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ABSTRACT

In this work the performance of ensembles generated by commonly used methods in a nonlinear system with
multiple attractors is examined. The model used here is a spectral truncation of a barotropic quasigeostrophic
channel model. The system studied here has 44 state variables, great enough to exhibit the problems associated
with high state dimension, but small enough so that experiments with very large ensembles are practical, and
relevant probability density functions (PDFs) can be evaluated explicitly. The attracting sets include two stable
limit cycles.

To begin, the basins of attraction of two known stable limit cycles are characterized. Large ensembles are
then used to calculate the evolution of initially Gaussian PDFs with a range of initial covariances. If the initial
covariances are small, the PDF remains essentially unimodal, and the probability that a point drawn from the
initial PDF lies in a different basin of attraction from the mean of that PDF is small. If the initial covariances
are so large that there is significant probability that a given point in the initial ensemble does not lie in the same
basin of attraction as the mean, the initial Gaussian PDF will evolve into a bimodal PDF In this case, graphical
representation of the PDF appears to split into two distinct regions of relatively high probability.

The ability of smaller ensembles drawn from spaces spanned by singular vectors and by bred vectors to
capture this splitting behavior is then investigated, with the objective here being to see how well they capture
multimodality in ahighly nonlinear system. The performance of similarly small random ensembles drawn without
dynamical constraints is also evaluated.

In this application, small ensembles chosen from subspaces of singular vectors performed well, their weakest
performance being for an ensemble with relatively large initial variance for which the Gaussian character of
the initial PDF remained intact. This was the best case for the bred vectors because of their tendency to align
tangent to the attractor, but the bred vectors were at a disadvantage in detection of the tendency of an initially
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Gaussian PDF to evolve into a bimodal one, as were the unconstrained ensembles.

1. Introduction

In many applications in ocean modeling and numer-
ical weather prediction, ensembles of model-generated
forecasts are used to eval uate the sensitivity of the model
to variations in initial and boundary conditions and in
forcing. Along with a forecast based on one's best es-
timate of forcing and initial conditions, some number
of forecasts is generated in parallel, with forcing, initial
conditions and possibly other parameters differing
slightly from the original forecast. The perturbed initial,
boundary, and forcing data used to generate this col-
lection, or ensemble, of forecasts must be chosen ju-
diciously, since it isimpractical to represent all possible
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types of errors within the ensemble. Perturbations are
therefore chosen either at random according to an ex-
plicit estimate of analysis error statistics or according
to some dynamically based importance criteria. The
question of which, if any, importance criterion is the
best oneisamatter of some controversy inthe numerical
weather prediction community. In this work, we inves-
tigate the performance of ensembles in the context of
a strongly nonlinear system.

The initial conditions for a forecast are considered
here as a random vector, with some probability density
function (PDF). The evolution of the PDF as governed
by the dynamics of the forecast model and the noise
contains all availableinformation about the consegquenc-
es of errors in the initial conditions, boundary condi-
tions, and forcing. If the underlying dynamics are non-
linear, the evolution of the PDF can be quite complex,
and simple initial PDFs can evolve under the influence
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of the dynamics into very different forms over the
course of a model run.

In order for a small ensemble to contain quantitative
information about the consequences of the initial,
boundary, and forcing errors, it must contain some of
the essential features of the PDF We seek the most
efficient methods of ensemble generation in strongly
nonlinear systems, that is, those methods that allow gen-
eration of small ensembles with the best performance.
The general task of evaluating the performance of small
ensembles in highly nonlinear systems is an extremely
broad one, due to the vast repertoire of nonlinear be-
haviors. In this work we restrict our attention to the
conseguences of dealing with a system with multiple
attractors.

The small ensembles used in our computations are
generated by the methods used by major weather centers
(see, e.g., Houtekamer and Derome 1995; Molteni et al.
1996; Toth and Kalnhay 1993, 1997). We compare the
results of these calculations among themselves and to
the results of calculations with large ensembles gener-
ated at random from given PDFs.

In the ensemble prediction system in use at the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWEF), ensemble members are generated according
to the singular vectors of a forecast evolution operator
linearized about a forecast based on the current initia
condition. The singular vectors specify the directions of
greatest growth of the linearized system over a prede-
termined time interval. Since singular vectors are spec-
ified relative to a fixed norm, the norm must also be
specified; thisintroduces an additional element of choice
into the generation of the ensemble. The ideal choice
for the norm would reflect the distribution of errorsin
the initial analysis (see, e.g., Ehrendorfer and Tribbia
1997). Sincereliable estimates of initial error covariance
are rarely available, proxies are used; see, for example,
Molteni et al. (1996). Application of singular vectorsto
study predictability of the atmosphere date back to Lo-
renz (1965). The literature on application of singular
vectorsis extensive; see Ehrendorfer and Tribbia (1997)
or Molteni et al. (1996) and references therein.

The ensemble system in operational use at the Na-
tional Centers for Environmental Prediction (NCEP) is
based on a scheme in which ensemble members are
determined iteratively in aprocessreferredto as** breed-
ing”; see, eg., Toth and Kalnay (1993, 1996, 1997),
Kalnay and Toth (1996), or Szunyogh et al. (1997). New
perturbations are cal culated each forecast cycle and nor-
malized to have the same amplitudes asthe perturbations
from the previous cycle. The vectors derived from the
breeding processare known as** bred vectors,”” hereafter
BVs. The initial amplitude of the perturbations is a pa-
rameter in the breeding algorithm, as are the parameters
that define the norm used in the normalization process.
Since the breeding process bears some similarity to the
analysis cycle, it is plausible that the results of breeding
can reflect the errors in initial conditions. Two points
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of view on this topic were recently expressed by Errico
and Langland (1999) and Toth et al. (1999).

Much work on the consequences of different methods
of ensemble generation has been performed with the
Lorenz (1963) model; see, for example, Trevisan and
Pancotti (1998) and Anderson (1996, 1997), and ref-
erences therein. This is a useful model, which captures
much of the indeterminacy of numerical weather pre-
diction, but does not deal with the problems of higher-
dimensional models. Other studies, for examples, Hou-
tekamer and Derome (1995), Ehrendorfer and Tribbia
(1997), or Szunyogh et al. (1997), have described ex-
periments with numerical weather prediction models of
varying resolution. These have the obvious advantage
of being similar to working forecast models, but they
are highly complex and computationally demanding,
duein large part to their high-dimensional state vectors.
Interpretation of the results is a daunting task, and de-
mands on computer resources place limits on the size
of ensembles that can be generated, and the number of
ensemble experiments that can be performed.

Hamill et al. (2000) performed a series of ensemble
experiments with a baroclinic quasigeostrophic periodic
channel model. Their calculations included ensembles
of BVs, ensembles of singular vectors, and ensembles
chosen according to statistical criteria but not subject
to explicit dynamical constraints, as are BV and sin-
gular-vector ensembles. This latter method is similar to
the ““ perturbed observation” (PO) method used opera-
tionally by the Canadian Meteorological Centre. Intheir
comparisons of different ensemble generation methods,
Hamill et a. found that PO ensembles had desirable
statistical characteristics, as revealed by a series of spe-
cialized statistical tests.

Little has been done on ensembl e forecasting in ocean
models. There are fewer observations of the ocean avail-
able, and global first guesses with which to initialize
models are often limited to poorly resolved climatology.
The best choice of ensemble generation method for any
given ocean modeling system may be influenced by dif-
ferent considerations from those encountered in nu-
merical weather prediction. Moore (1999) performed a
series of experiments in which he applied different
methods of ensemble generation to a quasigeostrophic
model of the Gulf Stream, with promising results: he
found statistically significant relationships between
forecast skill and ensemble spread in a number of cases.

Multiple attractors in the models of the atmosphere
have been the subject of intense study since the late
1970s by a number of investigatorsin ongoing attempts
to understand the dynamics of planetary flow regimes.
Early studies such asthat of Charney and DeVore (1979)
demonstrated multiple steady statesin ahighly truncated
model of a barotropic channel with topography. Legras
and Ghil (1985) found detailed attracting structures in
aspectral truncation of the barotropic potential vorticity
equation on a sphere. Results from these highly trun-



SEPTEMBER 2002

cated models and discussion of their motivation appear
in Ghil and Childress (1987).

As more detail is added to these simple models, a
level of complexity is reached that precludes explicit
calculation of steady states or more complex attracting
structures. Attractors in such models are often studied
by computing margina PDFs (i.e.,, PDFs calculated
from projections of model states upon low-dimensional
subspaces) based on long cal culations. Hansen and Su-
tera (1986) examined a dataset from the National Me-
teorological Center (now known as NCEP) consisting
of daily 500-mb height fields from 16 winters. They
found bimodal structure in one-dimensional marginal
PDFs of a wavenumber index for zonal wavenumbers
2-4. Molteni (1996) calculated margina PDFs from
long runs of athree-layer quasigeostrophic hemispheric
model that showed distinct evidence of bimodality. Ber-
ner and Branstator (2000) presented marginal PDFs cal-
culated from projections of a long run of a global cir-
culation model (GCM) onto planes defined by empirical
orthogonal functions (EOFs) of the GCM’s 500-hPa
height field. These marginal PDFs differed significantly
from multivariate Gaussian PDFs, and while they did
not exhibit obvious multimodality, regimelike behavior
was found in the mean phase space trajectories. A non-
linear perspective on climate prediction, including adis-
cussion of multiple quasi-stationary regimesand climate
trends, was presented by Palmer (1999).

Multimodality is also found in models of wind-driven
ocean circulation; see, for example, Schmeits and Dijk-
stra (2000), Speich et al. (1995), and Jiang et al. (1995),
and discussion and references therein. These are sim-
plified models, in that none admits baroclinic instability
or effects of topography, but the model of Schmeits and
Dijkstra (2000) incorporates realistic basin geometry.
Qualitative comparisons to long GCM runs and to ob-
servations are promising, though not unambiguous.

An evident example of multimodality in ocean cir-
culation is the well-known path variation of the Kuro-
shio south of Japan. Multiple regimes in the path of the
current along the coast are well documented in obser-
vations and in a variety of numerical models; see, for
example, the discussions in Sekine (1990) and Masuda
et a. (1999), and references therein. The current along
the coast either follows a straight path, or forms alarge
meander that separates from the coastline and reattaches
downstream, trapping a cyclonic eddy between the main
current axis and the coast. Kumaran and Miller (1995)
found three steady solutions of a barotropic quasigeo-
strophic model of the Kuroshio off the coast of Japan,
which corresponded to the straight and meandering
paths, along with an unstable intermediate state. Thisis
an example of aregional model, with explicit represen-
tation of local topography and specified inflow and out-
flow.

No commonly used method of ensemble generation
was designed to address the problem of probabilistic
evaluation of forecast skill in a system with multiple
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attractors, but it is likely that multiple attractors appear
in systems of interest. We wish to find out what common
methods of ensemble generation will do when they en-
counter this situation.

Given an estimate of the PDF it is possible to assim-
ilate data by applying Bayes's theorem to calculate an
approximate conditional PDF for analysis based on a
combination of observations and the model forecast.
This is the nonlinear filtering approach; see, for ex-
ample, Rozovskii (1990). Miller et a. (1999, hereafter
MCB) and Anderson and Anderson (1999) applied this
Bayesian approach to several simple highly nonlinear
systems.

In a system with linear dynamics, Gaussian initial
error, and Gaussian white model noise and measurement
noise, the Bayesian approach reduces to the Kalman
filter (see Jazwinski 1970; Evensen and van Leeuwen
1996, and references therein). This is the basis of Ev-
ensen’s (1994) ensemble Kalman filter, in which the
prediction is the ensemble mean, and the Kalman gain
is constructed from the ensemble covariance about the
mean. Other approaches have been proposed in similar
spirit. Lermusiaux and Robinson (1999a,b) and Pham
et al. [1998; see also Ballabrera-Poy et al. (2001)] have
devised and tested methods for capturing model and
analysis errors in restricted subspaces of the model
space. Both of these approaches account for the effects
of nonlinearity by using the model dynamicsto calculate
the evolution of these subspaces. For these applications
also, it will be useful to find the most efficient method
of generating ensembles.

We use the spectral truncation of a nonlinear baro-
tropic quasigeostrophic B-plane channel model used in
MCB. Thisisastrongly nonlinear model whose solution
structure is reasonably well understood. Our version has
44 state variables, enough to introduce the difficulties
of high-dimensional systems and likely to exhibit be-
havior to be found in natural geophysical fluid dynam-
ical systems, but small enough to be economical for the
large ensemble calculations necessary to determine the
explicit evolution of the PDE This provides areference
dataset that can be used to evaluate the performance of
small ensembles. Understanding the behavior of ensem-
ble calculations in this highly nonlinear setting depends
on detailed understanding of the structure of solutions
to the model system. Much of this paper is therefore
devoted to the examination of details of the solutions
to the spectral B-plane model and the evolution of the
PDFs from random initial conditions.

We begin with the simple case of ** strong constraint”
or “‘perfect model” ensembles; that is, no stochastic
component is introduced into the ensemble beyond ini-
tial conditions, as a first step toward examination of
“weak constraint’” or ‘‘imperfect model”” ensembles, in
which the model equations are not assumed to be sat-
isfied exactly. Moore (1999) achieved encouraging re-
sults with ensemble experiments with a model that was
not assumed to be perfect.
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The model is described in section 2. The calculation
of BVs and singular vectors is described in section 3.
Results of the large ensemble experiments are described
in section 4, aong with comparisons to experiments
with small ensembles of singular vectors, bred vectors,
and subsamples of the large ensemble. In this section,
we document the evolution of PDFs from Gaussian ini-
tial conditions to bimodal structures. Section 5 contains
discussion and summary.

2. The truncated spectral barotropic model

In this section we examine a truncated spectral model
of a barotropic system in a periodic channel with si-
nusoidal topography on a B plane. While till a sim-
plified system, this example is drawn from a model of
the midlatitude atmosphere. This model is of interme-
diate dimensionality, so it forces us to deal with the
problems of high dimension, while still being sufficient-
ly economical that computations with very large ensem-
bles are practical.

Similar systems have been investigated sincethework
of Charney and DeVore (1979) and Pedlosky (1981) for
the purpose of elucidating the occurrence of multiple
equilibria in oceanic and atmospheric models. Jin and
Ghil (1990) worked with a similar model, including
baroclinic extensions. Hamill et al. (2000) worked with
a baroclinic quasigeostrophic channel model with eight
vertical levels. Their model incorporated a finite-dif-
ference method in the horizontal direction, and it had
0O(10%) state variables. Here we work with a system
described by Gravel and Derome (1993).

The model describes the evolution of the deviation
from uniform flow with speed u*. The total stream-
functionisgivenby ¥ = —u*y + ¢(X, Y, t). Dissipation
is by Rayleigh friction with time constant =, H is the
mean depth of the fluid, and the variable topography is
given by h. The perturbation streamfunction ¢ then
evolves according to the equation of conservation of
potential vorticity, which we write in the form

9 o2 2 L)
&V(I)+J<¢,V¢+By+Hh>

f

*i 2 _0 — _1 2
+u ax(v b + h) ~Vig. 1)

H
Asin MCB, we chose the parameters of our channel
to mimic the midlatitude atmosphere at 45°N. Our chan-
nel has length L = 28 000 km and width D = 4000
km. At this latitude, we have the Coriolis parameter f
= 1.03 X 10~“s* and B, the meridional rate of change
of the Coriolis parameter given by 8 = 1.6 X 108 s7*
km~-*. The mean depth H = 10 km and h is chosen to
have peak amplitude of 500 m with functional form
given by 2 sin(2wx/L) sin(my/D). We chose T = 22 days
based on Gravel and Derome’s (1993) results of a series
of experiments with different values of and h.
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We adopt the following scaling:
U = scale speed, 2
x~L y~D, ¢~ UD, (©)
t ~ L/U, the advective timescale, 4
u* ~ U, and ®)
h ~ H. (6)

In this scaling (1) becomes

%V% + 3| ¢, V2 + (BRO“)y + (%)h
5] @ 1
+ u*a_x V2 + (Eo)h = —T—*qus, @)
where

a = DJL is the aspect ratio, (8

B* = BD/f, isthe dimensionless form of B, (9)
R, = U/f,L = the Rossby number, and (20
7 = Ur7/L is the dimensionless decay time. (11

The Laplacian operator becomes V2 = «?292/9x? + 92/
ay2.

The perturbation streamfunction ¢ is expanded spec-
trally:

S04 ¥, 1) = 2 X (OG X ), (12)
where the basis functions G are from the set
G, O [V2 cosmny, 2 sin2mmx sinarny,
2 coS27rmx simrny]
m=12..., M, n=12...,N.
(13

The resulting equations for the spectral components
are

dx, 1 {U* 2 b, (ah, —

P 2y
& @R Akl

+ 2 Ciijj(ahk - Roaka)
ik

+ Bra E bjix; — (%)aizxi}- (14)

The coefficients a;, b; and c;, are given by

a? = 4a?mPm? + n2m? (15)

by, =fJGja—Gi dy dx, and (16)
L Jy X

Cij = j f GJ(G,, G)) dy dx, a7
x Jy
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Bathymetry with Obs Location
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Fic. 1. Schematic diagram of model geometry and locations of
simulated observations, along with projections of the two stable limit
cycles into a plane defined by values of the perturbation stream-
function at two observation locations. (top) The nine observation
points, superimposed on a shaded map of the topography. The shading
bar shows contours in m. (bottom) Two stable limit cycles for this
system, projected onto a two-dimensional subspace defined by the
values of the perturbation streamfunction ¢ at two points in physical
space. The horizontal axisisthe value of ¢ at location 3. The vertical
axisis ¢ at observation 7. Another projection of the limit cyclesinto
a space defined by observations is shown in the top panel of Fig. 20
in MCB.

where m and n in (15) are the zona and meridional
wavenumbers corresponding to the ith spectral com-
ponent. Following Gravel and Derome (1993), we use
a spectral expansion with five zonal wavenumbers and
four meridional wavenumbers (M = 5and N = 4). In
this model, the stability of the equilibrium solutions is
governed by Hopf bifurcations in the parameter u*. The
equilibria of the system lose stahility through a Hopf
bifurcation near 18 m s=* and regain stability through
another Hopf bifurcation near 28 m s—*. For this choice
of parametersthereisno choice of u* for which multiple
stable equilibria were found (MCB; Gravel and Derome
1993). The bifurcation diagram for equilibrium solu-
tions is shown in Fig. 11 of MCB.

There are stable limit cycles in much of the range in
which the equilibria are unstable, and at least one case
in which multiple stable limit cycles coexist at the same
parameter values. The qualitative behavior of the system
over a broad parameter range is described in MCB. At
u* = 19.998 m s* there are at least four limit cycles,
of which at least two are stable. Examples of four limit
cycles projected into three dimensions are shown in
MCB. The bifurcation diagram for limit cycles shown
in Fig. 12 of MCB is by no means complete. We believe
that there are still other limit cycles at this value of u*,
but did not pursue the calculation of other branches.
There may be still more complex attracting structures.

In the present study, we work with simulated obser-
vations of our model system in physical space. Figure
1 shows a schematic diagram of the model geometry,
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and the nine points at which simulated observations of
the perturbation streamfunction ¢ are taken. The bottom
panel of Fig. 1 shows the projections of the two stable
limit cycles into the two-dimensional subspace defined
by two widely separated observations.

A model solution with an arbitrary initial condition
might eventually approach one of the two limit cycles
shown in Fig. 1. There may be other possibilities. These
limit cycles are examples of attractors; that is, thereis
some neighborhood known as the domain or basin of
attraction of each limit cycle (see, e.g., Guckenheimer
and Holmes 1983) in which the long-time limit of any
trajectory beginning in that neighborhood is the limit
cycle itself.

In a model such as this one with multiple attractors,
if the errorsin the initial condition are sufficiently great
that one cannot determine with confidence the basin of
attraction in which the initial condition lies, an initially
Gaussian PDF might be expected to evolve into one
with distinctly bimodal structure. This possibility was
illustrated schematically by Anderson (1997) in Fig. 11
of that article. The structure of such a PDF can be cap-
tured with a very large ensemble, but this is inefficient
and cumbersome. Here we compare small ensembles
generated by different methods to see which ones con-
tain the most information about the conseguences of
initial errors.

In modelswith large state dimension, PDFswith com-
plex structure may be difficult to discern. Here we ad-
dressthe difficulty of representing the PDF of acomplex
system directly. In order to do so, we must first deter-
mine the basins of attraction of the two limit cycles
shown in Fig. 1.

In order to find the boundary between basins of at-
traction of the two known stable limit cycles, we ar-
bitrarily chose 50 points equally spaced in time on each
limit cycle, and constructed the line segments in state
space between corresponding points, which were de-
termined by matching extrema. We then chose 20 equal -
ly spaced points on each of these line segments, and
performed 1000 model runs with initial points chosen
at each of the 20 points on each of the 50 line segments
joining the two limit cycles. Each of these model runs
was of seven periods duration. We assigned each of the
1000 trajectories from the above-described initial points
in phase space to one basin of attraction or the other,
depending on an average 44-dimensional Euclidean dis-
tance from the last period of the trajectory to each limit
cycle; a period here refers to the period of the orbit
shown as a dashed curve in Fig. 1. There was no es-
sential changein the results from the sixth to the seventh
periods. The raw results of this series of experiments
are shown in Fig. 2, in which the two orbits and the
cylindrical surface containing the 1000 initial pointsare
shown projected into a space defined by three obser-
vations in physical space. In Fig. 2 the dashed curve
and darker area are associated with the orbit shown as
a dashed curve in Fig. 1, while the solid curve and
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Fic. 2. Results of a series of runs with initial points chosen on lines between the two stable
limit cycles. Axes are values of observations 3, 7, and 8; refer to the top panel of Fig. 1. The
gridded surface is a projection of the cylinder bounded by the two limit cycles into this three-
dimensional space. The solid and dashed limit cycles correspond to the limit cycles in the bottom
panel of Fig. 1. Points on the lighter part of the surface lie in the basin of attraction of the solid
orbit, and points on the darker part of the surface lie in the basin of attraction of the dashed
orbit, according to the criterion described in the text.

lighter area are associated with the solid curve in Fig.
1. We were thus able to estimate the position of the
boundary between the two basins of attraction. We refer
to this boundary as a separatrix.

Our conceptual picture of the invariant sets of a sys-
tem such as this one with two stable limit cycles sep-
arated by a separatrix surface is shown in the top panel
of Fig. 3. We expect the projections of the separatrix in
our system from the full 44-dimensional state space to
a 2- or 3-dimensional space for the purpose of visual-
ization to be tortuous. Our visualization of the separatrix
with the two attractors, projected into a three-dimen-
sional space, is shown in the bottom panel of Fig. 3.
(The reader may refer to the appendix for details of how
this figure was constructed.) From Fig. 3 we see that
the projection of the separatrix into three dimensionsis
indeed tortuous, and it seems to fold around the lower
(red) limit cycle. Qualitatively, we might expect that
initial PDFs centered on this lower limit cycle would
be more likely to develop into bimodal structures than
initial PDFs with similar covariance structures centered
on the upper-limit cycle.

3. Methods for generation of limited ensembles
a. Sngular values and singular vectors

The singular vectors, or optimal vectors correspond-
ing to a given solution of a dynamical system can be

seen as those perturbations that result in the greatest
divergence from the given solution over a fixed time
interval. These vectors may not coincide with the ei-
genvectors of the linearized system. In relevant cases
of solutions that are asymptotically stable, that is, all
small perturbations decay in the limit of infinite time,
there may be perturbations that grow for a finite time.
Methods for calculation of these singular vectors and
the implications of their existence have been widely
discussed in theliterature; see, for example, Ehrendorfer
and Tribbia (1997), Ehrendorfer et al. (1996), Legras
and Vautard (1996) and references therein.

The treatment here follows Ehrendorfer and Tribbia
(1997). Given a solution u to the nonlinear ordinary
differential equation,

du

& - .
with initial conditions u(0) = u,, the difference éu(t)
between u(t) and a nearby trajectory v(t) with initial
conditions v(0) = u, + 6u(0) can be approximated by
the linear equation:

déu

dt

Under fairly general conditions, the nonlinear solu-
tion operator ®-, which maps an initial condition for
(18) into the solution at time T, will be differentiable

(18)

= f’(u)éu. (219
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Fic. 3. (top) Schematic diagram of the attracting set of a three-dimensional system with two
limit cycles, separated by a two-dimensional separatrix surface, i.e., the boundary between their
basins of attraction. (bottom) Projection into a three-dimensional subspace of two stable limit
cycles of our model, and a portion of the separatrix. The upper (blue) limit cycle corresponds to
the solid limit cycle in Fig. 2 or the solid limit cycle in the bottom panel of Fig. 1 and the lower
(red) limit cycle corresponds to the dashed limit cycle. The axes are observations 3, 7, and 8, as

in Fig. 2, but the viewpoint has been changed for clarity.

with respect to the initial condition, and the result of
perturbing the initial condition to (18) can be expressed
by the equation

V(T) = ®,v(0) = u(T) + M(0, T)su(0), (20)

whereM(0, T) isthe matrix of partials of . with respect
to the components of the initial conditions, evaluated at
U,. Thevector u(T) + M(0, T)éu(0) iscalled the tangent
linear approximation, and the matrix M(0, T) is called
the resolvent. In this caseit represents an approximation
of the evolution from timet = Otot = T of deviations
from the solution u(t). Most relevant systems of theform
(18) will be sufficiently smooth that the matrices M(t,,
t,), that is, the approximate evolution from timet = t;
tot = t, of deviations from a given solution, will exist
and be well behaved.

The singular values of M (we drop the explicit time
dependence in this section), that is, the square roots of
the eigenvalues of M™M, determine whether the L2 norm
of a given perturbation will grow or decay locally in
time, but the impact of initial errors on the accuracy of
a given forecast depends on the distribution of those
errors.

We consider the strong constraint formulation; that
is, we examine only the effect of errors in initial con-

dition. Supposetheinitial errorsare normally distributed
with zero mean and covariance V. Then we should find
the deviation vector 6u, which maximizes the inner
product (Méu, Mé&u) subject to (6u, V-1éu) = 1. The
inner product ( - , V-t - ) defines a norm in terms of
the positive definite matrix V-*. The set of al points x
in state space with (x, V-*x) = 1 is an ellipsoid, with
its longest axis aligned along the leading EOF of the
initial error distribution. We therefore seek the maxi-
mum of the functional:

Jv) = (Mv, Mv) + A1 — (v, V-v)). (21)

Setting the first variation 8J equal to zero leads to
the generalized eigenvalue problem:

MTMv = AV~ 1y, (22)

The covariance matrix V is positive definite, so we
can define a new variable y according to v = V+2y.
Substituting this expression for v into (22) and multi-
plying on the left by VY2 |eads to the symmetric eigen-

value problem:
VI2MTMVY2y = )y, (23)

which can be written as
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(Mv#2)T(MV¥2)y = Ay. (24)
The matrix on the left-hand side of (24) can be written
GG = YAYT, (25)

where G = MV¥2, A isadiagonal matrix whose nonzero
elements are the eigenvalues of GG, and Y is an or-
thogonal matrix whose columns are the eigenvectors of
GTG. These eigenvectors are the singular vectors of M
with respect to the norm defined by V1.

Now write I = GYA ~¥2. We then have

II'II = A Y2YTGTGYA V2 (26)
=1, 27)
so II is an orthogona matrix. Now,
IMTAIIT = GYA 2AA-V2YTGT (29)
= GGT (29)
= MVv2yvaMT (30)
= MVMT (31)

the standard expression for the evolution of the initia
error covariance, an expression seen as part of the Kal-
man filter; see, for example, Bennett (1992).

From (31) we can derive arelatively inexpensive way
to calculate an efficient approximation to the covariance
evolution of a complex model. Put another way, it al-
lows us to make quantitative estimates of the conse-
guences of errors in the initial conditions. A related
method for approximating the evolution of the initia
error covariance has been used at ECMWF (cf. Fisher
1996).

We can do this by calculating a few leading eigen-
values and eigenvectors of G'G, and writing

MVMT =~ TTAITT, (32)

where the quantities with the hats (~ ) are truncated in
rank by deleting all but a restricted number of columns
of Y in the definition of II and retaining only the sub-
matrix of A~Y2 corresponding to the retained columns.

Actually (cf. Ehrendorfer and Tribbia, 1997), the def-
inition of II implies that

G = MAY2YT, (33)

which can be identified as the singular-value decom-
position (SVD) of G, so the desired vectors could be
obtained by performing an SVD directly on G (cf. Eh-
rendorfer and Tribbia 1997). Here, GG™ will be an ap-
proximation of the new covariance, with the columns
of II being the EOFs. Computations involve the resol-
vent of the forward model and its adjoint. There is no
need to write down the enormous matrices involved in
the calculation implied by (31).

The singular values calculated in this fashion can be
related to the ordinary L2 singular values, that is, the
singular values with the matrix V in (21) chosen to be
the identity. Here, M admits the SVD:
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M = QD2UT, (34)

where Q and U are orthogonal and D2 is diagonal. We
may now write an alternative form G of G in the form
G = D¥2UTVY2, 5o

GTG = Vvv2upuTVY2 (35)
= VY2MTMVY2 (36)
= YAYT = GTG, (37)

where Y, G, and A are asin (25). The SVD G = 1A
YT leads to

TTATT™

Dv2yTVUDY2 (39)
Q"TMVMTQ (39)

in analogy to (28)—(31). This tells us that the effect of
the resolvent operator M on the initial covariance V
amounts to a change of coordinates followed by a mod-
ification of the variances referred to the new coordinate
system, followed by yet another change of coordinates.
The variances in the new coordinate system increase or
decrease depending on whether the L2 singular values
of M are greater or less than one; if any L2 singular
value of M exceeds one, then one can find a direction
in phase space in which errors can be expected to in-
crease.

Figure 4 shows the eigenvalues and singular values
of the resolvent of the solution operator for (14) over
one period of each of the stable limit cycles. Singular
values greater than 1.0 correspond to locally growing
directionsin state space. Examination of the eigenvalues
(left panels) shows that both limit cycles are stable, but
it is clear from the singular values shown in the right
panels that there is a fairly large number of directions
in phase space in which perturbations grow over the
course of a single period for both limit cycles.

b. Breeding

Ensembles at NCEP are generated by the breeding
method, described by Toth and Kalnay (1993, 1996,
1997), Kanay and Toth (1996), and Szunyogh et al.
(1997). The bred vectors (BVs) are the normalized dif-
ferences between two nearby trajectories at the end of
an integration of a given length, known as a breeding
cycle. Asnoted by Toth and Kalnay (1997), ‘‘ this meth-
od ‘breeds’ the nonlinear perturbations that grow fastest
on the trajectory taken by the evolving atmosphere in
phase space.” As pointed out by numerous authors(e.g.,
Hamill et al. 2000), the BV's can be thought of as rep-
resenting the result of perturbations that have grown
rapidly in the recent past. These may not be the per-
turbations that will grow most rapidly in the future.

The BVs are often related to the local Liapunov vec-
tors, and the growth rates derived from the normaliza-
tion factors are similarly related to the Liapunov ex-
ponents; see, for example, Lichtenberg and Lieberman
(1983) or Legras and Vautard (1996). Errico and Lang-
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FiG. 4. Stability of the limit cycles for (14). The four panels show
eigenvalues and singular values of the resolvent of the solution op-
erator @, for T given by one period. (top panels) Eigenvalues and
singular values of the resolvent evaluated at a point on the dashed
limit cycle shown in Figs. 1 and 2. Axes on the left panels are real
and imaginary components. The fact that the eigenvalues lie inside
the unit circle in the complex plane indicates that the orbits are stable.
(right panels) Singular values of the resolvent. Values exceeding unity
signify local growth in time. (bottom panels) Similar to top panels
but for the solid orbit.

land (1999), however, note specific differences between
the breeding process and common methods for esti-
mating Liapunov exponents.

The Liapunov exponents are defined in terms of the
resolvent M(t,, t,) of the system about agiven trajectory.
Following Legras and Vautard (1996), we examine the
limit

A(€) = lim

o=l — 1

1 IM(t, t.)ef
|n< I ) (40)

for e in state space. This limit exists, is independent of
t,, and takeson at most nvalues A; > A, > -+ > A,
The A, are known as the Liapunov exponents. We can
also define the limit operator:

S = lim
e bp = 4

[(M(t,, t.))*M(t,, t,)]V=, (41)
where the superscript * denotes conjugate transpose.
The eigenvectors of S, are known as the local Liapunov
vectors. They depend on t, and on the norm in which
the limit in (41) is chosen. We distinguish the case t,
- o fromt, -~ —o and define S_,, for this latter limit
in a manner similar to (41). Legras and Vautard (1996)
refer to the eigenvectors of S, and S_,. as the forward
and backward Liapunov vectors, and identify the for-
ward Liapunov vectors with the limit of the singular
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vectors as time increases, and the backward Liapunov
vectors as the limit of the BVs as the length of the
breeding cycle increases. Reynolds and Errico (1999)
investigated the convergence of the singular vectors to
the forward and backward Liapunov vectors in athree-
layer quasigeostrophic model of the atmosphere. Lich-
tenberg and Lieberman (1983, chapter 5) point out that
the Liapunov exponents for a limit cycle correspond to
the eigenvalues of M(0, T), the resolvent evaluated over
a period. Since both of the limit cycles considered here
are stable, the largest eigenvalue of the M(0, T) is unity,
and the local Liapunov vector is tangent to the orbit.

We performed four breeding experiments on our mod-
el, two beginning on or near each of the two known
stable periodic orbits. In these pairs of experiments, we
attempted to mimic the breeding strategy of Kalnay and
Toth (1996), Szunyogh et al. (1997), and Toth and Kal-
nay (1993, 1996, 1997). Our approach in the first pair
of breeding experiments was to simulate a process in
which the reference state was a point on the limit cycle,
and the only information available to our forecast and
analysis system consisted of noisy measurements of the
perturbation streamfunction taken at the nine points
shown in Fig. 1.

Inour analysis system for thefirst pair of experiments,
data were assimilated by a simple optimal interpolation
scheme, in which the model error covariance matrix was
assumed to be diagonal in the model state space. The
model error was assumed to be isotropic; that is, the
error variance was a function of the square of the wave-
number. The variance was red in wavenumber space,
falling off exponentially as the square of the wave-
number. We obtained the first initial condition by start-
ing with the reference point, generating a vector of nine
noisy observations by adding independent random noise
to the reference solution at the nine points shown in
Fig. 1, and using our optimal interpolation scheme to
assimilate the noisy data. This, of course, had the effect
of moving the analysisaway from thereference solution.
The result was used as an initial condition for an in-
tegration that was designated the control. We then added
to and subtracted from the control an arbitrary pertur-
bation with amplitude equal to 0.05 X (X, o?)¥2, where
o? is the mean sgquare deviation of the ith component
of the state vector from its mean value, averaged around
asingle period. This gave us two additional initial con-
ditions, which we designated as the perturbations. In-
tegrations were then performed with the control and
perturbation initial conditions for atime interval of one
period. To begin the next breeding cycle, initial con-
ditions for the new control were obtained by using our
optimal interpolation scheme to assimilate new noisy
observations. Since the breeding interval is one period,
successive measurements differ only by observation
noise. The initial conditions for the perturbation fore-
casts for the next breeding cycle were determined as
follows. First, the differences d, and d_ between the
results of the perturbations and the result of the original
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Fic. 5. Two cycles of the breeding process for the (top) dashed and (bottom) solid limit cycles

referred to an analysis based on a small set of noisy observations. Horizontal axis is scaled
time. Breeding cycle is one period. Vertica axis is the difference between the perturbation
streamfunction at location 3 (see top panel in Fig. 1) and that value for the limit cycle itself.
The three curves shown in each panel are the control and the two perturbed trajectories. Initial
points for each breeding cycle are depicted as circled symbols. This plot is designed to have
the same form as plots in the literature (Kalnay and Toth 1996; Szunyogh et al. 1997; Toth and

Kalnay 1993, 1996, 1997) illustrating the breeding process.

control forecast were calculated. In general, we will
have d, + d_ = 0. In order to generate the new per-
turbations, we formed the quantity (d, — d_)/2. This
difference was normalized to have the same amplitude
as theinitial perturbations, and added to and subtracted
from the initial conditions for the new control. This
process isillustrated schematically in Fig. 4 of Toth and
Kalnay (1993). Results of these experiments for the
dashed and solid limit cycles are shown in Fig. 5. These
plots are designed to have the same form as plotsin the
literature (Kalnay and Toth 1996; Szunyogh et al. 1997;
Toth and Kalnay 1993, 1996, 1997) illustrating the
breeding process.

Use of noisy observations in the breeding procedure
introduces a stochastic component into the process
whose effect is not clear. The presence of this stochastic
component constitutes one distinct difference between
the breeding method and methods commonly used to
calculate Liapunov exponents of dynamical systems
(e.g., Lichtenberg and Lieberman 1983, chapter 5). One
can imagine that observation noise could forcetransition
of the trajectories calculated from the breeding process
from one basin of attraction into another; one could
imagine a situation in which the control and perturbation
trajectories were in different basins, but the noise-free

breeding process could also produce this outcome and
we have not observed such behavior.

Another difference between the breeding method and
methods used for cal culation of Liapunov exponentslies
in the generation of the control state at the beginning
of each breeding cycle. In our breeding experiments,
this control state is derived from assimilating noisy ob-
servations into the reference state on the limit cycle.
The perturbations added to this new control state do not
depend explicitly on the data. In our case there is no
error of representativeness, and the observations, though
sparse, are distributed uniformly in space (see Fig. 1).
After 18 breeding cycles of thefirst experiments, neither
the BVs from the solid limit cycle nor those from the
dashed appeared to converge to the tangent vector to
the limit cycle. However, the normalization factors for
the solid orbit cluster about unity with fairly smal
spread, as expected. A histogram of normalization fac-
torsfrom the breeding process for the dashed limit cycle
(i.e., the one more likely to give rise to a split PDF)
shows two peaks, both less than one. This result is con-
sistent with the hypothesis that an occasional pertur-
bation vector isgenerated in the basin of the other (solid)
orbit; recall the proximity of the separatrix to the dashed
(red) limit cycle in Fig. 3.
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Fic. 6. Similar to Fig. 5 but for the breeding process referred to the limit cycle rather than to
a small set of noisy observations.

The two other breeding experiments were performed
without introducing synthetic observations. Since we
have the luxury of knowing the ““true” solution in this
case, we can use the true solution in place of the control.
In this series of experiments, we constructed the per-
turbed initial conditions by adding perturbations of
equal magnitude and opposite directions to the limit
cycle as defined above, integrating for a period, nor-
malizing the difference between the solution based on
the perturbed initial condition and the true solution, and
starting over. We observed convergence of the BVs to
the tangent vector, and the convergence of the normal-
ization factorsto one, as expected. The breeding process
referred to the exact solution converges very slowly,
since several conjugate pairs of eigenval ues have moduli
close to 1.0 (see Fig. 4). Even so, the approximation
applied by Samelson (2001) of the BVs being tangent
tothelimit cyclesisreasonable. Theresultsof thisseries
of experiments are shown in Fig. 6.

4. Ensemble calculations

In this section, results of calculations performed with
small ensembles generated according to three different
strategies are compared among themselves and with re-
sults of calculations with large ensembles drawn from
given distributions without regard to dynamical con-
straints. The small ensembles were chosen from linear
combinations of singular vectors, from linear combi-

nations of BVs, and by subsampling the large ensem-
bles.

A total of six large ensemble calculations with 1000
sampleswere performed, three for each of thetwo stable
limit cycles. We observed little difference in the statis-
tics between ensembles of 500, 750, and 1000 samples
and therefore concluded that the results of our experi-
ments with 1000 samples were reliable. In many cases,
the statistics based on 250 or fewer samples were dis-
cernibly different from the results of the ensemble ex-
periment with 1000. The initial samples were drawn
from a Gaussian population with diagonal covariance.
The variance of each initial component was chosen to
be 3 X o2, where o2 is the mean sguare deviation of
the ith component of the state vector from its mean
value, averaged around a single period and 3, is a scalar
used to normalize the total variance. For a given limit
cycle, the three ensemble experiments differed in their
total initial variance, that is, the factor . Covariance
statistics were calculated every quarter period.

If theinitial ensemble were centered on thelimit cycle
and lay entirely in its basin of attraction, we would
expect the ensemble to spread out in a few directions,
and decay in the others at first. The perturbations that
grow most rapidly at first will be those in the directions
of the leading singular vectors of the linearized differ-
ential operator, that is, the matrix f'(u) in (19). This
growth will not, in general, be modal, and the pertur-
bations that grow most rapidly over afinitetimeinterval
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Fic. 7. Evolution of PDFs in a neighborhood of a stable periodic orbit. Axes are aligned along
the backward singular vectors corresponding to the largest singular values of the resolvent for
the solution operator for one period. The initial PDF was Gaussian, with diagonal covariance
matrix. The standard deviations of each component were set to 50% component-by-component
rms amplitudes, evaluated over a period of the limit cycle, as indicated by the label above the
upper left-hand panel. These are two-dimensional marginal PDFs, calculated by a kernel method
from ensembles projected into this space. Times relative to the beginning of the experiment are
shown in the upper right-hand corner of each panel, e.g., the panel labeled [1/4T] depicts the PDF

at one-quarter period following the initial time.

of length T will be those that lie in the direction of the
singular vectors of the resolvent M(O, T) [see (20)].
Eventually al perturbations in the basin of attraction
will approach the limit cycle itself. In this fashion, after
an initia increase in variance in some directions, the
total variance in directions transverse to the stable orbit
would decrease asymptotically to zero after along time.
Perturbations in directions tangent to the orbit are neu-
trally stable, and the result of such a perturbation in the
long-time [imit is to produce a point displaced along the
periodic orbit from the original point. For those per-
turbations of the initial ensemble outside the basin of
attraction of the limit cycle, the points would approach
the other limit cycle, or possibly other attracting sets,
if they exist. A significant number of the latter would
result in a final distribution that would be far from
Gaussian.

Since each of the ensemble members evolves ac-
cording to the exact model dynamics, the different tra-
jectories differ only in their initial conditions, and the
sequence of PDFs one might infer from the ensemble
would be an approximate solution to Liouville's equa-
tion:
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where P is the PDF and f represents the right-hand side
of (14). A study of the importance of Liouville's equa-
tion in the study of predictability appears in the article
by Ehrendorfer (1994). Results of our ensemble cal-
culations are shown in Figs. 7-13.

Figures 7 and 8 depict the evolution of an initially
Gaussian PDF in aneighborhood of the solid limit cycle.
These figures show a marginal PDF, that is, a two-di-
mensional PDF calculated by a kernel method (see, e.g.,
Silverman 1986) from the projection of the ensemble
onto the plane defined by the two backward singular
vectors corresponding to the two largest singular val ues.
The ““backward singular vectors” (Legras and Vautard
1996), also referred to as ‘‘left singular vectors,” ““fina
time singular vectors,” or ‘‘evolved singular vectors”
are the normalized results of applying the resolvent to
the singular vectors. The initial PDF was chosen with
3, = 0.5; that is, the variance was chosen to be half that
of the limit cycle itself about its mean. Subspaces were
chosen for these figures and for the figures relating to
our experiments with the dashed orbit for clarity of pre-
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Fic. 8. Similar to Fig. 7 but showing detail of the sixth period of integration of the ensemble.

sentation. Nearly all of the points of theinitial ensemble the limit cycle. The progress of this region around the
liein the basin of attraction of the solid limit cycle; that  limit cycle in quarter-period increments for the first pe-
is, nearly all remain near that limit cyclefor theduration riod of integration is easily observed in Fig. 7. We see
of our six-period ensemble experiment. A small region that in the first three quarter period of the model run
containing most of the support of the PDF travelsaround the PDF seems to spread over both orbits, but this is

obs7 =00 09 obs3

Fic. 9. The ensemble at the beginning and end of a six-period run. Periodic orbits are shown
as solid and dashed. Initial ensemble points are shown as black dots. Ensemble points after six
periods are shown as white dots. Axes are measurements shown in Fig. 1.
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Fic. 11. Continuation of Fig. 10, showing alternating margina PDFs for a 10-period run.
Shading values for times beyond the initial have been reduced from Fig. 10 since the maximum
of the PDF by this time has been reduced by an order of magnitude, reflecting the spread of the
PDFE No such changes were necessary in Figs. 7 and 8 because of the concentration of the PDF
in that experiment.
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Fic. 12. Detail of last two periods of the 10-period run shown in Figs. 10 and 11 Shading
is the same as in Fig. 11.

an artifact of the projection of the ensembles into this
two-dimensional space. Figure 8 showsthe PDF at quar-
ter-period intervals during the sixth period of the en-
semble simulation. By the end of the six-period run the
PDF has concentrated along the solid periodic orbit. The
probability of a random initial point drawn from the
initial PDF shown in the upper-left panel of Fig. 7 re-
sulting in an orbit whose long-time limit approachesthe
dashed orbit is small. We do not expect the PDF to
evolve into a form with significant concentration of
probability outside the basin of attraction of the solid
orbit in a longer simulation, since we observe little
changein the progress of the PDF around the orbit from
period 5 to period 6.

To address the possibility that a significant number
of ensemble points lies in the basin of attraction of the
dashed orbit after six periods of integration, we plotted,
in Fig. 9, the projection of the two orbits into a three-
dimensional space, along with a black dot for theinitial
condition of each ensemble member, and a white dot

for the state space location of each ensemble member
after six periods of integration. The subspace chosen
here is defined by measurements of the streamfunction
at three of the points in physical space shown in Fig.
1. From this view, only 1 out of 1000 initial ensemble
points can be said with confidence to have ended up in
the basin of attraction of the dashed orbit.

Figures 10-12 depict the evolution of an initialy
Gaussian PDF in a neighborhood of the dashed limit
cycle projected onto the plane defined by the backward
singular vectors calculated for that limit cycle. In this
case, we see a clear evolution from an essentially Gauss-
ian PDF centered on the limit cycle to a bimodal PDF
with significant concentrations of probability density
near both orbits. From this we conclude that significant
proportions of the initial ensemble lay on both sides of
the separatrix shown in Fig. 3. The splitting process is
shown clearly in Fig. 11. After six periodsof integration,
the greatest concentration of ensemble points remains
near the maximum of the initial PDF, but the distribution
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Fic. 13. Similar to Fig. 9 but for the dashed orbit.

has broadened considerably to include a second local
maximum, which appears to have formed on the dashed
orbit. The reader should note that a change in scale was
necessary after the first period and rapid decreasein the
maximum of the PDF in order to resolve detailed struc-
ture of the PDF in subsequent panels.

Details of the 9th and 10th periods of integration are
shown in Fig. 12. In this view, in all panels, the PDF
appears to be split, in obvious contrast with Fig. 8. In
the panels depicting the PDF at full and half intervals,
the secondary PDF maxima appear on the solid orbit.
Comparison of panels from the eighth and ninth orbits
shows that the secondary maxima of the PDF at the
quarter- and three-quarter-period intervals is similarly
progressing toward the solid orbit. The reader is again
reminded to take care in interpreting 2-dimensional mar-
ginal PDFs derived from 44-dimensional ones. Figure
13 is similar to Fig. 9 and clearly shows the evolution
of the PDF from a single Gaussian at the initial time to
a bimodal structure after six periods of integration.

We now turn to the performance of small ensembles
chosen by breeding and by generating singular vectors.
Here our main goa is to see which method allows us
to best capture the evolution of the PDF with a small
ensemble. So far, we have evaluated the evolution of
the covariance matrix and examined the extent to which
the eigenval ues of the covariance matrix generated from
the small ensembles are able to reproduce the eigen-
values of the covariance matrix fromthelarge ensemble.
We expect the evolution of the covariance to reflect the
splitting process.

Evolution of the small ensembles was calculated for
Six periods of each of the known stable limit cycles. As
in the large ensemble experiments, calculations were

performed for three different values of the initial total
variance. Results of our experiments with small ensem-
bles are shown in Figs. 14 and 15.

We performed our singular-vector experiments with
L2 singular vectors. If singular vectors were to be cal-
culated as part of a system with an ongoing assimilation
scheme, we would calculate those singular vectors rel-
ative to the norm defined by the error covariance as
opposed to the L2 norm. The ECMWF system uses the
total energy norm to generate singular vectors (Molteni
et al. 1996). This was chosen on the basis of intercom-
parisons between several candidates. Barkmeijer et al.
(1998) compared singular vectors of a T21L5 primitive
equation model of the atmosphere generated from the
total energy norm to singular vectors generated from
the Hessian of the cost function of a three-dimensional
variational data assimilation scheme, and found signif-
icant differences between results of the two approaches.
Moore (1999), in his study of ensemble methods for a
model of the Gulf Stream, found that ensembles of sin-
gular vectors defined in terms of the total enstrophy
norm were more effective for prediction of forecast skill
than ensembles of singular vectors defined in terms of
the total energy norm.

Our three small ensembles in each experiment were
generated by subsampling the 1000-member uncon-
strained ensembl e and by choosing random vectorsfrom
a subspace spanned by a small number of singular vec-
tors or BVs. Suppose our best estimate of the initia
condition is unbiased, and the errors are Gaussian with
covariance V. In our experiments we chose V to be the
covariance matrix used to generate the corresponding
large ensemble. Now let a be a random vector drawn
from the distribution of the initial errors. We can write
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Fic. 14. Results of experiments with small ensembles for the dashed limit cycle. Eigenvalues of the
covariance matrices at different times in each experiment are shown for the different methods of ensemble
generation. Different symbols depict different methods of choosing the ensemble. Plus signs depict the
original ensemble of 1000 members, diamonds depict an ensemble of 50 members chosen from a space
spanned by six singular vectors, and dots depict an ensemble drawn from a three-dimensional space derived
from BVs. The leading 12 of the 44 eigenvalues are plotted. The sequence of panels from |eft to right shows
increasing time, from initial time to four periods, in intervals of one period. Sequence of panels from bottom
to top shows increasing initial standard deviation. The bottom row shows 10% of the component-by-com-

ponent rms amplitude of the limit cycle; middle row, 25%; and top row, 50%.

a=Yb+ 2 (43)

where Y is the matrix whose columns are the leading
N singular vectors of M, b is a vector of coefficients,
and Z is a vector orthogonal to the columns of Y. The
vector of coefficients b is a random variable with co-
variance V, = Y™VY. We therefore choose a relatively
small collection of random deviates {b;,j = 1, 2, ...}
with covariance V, and examine the extent to which the
behavior of the ensemble {Yb;} contains the behavior
of large ensembles.

We chose the number N of singular vectors to span
our restricted space by examining the diagonal matrix
D from the ordinary L? SVD of the resolvent of the
solution operator for one period of the periodic orbit
under consideration. The number N of singular values
was chosen to be the smallest integer N with the property

N

2. D,

_— = 1 —
tr(D) ©

(44)

where we fixed e = 0.05 arbitrarily. Application of this
criterion resulted in N = 6 for both the solid and dashed
orhits.

We chose a restricted space of BVsin a similar fash-
ion. We performed an 18-period breeding run, discarded
the results of the first period, and formed a 44 X 34
matrix B whose columns consisted of the BVs; recall
that there are two BVs for each experiment, resulting
from adding and subtracting the normalized perturbation
from the analysis. In this breeding run, noisy data were
assimilated at the end of each breeding cycle in order
to form initial conditions for the next breeding cycle.
We performed an SVD on this matrix,

B = UDVT, (45)

and applied (44) to choose the dimension of the re-
stricted subspace. The result was N = 4 for the solid
orbit and N = 3 for the dashed orbit. The corresponding
columns of U form an orthonormal basis of that sub-
space. Toth et al. (1996) suggested a similar procedure,
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Fic. 15. Similar to Fig. 14 but for solid limit cycle for which the space derived from breeding vectors is four-
dimensional.

in which singular vectors might be chosen from a sub-
space of the full-state space defined by BVs. To the
extent that the PDFs remain Gaussian, we can eval uate
the ability of the small ensemble to reproduce the prop-
erties of the large ensemble by comparing the eigen-
values and eigenvectors of the calculated covariance
matrices from the two experiments. Obviously the co-
variance matrix cal culated from the small ensemble will
not be of full rank, so comparisons will be restricted to
the first few eigenvalues, but we can see the proportion
of the variance contained in these first few components.

For each of the two stable limit cycles, four ensemble
experiments were performed for three choices of initial
ensemble variance. Each row of Figs. 14 and 15 shows
the evolution of the eigenvalues of sample covariance
matrices calculated from our four different ensemble
experiments, one with 1000 members chosen from a
Gaussian distribution in state space and three with 50
members. one, the ‘‘unrestricted ensemble,” subsam-
pled from the 1000-member ensemble; one with 50
members chosen from a subspace defined by six singular
vectors;, and one chosen from a subspace defined by
three or four BVs, depending on the limit cycle. Only

four periods of our six-period ensemble experimentsare
shown here. The results after six periods do not differ
appreciably from the four-period results shown in the
rightmost column of these figures.

Figure 14, which refers to the dashed orbit, the one
evidently closer to the separatrix and hence more likely
to exhibit splitting of an initially Gaussian PDF, shows
the greatest disparity among the results from the dif-
ferent ensembles. While the ensembles of singular vec-
tors seem to capture the least of the initial covariances,
at the end of four periods, they produce results similar
to those obtained from the large ensemble. Resultsfrom
the small unrestricted ensemble and the ensemble of
BVs are similar to one another, but quite different from
the results obtained from the large ensemble or the en-
semble of singular vectors. This is probably due to the
splitting phenomenon itself. The small unrestricted en-
sembleis less likely to contain members that lie in the
basin of the solid orbit, and we suspect that members
of the ensemble of BVs are not oriented in directions
favorable to splitting. We remind the reader yet again
of the local nature of the breeding and singular vector
techniques.
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Results of ensemble experiments with the solid orbit
are shown in Fig. 15. In this case, asin Fig. 14, for one
period into the simulation and later, the ensemble of
singular vectors and the unrestricted ensemble produce
results similar to those obtained from the large ensem-
ble. Asin Fig. 14, the ensemble of BV's underestimates
the variances.

5. Discussion and summary

We set out to evaluate the performance of initial en-
sembles in a system with multiple attractors. We found
a specific example in which a Gaussian PDF evolved
into amultimodal one, and investigated the performance
of small ensembles in that case. We expect that a small
ensemble will only exhibit useful statistical behavior in
this extremely non-Gaussian setting if some members
of the ensemble will reliably be selected on either side
of the separatrix.

The question of whether an initially unimodal PDF
will split into a multimodal one is easy to quantify in
theory. Assume the separatrix (see Fig. 3) of the two
basins of attraction examined here divides state space
into two regions, call them D, and D,. There may be
other attractors we do not know about, but we have not
seen evidence of them. We can say we expect the PDF
to split if the integrals of the initial PDF over both D,
and D, exceed some predetermined threshold. We could
phrase this question in terms of regime transitions, but
it would not be meaningful in this case, in which ran-
domness enters only through initial conditions.

The system under study has 44 state variables, alarge
state dimension, but small enough that detailed structure
of the attractors can be determined and PDFs derived
as solutions of Liouville’s equation (42) can be con-
veniently computed by Monte Carlo techniques. This
we did by using large ensemble calculations to evaluate
the evolution of aseries of initially Gaussian PDFs, with
different covariances. We then generated smaller en-
semblesrestricted to subspaces spanned by singular vec-
tors and BVs, as well as small subsamples of the large
ensemble used to approximate the true PDF, and eval-
uated the ability of these smaller ensemblesto determine
whether theinitial PDF waslikely to split into abimodal
structure. We then compared the evolution of the ei-
genvectors of the covariance matrices calculated from
our different ensembles. We found that small ensembles
chosen from a subspace of singular vectors produced
eigenvalues that were similar to those resulting from a
very large unconstrained ensemble, while small ensem-
bles chosen from BV's consistently underestimated the
variances. Moore (1999) found a similar result in his
study of predictability of a model of the Gulf Stream.

Eigenvalues of covariance matrices calculated from
unrestricted small samples, that is, those chosen by sub-
sampling the large ensemble, were comparable to those
calculated from the large ensemble in the case of the
solid orbit, that is, the one for which the PDF was un-
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likely to split. The performance of the small unrestricted
ensemble in the case of the dashed orbit, that is, the
one for which the PDF was more likely to split, was
comparableto the ensemble of BVs. Hamill et al. (2000)
performed a series of statistical tests on unrestricted
ensembles and on ensembles of singular vectors and
BVs. They found that relatively small unrestricted en-
sembles actually performed better than ensembles of
singular vectorsand BV s. Toth and Kalhay (1997) found
that ensembles of BV's performed better than unrestrict-
ed ensembles. These results are not directly comparable.
Hamill et al. (2000) used a model that was somewhat
similar to ours in that it was quasigeostrophic model in
a periodic channel with relaxation to zonal flow, but it
included variability in the vertical with eight vertical
layers, and it did not have topography or any other
surface forcing other than Ekman pumping. Toth and
Kanay (1997) used a T62L18 version of the NCEP
medium-range forecast model.

A number of authors, for example, Toth et al. (1996),
Anderson (1997), and Trevisan and Pancotti (1998),
have suggested that BV's eventually come to lie tangent
to the attractor, while singular vectors point off the at-
tractor. The attractorsin our case are limit cycles. There
is only one tangent direction, and the Liapunov expo-
nent is related to the largest eigenvalue of the return
map (see, e.g., Lichtenberg and Lieberman 1983), in
this case 1.0. We therefore expect the breeding process,
when conducted with no added noise in the analysis
process, to converge to a vector tangent to the limit
cycle, with aunit growth rate, corresponding to the unit
eigenvalue in Fig. 4. We did not find this convergence
in our experiments in which noisy observations were
used in the breeding process, but, as noted in section
3b, convergence was observed when the exact limit cy-
cle was used instead of an analysis based on noisy data.

It appears from Fig. 3 that the shortest distance from
any point on one of the limit cycles to the separatrix is
probably in a direction transverse to the limit cycle it-
self, rather than tangent to it, but it is not obvious that
the singular vectors define the nearest approach to the
separatrix. These results are consistent with those of
Toth et al. (1996) and Trevisan and Pancotti (1998).

Anderson (1996) and Smith (2000) pointed out that
in the special case of systems in which the state point
can be safely assumed to lie on a low-dimensional at-
tracting set, choosing ensembles at random from dis-
tributions given in state space without explicit dynam-
ical constraints can result in qualitative errors in the
estimates of the evolution of the PDF and statistics de-
rived from it. Most practical models of the ocean or
atmosphere are sufficiently complex that quantitative
descriptors of the attracting sets are not available. In
this case, that is, the case in which there is no reliable
way to decide the distance between a given point in
state space and the attractor, Anderson (1997) argues
that little is gained by application of explicit dynamical
constraints. Smith (2000) goes so far as to say that at-
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tempts at estimating PDFs of the states of numerical
weather prediction models are futile, because model un-
certainties make even useful approximationsto aninitial
“true” PDF unattainable. Within this framework, in
which the ocean or atmosphere is viewed as a highly
complex but essentially deterministic system, there can
be no useful meaning assigned to the notion of a true
state or its PDFE

Both Smith (2000) and Anderson (1997) admit the
possibility that in the case of some low-dimensional
characterization of the attractor, the formalism of evo-
[ution of PDFs from constrained initial condition could
be useful. No such characterization of the atmosphere
is available at this time, but there may be some specific
problems in ocean modeling; see, e.g., the discussion
in the introduction on the bimodality of the Kuroshio,
as well as Kumaran and Miller (1995), Masuda et al.
(1999), and Sekine (1990), and references therein.

In the present work we have considered the perfect
model setting as afirst step toward the imperfect model
case, in which the model contains errors that can be
viewed as random variables, in the case of fixed but
imperfectly known parameters, or stochastic processes
as in the case of imperfectly known forcing fields. In
this latter case, even if the underlying dynamics contain
a low-dimensional attracting set, the model state will
not always lie on that attracting set; one reason might
be that some random forcing event might push it off.
In such a case as the one examined here, white noise
terms added to (14) could force the model state from
the basin of attraction of one limit cycle to that of the
other, and the stochastic system would have properties
resembling the double well (see, e.g., MCB). The next
step in the design of ensemble methods for fully sto-
chastic models with imperfectly known parameters or
initial conditions will involve ensembles of imperfect
model runs.
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APPENDIX

Explicit Calculation of the Separatrix Surface

We assume that, if there are other attracting sets be-
sides the two known stable limit cycles, their basins of
attraction do not meet the cylinder defined by the two
limit cycles and the lines that join them, as described
in section 2. We cannot prove this rigorously, but our
computational experience confirms this belief.

The reader should note that trajectories that do not
lie on the separatrix must lie entirely in one basin or
the other. In order to visualize the separatrix, as shown
in Fig. 3, we began by imposing a regular grid on the
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three-dimensional space in which the results are dis-
played. We then examined the 1000 trajectories with
their basin assignments. Each time the projection of a
trajectory into our three-dimensional subspace passed
through a grid cube, we assigned the value O for dashed
trajectories and 1 for solid trajectories. No number was
assigned to cubes through which no trajectory passed.
If multiple trajectories passed through a single cube, we
took the average of the values so assigned. Figure 3
was the result of contouring the 0.5 surface in thisthree-
dimensional space. If no number is assigned to a given
grid cube, it is plotted as blank space. Figure 3 shows
the results from drawing the 0.5 contour on our three-
dimensional grid.

REFERENCES

Anderson, J. L., 1996: Selection of initial conditions for ensemble
forecasts in a simple perfect model forecast. J. Atmos. i, 53,
22-36.

——, 1997: The impact of dynamical constraints on the selection of
initial conditions for ensemble predictions: Low-order model
results. Mon. Wea. Rev., 125, 2969-2983.

——, and S. L. Anderson, 1999: A Monte Carlo implementation of
the nonlinear filtering problem to produce ensemble assimila-
tions and forecasts. Mon. Wea. Rev., 127, 2741-2758.

Ballabrera-Poy, J., P. Brasseur, and J. Verron, 2001: Dynamical evo-
lution of the error statistics with the SEEK filter to assimilate
altimetric data in eddy resolving ocean models. Quart. J. Roy.
Meteor. Soc., 127, 233-253.

Barkmeijer, J., M. van Guizen, and E Boulttier, 1998: Singular vectors
and estimates of the analysis-error covariance metric. Quart. J.
Roy. Meteor. Soc., 124, 1695-1713.

Bennett, A. F, 1992: Inverse Methods in Physical Oceanography.
Cambridge University Press, 346 pp.

Berner, J., and G. Branstator, 2000: Regime signatures in the phase-
space tendencies and PDF of an AGCM. Preprints, 15th Conf.
on Probability and Statistics in the Atmospheric Sciences, Ashe-
ville, NC, Amer. Meteor. Soc., 92-95.

Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibriain
the atmosphere and blocking. J. Atmos. ci., 36, 1205-1216.

Ehrendorfer, M., 1994: The Liouville equation and its potential use-
fulness for the prediction of forecast skills. Part |: Theory. Mon.
Wea. Rev., 122, 703-713.

——, and J. J. Tribbia, 1997: Optimal prediction of forecast error
covariances through singular vectors. J. Atmos. Sci., 54, 286—
313.

——, ——, and R. M. Errico, 1996: Mesoscale predictability: An
assessment through adjoint methods. Proc. Seminar on Pre-
dictability, Val. I, Reading, United Kingdom, ECMWEF, 157-183.

Errico, R. M., and R. Langland, 1999: Notes on the appropriateness
of “bred modes” for generating initial perturbations used in
ensemble predictions. Tellus, 51A, 431-441.

Evensen, G., 1994: Sequential data assimilation with anonlinear qua-
si-geostrophic model using Monte-Carlo methods to forecast er-
ror statistics. J. Geophys. Res., 99, 10 143-10 162.

——, and P J. van Leeuwen, 1996: Assimilation of Geosat altimeter
data for the Agulhas current using the ensemble Kalman filter
with a quasigeostrophic model. Mon. Wea. Rev., 124, 85-96.

Fisher, M., 1996: The specification of background error variances in
the ECMWF variational analysis system. Proc. Seminar on Data
Assimilation, Reading, United Kingdom, ECMWF, 645-652.

Ghil, M., and S. Childress, 1987: Topics in Geophysical Fluid Dy-
namics. Atmospheric Dynamics, Dynamo Theory and Climate
Dynamics. Springer-Verlag, 485 pp.

Gravel, S., and J. Derome, 1993: A study of multiple equilibriain a



SEPTEMBER 2002

B-plane and a hemispheric model of a barotropic atmosphere.
Tellus, 45A, 81-98.

Guckenheimer, J., and P Holmes, 1983: Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields. Springer-
Verlag, 453 pp.

Hamill, T. M., C. Snyder, and R. Morss, 2000: A comparison of
probabilistic forecasts from bred, singular-vector, and perturbed
observation ensembles. Mon. Wea. Rev., 128, 1835-1851.

Hansen, A. R., and A. Sutera, 1986: On the probability density dis-
tribution of planetary-scale atmospheric wave amplitude. J. At-
mos. Sci., 43, 3250-3265.

Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble pre-
diction. Mon. Wea. Rev., 123, 2181-2196.

Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory.
Academic Press, 376 pp.

Jiang, S., F-F Jin, and M. Ghil, 1995: Multiple equilibria, periodic,
and aperiodic solutions in a wind-driven, double-gyre, shallow-
water model. J. Phys. Oceanogr., 25, 764—786.

Jin, F-F, and M. Ghil, 1990: Intraseasonal oscillations in the extra-
tropics: Hopf bifurcations and topographic instabilities. J. Atmos.
Sci., 47, 3007-3022.

Kalnay, E., and Z. Toth, 1996: The breeding method. Proc. Seminar
on Predictability, Vol. |, Reading, United Kingdom, ECMWHF,
69-82.

Kumaran, S., and R. N. Miller, 1995: A comparison of parallelization
techniques for a finite element quasigeostrophic model of re-
gional ocean circulation. Int. J. Supercomput. Appl., 4, 256-279.

Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and
variations in atmospheric predictability. J. Atmos. i, 42, 433—
471.

——, and R. Vautard, 1996: A guide to Liapunov vectors. Proc.
Seminar on Predictability, Vol. |, Reading, United Kingdom,
ECMWEF, 143-156.

Lermusiaux, P F J.,, and A. R. Robinson, 1999a: Data assimilation
via error subspace statistical estimation. Part |: Theory and
schemes. Mon. Wea. Rev., 127, 1385-1407.

——, and ——, 1999h: Data assimilation viaerror subspace statistical
estimation. Part 1I: Middle Atlantic Bight shelfbreak front sim-
ulations and ESSE validation. Mon. Wea. Rev., 127, 1408-1432.

Lichtenberg, A. J,, and M. A. Lieberman, 1983: Regular and Sto-
chastic Motion. Springer-Verlag, 499 pp.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci.,
20, 130-141.

——, 1965: A study of the predictability of a28-variable atmospheric
model. Tellus, 17, 321-333.

Masuda, S., K. Akitomo, and T. Awaji, 1999: Effects of stratification
and bottom topography on the Kuroshio path variation south of
Japan. Part I: Dependence of the path selection on velocity. J.
Phys. Oceanogr., 29, 2419-2431.

Miller, R. N., E. E Carter, and S. T. Blue, 1999: Data assimilation
into nonlinear stochastic models. Tellus, 51A, 167-194.

Molteni, F, 1996: On the dynamics of planetary flow regimes. Part
I1: Results from a hierarchy of orographically forced models. J.
Atmos. Sci., 53, 1972-1992.

MILLER AND EHRET

2333

——, R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF
ensembl e prediction system: Methodol ogy and validation. Quart.
J. Roy. Meteor. Soc., 122, 73-119.

Moore, A. M., 1999: The dynamics of error growth and predictability
in a model of the Gulf Stream. Part I1: Ensemble prediction. J.
Phys. Oceanogr., 29, 762—778.

Palmer, T. N., 1999: A nonlinear dynamical perspective on climate
prediction. J. Climate, 12, 575-591.

Pedlosky, J., 1981: Resonant topographic waves in barotropic and
baroclinic flows. J. Atmos. Sci., 38, 2626—2641.

Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive
extended Kalman filter for data assimilation in oceanography. J.
Mar. Syst., 16, 323-340.

Reynolds, C. A., and R. M. Errico, 1999: On the convergence of
singular vectors toward Lyapunov vectors. Mon. Wea. Rev., 127,
2309-2323.

Rozovskii, B. L., 1990: Sochastic Evolution Systems: Linear Theory
and Applications to Nonlinear Filtering. Kluwer Academic, 315

pp.

Samelson, R., 2001: Periodic orbits and disturbance growth for bar-
oclinic waves. J. Atmos. Sci., 58, 436-450.

Schmeits, M. J., and H. A. Dijkstra, 2000: Physics of the 9-month
variability in the Gulf Stream region: Combining data and dy-
namical systems analyses. J. Phys. Oceanogr., 30, 1967-1987.

Sekine, Y., 1990: A numerical experiment on the path dynamics of
the Kuroshio with reference to the formation of the large me-
ander path south of Japan. Deep-Sea Res., 37, 359-380.

Silverman, B. W., 1986: Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 175 pp.

Smith, L. A., 2000: Disentangling uncertainty and error: On the pre-
dictability of nonlinear systems. Nonlinear Dynamics and Sta-
tistics, A. Mees, Ed., Birkhauser, 31-64.

Speich, S., H. Dijkstra, and M. Ghil, 1995: Successive bifurcations
in a shallow-water model, applied to the wind-driven ocean cir-
culation. Nonlinear Proc. Geophys., 2, 241-268.

Szunyogh, 1., E. Kalnay, and Z. Toth, 1997: A comparison of Lya-
punov and optimal vectors in a low-resolution GCM. Tellus,
49A, 200-227.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The
generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317—
2330.

——, and ——, 1996: Ensemble forecasting at NCER. Proc. Seminar
on Predictability, Vol. I, Reading, United Kingdom, 39—61.
——, and ——, 1997: Ensemble forecasting at NCEP and the breed-

ing method. Mon. Wea. Rev., 125, 3297-3319.

——, |. Szunyogh, and E. Kalnay, 1996: Singular, Lyapunov and
bred vectors in ensemble forecasting. Preprints, 11th Conf. on
Numerical Weather Prediction, Norfolk, VA, Amer. Meteor.
Soc., 53-55.

——, ——, E. Kalnay, and G. lyengar, 1999: Reply to: ‘“Notes on
the appropriateness of ‘bred modes' for generating initial per-
turbations used in ensemble predictions.”” Tellus, 51A, 442—-449.

Trevisan, A., and F. Pancotti, 1998: Periodic orbits, Lyapunov vectors,
and singular vectors in the Lorenz system. J. Atmos. Sci., 55,
390-398.



