum is 95% due to temperature gradient at low
wavenumbers. Because C is the difference betweenSz

(C 1 b2C ) and 2bC [Eq. (9)] and these termsC T C Tz z z z

are of similar magnitude for | Rr | . 1, spectral vari-
ability and relatively small errors in either C , C , orT Cz z

C can lead to a large relative error in C .C T Sz z z

In light of this, it is remarkable that the spectral es-
timates in Fig. 8 have such a narrow spread, given that
a significant temperature contribution has been removed
from C to produce these spectra. This is testimonyCz

that the linear decomposition of conductivity spectra
[Eq. (9)] provides an excellent model for interpreting
our observations. We attribute the spread in spectral
estimates, which is similar for C and C , to naturalS Tz z

variability and conclude that the error associated with
C being a composite spectrum is small in comparison.Sz

As indicated in the figure, the slope in the viscous–
convective subrange is less that 11.

The dissipation of salinity variance xS is calculated
by integrating C using Eq. (6). Since it is often as-Sz

sumed (Gregg 1984) that xS and xT are simply related
through the square of the T–S slope, (dS/dT)2 [Eq. (2)],

we present a comparison with this form in Fig. 9. These
results indicate that xT(dS/dT)2 is an excellent proxy for
xS, with the latter being on average about 30% less than
the former. This difference might be a real effect of
differential turbulent diffusion. However, it may also
result from error and bias in our experimental deter-
mination of xT and xS. Uncertainty in the thermistor
response transfer function, the assumed shape of the
universal spectrum used for integration correction, and
the use of the isotropic relations in estimating scalar
dissipations represent the largest sources of error and
can account for the observed 30% discrepancy between
xT(dS/dT)2 and xS (see appendix).

d. Covariance flux estimates

A fundamental motivation for studying the mixing of
scalars is to determine turbulent fluxes (Gregg 1987).
The covariance (or eddy correlation) estimate of the
turbulent vertical flux for a scalar u in Eq. (1) is given
by the covariance

uF 5 ^w9u9&, (11)

where w9 represents the fluctuating vertical velocity (from
our pitot measurements: Moum 1996a,b) and u9 is the
associated scalar fluctuation with respect to the back-
ground scalar profile . The background is often definedu
by resorting the observed density r to its lowest potential
energy (Thorpe reordered) state. However, if both T and
S contribute to r, a Thorpe reordered profile often con-
tains spikes and discontinuities in T of S due to small
errors in computing density from two independent mea-
surements. Since the patches used in this analysis have
an approximately linear T–S relation, the lowest potential
energy state should be monotonically increasing (or de-
creasing) in all T(z), S(z), and r(z). To produce such a
background state, we find it most appropriate to sort T
and S individually to determine and . We then com-T S
pute density rTS from the reordered , profiles andT S
compare it to the Thorpe reordered density profile rThorpe.
If the normalized deviation ^(rTS 2 rThorpe)2&/(rThorpe 2

)2 exceeds 0.002 for a given turbulent patch, then thisr
method of sorting is deemed inadequate and the scalar
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FIG. 10. Turbulent vertical velocity w9 (left) and the associated instantaneous turbulent fluxes, w9S9 and w9T 9
(right panels) for the patch shown in Fig. 4. Also shown are S and T along with the associated resorted profiles.
On average, positive w9 is associated with positive S9 and negative T 9, leading to the downgradient fluxes of heat
(^w9T 9& 5 27.1 3 1026 K m s21) and salt (^w9S9& 5 2.6 3 1026 psu m s21).

fluctuations and corresponding turbulent fluxes ^w9u9& are
not computed. If the normalized deviation is small, rTS

closely matches rThorpe and the associated and areT S
smooth. A sample patch is shown in Fig. 10.

In Eq. (11), the angle brackets should ideally repre-
sent an average over the full spatial extent and temporal
lifespan of a turbulent event. In practice, this is not
possible from vertical-profiler measurements, and in-
stead the averaging is performed with respect to a single
dimension (z) instead of four (x, y, z; t). As a result of
this undersampling, single-patch estimates of ^w9u9& are
highly variable and may even be countergradient
(Moum 1996a,b). Estimates of F u are thus only reliable
when ensemble averaged over many turbulent events.

It was possible to unambiguously determine the back-
ground , in 176 of the 233 turbulent patches in whichT S
w9 was measured. Only 129 had | Rr | , 1, a condition
necessary if comparisons with KS are to be made. In
addition, it is necessary for the coherence between w9
and u9 to be significant to calculate the covariance. Only
76 patches were significant in both ^w9T9& and ^w9S9&
at the 95% level.

4. Discussion
a. Universality of spectral shape

A comparison of the gradient spectra of T and S is
shown in Fig. 11 as a summary. Two different nor-

malizations illustrate the similarities and differences in
the two spectral shapes. In Fig. 11a, the data are nor-
malized using Kolmogorov scaling so that spectra col-
lapse at the wavenumbers associated with the maximum
variance in the velocity strain field (near kh). The scale
separation between inertial subrange and diffusive
(Batchelor) scales is 10 times greater for C than forSz

C , allowing a large viscous–convective subrange toTz

develop.
In Fig. 11b, the data are normalized using Batchelor

scaling so that spectra collapse in the viscous–diffusive
subrange: C and C have a similar shape and ap-T Sz z

proximately follow the universal form of Kraichnan.
While C extends to higher normalized wavenumbersTz

(due to the thermistor’s comparatively high signal-to-
noise ratio), the spectrum of salinity gradient extends
to lower normalized wavenumbers, indicating that the
scales of its diffusive subrange are further removed from
the scales of the velocity strain field, and C should beSz

less affected by larger scale, buoyancy-modified vari-
ance and are likely more isotropic (see the appendix,
sec. e.)

In the region where C and C overlap in Fig. 11b,T Sz z

the shapes of the spectra are remarkably similar to each
other, yet different from the universal form of Batchelor.
This provides further support to the recent acceptance
of Kraichnan’s universal form (see Smyth 1999; Bog-
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FIG. 11. Collapse of salinity (m) and temperature (C) gradient spectra in the viscous–convective (a) and viscous–diffusive (b) subranges
is accomplished by appropriate normalization. In (a) both C and C are nondimensionalized with respect to the Kolmogorov wavenumberS Tz z

kh and molecular viscosity n, which collapses the low-wavenumber inertial and viscous–convective subranges. In (b) C and C areS Tz z

nondimensionalized by their respective Batchelor wavenumbers ( or ) and molecular diffusivities (DS or DT), which collapses the spectraS Tk kb b

in the high-wavenumber viscous–diffusive subrange. The dashed and solid curves represent the universal forms of Batchelor and Kraichnan.
Note that the k1/3 inertial subrange has a different level and transition wavenumber for each scalar under the latter normalization.

ucki et al. 1997, e.g.), which more accurately represents
the spectral shape in the viscous–diffusive subrange by
allowing intermittency in the strain field.

In the viscous–convective subrange, spectral ampli-
tudes are elevated over either universal shape so that
the spectral slope in the viscous–convective subrange
is less than 11. There are two possible reasons for this:

• increased spectral intensity at low wavenumbers, as a
result of the background vertical salinity structure [as
has been suggested for T by Dillon and Caldwell
(1980) and others] or

• salinity variance within the viscous–convective sub-
range may return to larger wavenumbers in a reverse
cascade, a result of incomplete mixing.

The latter is consistent with dx 5 KS/KT , 1, and will
be discussed in more detail in section 4d.

b. Flux comparisons

Following Gargett and Moum (1995), we define the
turbulent flux of a scalar u in three ways:

1) based on the direct flux from covariance estimates,
uF [ ^w9u9& (12)

2) relating shear production to buoyancy production
plus dissipation in the evolution equation of TKE,

uzuF [ e (13)e 2N

3) from the Pu 5 xu balance in the scalar variance equa-
tion [Eq. (1)],

xuuF [ . (14)x 2uz

The corresponding flux coefficients are

u u u u u uG 5 F /F , G 5 F /F .o e d x e (15)

The statistics of are shown in Fig. 12. The meanuGd

^ & 5 0.11 is consistent with observations of oceanicTGd

microstructure and laboratory experiments: ^ & hasSGd

never been measured before and we find it to be about
30% less than ^ &.TGd

Our estimates of (Fig. 13) are similar for salinityuGo

and temperature, but are perhaps a factor of 2 smaller
than would be expected. Our measurements of w appear
not to resolve the largest scales at which the eddy flux
occurs. Regardless, ^ & ; ^ &, indicating that heat andT SG Go o

salt are transported equally well by the eddies that are
resolved.

For high Reb flows (Reb [ e/(nN 2)), the relative tur-
bulent fluxes of heat and salt should be proportional to
the ratio of their mean gradients [refer to Eq. (13) for
example]. We define the dissipation diffusivity ratio dx

following Gargett and Holloway (1992) and introduce
the covariance diffusivity ratio do:

S T S Td 5 (F /F )(dT /dS), d 5 (F /F )(dT /dS); (16)x x x o o o

dx is equivalent to the ratio of diffusivities KS/KT. De-
partures of dx from 1 represent differences in the ef-
fectiveness of turbulence in diffusing salt relative to heat
at the diffusive scales. In contrast, do represents the
differential diffusion of S with respect to T on the eddy-
flux scales. The statistics of these two ratios are shown
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FIG. 12. Statistics of Gd, the dissipation flux coefficient based on
the irreversible mixing on diffusive scales. Estimates were made from
350 patches with | Rr | , 1.

FIG. 13. Statistics of Go, the flux coefficient based on the large-
eddy transport. Data represents 76 patches with | Rr | , 1 and both
^w9T 9& and ^w9S9& significant at the 95% level.

FIG. 14. Statistics of the diffusivity ratio based on large-eddy trans-
ports do 5 ( / )(dT/dS) (top) and based on the scalar dissipationS TF Fo o

rates dx 5 KS/KT (bottom).

in Fig. 14. This indicates that the diffusivities of heat
and salt based on eddy fluxes are, indeed, equal and
^do& 5 1. However, the distribution of dx is shifted to
smaller values, suggesting that salt may be less effec-
tively diffused by turbulence than heat.

c. Differential diffusion by turbulence?

As a thought experiment to illustrate how differential
diffusion might arise, consider the limiting case of mix-
ing a scalar with infinitely small molecular diffusivity
Du → 0, in a fluid parcel that evolves in time from
quiescent to turbulent, and back to quiescent again. As-
sume that the scalar has some small effect on the buoy-
ancy of the fluid. Scalar fluctuations produced by a tur-
bulent overturn at large scales cascade to smaller scales
as time evolves. After all turbulent motions subside,
scalar gradients remain on a variety of scales but are
not smeared by molecular diffusion. Given time, the
scalar anomalies, each with a slight buoyancy anomaly,
re-sort themselves and eventually return to the original
scalar profile. The result? No irreversible mixing.

Now consider a real scalar with finite molecular dif-
fusion in a viscous fluid. The scales at which gradients
are smeared by molecular diffusion are characterized by
the Batchelor wavenumber, . Weu 2 1/4k [ [e /(nD )]b &thetas

are primarily concerned with the cascade of variance to
from the viscous wavenumber kh [ (e/n3)1/4, a wave-ukb

number band where the effect of molecular diffusivity
becomes important (see Fig. 1: these are the viscous–
convective and viscous–diffusive subranges of turbu-

lence). Batchelor (1959) suggested that the transfer of
variance in this subrange is dominated by the rate of
least principal (most negative) strain g ; 2 , suchÏe/n
that a Fourier wavenumber k (associated with some sca-
lar gradient) evolves in time as ;ke2g t. Scalar differ-
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FIG. 15. Variation of the flux ratios do (based on the largeeddy
transport) and dx (based on scalar dissipations) with buoyancy Reyn-
olds number Reb [ e/(nN 2). For comparison, the dashed line rep-
resents the normalized salt to heat flux ratio (fS/fT) computed from
Merryfield et al. (1998) for direct numerical simulation of two-di-
mensional turbulence. The solid line represents the ratio of saline to
thermal entrainment velocity from the laboratory experiments of
Turner (1968). We estimate Reb for their experiments as discussed
in the text.

ences over the Kolmogorov scale (1/kh) are transformed
into scalar differences over the much smaller Batchelor
scale (1/ ) by the compressive strain rate g in time tu,ukb

such that

u 2gtuk 5 k e .b h (17)

In this way, scalar gradients at small scales are in-
creased.

For seawater (33 psu, 108C, 0 dB) n 5 1.4 3 1026

m2 s21, DT 5 1.5 3 1027 m2 s21, and DS 5 1.0 3 1029

m2 s21 so that / ; 10. The time it takes for a FourierS Tk kb b

component to cascade from the Kolmogorov to the
Batchelor wavenumber is

1 n
t 5 ln . (18)u !|g | Du

For temperature fluctuations, tT 5 1.1 , while forÏn/e
salinity, tS 5 3.7 . Thus, it takes more than threeÏn/e
times longer to cascade salinity variance into its dif-
fusive scales than it does for temperature variance.

In the absence of persistent forcing,4 the lifespan of
a turbulent patch may be considered to be tpatch ;
O(N21) (Crawford 1986; Moum 1996b). If tpatch is much
shorter than the time it takes to cascade variance to the
diffusive spatial scales, then there will be remnant sa-
linity variance at moderately high wavenumbers (k .

) for which the corresponding temperature varianceTkb

has already diffused away. If this salinity variance is
able to re-sort itself through its buoyancy, we should
expect incomplete mixing; consequently Pu ± xu.

Whether the remnant salinity variance is able to resort
itself or remains in a statically unstable state to diffuse
slowly through molecular diffusion depends on the Ray-
leigh number, Ra. Convective re-sorting of remaining
salinity fluctuations DS should occur if Ra exceeds a
critical value, Rac . 1000 (Turner 1973). For our pur-
poses

3gb DSloRa 5 , (19)
nDS

where l is the length scale of the salinity fluctuations
and bo . 7.7 3 1024 psu21 is the haline contraction
coefficient. For salinity fluctuations typical of our data
(DS 5 0.01 psu; see Fig. 4), convective re-sorting
should occur for fluctuations with l . 2.7 mm. For a
turbulent patch with e 5 1029 m2 s23, the length scale
associated with the smallest temperature fluctuations (lT

5 2p/ ) is 15 mm, whereas salinity variance extendsTkb

to scales of lS 5 2p/ 5 1.2 mm. It is therefore possibleTkb

that salinity variance at large scales (l . 2.7 mm) will

4 For this analysis we consider the turbulent events to be freely
decaying patches. Hence, our scaling is inappropriate if the duration
of the forcing is much greater than N21, an example being the per-
sistent mixing associated with near-inertial internal waves (Gregg et
al. 1986).

convectively re-sort, whereas fluctuations at small scales
(l , 2.7 mm) will mix through molecular diffusion.

We note that the ratio of time scales is proportional
to the square root of the buoyancy Reynolds number
Reb [ e/(nN 2) so that

t /t 5 b ÏRe , (20)patch u u b

where bT ; 0.9 and bS ; 0.3. From the above discus-
sion, we conclude that KS . KT for flows with large
Reb. For small Reb, which describes weak and aniso-
tropic turbulence, the arguments presented above sug-
gest KS , KT.

The dependence of the flux ratios on Reb is shown
in Fig. 15. Because of the small dynamic range of Reb

and significant variability of our estimates, it is not pos-
sible to resolve a trend in our data. Also plotted for
comparison is an estimated diffusivity ratio from Turn-
er’s (1968) laboratory experiments and the direct nu-
merical simulations of Merryfield et al. (1998). Each
curve exhibits a trend consistent with our intuitive ar-
guments. Note that the DNS and lab experiments give
quantitatively different ranges of Reb where KS/KT is
significantly less than one.

In Turner’s experiments, turbulence was generated by
an oscillating grid that eroded a temperature or salinity
interface. The rate at which fluid mixed across the in-
terface was described in terms of an entrainment ve-
locity ( for temperature and for salinity) and char-T Su ue e

acterized with respect to a parameter resembling a Rich-
ardson number, but which depended on specific geo-
metrical details of the experimental setup: Rio 5 3 3
108Dr/(rn2), where Dr/r is the fractional density step
across the interface and n is the stirring rate in cycles
per minute. Thompson and Turner (1975) later measured
turbulent length and velocity scales (l, u) for a similar
experimental setup, allowing Turner (1973) to relate the
results to a more meaningful Ri.

To facilitate comparison with our oceanic data, we
compute Reb for Turner’s experiments from unpublished
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data.5 We estimate e 5 u3/l based on the turbulent ve-
locity (u 5 8 3 1026 3 n m s21) and length scale (l
5 9 mm) at the interface, using the measurements of
Thompson and Turner (1975), N 2 5 gDr/(rDz) was
computed using Dz 5 90 mm (the mean separation be-
tween interface and grid) in order to represent the back-
ground stratification. Numerically, Reb is approximately
; (90 2 270) Ri21, where Ri is that in Turner (1973).
The flux ratio was computed as d 5 / . As shownS Tu ue e

in Fig. 15, Turner’s experiments suggest that differential
diffusion is appreciable only at low buoyancy Reynolds
numbers (Reb , 100). We note, however, that the mixing
of a two-layer fluid by grid turbulence is significantly
different than that in ocean mixing, so that the direct
comparisons like those in Fig. 15 should be interpreted
cautiously.

Also plotted is the ratio of cumulative salt flux fS to
heat flux fT as estimated from the numerical simulations
of Merryfield et al. (1998). Although Reb was not ex-
plicitly determined in their simulations, we estimate Reb

as Fr2 Re (for runs I(a–c): red energy spectrum) and
12Fr2 (for runs II(a–c): blue energy spectrum). These
indicate that 0.5 , KS/KT , 0.9 in the range 102 , Reb

, 106, which is consistent with our data.

d. Relationship between spectral shape and KS/KT

Figures 5 and 8 show that the spectral shapes C andTz

C are similar to each other and that their dependenceSz

in the viscous–convective subrange is slightly less than
the k11 predicted by Corrsin (1951), Batchelor (1959),
or Kraichnan (1968). A similar deviation from k11 at
low Cx (Dillon and Caldwell 1980; Oakey 1982; Gargett
et al. 1984) has generally been associated with excess
variance from background vertical microstructure. Since
low Cx corresponds to low Reb, we postulate that this
elevated variance may also result from transfer of var-
iance from the spectral peak to lower wavenumbers as
a result of buoyant resorting. We argue that the spectral
shapes of C and C described by universal forms withT Sz z

spectral slope in the viscous–convective subrange less
than k11, as suggested by Fig. 11, are consistent with
differential diffusion.

Assume that eddies stir T and S in a similar fashion
so that the production of scalar variance, Pu, is propor-
tional to (du/dz)2. Spectral levels in the inertial subrange
scale accordingly (with constant of proportionality Cu:
Sreenivasan 1996) so that

21/3 1/3C (k) 5 C P e k ,u u u (21)

an equation usually written in terms of xu under the
assumption that Pu 5 xu.

We use geometrical arguments to determine the re-
lationship between production and dissipation if the vis-
cous–convective subrange scales as kn instead of k11 as

5 We thank Stewart Turner for locating his 35 year old Cambridge
laboratory notebook and kindly providing this data to us.

predicted by Corrsin (1951) in Eq. (5). First, we assume
the wavenumber extent of the gradient spectrum is pro-
portional to . The amplitude of the peak of the vis-ukb

cous–diffusive subrange depends on the spectral level
at the Kolmogorov wavenumber (the source of variance
for the viscous–convective cascade), which scales with
(du/dz)2. It also depends on the bandwidth and spectral
slope of the viscous–convective subrange and is, thus,
also proportional to ( )n. Hence, } (du/dz)2 ( )n.u max uk C kb u bz

The dissipation rate is the integral of the scalar gra-
dient spectrum, which is proportional to the product of
the bandwidth and amplitude of the spectral peak:

`

max u u n11 2x 5 6D C (k) dk } D C k } D (k ) (du /dz) .u u E u u u b u bz z

0

(22)

We can now evaluate KS/KT using Eqs. (3) and (22):

(12n)/2S n11K D (k ) DS S b S5 5 . (23)
T n11 1 2K D (k ) DT T b T

Evaluating Eq. (23) we find KS/KT 5 0.7 for a spectral
slope of n 5 0.85; integration of the Kraichnan spectrum
(modified to have a k0.85 viscous–convective subrange
as plotted in Fig. 16) yields the same result. Hence, the
equivalence of KS and KT relies on the spectral slope in
the viscous–convective subrange to be 11, as long as
the extent of the spectrum scales with . Our findingukb

that dx is less than one (Fig. 14) is therefore consistent
with C and C having similar shape and an ;k10.85

T Sz z

viscous–convective subrange.
Figure 16 shows the observed gradient spectra in re-

lation to the Kraichnan universal spectrum, both in its
original form and that with a k10.85 viscous–convective
subrange. We sort the data by buoyancy Reynolds num-
ber: the spectra in Fig. 16a are calculated from patches
with Reb . 1000 and may be expected to be quasi-
isotropic; the spectra in Fig. 16b are calculated from
patches with low Reb where the influence of buoyancy
may be significant. Clear differences in the spectra are
observed at low wavenumber. For Reb . 1000, spectral
levels of C and C converge for ah , 1. In contrast,T Sz z

for patches with Reb , 1000, normalized spectral levels
exceed those of the universal spectrum at low waven-
umbers, consistent with the observations of temperature
microstructure at low Cx by Dillon and Caldwell (1980)
and others.

As a result, normalized spectra of S exceed those of
T in the viscous–convective subrange at low Reb (Fig.
16b). Since the spectra have been normalized by xT and
xS, the differences in spectral amplitudes at low wav-
enumbers represent the relative excess of production
over dissipation, assuming that spectral levels at low
wavenumbers are associated with Pu. As a consequence,
there is a different relationship between production (Pu,
given by the spectral level at low k), and dissipation
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FIG. 16. Gradient spectra calculated from patches with (a) high Reb and (b) low Reb exhibit subtle but important differences in spectral
shape, especially at low ah. More than 150 patches contribute to each range of Reb; normalization and symbols are the same as in Fig. 11a;
error bars represent 95% bootstrap confidence limits. The dashed curves represent Kraichnan’s universal scalar gradient spectrum; the solid
lines represent a modified Kraichnan spectrum in which the viscous–convective subrange scales with k10.85 instead of k11. An approximate
agreement between observations and the modified universal spectrum (particularly for low-Reb) suggests that the spectral slope in the viscous–
convective subrange may be less than 1.

(xu, the integral of C used to normalize the data) foruz

S as compared to T. We may express this as

P 5 x 1 undissipated,u u (24)

where the amount not dissipated is related to the ele-
vation of spectral levels above a k11 viscous–convective
subrange and is greater for S than for T at low Reb. This
Reb dependence is consistent with our arguments in the
previous section.

We emphasize that we are unable to give a theoretical
or analytical justification for our choice of spectral slope
at this time: we simply suggest that a k10.85 viscous–
convective subrange is not inconsistent with our ob-
served spectra (particularly at low Reb) and that such a
slope followed by a diffusive cutoff } is consistentukb

with KS/KT 5 0.7 and the possibility of differential dif-
fusion.

5. Conclusions

Highly resolved measurements of salinity have been
made from a vertical microstructure profiler near the
coast of Oregon. Four hundred patches of turbulence
were analyzed from which the spectrum of salinity gra-
dient C was determined. The spectrum of salinity gra-Sz

dient exhibits an approximate k11 behavior in the vis-
cous–convective subrange, followed by a diffusive roll-
off that closely resembles the universal form of Kraich-
nan (1968). From C , the dissipation rate of salinitySz

variance xS was calculated and the eddy flux ^w9S9& was
estimated. Such quantities permit the turbulent transport
of salinity to be estimated and compared to that for
temperature.

We use do, the ratio of the transport of T and S on

eddy scales, to compare the covariance fluxes of heat
and salt, ^w9T9& and ^w9S9&. Our finding that ^do& ; 1
suggests that T and S are transported equally well by
the large-scale eddy field. This contrasts our estimate
of ^dx& 5 ^KS/KT&, which describes the observed flux
due to irreversible mixing and represents the ratio of
eddy diffusivities. The distribution of dx exhibits much
scatter (;two decades), and has a geometric mean ^dx&
5 0.7 (Figs. 14 and 15). We present this value along
with the following words of caution. As discussed in
the appendix, there are several sources of error that may
bias our estimates: we estimate that 0.6 , ^dx& , 1.1
are probable bounds on our estimates of KS/KT. This
error arises primarily from 1) our thermistor response
corrections, 2) the assumption of isotropy in estimating
xS and xT from one-dimensional vertical gradient spec-
tra, and 3) our use of the Kraichnan universal spectrum
(and the value of q), to correct for unresolved variance
during spectral integration. In addition, these measure-
ments represent a limited number of turbulent patches
in a small subset of the oceanic parameter space; one
important restriction within our analysis was the re-
quirement that | Rr | , 1. Furthermore, we have biased
our data by selecting only turbulent patches for the anal-
ysis and neglecting weakly turbulent ones (for which
differential diffusion is more probable). While our re-
sults are highly suggestive that dx , 1, our estimated
uncertainty does not rule out the possibility that dx 5
1, and from this limited dataset, we are unable to make
a general claim for the value of KS/KT in the global
ocean, or for its dependence on Reb.

Although the eddy motions produce variance of T and
S proportional to (dT/dS)2, a value of dx , 1 would
suggest that all of this variance is not dissipated. In
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particular, a disproportionate amount of the salinity var-
iance is not being dissipated because of its low molec-
ular diffusivity. It would be assumed that this variance
eventually restratifies because the duration of the tur-
bulent patch is not sufficient to allow complete irre-
versible mixing by molecular processes. This can only
happen at low Reb and sufficiently high Ra, both of
which imply weak, anisotropic turbulence. The ob-
served spectral slope in the viscous–convective subran-
ge for low Reb patches is consistent with an imbalance
of production over dissipation.

While these are the first estimates of the irreversible
salinity flux in the ocean, evidence that the irreversible
transport for salt is less efficient than that for heat is
not new. Our estimates of dx are consistent with those
from the numerical experiments of Merryfield et al.
(1998), who found the normalized flux ratio of salt to
heat to be significantly less than one over a similar range
of Reb, as shown in Fig. 15. The experiments of Turner
(1968) suggest that differential diffusion (dx , 1) should
be significant only at much smaller buoyancy Reynolds
numbers (Reb , 100). The discrepancies between each
of these experiments needs further investigation.

6. Potential consequences

The possibility that heat and salt are transported
through the ocean at different rates has significant con-
sequences. Most importantly, vast regions of the ocean
are characterized by small buoyancy Reynolds number
(Reb), where incomplete mixing is possible. Gargett and
Holloway (1992) and others have suggested that small
differences in the eddy diffusivities of heat and salt
could have a significant impact on the thermohaline cir-
culation.

Secondly, oceanographers have relied on the eddy
diffusivity of heat—the quantity that the microstructure
community usually measures—as being representative
of that of salt, density, and buoyancy. While in regions
of energetic turbulence this should be the case, in re-
gions where salinity plays a dominant role in determin-
ing the stratification and where turbulence is weak it is
likely that Kr may be less than expected.

Finally, these results might further the interpretation
of tracer-release experiments (Ledwell et al. 1993). The
tracers used in those experiments generally have a mo-
lecular diffusivity comparable to that of salt,6 so that
the inferred diffusivity is more closely related to KS than
to KT or Kr. It is therefore possible that these experi-
ments tend to underestimate the true irreversible mixing
of temperature or density, if indeed the turbulent dif-
fusivities of heat and salt are unequal. This is especially
likely in the regions of low turbulence levels where the
dye release experiments have been relied upon to deliver
bulk estimates of eddy diffusion coefficients. A quan-

6 The molecular diffusivity of SF6, used by Ledwell et al. (1993),
is D 5 8 3 10210 m2 s21 at 108C (King and Saltzman 1995).SF6

titative understanding of the dependence of KS/KT on
Reb will help to refine error estimates on diffusivities
derived from such experiments.

These results highlight the need to develop a theo-
retical framework to relate the probability of incomplete
mixing to flow parameters like the buoyancy Reynolds
number. It should be possible to perform laboratory and
numerical experiments to clarify some of the issues
raised here and gain a more precise and fundamental
understanding of dx. Future experiments should be de-
signed to improve our understanding of the aspects that
contribute to most of the uncertainty in the estimate of
dx, namely the role of anisotropy in differential diffusion
(and our ability to measure it) and the shape of the
diffusive subrange of scalar gradient variance at a va-
riety of Reb. More extensive measurements of both hor-
izontal and vertical scalar gradient in the low-Reb re-
gime will be needed to clearly determine the variability
(or lack thereof ) of KS/KT.

Acknowledgments. The authors have benefitted from
informative discussions with Bill Smyth, Roland de
Szoeke, Doug Caldwell, Jen MacKinnon, and Eric Kun-
ze. The technical support of Michael Zelman, Mike Nee-
ley-Brown, Ray Kreth, Gunnar Gunderson, and Greig
Thompson made these measurements possible. We
thank Stewart Turner for providing us with data from
his 1966 experiments. This manuscript has benefitted
from the critical and insightful comments of an anon-
ymous reviewer. Funding by the Office of Naval Re-
search and the National Science Foundation made this
work possible.

APPENDIX

Sources of Error and Bias

To understand the limits and significance of the Os-
born–Cox estimate of diffusivity and associated fluxes,
quantification of the error and/or bias introduced into
the spectra (C and C ), the dissipations (xS and xT),S Tz z

and the mean gradients (dS/dz and dT/dz) is necessary.
Six significant sources of error that influence the pre-

ceding calculations are investigated and are summarized
below.

(a) Signal attenuation: A careful description of the fre-
quency response of the microbead thermistor has
been determined by in situ comparisons with bench-
mark sensors. A theoretical and laboratory-verified
spatial correction was applied to the conductivity
probe. Such corrections to the power response can
be determined to within a 610% accuracy; since
these corrections represent an average of 40% of
the measured variance, the effect on the total mea-
sured variance is ,10%.
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FIG. A1. The frequency response [H 2( f )] of the FP07 thermistors.
Each shaded region represents the 95% bootstrap confidence interval
for the average over at least 10 patches. The dark shading represents
the response of the thermistor used at Heceta Bank, calculated as H 2

5 b2C /C , and the light shading represents that from the Stone-FP07 mCz z

wall Bank experiment, calculated as H 2 5 C /C . A double-poleFP07 TCz z

filter with f c is shown as the smooth curve.

(b) Sensor noise: To calculate xu, gradient spectra have
been integrated over a wavenumber range limited
by , the wavenumber where spectral amplitudesukmax

intersect an empirical noise spectrum. As a result,
some noise may be included in high-k spectral es-
timates, causing the highest wavenumbers to be bi-
ased slightly high. Since spectral levels near the
high wavenumbers are small, the effect of this noise
on the total gradient variance (xS or xT) is small
(0.6%).

(c) Estimation of dS/dz and dT/dz: There are several
ways that the mean gradients can be calculated; the
average error is 3%.

(d) Cospectrum C : A lag between T and C resultsC Tz z

in aliasing variance from the cospectrum into the
imaginary part of the cross spectrum. Such phase
errors may have biased xS low by 2%.

(e) Effect of anisotropy on xu estimates from vertical
spectra: Vertical gradient scalar spectra are en-
hanced over horizontal spectra at low Reb. Because
motions become more isotropic at higher waven-
umbers, the variance of salinity gradient is more
isotropic than that of temperature gradient, which
occurs at larger scales. As a result, estimates of xT

may be biased high whereas estimates of xS are
likely to be unbiased (or at least less biased). Es-
timates of xS/xT may be significantly biased low at
very low Reb. Using an empirical relation derived
from the direct numerical simulations of Smyth and
Moum (2000), we find that xS/xT may be biased
10% low on average; however, the bias is less than
2% for Reb . 200.

(f) Choice of the form of the universal spectrum
(Kraichnan or Batchelor), and the value of the con-
stant q: This parameter relates the least principal
strain rate to the dissipation rate (g 5 2q21 )Ïe/n
and alters the wavenumber extent of the universal
form for a given kb. The error that can be introduced
into the ratio xS/xT by assuming an improper spec-
tral shape for integration correction can exceed
20%. Any bias in our estimate of kb } e1/4 is im-
plicitly considered (as a bias in q).

Given the magnitude of these individual sources of
error, we can place error bounds on our estimate of dx

5 KS/KT. Thermistor attenuation, sensor noise, and error
in estimation of mean gradients are random and add to
produce an error of 614%. Phase errors and the effect
of anisotropy may have biased dx low by as much as
212%. The shape of the universal spectrum (and the
value of q) used for integration correction has significant
effect on dx; for plausible values of q, 0.68 , dx ,
0.84. Combining each of these errors gives a maximum
range for dx 5 KS/KT of 0.57 , dx , 1.06. For the
purpose of discussion in this paper, we round this to 0.6
, dx , 1.1. From this error analysis, it is suggestive
that dx , 1; at the same time, however, it is impossible
to distinguish dx from unity, and thus KS 5 KT is pos-
sible.

a. Probe response

1) TEMPERATURE

In this analysis, we consider C at high wavenumbersTz

(k . 100 cpm) where the FP07 response is highly at-
tenuated. If the power-response transfer function,

(C )T measuredz2H 5 , (A1)
(C )T actualz

can be identified, then we can correct for variance not
resolved directly by the thermistor. We estimate
(C )actual in situ using a fully resolving benchmark: ei-Tz

ther our ultrafast thermocouple probe or the mC probe
in regions where the conductivity fluctuations are dom-
inated by temperature. We define the temperature gra-
dient spectrum measured by the FP07 thermistor, ther-
mocouple probe, and mC sensor as C , C , andFP07 TCz z

C respectively.mCz

During the Heceta Bank experiment, there were many
turbulent patches where the conductivity was dominated
by temperature, and C /b 2 is representative ofmCz

(C )actual at wavenumbers below . An ensemble av-TkT bz

erage of the relative spectral amplitude, b2C /C wasT mCz z

calculated for 20 patches having dT/dS . 20 K/psu to
determine the transfer function of the thermistor, and is
plotted in Fig. A1. For these patches, the contribution
of C to C was less than 0.1% for any given spectralS Cz z

estimate.
No turbulent patches with dT/dS . 20 K/psu were

observed at Stonewall Bank, making it difficult to use
the mC sensor to determine the thermistor time constant.
Instead, the thermocouple was used as a benchmark,
which we believe to respond without attenuation at 100
Hz (Nash et al. 1999).

For both experiments, the attenuation by the FP07
thermistor is well represented as a double-pole filter
(Gregg and Meagher 1980) with f c 5 29 Hz:
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FIG. A2. Relationship between resolved wavenumber and the frac-
tion of variance resolved by the fast conductivity probe gmC (left). A
histogram of gmC is shown to the right; an average of 60% of the
variance is resolved.

FIG. A3. Contribution of thermistor noise to estimates of xT. Dotted
lines in the scatterplot (left) indicate cases where noise represents
1% and 10% of the measured temperature variance. On average, noise
represents 0.6% of the signal (histogram, right). is less than 2%noisexT

of in 96% of the patches.x*T

21
2H ( f ) 5 . (A2)

21 21 1 ( f / f )c

The 95% bootstrap limits on the mean fall within 10%
of this form, providing confidence that correction of
temperature spectra using C ( f ) 5 C ( f )/H 2( f ) willT FP07z z

restore the true variance to within 10%.

2) CONDUCTIVITY

The response of the fast conductivity probe is de-
scribed in Head (1983) and Nash and Moum (1999). Its
spatial resolution is limited by the spatial extent of the
induced conductivity field and has a wavenumber re-
sponse similar to that of a single-pole filter,

1
2H (k) 5 , (A3)

21 1 (k/k )c

where kc 5 455 cpm is the critical wavenumber. Using
this form, half of the variance is attenuated by the mC
sensor in a spectrum which extends to 1000 cpm. We
define the fraction of conductivity variance resolved as

kmax

2H (k)C (k) dkE Cz

0
g 5 , (A4)mC kmax

C (k) dkE Cz

0

where C represents resolved spectral amplitudes. ForCz

the patches analyzed, the mean fraction of variance re-
solved by the probe is 60%; its distribution is shown in
Fig. A2. Assuming that we have properly described
H 2(k) to within 10%–20%, the error introduced into the
variance of spectral estimates is at most 10%.

b. Error from sensor noise

To avoid contamination of xT by sensor noise, gra-
dient spectra are integrated over the subrange 0 , k ,

[Eq. (10)], where represents the wavenumberT Tk kmax max

where spectral levels intersect the noise continuum.
Thermistor noise within this interval will nevertheless

contribute to xT. To determine this contribution, the
thermistor noise spectrum (see Fig. 8 in Nash et al.
1999) is integrated over 0 , k , to estimateTkmax

, and compared to , the total temperature gradientnoisex x*T T

variance integrated over the same wavenumber band
(both integrals are multiplied by 6DT to give dissipation
units of K2 s21.). The relationship between andnoisexT

is shown in Fig. A3.x*T
In 96% of the patches, the contribution of sensor noise

to the temperature gradient variance is less than 2%.
Only in four of the weakly turbulent patches, where xT

, 5 3 10210 K2 s21 does exceed 5% of ; noisenoisex x*T T

never exceeds 10% of the signal. On average, thermistor
noise represents 0.6% of and is therefore unlikelyx*T
to appreciably bias xT or the ratio of xS/xT. Noise in
the conductivity sensor has a similar small effect on our
estimates of xS.

c. Error in dT/dz, dS/dz

Estimates of Ku are sensitive to error introduced in
the determination of the background vertical scalar gra-
dient du/dz. For example, the comparison of KS/KT is
sensitive to error or bias in the ratio [(dT/dz)/(dS/dz)]2.

To investigate the magnitude of this error, the mini-
mum and maximum of each estimate of dT/dz and dS/
dz was calculated using a linear regression at the 95%
confidence level. Each patch was resorted in two ways:
with respect to density and with respect to each scalar.
Defining the fractional error as DdT/dS,

21(dT /dz) (dT /dz)max minD 5 2 1, (A5)dT /dS 1 21 2(dS /dz) (dS /dz)min max

where min(max) refer to the minimum(maximum) using
either method to determine the gradient. The distribution
of the fractional error is shown in Fig. A4. The average
error is 3% for the patches used in this analysis, having
DdT/dS , 0.2.
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FIG. A4. Distribution of fractional error DdT/dS in dT/dS which results
from estimating the mean background gradient of dT/dz and dS/dz
using a linear regression with 95% confidence and two methods of
resorting.

d. Errors specific to xS: The T–C phase

Since C depends on the real part of the complex T–Sz

C cross-spectrum, the relative phase between the mC
sensor and FP07 thermistor signals must be determined.
Otherwise, the real component of the cross spectrum is
aliased into the imaginary component and tends to re-
duce the magnitude of the cospectrum C . The phaseC Tz z

lag between T and C depends on 1) the phase response
associated with the mC sensing volume, 2) the thermal
transfer rate across the FP07’s boundary layer and glass
insulation, and 3) the spatial separation between the
microbead FP07 thermistor and the mC sensing volume.

While the phase lag fmC associated with the mC sen-
sor is likely small (but remains to be quantified) over
the low wavenumbers where C is significant, theC Tz z

inherent phase lag of the FP07 and the lag resulting
from the spatial separation between sensors are not neg-
ligible. The phase lag of a thermistor with double-pole
response (Gregg and Meagher 1980) is fFP07 5 2
tan21( f / f c), with f c 5 29 Hz, which can be linearized
(fFP07 5 2 f / f c) for small f / f c. The phase associated
with the spatial separation d, is fsep 5 2p f (d/Wo), where
d ; 2–4 mm, depending on the mCT probe.

Because the mC phase response and the spatial sep-
aration between sensing volumes are not easily mea-
sured, we determined flag 5 fmC 1 fFP07 1 fsep em-
pirically by assuming the linearized form of tFP07 such
that flag . 2p ftlag. In the time domain, tlag simply rep-
resents a time lag between sensors and was chosen to
produce zero phase difference between T and mC for
the ‘‘average’’ temperature-dominated patch. For our
mCT sensors, tlag 5 14–18 ms.

Some deviation in the T–C phase from the expected
08 or 1808 was observed from patch to patch.A1 To in-
vestigate the role that an improper phase lag would play

A1 The expected values of T–C phase over wavenumbers where
molecular processes are insignificant is either 08 or 1808, depending
on the T–S relation.

on the estimation of xS, an analysis was performed that
restricted the phase between C and T to either 08 or
1808. It was found that the mean difference between xS

calculated in this manner and xS calculated from the
observed phase was less than 2%. This small error can
be rationalized by realizing that the cospectrum is sen-
sitive to the cosine of the phase, so a 108 mismatch in
phase (near f 5 08 or f 5 1808) only lowers the spec-
trum by 1.5%.

e. Bias associated with anisotropy

The ratio of the length scale where buoyancy effects
are important [the Ozmidov scale: Lo 5 (e/N 3)1/2] to the
length scale where viscous effects are important [the
Kolmogorov scale: Lk 5 (n3/e)1/4] is Lo/Lk 5 . As3/4Reb

Reb becomes small, dissipation scales become increas-
ingly influenced by buoyancy, the inertial subrange col-
lapses, and velocities in the viscous subrange become
anisotropic (Gargett et al. 1984). At yet lower Reb, the
diffusive subrange becomes anisotropic as well (Itsweire
et al. 1993; Smyth and Moum 2000). In this section,
we estimate the possible effect of anisotropy on esti-
mates of xS/xT (or equivalently KS/KT).

Vertical gradients are enhanced over horizontal gra-
dients at scales O(Lo). At low -Reb, estimates of xu based
on C alone (which we denote as ) will therefore bezxu uz

biased high by at most a factor of 3 if isotropic relations
^(du/dx)2& 5 ^(du/dy)2& 5 ^(du/dz)2& are assumed
(Smyth and Moum 2000). Because the diffusive scales
for S are smaller than those for T, at a given Reb the
dissipation subrange of S is more isotropic than that of
T. Smyth and Moum (2000) report that the degree of
anisotropy scales with Cx and becomes important for Cx

, 100. Since the Cox number for S is ;1003 that for
T [ ; (DT/DS) ] and each Cox number scales ap-S TC Cx x

proximately with Reb, ( ; 0.35Reb in our data,T SC Cx x

; 35Reb), we should expect xT , for Reb , 300zxT

but xS . for 3 , Reb , 300.zxS

Because we have no way to directly measure the an-
isotropy of our turbulent patches, we quantify the effect
of anisotropy using the direct numerical simulations of
Smyth and Moum (2000, their Fig. 20c), which give a
qualitatively similar relationship to that of Itsweire et
al. (1993). Defining mu 5 /xu as the ratio of basedz zx xu u

on vertical gradients to the real xu, a very approximate
empirical relation for the isotropy ratio is mu 5 1 for
Cx . 100, mu 5 3 for Cx , 1, and logmu 5 (log 3)(1
2 0.5 ) for 1 , Cx , 100 (Fig. A5). ApplyingulogC x

this relation to our data, the fraction that xS/xT is un-
derestimated based on vertical gradient spectra and the
assumption of isotropy is mS/mT 5 ( / )/(xS/xT) andz zx xS T

is plotted in Fig. A6 for our turbulent patches.
Figure A6 indicates that / may underestimate xS/z zx xS T

xT by at most a a factor of 3 at the lowest Reb. Most
estimates (;70%) are at high Reb and are unaffected
by anisotropy. The remaining 30% of the patches are
affected to varying extents, and the average effect is to
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FIG. A5. Approximate empirical description for the anisotropy
ratio, mu, derived from Fig. 20c of Smyth and Moum (2000).

FIG. A7. Distribution of qb (left) and qk (right) from the comparison
of C with e, following the method of Luketina and Imberger (2000).Tz

The 95% bootstrap confidence limits on the means are 6.0 , qb ,
6.8 and 8.0 , qk , 9.1.

FIG. A6. Estimated effect of anisotropy on the scalar dissipation
ratio from vertical gradients alone, based on the empirical relation
in Fig. A5. mS/mT represents the fractional amount / underesti-z zx xS T

mates the true xS/xT. Most patches (;70%) are isotropic; and if only
Reb . 200 are considered, the average effect is to bias dx by 2%.
However, at very low Reb, where effects of differential diffusion are
possible, anisotropy dramatically affects estimates of dx and mS/mT

can approach 1/3.

FIG. A8. Fraction of the salinity and temperature gradient variance
resolved. The upper plot shows the distribution of the resolved wave-
number for salinity / (dark shading) and that for temperatures Sk kmax b

/ (light shading). The fraction of variance measured (6Du

ukT T maxk k #max b 0

Cu dk/xu) depends on the theoretical form (Kraichnan or Batchelor)
and the value of q, as indicated in the lower figure. For temperature,
99% of the spectra contain at least 50% of the variance; for salinity,
only 27% of the spectra resolve more than 50% of the variance.

bias our estimate of xS/xT low by 10%. For Reb . 200,
the ratio xS/xT is biased low by less than 2% on average.
At lower buoyancy Reynolds numbers, the bias is pos-
sibly significant, complicating the interpretation of
trends in Figs. 14 and 15.

This Prandtl number dependent bias in estimating x
highlights the difficulty of understanding the Reb de-
pendence of dx 5 KS/KT. This is because the Reb range
where one might expect dx , 1 is precisely the same
range where anisotropy affects our estimates of xT and
xS. While the anisotropy of the flow at low Reb is a
possible mechanism for generating unequal eddy dif-
fusivities of heat and salt, at the same time it complicates
our ability to measure those diffusivities. A more com-
plete description of how anisotropy affects the diffusive
scales in weakly turbulent, multicomponent flows seems
necessary if we are to understand how KS/KT varies
under a variety of Reb. Obtaining horizontal spectra may
play a key role in this problem.

f. Error estimating xu

The use of a universal scalar spectrum represents the
largest source of error in estimating xu from under-re-
solved spectra. The assumption of either the Kraichnan
or Batchelor universal forms and the value of the pa-
rameter q affects the amount of variance assumed to be
outside our limits of integration when determining x

from C. Figure A7 shows the distribution of q as de-
termined by comparing C with e, following the methodTz

of Luketina and Imberger (2001).
While the bootstrap confidence limits on the mean

are relatively small, the distribution of estimates spans
a factor of 2. Only 50% of the estimates fall in the range
4.2 , qb , 7.5 and 5.5 , qk , 10.3. We use these as
ranges to test the effect of the value of q on our estimates
of xT and xS by using a universal spectral form for
integration correction.

The effect of the value of q and the choice of the
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FIG. A9. Effect of the form of the universal scalar spectrum (used
for integration correction), on the ratio of KS/KT.

universal spectral form (Kraichnan or Batchelor) on the
fraction of variance resolved by our measurements (i.e.,
the correction factor which needs to be applied to un-
resolved spectra) is shown in Fig. A8. The degree to
which this affects the estimate of KS/KT can be signif-
icant; compared to estimates made using the Kraichnan
form and qk 5 7.5, a bias of 15% in dx could be intro-
duced by choosing the incorrect universal form (Fig.
A9). Note that the choice of q has less effect on KS/KT

when the Kraichnan spectrum is used; this is likely the
result of the Kraichnan spectrum more closely matching
the observations. Since the value qk 5 7.5 was chosen
for this analysis because it best matches the spectral

shape of scalar gradients, it would be surprising if the
extreme values presented in Fig. A8 described the real
spectra of our observations.

We also note that observed spectral levels of T and
S in the viscous–convective subrange exceed those of
theoretical forms (Fig. 11b). As a result, the use of Eq.
(10) to correct for lost variance will overestimate xu for
poorly resolved spectra. Since T is generally better re-
solved than S (Fig. A8), xS/xT may be biased slightly
high from this effect. However, the similarity of the
nondimensionalized spectra of C and C (Fig. 11b)S Tz z

and the fact that we observe dx , 1 would both suggest
that this bias is not large.
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