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SUPPLY OF MTLK COMPONENTS ON U.S. DAIRY FARMS:
A COST FUNCTION ANALYSIS

1. INTRODUCTION

Multiple Component Pricing

Recently, the pricing system for daiiy products has been changed in many federal

marketing orders.1 Under the old pricing system, milk2 is priced based on two

components: skim and butterfat. In contrast, the new system prices milk on two or more

of the solid components, such as butterfat and solids-not-fat (SNF). This new system is

commonly called multiple component pricing (MCP). In essence, MCP is designed to

price the skim components instead of skim. MCP is considered to give better economic

incentives for farmers to produce the kinds of milk components that consumers demand.

For example, it would help the industry respond to the nationwide increase in demand for

the nonfat portion of the milk product, especially protein. Under the old pricing system,

farmers received the same price per unit of skim no matter how much protein or other

SNF the skim contained. In contrast, the new pricing system values each major category

Federal marketing orders are designed to provide stable milk market by requiring manufacturers to pay at
no less than specified prices and also by assuring dairy farmers to receive the price at no less than the
blended classified value. Today, 40 federal milk marketing orders covers most of the population in the US
(McKinley, 1993).

2 Milk consists of water, fat, and solids-not-fat where solids-not-fat includes mostly protein, lactose, and
minerals Skim milk is the whole milk less butterfat.



Milk is classified and priced according to its end use. Class I price is the price used for milk used in fluid
purpose. Class II price is the price for soft products such as yogurt and ice cream. Class III price is also
called the Minnesota-Wisconsin manufactured milk price (M-W price) and is the same all over the US.
Northwest Federal Order also sets Class Ill-A price which is the price for milk powder. Class I price, Class
II price, and Class Ill-A price will shift according to any price change in Minnesota-Wisconsin price
(McKinley, 1993).

Class differential means each class price less Class III price. Class I differential therefore is (Class I price -
class Ill price).

2

of nonfat components, and is expected to encourage farmers to respond better to market

signals (McKinley, 1993).

How handlers and manufacturers would pay under this new system is complicated

and is therefore worthwhile discussing. Different federal orders use different MCP

systems. Here, the Northwest Federal Marketing Order is used as an example.

The price fluid handlers and manufacturers are obliged to pay is based on

classified pricing.3 The price fluid handlers pay for Class I milk is the sum of the

following (Equity Newsletter, 1993):

The butterfat price per pound times total pounds of butterfat.

Class I differential price4 per hundredweight times total milk purchased.

Price of Class III skim milk per hundredweight times total hundredweights of skim

purchased.

The price manufacturers pay for Class II, III, or Ill-A milk is the sum of the

following factors:

The butterfat price per pound times total pounds of butterfat.

Price differential (Class II or Class 111-A differential according to their end use) times

the quantity of milk purchased.



3. Price of Class III solids-not-fat per hundredweight times the total quantity of solids-

not-fat.

Because different prices apply to milk depending on its final use, a method of

pooling, or distributing the total class value of milk among producers, is used in

conjunction with the classified pricing. A marketwide pooling procedure is used in most

of the orders and it assures milk producers receive a uniform price for the milk they sell.

In the Northwest Order, producers are paid based on three factors:

The butterfat price per pound produced times the total pounds of butterfat produced.

Total pounds of solids-not-fat produced times the producer solid not-fat price5 per

pound.

Total volume of milk production times the weighted average differential price6 per

hundredweight. The weighted average differential represents each producer!s share

of the Class I, II, and Ill-A fluid differentials.

A='
F

where A = producer nonfat milk solids price,
B = hundredweights of skim milk in Class I,
C = skim milk price,
D = nonfat milk solids in Classes II, HI, and HI-A,
E = nonfat milk solids price, and
F = total number of nonfat milk solids pounds in producer milk for the market

for the market.

6 (bxc)#(dxe)+(fxg)
h

where a weighted average differential price,
b = pounds of whole milk in Class I,
C = (Class I price) - (Class III price),
d = pounds of whole milk in Class II,
e = (Class II price) - (Class HI price),

f = pounds of whole milk in Class HI-A,

g = (Class rn-A price) - (Class III price), and



Objective

The general objective of this thesis is to investigate the technology of milk

production and to see how the dairy farmer's production of whole milk, milk protein, and

milk fat responds to the multiple component pricing system in the short run.

The specific objectives are as follows:

Using a cost function approach, to provide empirical estimates of the structure of

milk production technology. These tests will include (ii) a test of homotheticity in

technology; (ii) a test of whether the technology has constant returns to scale; and

(iii) a test of whether all outputs can be aggregated as a single index.

Again using a cost function, to estimate supply functions for milk, milk protein, and

milk fat.

To estimate supply elasticities, and from these to investigate whether the producer

responds to MCP significantly when feed ration but not dairy breed or sire is allowed

to change.

To achieve these objectives, general theories of multiple-product technology and

cost will first be discussed. Next, the dairy science literature on factors affecting the

production of each milk component will be reviewed. Third, the multiple-product

hedonic translog cost function will be constructed from 1993 cross-sectional data from

the North Carolina Dairy Record Processing Center. The cost function relates total feed

4

h = quantity of producer hundredweight whole milk in the market.
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cost to concentrate and forage price; to whole milk, milk protein, and milk fat quantities;

and to a variable reflecting the milk production capacity of the cow. Parameters are

estimated together with a share equation using maximum likelihood. Next, I test selected

hypotheses with the cost function. By duality theory, hypothesis tests on the cost

function are equivalent to hypothesis tests on tecimology. Finally, I estimate supply

functions and supply elasticities for each output and show how the multiple component

pricing system likely will affect US milk production in the short run.



2. ECONOMIC THEORY

A Multiple-Product Cost Function

A multiple-product technology is commonly represented as an implicit function

of inputs and outputs. This function is called a transformation function and represented

as

T(x,y)0,

where x andy are vectors of inputs and outputs respectively. Equality (1) holds if and

only if the technology is efficient. Just as a production function shows the maximum

output as a function of inputs, the transformation function shows the most efficient

transformation of input vector x to an output vector y (Brown et al., 1979; Denny and

Pinto, 1980).

Input requirement set V(y) is the set of all input combinations that is capable of

producing at least y. The border of V(y) is the isoquant, which represents the most

efficient combination of input bundles. Formally, an input requirement set can be

expressed as

V(y) = {x: T(x, y) 0}

(Chambers, 1991). Now, suppose transformation function (1) has a regular, convex input

requirement set; that is, V(y) is nonempty, convex, and closed. The nonemptiness of

V(y) simply means it is always possible to produce a positive amount of output. The

6
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assumption of closedness states that V(y) includes its boundary and that there are no

"holes" in the boundary. A hole is the region in y) where it is not possible for the

technology to produce output bundles y. The principle of duality states that if the input

requirement set satisfies the above restrictions, there exists a unique multiple-product

cost function C(w, y), which has a one-to-one relationship to the transformation function.

The cost function measures the minimum cost of producing y and can be

expressed as

C(w, y) = mm {w x: x EI

where w is the vector of input prices. In order that the cost function behave well,

restrictions called regularity restrictions must hold. First, it is assumed that w is

exogenous and strictly positive. Second, C(w, y)> 0 since w> 0 and y >0

(nonnegativity). The cost function satisfies further properties. These are positive linear

homogeneity in w, nondecreasingness in w, and concavity in w. A cost function is said

to be linearly homogeneous in w if C(tw, y) = tC(w, y) for all t> 0. Nondecreasingness

in w means increasing any input prices will not decrease cost. Concavity in the factor

prices implies that the chord between any two points on the cost function, when graphed

over input prices, is no higher than the function itself. Finally, the cost function obeys

Shephard's lemma,

dC(w,y)
x(w, y);dw

that is, the vector of derivatives of the cost function with respect to factor prices is equal

to the vector of cost-minimizing conditional factor demands. Factor demands are

conditional in the sense that they depend on the level of y produced. Conditional factor



8

demand is always positive, given that the cost function is nondecreasing in w (Chambers,

1991).

Duality

It is straightforward to derive a unique, well-behaved cost function from a well-

behaved production function; that is, we solve for the cost minimization problem (3).

Shephard (1953) proved that the reverse is also true. Given a cost function, it is possible

to derive a unique production function from which the cost function can be generated.

This implication tells us that the technology holds all the information necessary to

construct the cost function and vice versa. The specification of a well-behaved cost

function is equivalent to specifying a well-behaved technology. This principle is known

as the "duality" theorem.

Duality of the cost function and the technology can be demonstrated by showing

that the cost function can be used to reconstruct the input requirement set from which it

was generated. It is easy to show how duality works by using the notion of a half-space

(Chambers, 1991). A half-space H(l, m) can be defined as

H(1,m)r={x:l.xm),

where / E R, / 0, and m R. Given this definition, the cost function can define a

half-space; that is

t I t I
C(w, y) = (x: w x x for all t such that y y}.



The cost of the observed choice of inputs is no greater than the cost of any other level of

inputs that would produce at least as much output (Varian, 1992). Any point at the
r I

boundary of(6), w x = C(w, y), is tangent to a hyperplane and represents the cost-

minimizing input bundles to produce a given level of y. The feasible bundle cannot lie
t I

below the hyperplane on which x is situated, since if it does, it means x does not

represent the cost-minimizing bundle. Since, by definition, input requirement set V(y) is

the combination of input bundles that produce at least y, a half-space above the

hyperplane should contain V(y) and at least one point of V(y) should share a point in

common with the hyperplane. If we examine the infinite number of alternative price

vectors w, that is, as the number of sets of w gets very large, we can obtain at least the

convexified form of the input requirement set V(y). This implicit input requirement set,

V*(y), is defined as

(7) V*(y)= {x: w x x (w, y) = C(w, y) for all w 0).

V"(y) always strictly contains input requirement set V(y). Indeed, if the original

technology is convex and monotonic, V*(y) = V(y). This is because each point on the

boundary of V(y) represents a cost-minimizing factor demand. This proposition shows it

is possible to reconstruct the original technology directly from a cost function if the

original technology is convex and monotonic. When the technology does not satisfy

convexity and monotonicity, the technology derived from the implicit input requirement

set (7) does not yield information about the nonconvex or nonmonotonic region.

However, these regions are never utilized by cost-minimizing firms and hence they are

negligible for economic analysis. Ignoring them, we can construct V*(y), which is a

convexified and monotomzed version of the original technology.

9
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Production possibilities set Tis the set of firm's all feasible combinations of(x, y) (Chambers, 1991).

S

If the multiple-product technology is separable, we can define input requirement set V(y) as V(y) {x: (x,

y) e T} = {t: [x,g(y)] t}={x:(x,g) E t}= V(g)(Chambers, 1991)

10

Hence, whether V(y) is well-behaved or not, we can construct implicit input

requirement set V*(y) which is monotonic and convex. It does not reflect any nonconvex

and nonmonotonic region of V(y) and therefore the cost function used to derive V*(y) is

always equal to that of V(y) (Varian, 1992).

Separability

On many occasions, a multiple-product technology has too many inputs and

outputs to be handled with limited data sets. Hence, economists frequently group several

inputs or outputs and specify the set as a single index, if possible (Chambers, 1991).

Separability in Outputs

A technology is separable in outputs if one can specify the multiple-output as a

single function of the outputs. That is, if the technology is separable in outputs, we can

aggregate the outputs y into a single variable g(y). Hence, if (x, y) E T implies there

exists a technology 1' such that [x, g(y)} E I, the technology is said to be separable.7 If

this is the case, one can specify the input requirement set as V(y), a generalization of the

single-output case (Chambers, 1991).8

Separability in Inputs

Just as separability in outputs can aggregate multiple-outputs into a single-output

index, we can characterize the multiple-inputs as a single-input if separability in inputs

holds. That is, separability in inputs holds if it is possible to aggregate inputs x into a
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single variable p(x). Therefore, a technology is separable in inputs if there exists T such

that [p(x), y] E i whenever (x, y) E T. If this is the case, we can specify a producible-

output set Y(x) as a generalization of the single-input case.

If we write the output separability in the form of transformation function (I), the

implicit function theorem'° implies we can explicitly solve for g(y) as a function ofp(x);

that is

T [x, g(y)} = 0 implies g(y) p(x).

We can also apply a similar argument to input separability. Assuming the

implicit function theorem holds, we can write separability in inputs as

T [p(x), y] = 0 implies g(y) =p(x).

Hence, from (8) and (9), the notions of output separability and input separability are

equivalent. Separability implies that the transformation function can be written in the

familiar form where output vectors are on the left-hand-side and input vectors are on the

right.

Further, the cost function when separability holds is generally expressed as a

single-output function

9
Producible-output set Y(x) is the set of all output bundles that can be produced at a fixed input bundle.

Mathematically, Y(x) = {y: (x, y) E T}. When Tis input-separable, the producible output set Y(x) becomes
Y(x){y:(x,y) E T}"(y:[p(x),y] E 7}={y:(p,y) E T}(Chambers, 1991).

10

The implicit function theorem holds iff (1) F(x, y) =0 has continuous partial denvatives F and F1, and (2)
at a point ('o. Yo) satisf'ing F(x, y) = 0, 13, is nonzero. If (1) and (2) hold, then F(x, y) =0 is called an
implicit fl.inction and can be explicitly solved for h(y) =f(x) (Chiang, 1984).



C(w, y) = C[w, g(y)].

This equality holds since V(y) in equation (3) can be replaced with V(g) (see footnote 8)

(Chambers, 1991).

Constant Returns to Scale

The concept of returns to scale allows us to analyze the nature of the firm in the

long run. The measure of increased outputs associated with increases in all inputs by the

same proportion is called returns to scale.

For a single-output case, this notion is quite intuitive. Returns to scale are said to

be increasing, constant, and decreasing when doubling all inputs 'more than doubles,

doubles, and less than doubles the outputs, respectively. Mathematically, constant

returns to scale can be written as

f(mk, ml) = m j(k, 1) where m 0.

When the technology exhibits constant returns to scale, all isoquants are evenly spaced

and parallel (Nicholson, 1992).

In the multiple-output case, if the transformation function T(x, y) = 0 implies that

T(mx, my) = 0 for all m 0, the technology is said to exhibit constant returns to scale.

As in the single-output case, constant returns to scale in the multiple-output technology

still implies evenly spaced and parallel isoquants. That is, the input requirement sets are

12
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(Chambers, 1991).

consequence of constant returns to scale (Chambers, 1991).

(XIX= I -: y e T = tV(y) where the second equality is the
t I,
I

-: )- eT
I t,i

= t[z(xz) ET]= tY(x)' where

13

V(ty) =

Thus, from equation (12), the input requirement set V(iy) is just t times the input

requirement set V(y). It follows that the boundaries of these two sets are parallel and the

distance between these two boudaries in input space is just t.

Constant returns to scale implies that the producible sets are also parallel. That is

Y(tx)tY(x),
12

so that the producible output set associated with tx is just t times the producible output

set Y(x) (Chambers, 1991).

eT =1' 1



3. FACTORS WIHCH INFLUENCE PRODUCTION OF
MILK COMPONENTS

In recent years, consumers have demanded relatively less milk fat and more milk

protein, reflecting their increasing awareness of nutrition. This tendency will likely

continue. In response to this shift in consumer demand, many researchers and producers

have sought to change the composition of milk products toward lower fat and higher

protein percentages. There are two ways to alter milk components namely, by changes in

feed rations and by genetic manipulation. Altering feed rations is a faster but more short-

run way of changing milk yield and composition, while changes through genetic selection

are slower but more pennanent (Sutton, 1989).

Feed Ration

One can alter protein and fat percentages in the milk by changing the ratio of

forages to concentrates in the cow's diet. It is possible to alter milk fat concentration by

about 3% through nutritional means. Alteration of protein percentage is limited to a

much smaller range, roughly to a little more than one-fifth of this, or 0.6% (Bachman,

1992; Sutton, 1988). Many dietary factors can affect milk protein and milk fat

percentages. However, for simplicity, I confine our attention to the effects of changing

the forage-concentrate ratio.

14
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Milk Fat

Although reducing the ratio of forage to concentrate in a cois diet usually

reduces the milk fat percentages, the pattern of response varies widely. Recent reviews

of the literature (Thomas et al., 1984) have shown that fat concentration is fairly stable

until the proportion of forage in the ration decreases to approximately 50%. However, if

one decreases the forage proportion further, a decrease in milk fat percentage occurs.

These resui tend to vary depending upon the contents of the forages and concentrates

(Sutton, 1989).

Milk Protein

Changes in milk protein percentage occasioned by dietary manipulation are

smaller and less well understood than are manipulations of the fat component.

There is widespread agreement that a negative relationship exists between the

percentage of forage in the diet and the percentage of protein in the milk, anda positive

relationship between the percent of concentrate in the diet and the percent of protein in

the milk. Hence, increased feeding of concentrates relative to forages increases the

protein concentration. However, this result is not conclusive. In some studies,

decreasing the forage-concentrate ratio from 40:60 to 10:90 increased protein percentage

by 0.4% (Sutton, 1988). In a different study (Flatt et al.,1969), no response was found in

milk protein concentration when the feed ration was altered in similar fashion.



Genetic Manipulation

Milk yield and composition can be altered by selection of sire (Gibson, 1989).

Daughters of a bull whose half-sisters produce milk with high protein andlor fat

percentage also tend to produce milk with similar traits. This heritability of fat and

protein percentages is very high, twice as high as that of milk yield. Therefore, it is

easier to manipulate protein and fat percentages than to manipulate milk yield through

sire selection. Researchers have shown that protein percentage and fat percentage are

highly and positively correlated genetically. Also, while the yield of milk and of each of

the two components are all highly and positively correlated with one another, genetic

correlations between fat percent and milk yield, and between protein percent and milk

yield, are negative. Hence, a simultaneous improvement in milk yield, and composition

percentages is difficult. If, for example, one chooses to increase milk yield while

ignoring the milk components, the result will be an increase in milk yield with a decrease

in fat and protein percentages. Although protein and fat concentration are highly

correlated, Kennedy found that it would be possible to reduce fatpercentage while

maintaining the protein concentration through genetic manipulation (Kennedy, 1982;

Gibson, 1989).

16



4. MODEL SPECIFICATION AND MARGINAL COSTS

Hedonic Translog Cost Function and Share Equation

The choice of which flexible functional form to use, when analyzing the cost

structure, depends on which hypotheses one wants to maintain and test.

In my analysis, in order to investigate the structure of milk production technology,

several tests are to be conducted on cost function. Hence, I chose a functional form

which allows me to perform a statistical test for separability and constant returns to scale.

One such cost function is the transcendental logarithmic (or translog) cost function, in

which these restrictions must be maintained as side conditions. The translog cost

function can be envisaged as a quadratic approximation in natural logarithms to an

arbitrary multiple-product cost function around a point of expansion (Brown et al., 1979).

As an extension of this translog cost function, Spady and Fnedlaender (1978)

have introduced the notion of a quality-separable hedonic cost function, combining the

hedonic method with the translog. They argued that if the firm varies the qualities of its

product, it is important to take these differences into account when estimating the cost

function. Spady and Friedlaender specified output as a hedonic function of the output's

attributes and characteristics. They concluded that failure to take into account the quality

differences may result in serious specification error (Spady and Fnedlaender, 1978).

In my model, it is possible to treat the amount of fat and protein in the milk as the

measure of quality of the milk. This is because how much fat or protein the milk

17



contains determines much of the milk's quality. The quality-separable hedonic cost

function in my model can be constructed as

(14) CC H M,1i-1±i
'.M) M

where Mis output of milk in pounds, P is quantity of protein in the milk in pounds, F is

quantity of fat in the milk in pounds, F' M and FM indicate the percentages of protein

and fat in the milk, w is the vector of input prices, and Hf ] represents the function

which measures effective output. 13 Here, it is assumed that doubling the physical output

Mat given protein and fat percentages doubles the effective measure of output H[].

Thus, H[ ] is linearly homogeneous in M that is

(15) HM ( (f1 = N[(i (Mi "M)j LM} M)

No apriori restrictions have to be placed on equation (15) (Spady and Friedlaender,

1978).

One can regard equation (14) as an output-separable cost function ifF'Mand

as well as M, are thought of as physical outputs, since these three outputs can be

aggregated to a single index, Hf 1.

13
The reason for dividing and fat pounds protein pounds by milk pounds is because multicollineality is

severe among fat, protein, and milk output levels. By dividing fat and protein by milk quantity, this problem
is eliminated.

18



In my model, I estimate a cost function for total feed cost per cow, using the

quality-separable hedonic translog model (14). Dummy variables for cow breed, and for

the state in which the farm is located, were used to take account of breed and regional

differences. A variable for sire was also included in the model to investigate how much

the genetic factor affects total feed cost. Imposing symmetry restrictions on the cross-

product terms by Young's theorem, the model becomes

(16) lnTFC=q$o+ØhinH+q$clnW±Ørinwfr+q$5lns+8DB

+ 8DV+ 8DP 8DJ+ SSDS

(1/2) [Yh (ln2+ y(in w)2 irr(1n Wfr)2 + y (in]
+ hlflff'lflW+ hrlflHiflWfr+ sh1flS1flH

+ C In W in Wfr + inW in S + 4rs in Wfr inS,

where in H is the translog approximation of equation (15); that is

(17) In H = in M + fl In () + flj!n IIfl r (p
I ml -

M) 2

[(F+/3ff[lfl_
2

19



Variables in (16) and (17) are

TEC = total feed cost;

= price of concentrate;

Wfr = price of forage;

S = sire quality score; 14

M = quantity of whole milk in pounds;

P' M= protein pounds! milk pounds;

F/M= fat pounds! milk pounds;

DB = I if the breed is Holstein and 0 otherwise;

DV= 1 if the state is Vermont and 0 otherwise;

DP 1 if the state is Pennsylvania and 0 otherwise;

DI = 1 if the state is Indiana and 0 otherwise; and

DS = 1 if the state is South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana,

or Texas and 0 otherwise.

The base region consists of the Border states; that is, Virginia, North Carolina,

Kentucky, Missouri, and Tennessee.

In equation (16), it is assumed that the sire variable is fixed in the short run. That

is, rather than assume that all inputs adjust instantly to the equilibrium level, we treat the

14
Predicted Transmitting Ability (PTA) is used to indicate the genetic superiority or inferiority which the

bull transmits to its offspring. From PTA, economic indexes called PTA dollars are computed. Sire quality
score in my model is the average PTA dollars for the sire of the cows presently in the herd (Aitchison,
1989).
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sire variable as a quasi-fixed input. Equation (16) is a variable cost function in the sense

that at least one input is fixed (Berndt, 1991). Buildings, equipment, and labor are

ignored, and it is assumed that these costs have no effect on total feed cost.

For a cost function to be well-behaved, it must, among other things, be

homogeneous of degree one in input prices. This implies the following restrictions on

equation (16):

çb+çb,. 7cc cr=0; ,.,.+ 4O; 3O; and hc 'chr-°.

Homogeneity restriction (18) implies that equation (16) can be written as'5

inJ =a0 +ah lnH+a +a S+bDB+VDV+PDP

' This is because when the cost function is linearly homogeneous in input prices, A C = C( 2w1, 2w2, y).

Suppose A = I. Then, = (4
.

Taking the natural log on both sides and using the translog form
w2 w2 2 /

+p in H in + P5h inS in H + p, In InS.
Wfr) Wfr,

on the right-hand-side will yield equation (19) (Sil, 1991).

-2

lJ-- +v5(lnS)2}
WfrJ

+co,DI+coDS+! i(lnH)2 +ç



For (19), the cost share equation with respect to feed concentrate price S0,, is

I \
é'InTFC

(21) S0
= ö1nW

= a
Wfr1

+p,,w lnH+p5InS.

22

One can impose additional restrictions on (19) corresponding to further

restrictions on the underlying technology. If the technology is homothetic, it is necessary

to impose the restriction p,,.,, = 0 on (19). The technology is homogeneous if, in addition

to the homotheticity restriction, one can impose ip,,,, = 0. The degree of homogeneity in

that case is 1/ a,,. Finally, if the technology is constant returns to scale, one must impose

the further restriction a,, = 1 on (19) (Berndt, 1991).

One can estimate translog cost function (19) directly. However, gains in

efficiency can be realized by estimating it along with the cost-minimizing input demand

equations, transformed into input cost share equations.

If one logarithmically differentiates the cost function with respect to input price

and then employs Shephard's lemma, one obtains a cost share equation of the form

(20) S
ôInC ÔC
9in Cô C

where X, is the cost-minimizing level of X,, W1 is the ith input price, and where

= C and S1 1 (Berndt, 1991).
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The share equation for forage price must be dropped to avoid perfect lineardependence

(see chapter 5).

I take the sample mean of each variable as the point of approximation in

equations (19) and (21). This is done by dividing each variable by its sample mean

before taking logs. The logarithm of each transformed variable will then be zero when

evaluated at the sample means; and at the mean, cost share equation (21) will simply be

the linear input price coefficient a
. Such procedure simplifies the interpretation of my

results in terms of the "average" dairy farm (Cowing and Holtmann, 1983).

Marginal Costs

Marginal costs of whole milk, protein, and fat can be derived by estimating cost

elasticities of each of these three outputs, then multiplying the elasticities by TFC / Y1,

where TfrC is the predicted total feed cost and Y, is the ithoutput. The cost elasticities

themselves are obtained by differentiating the predicted values of the translog cost

function (19) with respect to each separate output. This process is easier if one uses the

chain rule when differentiating the natural log of TFC with respect to each output. For

equation (19), assuming the quantity of whole milk (M) is the sum of protein quantity

(P), fat quantity (F), and other components (L) (i.e. M = F + P + L), the cost elasticity of

milk is



(22)
91n TFC 91n TFC cln H
Ô1nM - ôlnH 2lnM

The cost elasticity of protein is

23
£9JnTFC 91nTFC c7!nH
ôlnP - c9lnH t31nP

a + Whh H + p In J + p Ins + (i - ()\ Wfr)

+f3 tnP+/31nF_(fl +ii).[inr.(LJ +lnM]

+(flff + +2fl).J .InM_(flff .lnF}

The cost elasticity of fat is

24 i9InTFC £5'InTFC Ô1nH

ôInF - ôlnH ô1nF

ah + (I 1nH+p,In
L

p-i-(i _fl1_flp)1)

24

= a1, + Y1hh lnH + p1,, In
Iws--
\ W,1

+ InS.

Wfr1
+p!nS



L

+flfflnf+flflnP-(flff +flf4
" FInF l+lnM
M)

(F
+(j +/3 +2fif). -_ .lnM_(fi +/3f).__ lnP

Cost elasticities (22), (23), and (24) can be transformed into marginal cost

equations by multiplying each by (TPC / Y,), where Y1 is M, P, and F respectively and

zPc is the exponentiation of the predicted value of translog cost function (19) (Brown et

al., 1979).

Short-Run Supply Functions and Supply Elasticities

A short-run supply function for a firm shows us how much output it will produce

at various output prices, given the fixity of certain inputs. A perfectly competitive firm

always produces at the point where price equals marginal cost, as long as the marginal

cost is upward sloping and above average variable cost (AVC). Thus, supply curve S can

be defined as

(25) S = S(p) for P AVC, and

S0 forP<minAVC.

The reason for the second line of equation (25) is that the finn will shut down if the price

is below average variable cost. The marginal cost curve cuts the average cost curve at

25
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the average cost curve's minimum point. Therefore, at positive output, the firm's supply

curve is equal to the portion of the marginal cost curve that lies above the minimum point

of the average cost curve. For this reason, any factor that shifts the firm's short-run

marginal cost curve will also shift the short-run supply curve (Pindyck and Rubinfeld,

1992; Henderson and Quandt, 1980).

A supply elasticity measures the responsiveness or sensitivity in quantity supplied

of a commodity to a change in its price. Mathematically, the supply elasticity is

(26) S percentage change in quantity supplied t5'Q I

where subscript i refers to the tth output. When the supply curve is upward sloping,

supply elasticity (26) is always positive since quantity and price move in the same

direction (i.e. 9Q loP >0). If this is the case, supply is said to be elastic when e> 1,

unitary when e = 1, and inelastic when < 1 (Salvatore, 1991).

In my model, estimates of supply functions for each output will be calculated

from equations (22), (23), and (24). A very simple model of supply functions for milk,

protein, and fat can be obtained by nonstatistically regressing ln M, In P, and in F against

in MG1 by ordinary least squares, where and MG1 is the marginal cost of milk, protein,

and fat, respectively. First, I obtain marginal costs for arbitrary levels of milk, milk fat,

and milk protein. Then I equate marginal costs to the corresponding output prices, and

percentage change in price d1 Q



express the quantities as functions of the output prices. The resulting functions are

supply functions. They are

(27) In M= em + emmln MC,,, + empin MC + emjln MCf;

in F = e + epmlfl MCm + eln Mc + ejln MCj; and

in F = e1 + efi,,ln MCVm + e1ln Mc + ej3ln MCJ'6.

Both the dependent and independent variables take the log form to make the calculation

of supply elasticity simpler.

Supply elasticities are then derived by simply differentiating In Y1 with respect to

each output price.

16
Because the random error term on the translog cost thnction was removed prior to deriving marginal cost

functions (22) - (24), and because functions (27) represent the inverse of (22) - (24), the latter regressions
are, in Diewert's phrase,"nonstatistical." As a consequence, t-tests and R2 in (27) would be inappropriate
(Diewert, W. F,, 1981).
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5. ECONOMETRIC ESTIMATION

Data

The 1993 data used to estimate the feed cost function in equation (19) were

obtained from the North Carolina Dairy Record Processing Center. Data included annual

feed cost, quantity of whole milk produced, quantity of fat in the milk, quantity of protein

in the milk, expenditures on and quantities of feed concentrates and forages, number of

cows, breed of herd, location of farm, and average sire score. Output variables are

measured in pounds per cow per year, input prices in dollars, and sire score in PTA

dollars (see footnote 14 about PTA dollars). The data were collected from the

Northeastern states (Vermont and Pennsylvania), North Central Region (Indiana), the

Border states region (Missouri, Kentucky, Virginia, Tennessee, and North Carolina), and

Southern states (South Carolina, Georgia, Alabama, Mississippi, Louisiana, Florida, and

Texas). These areas cover approximately half the area of the United States, so that

forage type and quality differ widely in the data. Such feed quality differences affect

total feed cost. In hedonic translog cost function (19), three state-level dummy variables

were ic1uded, namely Vermont (DV), Pennsylvania (DP), and Indiana (Dl). Each of

these states contains more than 200 observations. I combined all Southern states into one

variable (DS) and combined the Border states together as the base dummy.

Dummy variables for breed were also constructed to investigate whether cow

breed affects total feed cost. In the data set which I use in this study, 87.1% of the herds

are Holstein, 6.23% are Jersey, and 5.85% are Guernsey. Jersey and Guernsey cows are

28
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combined together as the base dummy. When the dummy variable equals unity, its effect

is to shift the intercept by the amount of the parameter estimate (Kennedy, 1992).

The data set contains 1924 observations after deleting observations which lack

information on any one of the cost, quantity, or price variables.

Maximum Likelihood

When random variable x has probability density fimctionf(9 x) characterized by

parameter vector 9, the maximum likelihood method chooses the particular value of

unknown parameter 9 that gives the greatest probability of randomly drawing the sample

that was actually obtained. Mathematically,

(28) Maxfff(9 x);

where flf(9 x) equals the likelihood function L(
1

x). However, one usually

maximizes the natural log of the likelihood function instead of maximizing likelihood

function (28) itself. The reason is that maximizing the log-likelihood function is the

same as maximizing the likelihood function itself and the former task is easier.

A maximum likelihood estimator is, under fairly general conditions,

asymptotically efficient, consistent, asymptotically unbiased, and distributed

asymptotically normally (Kennedy, 1992).
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I use the maximum likelihood method to jointly estimate hedonic translog cost

function(19) and share equation system (21). Joint estimation of these equations

increases the degrees of freedom without additional parameter estimates and, hence,

increases efficiency. However, when conducting the estimation, one must drop 1 share

equation from the model. The reason is that at each observation, the dependent variables

in all share equations taken together sum to one. It follows that if there are n factor share

equations, only n - I of them are linearly independent. This result implies that, for each

observation, the sum of the disturbances across equations must always equal zero. That

is, let the vector of the observed share equation be denoted and the vector of the true

share equation be S. One can write the relationship between S and S as S = S + e,

where e is the vector of errors. Since observed shares always sum to unity, as do the true

shares, then e = 0. This implies that the disturbance covariance and residual cross-

product matrices will both be singular and hence the maximum likelihood parameter

estimates are indeterminate (Chambers, 1991).

To avoid this singularity of the disturbance covanance, I arbitrarily drop one

equation from the cost share equation system and solve for this equation after estimation.

In my model, I drop the cost share equation for forages, and estimate the coefficients of

the cost share equation for concentrates (21) along with hedonic translog cost share

function (19).

A problem may arise about which equation to delete. If the parameter estimates

vary with the choice of share equation dropped, the researcher may report only those



31

estimates appealing to her beliefs or judgments. Fortunately, all parameter estimates,

log-likelihood values, and estimated standard errors are invariant to the choice of which

n - I equations are directly estimated (Berndt, 1991).

Starting Values

The full information maximum likelihood (FIML) procedure in TSP, which

obtains maximum likelihood estimates for the system of equations, is used to estimate

hedonic cost function (19) and share equation (21). The FIML procedure can be used

with linear as well as with nonlinear models. Equations (19) and (21) are each nonlinear

since one has to substitute inN of equation (17) into each and jointly estimate all

coefficients in (17), (19), and (21). A common problem when estimating highly

nonlinear models is that unless one has good starting values, parameter estimation

becomes very difficult. Providing good starting values is important because poor starting

values not only increases computational time but may even prevent convergence to the

least-square estimates. Finding good starting values is often difficult in itself I first

estimated equation (19) with ordinary least squares, then used the OLS estimates as

starting values in the maximum likelihood (Hall, 1994).
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Testing for Separability

In the next chapter, I conduct hypothesis tests on equation (19) to investigate the

structure of the underlying dairy feeding technology. The hypotheses to be tested are for:

(1) homotheticity; (2) constant returns to scale; and (3) separability. Methods for

conducting tests (1) and (2) were discussed in chapter 4. Constant returns to scale are

possible if and only if homotbeticity restriction (1) holds in the hedonic cost function.

Below, I discuss the separability test in the context of the translog cost function.

(a) Hypothesis Test for Separability

The separability test is to determine whether outputs can be aggregated into a

single output measure H[ 1. This test can be conducted by specifying: (i) the alternative

general (non-separable) model; and (ii) general model (i) with separability restrictions

imposed. A likelihood ratio test is then performed comparing separable cost function (i)

and (ii). General nonseparable cost function (i) can be constructed as

=B0+BmlflM+B
LM)

+DbDB+DVDV+ DDP DDI± DDS

2

+!rC(M)2 +c
21

PP[ LM)j

- (
in -- + C(inS)2 + Gpm 111

Wfr)

+ B5 inS

4lnM
M)
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in(f) . In M + Gwm lnI±!

G in lnll+G in
M) M)

In M + G77, inS . In M

I \
w pIn +G In inS

\Wfr)

+ G1 in(fJ . inS + In inS.

Following Denny and Pinto, certain restrictions must be imposed in order that

equation (29) be separable. These are

(30) GBj=Gjw'Bm;

GfWBPG.Bf ;and

=GpwBm.

One can use the likelihood ratio test to compare the maximum values of the

likelihood (or log-likelihood) functions of equations (29) and (29) with restrictions (30)

imposed. Separability restriction (30) is correct if the two likelihood values are not

significantly different.

Hedonic separable cost function (19) is one form of separable cost function. If

the separability restrictions (30) on general cost function (29) are true, it follows that the

hedonic separable cost function (19) is a reasonable specification for dairy feed cost

function.
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(b) Likelihood Ratio Test

The hypotheses of homotheticity, constant returns to scale, and separability can

also be tested with the likelihood ratio method. To implement the likelihood ratio test,

first estimate the maximized value of the likelihood function of the restricted and

unrestricted model. The likelihood ratio test is then computed as

(31) LR= 2[L(H1) -L(H0)],

where L(H0) and L(H1) are the maximum values of the (log-)likelihood functions with

and without restrictions, respectively. LR is always positive since the likelihood value of

the unconstrained model is always higher than the likelihood value of the constrained

model. If the restrictions are true, L(H1) - L(H0) should not be significantly different

from zero. LR is asymptotically distributed as chi-square, with degrees of freedom equal

to the number of constraints. We reject the H0 when LR is greater than the critical value

(Griffith etal., 1992).'

'
Alternatives to the likelihood ratio test are the Wald Test and Lagrange multiplier test: The Wald test

examines whether the unrestricted estimates violate the restriction by a significant amount, and the Lagrange
multiplier test examines whether the slope of the log-likelihood function, when evaluated at the restricted
coefficient, significantly differs from zero. Some tests are easier to compute in certain circumstances than
others are. Although in limited samples, these test results differ, they are asymptotically equivalent
(Kennedy, 1992).
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6. ECONOMETRIC RESULTS AND DISCUSSION

Estimation Results

Hedonic translog cost function (19) and feed concentrate share equation (21)

were estimated jointly. This required estimating parameters a and fls, and/Is,

p and /1 s, and Pth and /1 s jointly in nonlinear fashion. The maximum likelihood

method, specifically the FIML procedure of TSP, was used. Results of estimating

equations (19) and (21) jointly are listed in Table 1.

In Table 1, one can observe very low t-values for all the terms involving sire

quality variables. A test for whether the sire quality terms are jointly significant is

therefore necessary. This test should be

(32) H0: a = = 0; against

H1: At least one of the sire coefficients is nonzero.

I used the likelihood ratio method to test the significance of the sire terms. To perform

this test, the alternative model, which excludes all sire terms, needs to be estimated.

Then, the maximum value of the (log-)likelihood function for the restricted model

(without sire terms) was compared to that of the unrestricted model (with sire terms). If

the value for the restricted model is significantly smaller than that for the unrestricted

model, the J-f is rejected and, therefore, sire terms are not jointly significant.

35



Table 1. Joint Estimates of Hedonic Cost Function (19) and Share Equation (21).

variable
intercept
lnH

in -
inS

in
M)

In (F
M)

maximum value of log likelihood function = 1315.7
R2: translog hedonic function: 0.640048, share equation: 0.29 133
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DB
DV
DP
DI
DS

2

1r

2

In

2LM)j

!(InH)2

-tin2[\
!(Ins)2

InSlnH

M

-i-

H hit
(w
-s--

'.M)

12

13ff

f3pf

'Pb

cop

ço,

y/

p/lw

p3

- 0. 822731

-1.59198

0. 104229

-0.049346
-0.095301
-0.071495
-0.035804
-0.088251

0.187502

0.012563

-0.06824

-0.052781
-0.007366

- 0.474894

-0.43109

5.71557
-3.52541
-7.66224
-4.42946
-2.3402
-0.341235

31.267

1.02089

-3.40687

-0.951763
-1.40895

Parameter Estimates t-value
a0 10.5837 562.7
a, 0.4317

0.533917
10.7274

113.78

a3 0.017069 1.018

fl 0.224655 0.682932

/3 0.458599 2.98697

0.653116 0.063378
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and the associated share equation for feed concentrates, S, , is

(34) s=nT +1-+pinH.
ôln a

Wfr)
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The coefficients of the restricted model are listed on Table 2. The result of the

hypothesis test is listed in Table 3. Using formula (31) and calculating the log-likelihood

ratio from Tables 1 and 2, I get LR = 5.28. If the H0 is true, (31) is distributed, as Chi-

square with 4 degrees of freedom. At the 5 % level of significance, the H0 cannot be

rejected and hence I conclude that the sire terms jointly have no effect on the cost

function. Therefore, I drop the sire terms from my model and, in the following

discussion, concentrate on the reduced model with sire terms eliminated. The reduced

hedonic cost function is

(33) =a0 +ah H+a

+pinH.ln
Wfr)'



Table 2. Joint Estimates of Reduced Hedonic Cost Function (33) and Share Equation
(34).

variable
intercept
in H

/ \

r)
(Pin

(Fin -

2LMj
![inl±i.') 12

2[ \.M)j
(P (Fmi - I mi -

M) \M
DB
DV
DP
DI
DS

!(lnH)2
2

- /
1- in -
2 Wfr

in H.1nI±!

Parameter Estimates f-value
a0
a1
a

0.187758 3 1.7464

- 0.069305 - 3.54657Ph

maximum value of log likelihood function = 1313.06
R2: translog hedonic function: 0.6389 1; share equation: 0.2904 15
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10.5843 559.71

0.434377 10.9042

0.534648 115.354

0.211603 0.65278

0.467523 3.04545

0.656814 0.060458

-0.699491 -0.417712

- 1.91955 -0.508481

0. 103592 5.64386
-0.046922 -3.35748

0.092709 7.58416
-0.072772 -4.54065
-0.035579 -2.33106
-0.103615 -0.404996

hf

/3ff

fl,
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Null Hypothesis:
Sire Terms are
Jointly Zero

Table 3. Hypothesis Test of Sire Quality Terms

Log Likelihood Ratio Critical Chi-Square Degrees of Freedom
(At 5 %)

5.28 9.488 4

At 10 % level of significance, critical chi-square is 7.78. So, the null hypotheses still
cannot be rejected at this level.

Table 4. Hypothesis Test of Homotheticity Using Reduced Model (33).

Null Hypothesis:
Homotheticity holds

Log Likelihood Critical Chi-Square Degrees of Freedom
Ratio (At 5 %)

3.84146 19.6

Due to rejection of homotheticity, the constant returns to scale restriction is not tested.
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Coefficient estimates of reduced model (33) and share equation (34) are listed in

Table 2. The R2 of the reduced hedonic translog cost function (33) is approximately

0.64. Although the R2 for the concentrate share equation (34) is low (0.29), this is not

unusual in translog cost studies (Spady and Fnedlander, 1978).

In Table 2, the dummy variable for breed (DB) is positive and strongly

significant, indicating feed costs for a Holstein are higher than for other breeds.

According to the dairy science literature (Webster, 1993), a Holstein is heavier than other

dairy cows, has higher maintenance energy requirements, and hence lower feed

efficiency. My results are consistent with the literature. All the dummy variables for

geographic regions have negative and strongly significant signs, indicating that the

Border states have the highest total feed costs of all regions in the model.

The fact that all variables are divided by sample means before logs are taken in

(33) and (34) facilitates the interpretation of results in terms of the average farm. That is,

at the mean, all the logarithmic terms go to zero and the predicted value of the dependent

variable simply equals the intercept. Hence, at the mean, the intercept of(33), a0,

equals the predicted value of in (TFCI Wfr), and a is the estimated cost share for feed

concentrates on the average farm. Estimated total feed cost at the mean is the

exponentiated value of a0 times Wfr evaluated at the mean. Using the results from Table

2 and descriptive statistics from Table 5, this value equals $1010.73 per cow-year, which

is close to the actual mean of total feed cost in Table 5 ($976.86).



Table 5. Descriptive Statistics of Vanables in Hedonic Cost Functions (19) and (33).

41

Variable Unit Sample Mean Standard Minimum Maximum
Deviation

Total Feed Cost ($/cow/year) 976.86 182.15 304 1955
(TFC)

Milk Quantity (lbs./cow/year) 18067.02 2799.83 7144 26208
(M)

Protein (lbs./cow/year) 584.58 81.01 141 827
Quantity (P)

Fat Quantity (lbs./cow/year) 665.69 96.16 275 996
(F)

Price of (S/lbs.) 0.089 0.025 0.0134 0.47
Concentrate
(We)

Price of Forage (S/lbs.) 0.026 0.009 0.0035 0.11
(Wfr)

Sire Score (S) (index) 145.95 48.18 1 296

Breed Dummy 0.871 0.335 0 1

Holstein (DB)

State Dummy 0.115 0.319 0 1

Vermont (DV)

State Dummy 0.247 0.43 1
Pennsylvania
(DP)

State Dummy 0.156 0.363 0 1

Indiana (Dl)

State Dummy 0.148 0.458 0 1

Southern
States (DS)
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The insignificant (-statistics for fl in Tables 1 and 2 may reflect the fact that the

current pricing system under the Federal Marketing Orders values only the amount of fat

percentage in the milk, not the protein percentage.

Results of Hypothesis Testing

To investigate the structure of technology, I first test whether the technology is

homothetic, and if so, whether it has constant returns to scale. As noted in chapter 4,

homotheticity holds if Phw =0 in equation (33). Constant returns to scale holds if, in

addition to that restriction, =0 and a,, = 1. The null and alternative hypotheses for

homotheticity are

(35) I-Ia: Ph 0; against

H1: p0.

Results of the likelihood ratio test for homotheticity are reported in Table 4. The

maximum value of the log likelihood function in the homothetic model is 1308.26. The

result of the likelihood ratio test in Table 4 shows that at the 5% level of significance and

1 degree of freedom, the null hypothesis is rejected and, therefore, the technology

appears to be nonhomothetic. Because the homotheticity restriction is rejected, constant

returns to scale cannot hold either.
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Next, a test is conducted of whether the technology is separable. One can do so

by comparing the likelihood value of the estimate ofgenerally nonseparable model (29),

dropping sire terms, with the likelihood value of generally nonseparable model (29) in

which separability restrictions (30) are imposed. Again, these two models are estimated

together with the share equation for feed concentrates, and the maximum likelihood

method is employed. The estimates of generally nonseparable model (29) are listed on

Table 6, and the estimates of (29) with separability restrictions (30) are listed on Table 7.

Generally, if the maximized likelihood value of the separable model in Table 7 is close to

that of generally nonseparabje model in Table 6, it can be concluded that the separable

specification is correct.

The test is conducted and the result reported in Table 8. The null hypothesis is

that the separability specification is correct. At the 5 % level of significance and 3

degrees of freedom, the null hypothesis is not rejected. Hence, I conclude that

separability restrictions (30) are correct.

Checking Regular4y Conditions

In order that the translog hedonic cost function (19) and (33) behave well, the

regularity conditions I discussed in chapter 2 must be satisfied.

The first condition, that w be exogenous and strictly positive, is satisfied since w

does not depend on the value of other variables in the cost function and since prices of

forages and feed concentrates in the data set are all positive as shown in Table 5.
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Second, the nonnegativity condition holds since all inputs and outputs are positive. The

third condition, linear homogeneity in input prices, is imposed on hedonic translog model

(19) and (33). Next, concavity in input prices requires that the Hessian matrix be

negative semidefinite. Following Young et al., the input price Hessian matrix of(19) and

(33)is

(36)

TPC(_yi +S, .Sfr TPCyi +Sfr Sfr)

calculate whether this condition holds at the mean since it is impossible to determine

whether a translog cost function satisfies the conditions globally. At the mean, rtc =

exp (a0). where = mean price of forage. S = a and Sfr = 1 - S. Substituting

these values into (36), I get V' I = 7835.39 and 11-12 I = 0. Thus, concavity in input

prices is satisfied.

(Young et al.) Negative semidefiniteness requires that and H2 O. Iwill

TFC(i +s s +SC .Sfr)



Estimation of Marginal Costs

Marginal costs of milk, protein, and fat in hedonic translog cost function (33) and

share equation (34) were estimated by multiplying cost elasticities (22), (23), and (24) by

(TFC / Y,), where TPC is the predicted value of total feed cost. These marginal costs are

estimated holding other outputs and inputs constant at their mean values. Although the

estimates of a translog function tend to be precise at the mean, the further the estimates

are away from the mean, the more imprecise they become. Thus, marginal cost estimates

far from those of the average farm tend to be imprecise. Hence, I calculated marginal

costs in the neighborhood of mean variable values, namely within 2 standard deviations

above and below each mean output. Marginal costs of milk and fat were estimated at the

mean output, one standard deviation above and below the mean output, and two standard

deviations above and below the mean output. Marginal costs of protein were calculated

for a slightly narrower range (1.84 standard deviation above and below the mean) since at

two standard deviations below the mean protein output, marginal cost is negative.

Results are listed in Table 9 and graphed in figures 1, 2, and 3.
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Table 6. Estimates of General Non-Hedonic Cost Function (29).

variable
intercept
in M

(Pin I -

in If-
hi1--

DB
DV
DP
DI
DS
!(lnM)2

1[(P)]2

:
1n().M

hiE) mM

hiM
W,.)

hiI_-) h(f)
M

hi(±) . lfl'!2)
M

M)

maximum value of log likelihood function = 1315.78
R2: translog cost function = 0.64088 1; share equation = 0.29 1224
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Parameter Estimates t-value
B0 10.5778 538.036
Bm 0.4534957 11.2387
B 0.256025 1.37386

B1 0.196817 2.21643

B 0.535089 115.356

Db 0.110764 5.85876
-0.048778 -3.47715
-0.093322 -7.5645

D, -0.073229 -4.56915
D5 -0.035575 -2.3254
Cmm 0.134701 0.489799

cpp 0.365459 0.057853

-0.167057 -0.191007

0.188229 31.7177

G,,,,, -0.013018 -0.013847

G1,,, -0.09382 -0.19895

G,,, -0.044069

- 0.928728

-2.01425

- 0.425318

G 0.184885 2.01777

- 0.04226 - 0.93 1994



Table 7. Estimates of General Non-Hedonic Cost Function (29) with Separability
Restrictions (30) Imposed.

variable
intercept
lnM

ln (P
M)

In (F
M)

Wfr)

DB
DV
DP
DI
DS

2[Mj

2[ LM)j
- 2!

2

InI-_'LlnM
M)

M)

mM
Wfr)

's..M) \.M)

'M) )

M) j
maximum value of log likelihood function = 1312.97
R2: translog cost function = 0.640 127; share equation = 0.290404

47

Parameter Estimates i-value
B0 10.5802 540. 502
Bm 0.453482 11.0169
B 0.018176 0.125947

B1 0.267384 3.27083

B 0.535246 115.658

Db 0.107575 5.723 1
D -0.048392 -3.45213
D -0.093403 -7.6024
D, -0.073211 -4.57374
D5 -0.033869 -2.21719
Cmm -0.14596 -0.532497

0.118377 0.018897

Cif -0.10363 -0.119987

0.187977 31.6757

Gpm 0.103763 0.111727

-0.079063 -0.168505

G,, -0.057817

-0.804342

-2.83375

-0.37046

G -0.002377 -0.125799

G -0.022233 -0.477449



Null Hypotheses;
Separability Holds

SD = standard deviation

Log Likelihood Critical Chi-Square Degrees of Freedom
Ratio (At 5 %)

5.72 7.81473 3

Table 9. Estimates of Marginal Costs

Marginal Cost of Milk

0.62762 0.45176 0.32848 0.24314 0.1824
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Table 8. Hypothesis Testing of Separability by Comparing General Nonseparable Model
(29) and Model (29) with Separability Restrictions (30) imposed.

Mean-2SD Mean-1SD Mean Mean+1SD Mean+2SD
0.033618 0.028408 0.02525 0.023238 0.02191

Marginal Costs for Protein
Mean - 1.84 SD Mean - 0.92 SD Mean Mean+0.92SD Mean+ 1.84 SD
0.016322 0.11193 0.17318 0.21435 0.24298

Marginal Costs for Fat
Mean -2 SD Mean - I SD Mean Mean + 1 SD Mean + 2 SD
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Figure 1. Marginal Cost of Milk
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Figure 2. Marginal Cost of Protein
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Figure 3. Marginal Cost of Fat
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Implication of Downward Sloping Marginal Costs

One can see from Table 9 and Figures 1 and 3 that the marginal cost function of

milk and fat are downward sloping. This result suggests that the dairy farm is producing

in stage I of the production function.

Wilson showed that beef cattle in feedlots operate in stage I of their production

function also. He stated that cattle-feeding production relationships are constrained by

the animal's appetite to stage I. That is, as feed intake rises, "there comes a point while

in stage I of production, where rumen capacity of the cattle ceases to be the limiting

factor but chemostatjc and thermostatic factors take over to inhibit more feed intake."

Although the exact causal mechanism is not fully understood, this phenomenon is widely

accepted in the literature. Hence, the animal's appetite limitation precludesmovement

further down the average feed-cost function (Wilson, 1976). My result suggests that the

Wilson's result applies for dairy cows as well as beef cattle. That is, the appetite

constraint prohibits dairy cows from producing milk and milk fat beyond stage I of their

production functions.

Estimation of Inverse Marginal Cost Functions

According to conventional microeconomic theory, a firm does not wish to

produce in stage I of production. If it is constrained to operate in stage I, it will produce
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at maximum volume as long as profit is positive. Thus, instead of the term "supply

functions" for equation (27), I will use the term "inverse marginal cost functions."

Kirkland and Mitteihammer (1986) investigated supply response of fat and solids-

not-fat (SNF) in experiments with 100 hypothetical Holsteins, using nonlinear

programming methods. They concluded that the own-price supply elasticity of fat was

0.07, and the supply elasticity of SNF with respect to fat price was 0.014. Results of

estimating equation (27) are listed on Table 10. The own-price marginal cost elasticity

of fat is din F / d In MC1= eff = - 0.04, which is negative and fairly inelastic. The

marginal cost elasticity of protein with respect to fat price is e1 - 0.124, close to the

elasticity of SNF with respect to butterfat price in Kirkland and Mitteihammer. The

cross-price elasticity of fat with respect to protein e1 = - 0.0576. The own-price marginal

cost elasticities of milk and protein in Table 10 are emm = - 0.93 8 and = 0.03,

respectively. These are inelastic marginal cost responses, consistent with the elasticities

which Kirkland and Mitteihammer computed.

Hence, production response of milk components to varying component prices is

small. It is nearly impossible for farmers to respond significantly through feeding

management to output price changes, at least in the short run. Additional research to test

the robustness of these results would be useful.



Variable
intercept
in 'm
In I?,,

in P,

Table 10. Inverse Marginal Cost Functions for Milk, Protein, and Fat.

dependent variable: in Qm

dependent variable: in Q1,

dependent variable: in Q,.

parameter estimates
em 6.4002
emm -0.937885
em,, -0.00037655
em! 0.026747
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Variable parameter estimates
intercept e,, 4.66386
in m epm 0.44916
in P,, e,,,, 0.029662
in?1 e,,1 -0.124361

Variable parameter estimates
intercept e1 3.14993
in 'm -0.871171
in F,, e1,, -0.057593
In P, eff -0.039998



7. CONCLUSIONS

In this thesis, I have investigated how dairy farmers' incentives to produce milk,

milk protein, and milk fat likely would change under multiple component pricing. To

achieve this objective, I first estimated a hedonic translog cost function and share

equation using maximum likelihood. The cost function satisfied regularity conditions,

implying that dairy farmers are cost-minimizers.

Low significance of sire quality terms suggested that sire quality has no influence

on a cow's feeding efficiency, or therefore on feed cost at given milk, milk protein, and

milk fat levels.

To investigate the structure of the milk production technology, test of

homotheticity and separability were conducted. Homotheticity in the feeding technology

was rejected, implying also that the technology does not exhibit constant returns to scale.

The test of whether the feeding technology is separable was conducted by comparing the

maximum log-likelihood values of generally nonseparable model (29) in which general

model (29) in which separability restrictions (30) imposed. The null hypothesis of

separabilty was not rejected. This result implies that hedonic specifications (19) and

(33), which impose separability on the cost function, are a reasonable way to characterize

dairy feeding costs.

Using the estimated hedonic cost function, marginal costs of milk, milk protein,

and milk fat were derived at various output levels. Results showed downward-sloping

marginal cost curves for milk and milk fat, and an upward sloping marginal cost curve
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for milk protein. Although protein production is at stage II of its production function, a

downward-sloping marginal cost curve for milk implies that dairy farms operate in stage

I of their production function. The reason is straightforward. Feed must first be used to

satisfy a cow's maintenance requirements before any residual feed is available for milk

production. Further, the cow's appetite is satisfied before its marginal product can begin

to fall and thus marginal cost begin to rise.

Inverse marginal cost functions for milk, milk protein, and milk fat were then

estimated from the marginal costs of each output. From these inverse marginal cost

functions, marginal cost elasticities for milk, milk protein, and milk fat were derived.

Marginal costs of all three outputs are inelastic, consistent with Kirkland and

Mitteihammer's results based on experimental data with Holstein herds.

My results suggest that milk component production response to varying

component price changes will be small if feed rations alone are permitted to change.

Thus, the multiple component pricing plans currently proposed in many federal

marketing orders, which will increase protein prices substantially, will not raise protein

concentrations much unless breeding programs succeed in developingcows that produce

higher-protein milk.
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