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FINITE ELEMENT TRANSPORT USING WACHSPRESS
RATIONAL BASIS FUNCTIONS ON QUADRILATERALS IN

DIFFUSIVE REGIONS

1 INTRODUCTION

Particle transport deals with the study of rarefied fields of particles as they

move through, arid interact with, a background media. This topic has many ap-

plications and has been an interest of engineers and physicists for decades. Appli-

cations include nuclear reactor design and analysis, thermal radiation transport,

astrophysics. ra(liation shielding, and radiodosimetric cancer therapies, among oth-

ers.

As computer technology has become more advanced. physicists and engineers

have increasingly applied numerical methods to the transport equation in order to

find solutions to problems that were previously insoluble without great simplifica-

tion and approximation. However, t.he transport equation has proven challenging

to solve with digital computers in comparison to many other equations in science

and engineering. This is due to several characteristics of the transport equation.

The first-order foriii of the transj)ort equation (which is the niost coninion) is

an integro-differential equation with a seven-dimensional phase space in its full,

tliree-dinieiisional form (three space dimensions. two angular dimensions, one en-

ergy dimension, aiid one time dimension). In addition. this equation may behave

as a hyperbolic. parabolic, or elliptic partial differential equation depending upon

the particular problem.

Typically, solution methods for the transport equation fall into three broad cat-

egories: stochastic niethods. deterministic methods. and hybrid methods. Stochas-

tic mimethods solve time transport equatiomi by statistical means (typically Monte
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Carlo) whereas deterministic methods solve the transport equation by discretizing

into a system of linear algebraic equations. Hybrid methods are some combination

of deterministic and stochastic methods. We shall concern ourselves only with a

specific deterministic method--- finite element applied to the SN equation. The SN

equation is derived by approximating integrals over angle with numerical quadra-

ture. This will be deaIt with more fully in Section 2. A derivation of the SN

equation is given in [Lew 93].

To employ the finite element method, the problem domain is broken into a

collection of non-overlapping zones which are tessalated over the domain volume

(or area, in the case of a two-dimensional problem). The spatial shape of the

solution is then represented as a superposition of known spatial functions, termed

basis functions. These finict ions must form a complete basis and span the volume

of the zone continuously. \Vachspress [Wac 75] lists the properties of a "good"

basis function on a polygonal zone as given in Table 1.

1. Continuous over the polygon
2. Normalized to unity at vertex i
3. Linear on the two sides adjacent to i
4. Equal to zero on the sides opposite t.o i

Table 1: Properties of a Good Basis Function

Linear polynioniials fulfill these requireixients on simple shapes such as squares

or triangles in two dirneiisions, or hexahedra an(l tetrahedra in three dimensions.

However. the set of all zoiie shapes for which "good" basis functions were known

was limited. and was referred to as the finite element zoo. Waclispress discovered

that certain rational functions can fulfill the a.bove requirements for arbitrary con-

vex polygons and polyhedra. as well as certain polycons (two-dimensional shapes

with curved sides) and polypols (three-dimensional shapes with curved faces). This

significantly expaiids the flexibility and power of the finite elemeiit method. An
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exhaustive overview of the finite element method, and basis functions in particular,

is given in [Zie 001.

Wachspress rational functions have not received much attention in the trans-

port community. It has been suggested that Wachspress rational functions may

be useful as interpolating functions in computer graphics [Das 01]. It has also

been suggested that they might be useful in biomedical applications [Das 03a].

Recently, clue to the work of Adams [Ada 01], there are new reasons to exam-

ine Wachspress rational functions in a finite element discretization of the trans-

port equation. Adams found that weight functions with the properties exhibited

I)y Waclispress rational functions should result in a full-resolution discretization.

A finite element discretization that does not possess full-resolution will riot give

physically mearnngful solutions in thick, diffusive regions. The reason that Wach-

spress rational functions provide a full-resolution discretization is because they

niicet Adains litmus-test for weight functions: they possess locality and surface-

matching. Locality refers to item 4 in Table 1: a weight function must be zero on

the opposite edges of a zone to have locality. Surface matching refers to items 2

afl(l 3 in Table 1. Surface matching means that the weight functions are mirror-

images along a zone edge. The fact that Wachspress rational functions have the

properties in Table 1 on such general zone shapes is what makes them so unique.

Particle transport in thick diffusive regions has several applications. Radiation

hydrodynamics problems, such as in inertial-confinement fusion and astrophysics,

typically contain some very diffusive regions [Rat 00]. Radiative heat transfer in

glass is another area where thick and diffusive regions are encountered [Lar 02].

This thesis will investigate the use of Vvaclispress rational fumictions in a fi-

nite elenuent discretization of the one-group. time-mdependent S transport equa-

tion on quadrilaterals, coiicentratmg on the thick diffusive limit. We have chosen



4

quadrilaterals because they are the simplest shape on which Wachspress rational

functions can be built such that they do not (always) degenerate to linear or bilin-

ear functions. As such. quadrilaterals are a good starting point for investigating

the properties of this basis. Section 2 presents a derivation of the finite element

discretization of the SN transport equation. Section 3 discusses two algorithms for

constructing Wachspress rational basis functions. In addition. we present the ba-

sis functions currently used by the community for finite-element discretizations on

quadrilateralsisoparametric bilinear basis fimctions. Section 4 discusses meth-

ods for calculating spatial integrals of these basis functions. Section 5 presents an

a.syrriptotic analysis of a family of finite element cliscretizations. In Section 6 we

derive an asymptotic and an asymptotic-Pi diffusion synthetic acceleration precon-

(lit loner which is necessary for rapid convergence of transport iterations in optically

thick and diffusive regions. Section 7 contains results and Section 8 contains our

conclusions.
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2 DERIVATION OF THE DISCONTINUOUS FINITE ELEMENT
TRANSPORT DISCRETIZATION

The finite element method involves the assumption of a functional form for

the spatial distribution of the solution. The solution is written in terms of known

spatial basis functions multiplied by unknown constants. To generate equations for

these expansion coefficients. we apply the method of weighted residuals, and then

substitute in the assumed basis expansion for the spatially-dependent functions.

The method of weighted residuals operates by setting weighted integrals of the

transport equation equal to zero, thereby setting weighted averages of the error

equal to zero. The result is a set of linear equations that may be solved for the

expansion coefficients.

In this section we will derive a finite-element discretization of the transport

equation for a general two-dimensional zone shape. \'Ve will then simplify the

resulting equation for the case of general convex quadrilaterals on a logically-

rectangular grid.

2.1 Finite Element Discretization on a General Zone

We begin with the monoenergetic. time-independent transport equation in two

diiiiensions. with isotropic scattering:

y. O) + a(:r. y)(x.
a8(.x..

(T y) + q(:r, y. ), (1)
27r

where
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Il = unit vector of particle travel.

(x. y, O) = flux of particle at position (x, y) travelling in direction O,

Ut(X. y) = total cross-section.

a5(, y) = scattering cross-section,

(x. y) scalar flux, the zeroth angular monient of (x, y, O).

q(x, y. O) = particle source at position (x, y) in direction .

We will discretize the angular variable with a level-synimetric quadrature set

[Lew 93]. The transport equation may then be solved as a set of equations in

discrete angles. At angular ordinate in., the transport equation is written

+ U(X,y))rn(.X.y) + q7n(x,y), (2)

where W is the sum of the angular quadrature weights,

= W. (3)
rn= I

This is called the SN equation. TIre scalar flux may be calculated rising

c5(x, y)
f

dO(x. y, Wmm(X, y). (4)
27r ,n=1

Multiplying by the weight function y(x. y) and integrating over a zone (p, q)

gives us

(IA H (. y) (m V'm (i. y) + Ut () (:r. u))]

ffli\ [7i(X. y) (c(:r. y) + q,(x, n))] , = 1... Fpq. (5)

where (x. y) (A. the zone area. and where Fpq refers to the nuniber of weight

functions in our basis in zone (p. q). Here we have assumed that the cross sections

o and Ut are constant within tIre zone. We now rise Green's theorem on the first

terni:
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+ ff dA y) [a7(x y) y) q1(x. )] 0, = 1 . . . Fp,q. (6)

Here ñ is defined t.o be the the unit normal outward from the zone surface \, and

x, y) is the angular flux on the zone surface. We now expand all of the spatial

functions in terms of the basis functions. Not.e that there must be an equal number

of basis functions as there are weight functions:
Fpq

m(X,Y) = )m.jbj(X,y), (7a)
j=1

Fp.q

cb(x, y) = y). (7b)
3='

Fpq

qm(x. y) = qmjbj(x, y). (7c)

Fpq

jx. y) = :) (7d)
j= I

Inserting Eq. (7) into Eq. (6) we obtain
['p q

Ornj(. q) '3b1(x. y) (l

Fp.q

fJ y) ,
y) (IA

, j=1

Fpq

+ (1/ 7j(:I'. y)b(x.
)
dA) (at;m.i 0,

(8)

\Ve will now define several matrices:

// j(X, y)b1(x, y) (IA. (9a)



Iibj(1,YiY)d (9b)

=ffbx.7J)(x,Y)dA. (9c)

All of these matrices are local to the zone. In the finite element literature, M is

called the riiass matrix. Using these definitions, Eq. (8) can be rewritten as
Fp,q Fp,q Fp.q

fñ.O,(x, y) gb1(1. y) cl urn Li.jJmj )rn

Fp,q Fp.q

+ Ut M + j 1 . . . Fp,q, (10)

where [trn and Tlm are the r- an(l y-direction cosines:

/trn = Orn x, (1 la)

= rnêy. (lib)

We must now analyze the surface integral term. If we sum this term around

all of the edges of the zone, the first term in Eq. (10) beconies

Pp,q / Fpq

ñpOrri f
yr.y)b(x,y)d1 = 1. ..Fp,q, (12)

j=i 3= v

where )f denotes the f-th edge of the zone, F,q denotes the total mmurnber of edges

in the zone, and is the angular flux on edge Substituting this back into

Eq. (10) gives
b'p.q / ['p.q

/ 2j(:x:. y)b(:i:. :y) (If

f=i 1

Fp.q Fp,q

- Kj + Ut A (cj + q;,.j) . 1 . . . Fp,q.

(13)

Tins is the discontinuous finite elenient (liscretization for a general zone with gen-

eral weight and basis functions.
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2.2 Finite Element Discretization on a Quadrilateral

We now derive the specific form of the finite element transport discretization

for the case of a quadrilateral zone. We employ Galerkin weighting, such that our

weight functions are equal to our basis functions, and we center our unknowns

on the zone "corners," (see Figure 1) so that there are four unknowns per zone.

Corners occupy the same location as a grid node, but are considered interior to

the zone.

Figure 1: Typical Quadrilateral Zone

Our matrix definitions are similar to those in Section 2.1, except that the weight

functions may be replaced with basis functions due to our Galerkin weighting:

I1I fjbi(x,)bj(xY)dA. (14a)

L,1 = (14b)

b(x, :ii)b(x, y) dA. (14c)

Additionally, the surface terni in Eq. (13) may be simplified considerably. Writ-

lug that term explicitly for quadrilaterals yields
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i Oin
(I

b(x, y)b(x, y) dAl) 1

m.j
3=1

4

+ ñ2
(I

b(x, y)b(x, y) dA2) 2

m,j
j=l 2

+fl31m (I b(xY)b(xY)dA3) j
j=1

4

+fl4m(Jbj(X,y)bj(X,y)dA4)j.
i=1...4. (15)

j=1 ''
According to Table 1, a proper basis function is zero around all edges except

the two edges adjacent to its "anchor" corner. Each basis is anchored at a single

corner, and each corner is anchor to a single basis. Therefore.

bi(x,y) = Don A2 and A3, (16a)

b2(x.y) Don A3 and A4, (16b)

b3(x,y) = Don A4 and A1, (16c)

b4(x.y)=OonAi and A2. (16d)

Substituting Eqs. (16) into Eqs. (15) yields:

fOin [ (f
br)bi(:r.Y)dAf)

rn
[f

bi (x. y) (b1 (x, y)1 + b2(x, y)2) dAl]

+ 4 O,n [f
b (x. y) (b1 (x. y)41 + b4(x. y)'1) dA4] , (17a)
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fOrn [ (I
b2(xY)b(xY)df)

lOm
[f

b2(x,y) (bi(x,y)1 +b2(x,y)2) dxi]

+2Om
II

b2(x,y)(b2(x.y)1+b3(x,y)4) d2] , (17b)
L

flf1m 1

(f
b3(xY)b(xY)dAf) i]

PTn,J

fl211m
[J

b:3(x, y) (b2(x, y)2 + b3(x, y)?3) dA2]
L

+ 3m
[f

b(i. y) (b3(i. y) + b4(x, y)) d] , (17c)

[
(Lb41Y r.h1J)ds)

]

3m [f b4(X, y) (b3(x. y) + b4(x, y)4) d3]

+
[f

b4(x,y) (bi(x,y)41 + b4(x,y)44) d4] (17d)

These expressions can be written in riiatrix form as

where

1m'L\L + 1rnSVUn, (18)

In1 0 0 ol

Sh 0 m 0 D
(19a)

[0
0

0 0 0 fl3]

0 0

Sv 0 112 0 0
(19b)

0 0 n2

Di

,

0 0 ui
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F
fbd' fAblb2dXl 0 0 1

fbd,\1 0 0 I (19c)4= o o fbdA3 fAb3b4d).3I
o o fb4b3d\3 fbdx3 ]

Lbd)4 0 0 fbib4d.x41
o fAbdA2 fAb2b3d\2 0 I (19d)
0 fb3b2d\2 fbd\2 0

jfb4bdA4 0 0 fbdA4

[,1

Pm.i I
A1 I

m,2I
= A3

J

(19e)

flL4

?LA4
m,1 I

m A2 (19f)
m.3 I

Yrn4J

Finally, we write the transport e(IUation in matrix form for a zone (p, q) as

follows:

jqLLP,qrn.p.q + m 'pqrLp,qPrnpq

+ (at.p.qMp.q iimKp,q) ?I)m.p.q O1p,q
p,q + Mp.qqrn.p.q. (20)

To corriplete the system, we use the following upstream closures:

fupsteam zone Ym.4 1 < 0
(21a)m.p.q.1

m.p.q.1 l 'm > 0

'rn.pq.2
fupstearn zone m < 0

(21b)
'm.pq.2 > 0

fupsteam zone Prn.2 113'Im < 0
(21c)rr;p,q3

Tn.p.q.3
,

3'm > 0

Jupst.eani zone < 0
(21d)rnp.q1

Yin .p.q.4
,

m > 0

Ulnpql
fupsteam zone 'in.2 4'm < 0

(21e)
'rnp.q.1

,

4'm > 0



Vm.p.q.2

Ym.p.q.3

Vm,p,q,4

upsteam zone

l-'m.p,q,2

upsteam zone

m,p,q,3

upsteam zone

13

(21f)fl2m>0
fi2Om<0

(21g)
fl211m>0

4m <0
(21h)

>0

Once the angular flux has been found, the scalar flux can be calculated via

p,q = Wm?m,p,q. (22)
m=1

This process repeats until the scalar flux is converged. This is covered in more

detail in Section 6.

2.3 Localization of the Finite Element Equations

As we shall see in the asymptotic analysis (Section 5) and in the results (See-

t.ion 7), discontinous finite element discretizat.ions often gain robustness if their

matrices are lumped [Ada 01]. A robust solution is nonnegative and free of un-

physical oscillations. Lumping refers to altering the matrices such that the various

unknowns in the equation are dependent only upon their corners and directly ad-

jacent corners. The three types of lumping we will investigate are niass-mnatrix

lumping, surface-matrix lumping, and full lumping (lumping of all matrices).

2.3.1 Mass-Matrix Lumping

The mass matrix is defined in Eq. (14a). We wish to localize the coupling,

which is achieved by diagonalizing the mass matrix. The result. is {Ada 01]:

IiIi = (23)
3/SI

where is the Kronecker delta function.
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2.3.2 Surface-Matrix Lumping

In addition to mass-matrix lumping, surface-matrix lumping is often employed,

for similar reasons. The equation for the surface lumped matrices for a quadrilat-

eral zone is [Ada 011:

[fbi(x,y)dAi 0

0
p,q 0 0

0 0

[fbi(x.Y)d)\4 0

p,q 0 o
ump

[

0 fb2(x, y) dA2

0 0

2.3.3 Full Lumping

o 0

o o

fb3(x,y)dA3 0

o

(24a)

0 0

o 0

fb3(x.y)d)2 0

o

(24b)

Finally, with full lumping we lump the leakage matrices in addition to the mass

and surface matrices. The equation for matrix is

where

[Lii L12 0 01
L1

L22 0 0
(25)0 0 L33 L34 I

0 0 L43 L44j

L11
ff

bi(x,
)a'

dA + ff b4(x. y)
übi(x,y)

a dA, (26a)
A A

L12 ffb2(xy)1dA+ ffb:i(x.) ab1(x. y)

ax
dA, (26b)

A A

L2i=ffbi(x,y)2dA+fJb4(x.y)
ax

ab2(x,y)dA
ax

(26c)

A A

L22 ffb2(x,y)2 dA
ax + /fb3(x.) ab2(x. y)

ax
dA, (26d)

A A
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=L33 ffb3( ab3(x,y) dA+ffx,y) b2(x.y)' dA. (26e)
ax

A A

=L34 ffb4( ab3(x,y)
dA +x,y)

ax
ffbi(x.Y)3dA, (261)

A A

=L43 ffb3( ab4(x,y)
dA +x,y)

ax
ff b2(xy)4' dA, (26g)

A A

=L44 ffb4( ab4(x,y)
dA +x,y)

ax
ffb1(x,)4' dA. (26h)

ax
A A

The equation for matrix is

where

0 0 K14]
0 K22 K23 0

0 K32 K33 0 I

(27)

K41 0 0 K44]

K11 ffbi(x.y)3b1 dA
ax + dA, (28a)

A A

K14 = ff b3(x,y)1 dA
ax + f/ b4(x.y)'' dA, (28b)

A A

K22 ff bi(x.y)ab2 dA
ax

+ ff dA, (28c)
A A

K23 ff b3(x,y)ab2 dA
ax

+ ff dA,
ax

(28d)
A A

K32 =
ax ax

(28e)
A A

K33 ffb3(x,y)ab3 dA
ax + Jf

b4(x,y)ab3 dA,
ax

(28f)
A A

K41 ff bi(x,y)ab4 (IA
ax

+ ff b2(x.y)4' dA.
a

(28g)
A A

K44
ax ax

(28h)
A A
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3 CONSTRUCTING THE BASIS FUNCTIONS

The requirements for proper basis functions were given in Table 1. Wachs-

press rational basis functions fulfill all of these requirements, and may be applied

to any convex polygon or polyhedron of unlimited order, as well as to certain

polycons (two-dimensional shapes with curved sides) and certain polypols (three-

dimensional shapes with curved faces). Bilinear basis functions fulfill these re-

quirements on orthogonal (rectangular) zones. For quadrilaterals, bilinear basis

functions are often built and integrated on an orthogonal zone in an isoparametric

space, and then mapped onto a quadrilateral in Cartesian space using a coordinate

transformation matrix.

We will present the bilinear basis functions in isoparametric space. and two

methods for constructing Wachspress rational functions in Cartesian space. The

first method we call the direct method. This method is an implementation of

the algorithm suggested by Wachspress [Wac 75], and results in equations of the

same form as those in Wachspress's book. However, the applicability of the algo-

rithm presented here is limited to quadrilaterals. Constructing the denominator

of the Wachspress rational function via the direct method becomes difficult for

higher order shapes due to the non-linearity of the external diameter (explained in

Section 3.2). The second method we present is Dasgupta's construction method

[Das 03a]. which outlines a new methodology for constructing Wachspress rational

basis functions on arbitrary polygonal zones.

3.1 Bilinear Functions in Isoparametric Space

Regardless of the shape of the quadrilateral zone in Cartesian space. the zone

is mapped such that in isoparametric space it looks identical to Figure 2. The
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Figure 2: A Quadrilateral Zone Mapped to Isoparametric Space

bilinear basis functions defined in the isoparametric space are [Ada 01]:

(1)(1p)
(29a)

4

b2(
)

(1+
)
(1

(29b)
4

b3() (1+)(1+)
(29c)

4

(1)(1+i)
(29d)

4

In Section 4 we will demonstrate how to integrate these basis functions in isopara-

metric space and then map the integral back to Cartesian space.

3.2 Wachspress Rational Functions via the Direct Method

Wachspress rational basis functions are ratios of polynomials. For a polygonal

zone with F sides. the Wachspress rational basis function is of the form [Das 03a]:

p(F_2)(x y)
b(x.y) = (30)

p(F_3)(x, y)'

where p(m) is a polynomial of degree rn in (x. y).
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It is the denominator of the rational function that makes Wachspress functions

unique, and gives them the ability to fulfill the requirements listed in Table 1 on

arbitrary convex polygonal and polyhedral zones. These basis functions can also

be constructed on certain polycons and polypols [Wac 75]. Here we present the

direct method for building the basis function on a quadrilateral.

We begin by finding a linear equation for each of the four edges of the quadri-

lateral. The equation for edge ), is of the form

l(x, y) = cix + dy + c. (31)

On edge ,\, l(x, y) = 0. These equations are not unique; they have three degrees

of freedom, but only two are required to determine the line. For the direct method

we choose (arbitrarily):

f0 : vertical line segment,
(32)d,

i_i : otherwise.

The other constants may then be determined using the positions of the two nodes

that the edge connects.

The next. step in building a Wachspress rational function is locating the external

nodes that determine the external diameter of the zone. By extending the edges of

a zone, intersections may be found, as in Figure 3. These intersections are termed

external intersection points (EIPs). The external diameter is the segment that

connects these points. A quadrilateral will have at. most two EIPs, and therefore

a linear external diameter.

To find an intersection point for two edges, we describe the two edges using

parametric equations. Consider the two line segments in Figure 4. Edge 1 can be

described by:

x=(x2-xi)s-i-x1. (33a)



Intersection

Exte

Intersection Point

Figure 3: Finding the External Diameter

EIP(xy)

I '
, '

/

Y2)

E2
T3, 3)

fri, yi)

Figure 4: Finding the External Intersection Point
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y=(y2yl)s+yI, (33b)

while edge 2 can be described by:

x=(x4x3)t+x3. (34a)

y = (y y3)t + y. (34b)

Setting the two x equations equal to each other, we find

=
(x4x3)t+(x3xi)

(x2 x1)
(35)

Setting the two y equations equal to each other, and substituting in Eq. (35) gives

us

+
(36)

(Y2 x) + (x1 y3)

Substituting t into Eqs. (34) gives us the location of the intersection point. After

we have found both external intersection point.s, the equation for the external

diameter may be found just as the equation for each edge of the zone was found.

A proper basis will interpolate a uniform field exactly; therefore [Das 03a],

b(x,y) 1. (37)

Wachspress rational basis functions are always anchored to a corner. By normal-

izing the function to unity at its anchor corner, we will enforce Eq. (37). Since

each function is anchored to a single corner, and each corner is anchor to only one

function, the number of basis functions in a zone is equal to the number of corners

in the zone (in this case, four). Therefore, we must build four basis functions in

each quadrilateral zone. The equation for the basis function located at node i. as

given in [Wac 75], is

(38)
lext(X, y)
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where l01(x, y) is the equation for one line segment opposite (not containing as an

endpoint) node i, and l02(x, y) is the equation for the other line segment opposite

node i. The function lext(X, y) is the equation of the external diameter line segment,

and k is a normalization constant, which normalizes the basis function to unity at

its corner. After the equations for the edges and the external diameter have been

determined, k may be calculated:

lext(Xi, y)k= (39)
l01(x,y) l02(x,y1)

where (xi, y) are the coordinates of node i.

(L5

(26. .-L4)

13A)

Figure 5: Wachspress Rational Function Construction Example

As an example, consider the zone pictured in Figure 5. The equations for the

edges are:

li(T,y) = y+ 1, (40a)

12(x,y) =xy-4, (4Db)

13(x, y) = O.33333x y + 5.33333. (40c)

14(x,y) = 4xy+9. (40d)
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and the equation for the external diameter is

1ext (x, y) 0.23077x y 2. (41)

To calculate the normalization coefficient, we set each basis function to unity

at its anchor corner and solve for k:

lext(2, 1)
12(2, 1)13(2, 1)

= 0.230769, (42a)

k2
lext(4, 1)

13(4, 1)14(4, 1)
= 0.057692, (42b)

iext(6, 3) = 0.076923,
14(6,3) l(6, 3)

(42c)

k4
l(1,6)

= 0.211538,
l(1, 6)12(1,6)

(42d)

The complete definitions of the basis functions are:

b1 (x, y) 0.230769
4) (-0.33333x i + 5.33333)

0.23077x y 2
(43a)

b2 (x, y) 0.057692
(-0.33333x y + 5.33333) (-4x y + 9)

0.23077xy-2 (43b)

b3 (x, y) 0.076923' Y +9) (- + 1)
O.23O77xy-2 (43c)

b4 (x,y) 0.211538
+ 1) (x 4)

0.23077x 2
(43d)

Basis function b1 (x, y) is shown in Figure 6.

There are four special cases that must be considered. The first case is that. of

the trapezoid (see Figure 7), where only one external intersection point exists. In

this case, the external diameter is parallel to the two parallel edges composing the

trapezoid.

The second case is that of the parallelogram, in which all edges are parallel,

and hence there are no external nodes or diameters. In this case. the equation for



23

Figure 6: A Wachspress Rational Function

External Diameter

A
/ '

/
/

/

0.75

0.5 >
x

0.25

Figure 7: A Trapezoidal Zone and its External Diameter
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the external diameter is set equal to unity, and the Wachspress rational functions

simplify to the bilinear basis functions in Cartesian geometry.

The third and fourth special cases occur when the quadrilateral collapses into

a triangle, as in Figure 8. This can occur when three nodes are co-linear, or when

two nodes are on top of each other.

Double Node

Figure 8: Pathological Zones

I Node

The zone on the left in Figure 8 has a double node, is not compatible with

quadrilateral finite elements, and may have to be recognized by the code in a

preprocessing step. The zone on the right contains a hybrid node. Rational basis

functions may be built at these hyl)rid nodes, but the method to do so is beyond

the scope of this study.

We should note that the direct method, as given above, is much more compli-

cated to implement for zones with more than four edges. Consider the pentagonal

zone in Figure 9. Here we can see that a general pentagonal zone has five external

intersection points. The external diameter is no longer linear (and is no longer

simple to calculate), but is instead a second-order conic. Although it is possible to

calculate this curve, Dasgupta [Das 03a} has discovered an alternative formulation

for the denominator of a Wachspress rational function that does not require finding

the external diameter.
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Figure 9: A Pentagonal Zone and its External Diameter

3.3 Wachspress Rational Functions via Dasgupta's Method

We will now summarize Dasgupta's method for constructing Wachspress

rational basis functions. This algorithm is presented in [Das 03a]. Suppose we

have a convex polygon with F cyclically ordered nodes. A line segment X con-

jr J

j+2

Figure 10: Cyclical Ordering of Nodes

1

I

nects nodes i and i +1. Therefore, 'F connects nodes F and 1. As before, we

wish to find a linear equation to describe each edge of the zone. As for the di-
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rect method, we know that a given line segment can be described by the equation

l(x, y) = cx + dy + e. If we translate the coordinates of the zone such that the

origin falls interior to the zone, then we know that the equation for segment ) can

be written uniquely as

i(x,y) = 1 cxdy = 0, (44)

where i (x, y) > 0 everywhere within the zone, and where the coefficients c and d

are determined by

and

Yi+1 Yi
ci = , (45a)

XiYi+1 Xj+lYj

d
Xj?Jj+I Xi+lyi

(45b)

As with the direct method. each basis function is anchored to a single cor-

ner. Forming the numerator is identical; it is proportional to the product of the

equations for all of the line segments opposite (not containing as an endpoint) the

corner upon which the function is anchored:

j=F
Nurri(x,y)cx fi l(x,y). (46)

ji-1ji
This forces the function to be zero on all of the opposite edges. Now recall that a

proper basis function will interpolate a uniform field exactly. This means we must

weight our basis functions.

b(x.y) fi l(x.y). (47)
ji-1ji

We will then relate our weight functions through scalar weights k:

o(x,y)
(48)
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o(x.Y)

j=F
1(XY)) = 1. (49)

i=1 j5/=i-1
.7i

The weights ij are relative weights, and we therefore choose (arbitrarily) ii = 1.

The weight function 0(x. y) can now be written

F j=F F
tc1 fi l(x,y) =>Nurnj(x,y). (50)

j=1 jiI i=1ji
We must now select our ic so that 0(x, y) is the algebraic curve through

the external intersection points. i.e., the external diameter. The direct method

calculates the equation for this curve (or line, in the case of a quadrilateral) directly.

However, the number of external intersection points in a polygon with F sides is

(F2 3F)/2 [Das 03a], and the external diameter for such a polygon is an order

F-3 polynomial in (x, y). Finding this curve can be complex for any polygon with

more than four sides. Dasgupta found an alternative method for calculating the

coefficients kj.

Consider a particular basis function b(x,y). Its form is

tc fl 13(x,y)ji-1
b(x. y) . (51)

y)

If we examine b(x, y) along edge ). where it is linear, then all terms in y)

containing l(x, y) will vanish because this function is zero along this edge. In ad-

dition, after canceling out shared linear terms in the numerator and denominator,

basis b(x, y) along edge Aj will simplify to

kilj+i(X,y)
. (52)b(x, y)l?=o = kj l+1(x, y) + 'j+1 1i-1 (x, y)



If we insert Eq. (44) into Eq. (52) we have

k (1 d1y)
(53)=

j (1 c1x d+1y) + kj+l (1 d1y)

Recall in Table 1 that we require the basis functions to be linear on the boundary.

In general, Eq. (53) will not be linear because of the terms in the denominator.

However, if we can find values of icj and '+1 such that

, (1 cx d+1y) + kj+I (1 cj1x d_1y) = constant, (54)

then the basis function will possess the proper behavior.

and

Along )j, a given point can be determined by the parametric equations

(55a)

y y +(yj+i y)t. (55b)

Substituting this into Eq. (54) gives

(ic + kc+lr i+icx

+ t (c1x1 + c+ix kd+ly+l + k_id+iy)

+ t (k+icix+i + '+ii' K+idiy+i + k+idiy1) = constant. (56)

This term is constant only when the coefficient of t equals zero, which is when

(c+i(x x+1)+d+i(y Yi+i)kj+lkjI
ct_i (x+i x) + d1 (Yi+i i)

We will now summarize the algorithm for constructing Wachspress rational

functions on a convex polygon with F sides using Dasgupta's method. First, select

the origin to be an interior point within the polygon. The nodes are numbered
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cyclically and clockwise from 1 to F. An edge ), is defined to connect nodes i and

i+1. The equation for this edge is

l(x,y)=1c2xdy, (58)

where

Yi+i Yi
(59a)

XjYj+I Xj+lYj

and
xl x+l= . (59b)

X1Yj+1 Xj+lYj

The basis function is defined by

b( )
Nun(x,y)

(60)
0(x,y)

where

co(x. y) = Num(x, y), (61)

and the numerator terms are defined by

j=F
Num1(x,y)=,c2 [f 13(x,y). (62)

ji-1ji
The equations for the weights are

1

and

(63a)

( c x) + d (y_ y)
= k1 I . (63b)

c_2 (x x') + d12 (y yii))
These equations are valid for all convex polygons with n > 3.



3.4 Comparing the Direct Method and Dasgupta's Method

The preceeding subsections detailing the direct method and Dasgupta's method

present an obvious question: which method is superior? Table 2 gives wall-clock

times for the direct method and Dasgupta's method for a varying number of quadri-

lateral zones. These tests were run on a 750 MHz Sun U1traSPARC III CPU.

Number of Zones] Direct Method [s] Dasgupta's Method [s]
10,000 0.50 0.72

100,000 5.13 7.45
1,000,000 51.17 74.63

Table 2: Comparison Between the Direct Method and Dasgupta's Method

Here we can see that the direct method is roughly forty-five percent faster than

Dasgupta's method. For this reason, we have used the direct method when con-

structing the basis functions for our results. However, the complexity of the direct

method grows enormously when quadrilaterals are not used. For this reason, we

recommend using Dasgupta's construction method for finite-element codes when

zones other than quadrilaterals are used. Finally, we point out that both the direct

method and Dasgupta's method are inherently parallel.
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4 INTEGRATING THE BASIS

Recall from Section 2 that there are two types of integrals that must be calcu-

lated. The first type involve basis functions integrated over the area of the zone.

These integrals are

ffb(x, y)b(xy) dA, (64a)

ffb (x,y) b(x,y)dA, (64b)

and

ffb (x, y) (x. y) dA. (64c)

The second type is integrals over the edges of a zone,

fb (x, y) b (x. y) dA.

and

fb(x,y)dA. (65b)

In this section, we will investigate methods to perform both types of integrals.

4.1 Integrals Over the Zone Area

In Section 3 we present two different basis functions: bilinear basis functions,

which we built in an isoparametric space, and Wachspress rational basis functions,

which we built in Cartesian space. We will look at performing areal integrals of

these two bases separately.

4.1.1 Integrals of Isoparametric Bilinear Functions

The purpose of an isoparametric mapping is to take any arbitrary quadrilat-

eral zone, and map it onto a new coordinate system so that in the new mapping
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it is a square (see Figure 2). Although bilinear basis functions cannot be built

upon general quadrilaterals, they can be constructed on squares (and rectangles).

However, this is not useful unless we have some way to map the integrals of these

bilinear basis functions back into Cartesian space. We can use the rules of calculus

to create a transformation matrix from one coordinate system to another. The

derivatives of a basis function in the transformed (, ) space can be written as

[Zie 00]:

3b, 3b, 3x ab 3y
(66a)

and
3b, 3b 3x 3b ay

(66b)

In matrix form, we write

[3x

ay]'L
(67)

Li
0b ab2I

0y]

where matrix J is termed the Jacobian matrix. We can write this matrix in terms

of the isoparametric spatial functions (which are identical to the bilinear basis

functions in an isoparametric zone) arid the node positions in the zone:

3N1 aN 3N
'1

X2 Y21
. (68)

3N1 3N2 3N3 3N4 yI
X4 Y4j

Using this, we can now write [Zie 00]:

dxdy = det J ddi. (69)

The Jacobian matrix allows us to transform integrals from one coordinate space

to another. This enables us to integrate basis functions in the isoparametric space,

and then map the integral into Cartesian space. If the integral contains derivatives,



33

then these too must be mapped into the Cartesian space, via

II_j-i

aI
(70)

Fab1

Lab1] _=zab

The Jacobian matrix is small enough ti

J2,2

det J
-1

det J

iat we can calculate its inverse directly,

det J
(71)

J1,1

det J

We now have everything we need to calculate the three areal integrals. The isopara-

metric bilinear integrals are

ff b(x, y)b(x, y) dxdy =

ff b(x, y)b(x, y) dxdy =

and

t1 r'
JJ b1(,i)b() detidedii,

1 1

LI f b(e. ) (

ffb(x, y)b(x, y) dxdy =
A

LI I b(.ri) (e +

l.2

detJ3ri) b1(, ii) ddij,

J1.1 a\

detJ37) b2(. j) dd?j

(72a)

(72b)

(72c)

These integrals may now be evaluated using a Gauss-Legendre quadrature set.

Numerical integration approximates the integral by summing the products of the

function and weighted values at the points given in the quadrature set:

ff F(, ) dd HHJF(, in). (73)
1 -1 i=1 j=1
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Here, H refers to the weight for the particular quadrature point, and N is the

number of quadrature points. is the integrand in Eqs. (72).

4.1.2 Isoparametric Mapping of Wachspress Rational Basis Functions

The bilinear basis functions were built and integrated in isoparametric space,

and the integral was then mapped into Cartesian space. In contrast, the Wachs-

press rational functions are constructed in Cartesian space, and we can integrate

these functions by mapping them into an isoparametric space, integrating them in

that space, and then mapping that integral back into Cartesian space.

The generality of quadrilateral zones requires that we perform numerical inte-

grations. Because these functions are readily evaluated, they are ideal for Gauss-

Legendre quadrature. However, it is not possible to create a quadrature set that

will correctly integrate over an arbitrary quadrilateral. For this reason, we will

map the function onto the isoparametric square (see Section 4.1.1). We can inte-

grate the function using a quadrature set defined for the square, using Eq. (73),

and then map back into the Cartesian space.

Again, as in Section 4.1.1 we define the Jacobian matrix using Eq. (68). Any

(x, y) coordinates can be found from a given set of (, ) coordinates using a super-

position of the the isoparametric shape functions and the node positions [Zie 00]:

x = Ni(.r1)x1 + N2(, 7/)2 + N3()x3 + N4()x4, (74a)

= N1(,ij1 + N2(,iy2+ N3(,r)y3+N4(,,rj)y4. (74b)

The final form of the integral becomes



ffF(x, y) dA
f f F(x(,

), y(, )) dd =
I'

where

35

HHF(x(, nj), y(j, rb)) detJ, (75)
j=1 j=1

ff b(x, y)b(x, y)

F(x,y) ffb(x,Y)b(xY)dA.

depending on the areal integral desired.

4.1.3 Dasgupta's Integration Method

(76)

Dasgupta [Das 03b] has proposed an alternative method for integrating func-

tions over polygonal regions. The concept behind this method is to repeatedly

apply the divergence theorem to convert integrals in 7Z space into a series of line

integrals over the boundary of that space, provided the boundary of that space is

linear (not curved). We shall summarize from this paper the method by which in-

tegrals over two-dimensional polygons can be evaluated as a series of line integrals

over the boundary of the polygon. Note that this work is not limited to two-

dimensions, however. Polyhedral and higher-order spaces may also be integrated

by this method.

Consider the following integral:

fftl(I.Y)lA. (77)



We define a vector function 0 as

where

and

In addition,
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ffv(x)dA fO.ndx, (78)

(79)

ñ=n1+n25. (80)

0i(x,y) = fv(x)dx+c() (81)

where c(y) is arbitrary, and

02(x,y) 0.

We now wish to prove that

(82)

fc(y). ñ d
f c(y)ni d = 0. (83)

To facilitate this, we reproduce a diagram in Figure 11 found in [Das 03b}. We

Figure 11: Path Element in Surface Integral

know that. n1 is the cosine of the angle between the outward normal of ) and .

We shall split the surface into two parts. where n1 is positive, and A, where

n1 is negative.. In Figure 11, ) is shown using thick line segments, while X is

shown using thin line segments.
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In Figure 12, we see an enlarged view of )+ between the dashed lines. Looking

at this figure, we can see that ii1 cos('y) and that i) = A cos('y). Now,

in Eq. (83) the value n1 d.A will be ) where ni is positive, and where n1 is

negative. The value of e(y) will be the same, c(y0), everywhere along the horizontal

dashed lines. Therefore,

nic(y) d) = n1c(y) dA + nic(y) dA = c(y0) d)¼0 c(y0) dA0 = 0. (84)

Summed over the entire (closed) boundary )s. the net contribution of n1c(y) dA is

zero. Therefore,

Oi(x,y) = fv(x,)dx. (85)

Figure 12: Closeup of Figure 11, Surface Between Dashed Lines

From the conclusions above, we now have

ffv(x. y) dA = f 8(x, y)ni dA. (86)

The boundary of a polygon is a set of line segments. Therefore,

f01(x, y)n1 d
f

(x. y)n dA. (87)

We have now successfully converted an areal integral of an arbitrary function

into a sum of line integrals around the linear boundaries of the area. The line
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integrals can be carried out using a Gauss-Legendre quadrature if the line integral

is mapped into the correct range (for instance, zero to one). Consider an integral

IO(x, y)cos('y) d.A, (88)
0

between nodal points (x1, yl) and (x2, Y2) that are Al apart. Recall that n1 =

cos('y). We can define this range using the parametric equations

and

where

Also,

and

x=x1+r(x2x1) (89a)

y=y1+T(y2-yi), (89b)

X-X1 YYi= . (90)X2X Y2Y1

cos('y) 2 yl= (91)
IN

dA=IAldi-. (92)

Plugging all of these into Eq. (88) gives

I
I

O(x, y) cos(7) dA = (Y2 y') 0 [x + (x2 'i) y' + T(y2 yi)] d. (93)
0 0

All of the preceding analysis is summarized and adapted from [Das 03b}. This

procedure is simple t.o understand and performing the line integrals using a Gauss-

Legendre quadrature is trivial. The principle difficulty lies in calculating the in-

definite integral

= fv(xv)di. (94)

Products of Wachspress rational basis functions (and their derivatives) are so alge-

braically complex that calculating and implementing the above equation in a code
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is extremely difficult, if not impossible, for general polygons. Dasgupta recom-

mends using a dynamic computer algebra system such as Mathematica. However,

it is unlikely that using Mathematica to calculate all of the integrals necessary

for a typical transport problem (involving millions of zones or more) could be

accomplished in an acceptable amount of time.

We have presented two methods for integrating Wachspress rational basis func-

tions. The first method involves mapping the quadrilateral onto an isoparametric

square and is limited in practicability because the isoparametric mapping is only

available to quadrilaterals; it cannot be extended to other polygons. Dasgupta's

method works for any polygon, and can also be extended to polyhedra, but the al-

gebraic complexity of Wachspress rational functions probably preclude this method

from being useful in an industrial transport code. More research is needed in this

area.

4.2 Edge Integrals

One of the requirements set down for "proper" basis functions (which include

both the bilinear and Wachspress rational basis functions) in Table 1 is that they

are always equal to unity at their anchor node, and zero at all other nodes. They

decrease linearly along the edge of the zone, as in Figure 13.

Given an edge ) connecting nodes N and N+1, the basis functions which are

nonzero along this edge are b(r, y) and b+i(, y). The basis functions along the

edge may be written as

arid

b(s) = (95a)

Sb2i(s) = -. (95b)



[i]

N;-!

S

Figure 13: Basis Functions as Seen from Zone Edge

where coordinate s has its origin at node N and points towards node N+1. The

length of edge \j is

Recall from Section 2 that there are three surface integrals we wish to compute.

The analytic solutions to these integrals are given below:

I't
(Pi s)2

ds = (96a)f b1(s)b(s)ds= I,I2 30 I ii

Il
s (jAn s)

I
b(s)bi(s) ds = / ds = (96b)

,\ 12Jo Iii 6

and
fI)I

bi(s)ds=J S ds= -h--.

Using these equations, we know that the unlumped surface matrices are

o
1

DI
3 6 I

6 3
o o

N
A3 IA3F i

(97a)
0 0

3 61
0 0

II
6 31



and

13
o o

Lx4

6

'\21
0

3

Pt21

6

'2I

3

Loo6o o
6 3

The lumped surface matrices are

[ii o 0 012

2

o 0 0

o o 0
2

and

41

(97b)

(98a)

[i4 012
01

2

i1

I

(98b)
o U oJ

21
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5 ASYMPTOTIC ANALYSIS

Asymptotic analysis is a tool used to examine the transport equation in the

thick, diffusive limit. Consider the exact transport equation,

V + a(r)(r, O) = (at(r) a(F)) (r) + q(r, ), (99a)

(r)
f

dQ (r, O). (99b)

We can scale this transport equation with a small parameter such that as E 0,

the problem will become increasingly optically thick and diffusive. The scaled

exact transport equation is

E
(100)

1 (at(r)

We will postulate that the solution is a power series in e:

= + + (101a)

= + + (bib)

If we substitute the power series expansion of the angular and scalar flux into t.he

scaled transport equation and analyze each power of , we find that the leading

order angular flux is isotropic

°(r, )
I0)(r). (102)
471

and satisfies a diffusion equation

where

1__Vç° + aa(r)°(r) = Q(r). (103)
3a(r)

Q(r) = f dQ q(r, ). (104)
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The preceding analysis on the exact transport equation was taken from [Ada 01].

A boundary analysis in the thick diffusive limit may also be performed, but we

will not show that here.

We wish to examine how our transport discretization (Eq. (20)) performs in the

thick diffusive limit. An asymptotic analysis of the discretized transport equation

will give us a discretized diffusion equation. Analyzing the structure of the diffusion

discretization will tell us whether the transport discretization will perform robustly

in the thick diffusive limit. In addition, the diffusion discretization can be used in

a diffusion synthetic acceleration (DSA) scheme (see Section 6.1). The asymptotic

DSA only requires us to perform an asymptotic analysis on the interior of our

problem, so we will neglect the boundary analysis. We begin by scaling Eq. (20)

as follows:

Ut,p,q
t,p,q -* , (105a)

C

t,p
Us.p,q

C

,q
EUa,p,q, (105b)

qm,p,q -* eqmpq. (105c)

As -* 0, the problem will become increasingly optically thick and diffusive. We

substitute Eqs. (105) into Eq. (20) giving us

+ Om +
(Ut

Mp.q [tmLp,q mKp,q) m,p,q =

Mp,q
(,q aa.pq) p,q + EMpqqIpq. (106)

We now expand the angular and scalar fluxes as a power series in :

Yrnp.q = + E?/)pq + E2?)pq, (107a)

+ (107b)

+ (107c)
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p,q = + + 2(2) (107d_p,q _p,q

We substitute Eqs. (107) into Eq. (106) and rearrange by powers of e to find

[atpqM
(0) 1

p,qm,p,q at,p,qMp,q0]

+ E° +

+ (°) [at,p,qMp,q1) (itmp,q + iimKp,q) Ut,p,qMp,q]_m,p,q _m,p,q

.v+ (1) [ .Sh Lp,qq + Om p,qPmp,qj
L

m

+ ' [°t,p,qMp,q2 (i'mip,q + llrriKp,q) /rp,q]m,p,q

+ (1) [p,q (at,p,q aapq) 0, (108)

along with the upstream closures

p5(0) + m,q-1,4 + E m,p,q-1,4 n117 <0A1 in,p,q-1,4 (109a)m,p.q,1 = (0)
1 + i?p,q,1 + > 0in,p,q,1m,p,q,

A1 Jm,q-1,3 + lmpq13 + 2Yp,q_1,3 im <0
(109b)m,p,q,2

+ mpq2 + 21pq2 m > 0

A3,(0) fm,q+1,2 + rn.q+1.2 + np.q+1.2 fl37fl < 0
)m,p,q,

m,p,q,3 + mp.q,3 + 3mpq3 m > 0

j(0) 2 (2)
Vm,p,q+1,1 + Vmpq+11 + E Ym,p,q+1,1 3 in

mpq,
+ E/Ypq4 + m > 0

A4,(0)
Jo) (1) 2 (2)
in,p-1,q,2 + Em.p_1,q.2 + E m,p-1,q,2 < 0

mp.q,
Tn,p,q,1 + 'mp,q,1 + E2Ymqi 4Im > 0

A2.(0) fm+1,q,1 + nl+1,q,1 + E2p+iqi 2m < 0
m.p.q.

m,p.q.2 + mpq2 + EPmpq2 2m > 0

A2(0)
(0) (1) 2 (2)
m.p+1,q,4 + mp+1q4 + Y p+1q4 2m < 0

p109
)rn.pq.3

+ E4pq3 + E24Jpq3 n2 > 0
g
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(o) + + 2/i1,q3 114 1I <0
(109h))4,(0) m,p-1,q,3

2 (2)m.p,q,4 = (o) + + mpq4 > 0m,p, q,

We will now set the coefficients of each power of equal to zero and and analyze

each term. The (_1) equation is

at,p,qMp,q/4np,q - ot,p,qMp,q0 = 0. (110)

If we assume that the mass matrix Mp,q is invertible (which is true for our dis-

cretization), then

(o) =(o) (111)_rn,p,q W-''
Therefore, the leading order angular flux is isotropic.

We now examine the (0) equation:

O '" N 1h,(0) _LO .Sv Ti 1v,(0) M (1)
m p,q_p,qYm,p,q I m pq=P,qYmpq t p ,q_p.qYmpq

(Lmp,q + 71mp,q)
2p

at.pqMp.q 0, (112)

along with the (0) upstream closures

1,(o) fm,q-1,4 lm <0
(113a)m,p,q,1

l m > 0

i,(0) fm,q-1,3 <0
(113b)rn.p,q.2

rrp,q,2 1 m > 0

3,(o)

m,p.q.3
fm,q+1,2 3m <0

(113c)
fl31lm > 0

/(0)
Ymp.q+1,1 fl3 rn <0

(113d)
'rn,q,4 3 m > 0

4,(0) fm-1,q,2 fl4m <0
(113e)m.p,q,1

1 m.p.q,1 4m > 0

/\2(0)
Vm.p,q.2

(0)
Prn.p+i,q,i

-

m <
(113f),2m > 0



( (0)

<Vm,p+1,q,4
Pm.p,q,3 (0)

m,p.q,3

-2m <0
(113g)

112 m > 0

,4,(0)
'Pm,p,q,4

((0)
(0)

/m,p,q,4

4m <0
(113h)

4 m >

Summing Eq. (112) over the quadrature set yields

Wm (OmqJLp,q4q + Omjqp,qiq) = 0. (114)

We can use Eq. (114) to prove that the leading order scalar flux is continuous

around a node. In order to do so, we shall assume that the surface matrices N and

U are lumped (see Section 2.3.2). This yields

i,(0) (0) = 0 (115a)WmIrnfl1/)m,p.q,i + Wm7nfl4(L)mpq1
in m

Wmnl2 + Wm '2 2 = (115b)
m in

\3,(0) A2,(o)
WmIlmfl3 /'rn,pq3 + Wm[m2mpq3 0, (115c)

m In

\3,(0) .X4,(0)Wm1lmfi3mpq4 + Wm1 mfl4/m,p,q,4 = 0. (115d)
m m

Now, consider the node shown in Figure 14. The node is bordered by zones (p, q),

(p-1,q) (,q)

2 1 a
C

S.34
nc

(p-1,q-1) (p,q-1)

Figure 14: Node with Logically Rectangular Connectivity

(p-1.q), (p-1,q-1). and (p,q-1), and by edges a, b, c, and d. The corners
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are numbered 1 through 4, and the normals for the edges are also shown. Writing

Eqs. (115) around this node and substituting in Eqs. (113) gives us

Wmmapqi + Wm1mflapq14
m:1mña<O m:1m-fla>O

(0) (0)+ Wmmflb)m,p_1,q,2 + WmmflbV)mpqi 0,
m:mnb<0 m:Ilmnb>0

(116a)

p'cI (0)
7 Wmmc_1,q_i,3 +

2 mcm,p1,q,2
m:lmñc<0

(0) -. (0)+ i_Pi Wmmflb)m.p_,q,2 + Wmmflb?/)mpq1 = 0,
m:IImnb<0 m:Ilmnb>0

(116b)

Wmmflcpiq13 +
rn:1mñc>0

+ Wmmd?pqi4 + Wrnmfld/)Iq13 0,
m:IInnd<0 rn:Imnd>O

(116c)

Wmmapq1 + Wmmapql4
m:Iña<0 m;Inna>0

+ Wmmfldnpq14 + Wmmd4lqI3 =0.
rn:In-.nd<0 m:Im'nd>0

(116d)

We make the following definitions:

(m,a (117a)

(rn,b = 11mb, (117b)

(117c)

rnd = (117d)



Substituting Eqs. (117) and (111) into Eq. (116) yields

IAaI (0)aI(0)
1 Wmm,a + p,q-1,44W p,q,
ITI:(m,a<O m:(m,a>O

IAbJ () Wm(m,b = 0, (118a)+ p_1,q,2 Wrn(m,b +
4W p,q,1

(0) (0)
p-1,q--1,3 > + p-1,q,2

m:(m,<O lfl(m,c>0

(0)+ p-1,q,2 Wmm,b + 1 Wm(m,b 0, (118b)4W p,q,
m:cm,b<O m:(mb>O

(0) (0)
p-1,q-1,3 Win, + p-1,q,2

m:(mc<O

(0) (0)+ Wm(m,d+ p-1,q1,3 :i: Wmm,d 0, (118c)
m:(m,d<O

(0)a(0)
1 IL'm(m,a + p,q-1,44W p,q,

(0) Ad (0)+ p,q-1,4 Wrjm,d+ p-1,q--1.3 ::i: Wmm,d 0. (118d)
m:(m,d<O

We know that

and

Pa = Wm(m,a Wmrn.a 1, (119a)
m:(>0 m:(<0

Pb WmCm,b = Wm(,b 1, (119b)
rn:(b>O m:(b<O

Pa > WmCm,c = WmCnc 1, (119c)

Pd = Wm(m,d Wm(md 1, (1 19d)
m:(d>O ln:cd<O

PaPbPCPdP. (120)
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Substituting into Eq. (118) gives

/ (0) (0) '\ / (0) (0) "

iW (p.q-i, 5p,q,1) + iW (p.q,i p-1,q,2) = (121a)

/ (0) (0) P'b / (0) (0) '
P p-1,q,2 p_1,q_I,3) + P p,q,1 p1,q,2) 0, (121b)

(0) (0) \ \j (0) (0)ii p_1,q_1,3) + P (p_i,q_i, p,q_1,4) = 0, (121c)

/ (0) R'd / (0) (0) \
P p,q-1.4 p,q,i) + P p-1.q-1,3 p,q_1,4) 0. (121d)

From this. we can conclude

,(0) ,(0) -
Vp,q.1 Yp-1.q.2 Vp-1q-_I,3 Vp.q-1.4

therefore, the leading order scalar flux is continuous around a node.

We now multiply Eq. (112) by 11rn awl sum over t.he quadrature set.

WrO [Zm qp,q?q + IZm qp.q)?q]

+ wmm [ Ut.p.q p,q/'pq (/tirJp.q + rimKp,q) iLrrLp.q 0.

(123)

\Ve define the 0(1) current as

IL' pq (124)

and we siniplify Eq. (123) by noting that

and

Wrr = Tfl1lrn4rn,p,q = (125a)
rn rn

ItLYin/ImLlmYinpq 0 . (125b)

= = p125
Tfl.J).q mpq c
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Therefore, we now have

(,qp,q + qLp,q) + at,p,qMp.q
(p.qx
+ Kp,qêy) 0. (126)

Solving for the current, we get the discretized form of Fick's Law:

= Dp,q [,qip,q + §pqirLp,q p,qex Kp,qêy] , (127)

where
1

Dp,q . (128)
UUt.pq

The order 1) equation is

u1rn ,qp,q}q + Ilm p,qLp.q q + at.p,qMp,q/4pq

(itrnLp,q + riiiKp.q) p.q Ip.q (at.p.q aap.q) Mp,qqrn,p.q = 0.

(129)

Summing this equation over the quadrature set yields:

where

Wrn [Om qLp,q?q + R

(p.q4êx + Kp.q '?1e) + Afpq (°a,p.q qp,q) = 0, (130)

= L'nyp,q.
rn= I

(131)

We shall now write Eq. (130) around a node. The equation for corner 1 in zone

(p, q) is

Wrnm
+

U'mu1 .qUPq)q]

[LpqJ)êx + + pq (U(Lp.q Qpq)], = 0. (132)

The equation for corner 2 in zone (pi. q) is:



WO
I 1 i.q]

m 2 + [
Wft iqpi.iq]

2

[p_i.q'2i.qêx +Kp_I.qpiqey]

+ [Mp_i.q (aa.p_i,qi,q Qp_iq)] = 0

The equation for corner 3 in zone (p-1,q-1) is:

W _ I,q-IP-i.iiqi]
m 3

+ Wrnrn

.ex + Kpi.qipiq_i .ey]3

+ [Lpi.qi (uapiqi2iqi Qp_Lq1)]3 0

The equation for corner 4 in zone (p. q 1) is:

[wmmq1P.q1rnPqI]Tn 4

+ wmm q-1p.q-Iq1]

[Lp.ql (leT +Kp.qi)rêy]

+ [Mp.q-i (aapqi°i = 0

By adding these equations the shared boundary terms cancel. and we get

51

(133)

(134)

(135)
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[p.q x + Kp,q êy]1 [pi.qiq x + Kp 1,q1q êy]

[p_i.qii.q_rêx +Kpiqii.q_rêy]

[pq-i-i x + Kp.qi i + [Mp,q (aa,p,q°

+ [Mpiq (aa,p_i,q02iq
Qp_i.q)]2+ [Mv_i,q_i

(aa,p_,q_iO2i,qi
Qpi,q_i)]3

+ [Mpqi (aa,p,q_ii Qp:q_i)]4 = 0. (136)

Substituting in Eq. (127), we find a node-based diffusion equation:

[(Dp.qip,q + ua,p,qMp,q) + [(Dp_i.qip_i.q + aap_iqMp_iq) °2i.q]

+ [(Dp_i,q_iip_iq_i + uup_i.q_iMpi,q_i) 1.q1]

+ [(Dp,q_iTpq_i + aa.p.q_iMp.q_i) I]4 [Mp.qQpq]1 + [Mpi.qQp_i,q]2

+ [Mp_i.q_iQp_i,q_i]3 + [Mp.q-iQp,q_i]4 , (137)

where

Tp.q = 'p.qp.q (êxSqILpq + expqLLp,q Ip.q)

+ Jp.qLD]l (êyqILpq + ey p.qfrLp.q p.q) . (138)

Without lumping, Eq. (137) will have a nine-point leakage term (the terms

involving T) and a nine-point renioval terni (the terms involving M). A removal

term that is tightly coupled spatially is known to cause unphysical oscillations.

Mass-lumping (Section 2.3.1) creates a one-point, removal term. In addition, it

is also knowii that a nine-point leakage term can cause unphysical oscillations or

cause the solution to go negative [Pal 93]. Lunipinig the leakage matrices and

surface niatrices will create a leakage term with a five-point couplmg. Surface-

matrix lumping is also required to enforce continuity of the leading order angular
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flux. For these reasons, full-lumping provides a more robust discretization of the

transport equation.
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6 DIFFUSION SYNTHETIC ACCELERATION

Typically, the transport equation is solved through an iterative process. After

discretization, one is left with a coupled set of equations with two unknowns,

angular flux and scalar flux, (see Eqs. (20) and (22)). The most common solution

method is called source iteration (also known as Richardson iteration), in which a

guess is made for the scalar flux, which specifies the scattering source in an isotropic

problem. With this guess the entire right-hand side of the transport equation is

known and the angular flux can be calculated. Solving for the angular flux typically

involves sweeping through the mesh zone-by-zone in each angle. Then the values

for angular flux are used to calculate a new value for the scalar flux. The process

repeats until the scalar flux has converged. For our discretization, we first solve

hi 1i V JV
m p,qp,qYm,p,q in _pqp,qYmpq

+ (at,p,qMp,q ILmp,q uimKpq) m,p,q = 'Mp,q p,q + Mp,qqni.p.q, (139)

using an initial guess for the scalar flux. We then solve for the scalar flux using

p,q Wmm.p,q. (140)
m=1

Source iteration works well for problems that are optically thin or have a low

scattering ratio. As the scattering ratio increases, however, the number of it-

erations required for convergence increases. The spectral radius PsI for source

iteration is equal to the scattering ratio,

o-s
Psi C

Ut
(141)

A large scattering ratio can also cause false-convergence. False-convergence occurs

when the relative error from one iteration to the next is small (due to slow con-

vergence), but the error relative to the true solution is much larger. Typically, one
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would expect the iterations to cease when

< e , (142)

where /) and ,(k-1) are the angular flux solutions at iteration k and k 1,

respectively, and e is some predetermined convergence criterion. However, to guard

against false convergence the iterations should not cease until [Ada 02]:

P <C. (143)ip

Guarding against false convergence does not solve the problem of source itera-

tion requiring a large number of iterations when problems are thick and diffusive,

which are the types of problems we wish to study. In order to solve optically

thick and diffusive problems, we must use an acceleration scheme (also called a

preconditioner). The most common way to accelerate source iteration is through a

technique called diffusion synthetic acceleration (DSA). DSA uses a diffusion equa-

tion to calculate a correction to the scalar flux between source iterations. DSA

is designed to dampen out the largest error mode of source iteration. This error

mode is dominant in optically-thick highly-scattering problems, and using DSA

can cause dramatic reductions in the number of iterations necessary to achieve

convergence.

It has been found that the discretization of the DSA equations cannot be done

independently of the transport discretization. For stability, the two discretizations

must be "consistent," meaning they must be related in some way. We shall derive

and employ "asymptotic DSA" [War 92]. which is DSA based upon the asymptotic

diffusion equation that is the limit of the transport equation in thick diffusive

regions (see Section 5).
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6.1 Asymptotic Diffusion Synthetic Acceleration

In Section 2.2 we derived the discretized SN equation for a quadrilateral, which

we restate here for convenience:

O h TT 1z j V
m 'm,p,q m P,qP,q m,p,q

+ (at,p,qMp,q [1mJp,q TlmKp,q) m,p,q + Mp.qqm.p,q. (144)

This can be written in operator form at iteration k as:

+ Mpqqmp.q, (145)

where H is the left-hand side of the transport operator and R is the right-hand

side portion of the transport operator that acts on the scalar flux. Subtracting

this from the converged solution we obtain

lEt
((eonv)

. (146)

where is the error between the exact solution and m,p.q. If we could calculate

this error, we could calculate the converged angular flux solution immediately. Un-

fortunately, this equation is as difficult to solve as the original transport equation.

To circumvent this, we will replace the transport operators in Eq. (146) with the

asymptotic diffusion operator we found in Section 5. If we define the integrated

correction as

wmf lq/2)
. (147)

then our DSA equation, based around a node is
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[(Dp,qTp,q + aa,p,qMp,q) F+l/2)] + [(Dp_i:qTp_i,q + aa.p_i.qMpi,q) F +h/2)i
p,q p-1,q

+ [(Dp_i,q_1Tp_i,qi + aa,pi,qiMp_i,q_i)F1]

+ [(Dp,q_iTp,q_i + aa,p,q_iMp,q_i) F(k+1/2)] = [aspqMpq (k+1/2) - p,q, j1p,q- 1

+ [aspi,qMpi.q
((k+1/2_p-1,q _p

( (k+1/2)+ [as,pi,qiMpi,q_i p-1,q-1

+ [as,p,q_'Mp,qi
(k+I/2

(k) )] (148)_p,q-I __p,q-

Our asymptotic derivation of the diffusion operator concentrated on the interior

of the problem only. It is, therefore, implicitly correct on the boundary in the case

of reflecting boundaries. However, for vacuum and incident boundaries, a slight

change is necessary. Consider a diffusion correction equation

_VDp,qVFp.q(x,y) + aa,p,qEp,q(x,y) = Qp.q(x,y). (149)

If we take the first term of Eq. (149) and expand the scalar flux in terms of

basis functions, and then apply the method of weighted residuals with Galerkin

weighting, we find

ffb(x, y) (_VDp,qVFp,qbj(x, y)) dA. (150)

Applying the divergence theorem to this term yields

ffb(x, y) (v Dp,qVFp.qbj(x, y)) dA

ffVb(x, y) Dp,qVEp,qbj(x, y) dA
f b(x, y) fiDp.qVEpqbj(x, y) dA. (151)

Now consider the surface term

- f b1(x, y) ñDp.qVFp,qbj(x, y) d. (152)



If we define a current correction

p,q(x,y) _Dp.qVEp,qba(x,y), (153)

then the surface term becomes

fbi()ñGpq(x,y)d. (154)

Because the flux corrections Ep.qbj(i, y), and thus the current corrections p,q(x, y)

are continuous, this term is cancelled out on all interior surfaces. For the reflecting

boundary,

ñp.q(, y) 0, (155)

and so this term is also zero on all reflecting boundaries.

For incident and vacuum boundaries.

ñp.q(x, y) 2q(i, y). (156)

where q(x, y) is the incident partial current correction. However, our incident

angular flux boundary condition is exact. Therefore, Cq(x, y) = 0 and

fb(x, y) ñp.q(x, y) d Fpq f b(x, y)b(x. y) (lx. (157)

See Section 4.2 on how to perform this integral. This term should only be added

to node positions in the matrix that are on an incident or vacuum boundary.

Opposing reflecting boundaries require a special acceleration procedure which we

will not examing here. A reference to this procedure may be found in [Ada 02].

The scalar flux correction should be added t.o the scalar flux at the end of the

iteration. To sumniarize, the iteration equations for the asymptotic DSA are

.Sh N / h,(k-J-1/2) _ v 1,v.(k+1/2)
in p.qp.q !_i7flJ)q pq !Lrnp.q

+ (at.p,qIYLp.q I'mLp.q rirnKp.q)
2)

Mp.qji + Mp.qqin.p.q, (158a)
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ftJ
(k+1/2) J),(k+1/2) (158b)_p.q Tn,p,q

7fl1

[(Dp,qTp,q + aa,p,qMp,q) F+l/2 + [(Dpi.qTpi,q + aa,p_i,qMp_i,q) F +h/2)i
p,q ii p-1,q i2

+ [(Dpi,qiTp_i,qi + cra,p_i,q_iMp_i,q_i) E1]

+ [(Dp.q_iip,q_i + aa,p,q_iMp,qi) F(1/2)] = [as,p,qMp,q ((k+1/2)
1

+ [as.p_i.qMp_i,q (k+1/2p-1,q __p

(k+1/2) (k)+ as,pi.qiM11 -1,q-1 p-1,q-1

+ [as,p,q_iMp,q_i (k+1/2
(k)

, (158c)p,q-1 _p,q- / j

(k+1) (k+1/2) + (158d)p.q

6.2 Asymptotic-Pi Diffusion Synthetic Acceleration

Asymptotic DSA does not always perform well for all problems in the thick

diffusive limit. Wareing [War 92] fouiid that continuous asymptotic DSA could be

iniproved draiiiatically by calculating discontinuous flux corrections from the con-

tinuous asymptotic DSA flux corrections. Our derivation starts with the discretized

SN equation, Eq. (144), but we will replace the flux with the flux correction:

' N çh,(k+1/2) j_ v çv(k+1/2)
m pqPqLmp,q I Tn p.qP.qLm.p.q

+ [(at.. tim) ip.q it7np.q T1mKP.q] fq/2)
m=i

U,q (5(k+1/2)
. (159)

Taking the zeroth angular nioineiit. of Ec1. (159) gives us



Gh,±Y2 _i IsV u "G''2 -I- M F'12\pqPq) p,q \_p.qP,q) p,q Ua,p,q__p,q_pq

L G"2e K G"2e as,p,qMp,q
((k+1/2) (160)_p,qjpq--p,q p,qp,q 2

We now take the first angular moment of Eq. (159), but we make the following

change:

This yields

(.qiYp.q + p,qLp,q)

where

and

Eph.q =Eq Ep,q. (161)

+ [(Sh N .Hh,l/2) + (SV Up,qP,q) - p,q

+ a,p,qMpqp - (irp.qx + Kp.qêy) E'2

- (Lpqêx + Kp.qêy) H12 0, (162)

= (P2 () e1 + P2 (i) e2) wmfipq, (163a)
m=1

(P (Im) x + P2 (nm) e2) Wrnfpq, (163b)
m= I

N

llp,q (P2 (Ibm,) + P2 (7)m) e2) IL'mfm,p,q. (163c)
Tn= 1

We now rewrite Eqs. (160) and (162). but. we advance all indices to (k+1)

(except the residual), and we discard the higher flux moments. Solving Eq. (162)

for the current correction gives us Fick's Law:

= 1

[,qtp'q + p,qJP,q p.qex Kp,qeyj F1 (164)
Ut,p,q

while Eq. (160) rewritten is
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1S' N \.Gl,(k+l) _L U \ lvi F+bp,qPq) p.q \=p,q=p,qJ p,q 1apq_p,qp,q

Kp,q'ey as,p,qjfp,q (1/2)
. (165)

We wish to eliminate the current correction on the zone edges in order to

compute discontinuous corrections that a.re local to a zone. We know that

n1 G = (166)

where G' is the exiting partial current on edge Xj in zone (p, q), and is

the incident partial current. Diffusion theory states:

- fGpj
Lrp,q

4 2
' (167)

flf- (168)LTp,q
2

Adding the partial currents together and solving for the incident partial current

reveals

= G. (169)

By substituting this result into Eq. (166) we find

flpGp1q 2G
q

(170)

The exiting partial current can be calculated from the in-cell flux and current

correction vectors. We calculate the edge flux corrections using the asymptotic flux

correction given in the last section. Substituting in the definitions for the exiting

partial currents given above yields

,
F F

flf.G
p.q

2
+ flfGp,q. (171)

where F is the continuous flux correction acquired from the asymptotic DSA,

Section 6.1.
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Substituting back into Eq. (165) gives

- F'"2
(p,q + p,q)

_p,q
2 ) +

Ua,p,qMp, F(k+l)qp,q

+ (,qIrp,q + qUp,q) c-i(k+1)
p,q

(k+1)Lp,qpq e = as,p,qMp,q ((k+1/2)
_p,qj (172)

Inserting Eq. (164) into the equation above and rearranging yields:

where

(pq + Up,q) + aap,qMp,q
1 pqWp.q] E' =
t,p,q

as.pqMp,q
(k+1/2)

+ (ip.q + Lp.q) Fcc(k+l/2) (173)

Yp.q qJLpq + qfip,q Jp,qex Kp.qey. (174)

To summarize, the iteration equations for the asymptotic-Fl DSA are

O .Sh N 1h(k-}-1/2) _L 1v,(k+1/2)
m. qp.q -m.p.q I m =p,q=p,q t±m,p,q

+ (crt.pqMp,q /mJp.q 77mKp,q) ,(k+1/2) USP.q
+ Mp.qqm,p,q, (175a)

Al

(k+1/2) /,(k+1/2) (175b)p,q rn.p,q
m=I
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{ (Dp.qTpq + ua,p.qLp,q) F112]1

+ [(D 1,qTp 1,q + i,qMp i,q)
F+hI2)]

2

+ [(Dp_i,qiTp_i,qi + ua,p_i,qiMp_i,q_i) F1/2)]

+ [(Dp,q_iTp,qi + ua,p,q_ip,q_i) F,+h/2)l [aS,p,qMp,q (th12 _p,q-_---p,q-1
j

/ (k+1/2)
+ [as.p1,qMp1q -1,q 1,q)]

2

p-1q-1 -1,q-1 1,q_1)]+ [asp_i,qiM
((k+'/2)

+ [asp,qip,qi
(k+/2)

(175c)

[I (p.q + p,q) + aa,p,qMp,q E1 =
-

us,p,qMp.q ((k+1/2)
(k)) + (p,q + p,q) F1 (175d)_p,q

(k±1) (k+1/2) + (175e)p,q p,q p,q
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7 NUMERICAL RESULTS

We now present three test problems that analyze different aspects of the Wach

spress rational function discretization. Test problem 1 will look at the robustness

of the method, test problem 2 will examine the convergence of the method in the

thick difhisive limit, and test problem 3 will compare the accuracy of Wachspress

rational functions versus isoparametric bilinear discontinuous functions on skewed

zones.

7.1 Test Problem 1

This problem is adapted from [Pal 93]. In this test problem, we consider a

square region one centimeter on a side, containing five material regions. The

orthogonal and skewed meshes used are 16. The materials

1
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Figure 15: Problem 1 Orthogonal Mesh Configuration
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Figure 16: Problem 1 Skewed Mesh Configuration



used in this test J)robleln are shown in Table 3. This problem has a reflecting

boundary on the left and vacuum boundaries on the top, bottom, and right. The

source region has an isotropic particle source of strength 1.0. We ran the problem

with an S4 quadrature set, and used Wachspress rational basis functions on both

the orthogonal and skewed meshes.

This problem illustrates the ability of the Wachspress rational function dis-

cretization to model a difficult problem on both orthogonal and skewed meshes.

The solution varies across the problem by about ten orders of magnitude. Phys-

ically, particles are born in the source region on the left of the problem. Most

particles are either absorbed in the thick absorber, or stream through the very

thin absorber and impinge upon the very thick scatterer.

We first analyze the results for the orthogonal case. Figures 17 and 18 show

results for both the unlumped and fully lumped cases. The white patches in

the unlumped solution depict where the solution is negative. This illustrates the

usefulness of lumping the matrices, because the discretization is more robust and

negative solutions are avoided. Figure 19 shows the base-ten logarithm of the flux

for the fully lumped case, which niore clearly shows the flux contours in the regions

where the flux is small.

Figures 20 arid 21 show the results for both the unlumped and fully lumped

cases on the skewed mesh. Figure 22 shows the base-ten logarithm of the flux for

the fully lumped case.

Our results clearly indicate that the Wachspress rational function discretizat.ion

is able to capture the solution correctly on skewed zones. Sonic mesh effects

are evident, but the discretization performs robustly in the thick diffusive limit

provided full matrix lumping is used.



(37

0,9

0.8

07

0.6

>- 0.5

0.4

03

02

01

01

x

Figure 17: Problem 1 Orthogonal Unlumped Solution
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Figure 18: Problem 1 Orthogonal Fuily Lumped Solution



(ii

0.9

0.8

0.7

0.6

> 0.5

0.4

0.3

02

01

00

x

Figure 19: Problem 1 Orthogonal Log(Flux) Solution
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Figure 20: Problem 1 Skewed Unlumped Solution
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Figure 21: Problem 1 Skewed Fuliy Lumped Solution
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Figure 22: Problem 1 Skewed Log(Flux) Solution
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7.2 Test Problem 2

For this test problem, we wish to test our asymptotic analysis on both or-

thogonal and skewed meshes for the fully lumped scheme. This problem is taken

from [War 92]. The spatial domain is discretized into a lOxlO grid (0 < x < 0.5,

0< y <0.5) filled with a homogenous material with the following properties:

and

(176a)

1
Ut = , (176b)

1
(176c)

We vary c from 101 to iO. There are reflecting boundaries on the right and top,

and vacuum boundaries on the bottom and left, and we used a S2 quadrature set.

On the same spatial grid, we solved the asymptotically derived diffusion dis-

cretization of the following diffusion problem:

132 132ç5(xy) (x,y) +(x,y) = 1, (177)

with reflecting boundaries on the right and top, and (x, y) = 0 boundaries on the

left. and bottom.

If the asymptotic analysis is correct, the transport solution should converge

to the diffusion solution as the transport problem becomes increasingly t.hick and

diffusive, that is as c -f 0. Figure 23 shows the diffusion solution on an orthogonal

grid, and Figure 24 shows the diffusion solution on a skewed grid.

The error difference between the transport solution a.nd t.he orthogonal solution

should decrease as epsilon decreases. Figures 25-30 show the decreasing error

function.
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Figure 23: Problem 2 Diffusion Solution on an Orthogonal Grid
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Figure 24: Problem 2 Diffusion Solution on a Skewed Grid
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Figure 25: Problem 2
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Figure 27: Problem 2 Error Function for Orthogonal Grid, = iO

Figure 28: Problem 2 Error Function for Skewed Grid, iO
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Figure 29: Problem 2 Error Function for Orthogonal Grid, = iO

Figure 30: Problem 2 Error Function for Skewed Grid, = iO
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Note that in Figures 25-30, the magnitude of the error decreases as is de-

creased. The error function shape stays roughly constant for the orthogonal case,

with some slight bumps appearing in the solution when = iO. This is likely

due to roundoff error. For the skewed solution, we find the error is greater than

in the case of the orthogonal zones. This is likely due to mesh effects in both

the diffusion and transport solutions. In addition, spikes can be seen in the error

function in two locations; these are most pronounced in the e = iO case. These

locations are where a zone is nearly triangular, and likely represents a roundoff or

truncation error in the construction or integration routines.

In Figure 31 we can see how the transport solution converges to the diffusion

solution as epsilon decreases for both orthogonal and skewed methes. This indicates

that our asymptotic analysis is correct.
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1 .0.-02
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1 .O.-06
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.w.dZon.. I

Zon.

1 .0.-04 1 .0.-03 1 .0.-02 1 .O.-01

E

Figure 31: Problem 2 Convergence of Transport to Diffusion

7.3 Test Problem 3

For our third test problem we wish to compare the accuracy of solutions using

isoparametric bilinear basis functions to solutions using Wachspress rational basis
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functions on a skewed mesh. To do this we will reexamine test problem 1 (Section

7.1). First, this test problem was solved on a fine mesh. Figure 32 shows the

solution on a 1200x1000 orthogonal grid for the lumped mass-matrix case. Ray

effects can be seen in the very thin absorber region. This is a result of the coarse

angular discretization (S4).

Cell,

phkCell

o.1

0.411

Figure 32: Problem 3 Fine Mesh Solution

The test problem was then solved on a coarse grid, first using isoparametric

bilinear basis functions, and then again using Wachspress rational basis functions.

In each case the coarse mesh solution was calculated with the fully-lumped version

of the discretization. Figures 33 and 34 show the error and the logarithm of the

error, respectively, of the coarse mesh isoparametric bilinear basis function solution

versus the fine mesh solution. Figures 35 and 36 show the error and the logarithm

of the error, respectively, of the coarse mesh Wachspress rational basis function



77

solution versus the fine mesh solution. In each case the error is calculated as the

absolute value of the difference between the solutions.
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Figure 33: Problem 3 Error of BLD Coarse Solution

Table 4 shows the maximum error for the isoparametric bilinear basis function

solution and the Wachspress rational basis function solution. From the figures and

Coarse and Fine Solution Comparison Maximum Absolute Error
Bilinear vs. Fine Mass-Matrix Lumped 0.171399

Bilinear vs. Fine Unlumped 0.171487
Wachspress vs. Fine Mass-Matrix Lumped 0.172121

Wachspress vs. Fine Unlumped 0.172033

Table 4: Problem 3 Maximum Error for Each Discretization

from the table we can see that the maximum error in the solutions for both the

isoparametric bilinear basis function and the Wachspress rational basis function

discretizations are similar, whether being compared to the fine mesh solution for

the unlumped discretization or the fine mesh solution for the lumped mass-matrix

discretization. For both basis functions, the absolute error is highest near material
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Figure 34: Problem 3 Logarithm of Error of BLD Coarse Solution
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Figure 35: Problem 3 Error of Wachspress Coarse Solution
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Figure 36: Problem 3 Logarithm of Error of Wachspress Coarse Solution

boundaries, as we would expect, since the coarse mesh solutions cannot capture

the boundary layers as accurately as the fine mesh solutions can. We also see

that the error in comparison to the fine mesh solution for the lumped mass-matrix

discretization is somewhat less than the error in comparison to the fine mesh

solution for the unlumped discretization. This is not surprising since both of the

coarse mesh solutions employed a (fully) lumped discretization.

We also see that the solution using isoparametric bilinear basis functions is

somewhat more accurate than the solution using Wachspress rational basis func-

tions. The difference may be due to slight inaccuracies in the integration or con-

struction algorithms for the Wachspress rational functions. More numerical testing

of the method may be necessary to completely understand its behavior in the wide

variety of transport problems encountered in nature.



8 CONCLUSION

In this study we have presented an analysis of discontinuous finite element

transport using Wachspress rational basis functions in the thick diffusive limit.

These basis functions are continuous in the zone, interpolate a constant field ex-

actly, and are linear on the boundary. One of the principle advantages of Wachs-

press rational basis functions is that they can be constructed on arbitrary polygons

and polyhedra. Adams [Ada 01] provided new reasons to investigate Wachspress

rational functions. Adams predicted theoretically that discontinuous finite element

transport discretizations using certain classes of weight functions, including Wach-

spress rational functions, would perform well in the thick, diffusive limit. While

Adams provided numerical evidence for certain weight functions (including bilin-

ear discontinuous), he did not provide numerical evidence for Wachspress rational

functions. In this study, we have attempted to provide a thorough investigation of

Wachspress rational functions on convex quadrilaterals, including their construc-

tion, integration, and performance in thick, diffusive regions.

We began our study by deriving a general finite element discretization in Sec-

tioll 2.1. This derivation is performed in two spatial dimensions for general basis

functions and weight functions on a general zone. In Section 2.2, we simplify this

derivation for quadrilateral zones and Galerkin weighting. This is the derivation

that was implemented to produce the numerical results in Section 7. In Section 2.3,

we discuss three types of matrix lumping: mass-matrix lumping, surface-matrix

lumping, and full lumping. Lumping helps to "localize" the transport discretiza-

tion. This adds robustness to the method in thick problems, causing the solution

to be nonnegative and less susceptible to non-physical oscillations.

In Section 3 we discuss how to construct the two bases we used in our study.
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The first basis, which we discuss in Section 3.1, is the isoparametric bilinear (BLD)

basis. This is the "standard" method for solving transport problems on general

quadrilaterals. The second basis is the Wachspress rational basis. We presented

two methodologies for constructing these basis functions. The first, presented in

Section 3.2, we have called the direct method. This method operates by calculating

the external diameter (which is needed for the denominator of the rational basis

function) directly. In Section 3.3, we have presented Dasgupta's method [Das 03a},

an alternative method for constructing Wachspress rational basis functions. This

method uses the linearity of Wachspress rational basis functions on the boundary

of the zone to construct the denominator. This method has the advantage of

avoiding the construction of the external diameter. However, in Section 3.4 we

find that Dasgupta's method is slower than the direct method for quadrilaterals.

On the other hand, the complexity of the direct method increases significantly as

one moves beyond linear external diameters. For this reason, we recommend using

the direct method when constructing Wachspress rational functions on meshes

composed purely of quadrilaterals, and using Dasgupta's method otherwise.

In order to construct the matrices in our discontinuous finite element discretiza-

tion, we must calculate integrals of basis functions. These integrals come in two

forms: integrals over the area of the zone, and integrals over the boundary of

the zone. We present several methods for integrating over the area of the zone.

For the isoparametric bilinear basis functions, these functions are integrated in

the isoparametric space in which they were constructed, and that integral is then

mapped into the Cartesian space of the zone (Section 4.1.1). The integrals are

performed using a Gauss-Legendre quadrature set. For the Wachspress rational

basis functions, our implementation maps the basis functions into the isopara-

metric space, and integrates them using a Gauss-Legendre quadrature set. The



integrals are then mapped back into Cartesian space. This is described in Section

4.1.2. Dasgupta has also suggested a method for integrating over the area of a

zone [Das 03b]. This involves repeatedly applying the divergence theorem to the

integral until it is simplified to a line integral, and is described in Section 4.1.3.

Unfortunately, our integrand (involving products of Wachspress rational functions

and their derivatives) is algebraically complex, making Dasgupta's method pro-

hibitively difficult to implement in a compiled language like C++. On the other

hand, the isoparametric method can only be applied to quadrilaterals. There may

be other integration methods, such as Causs-Legendre quadrature on triangular

sub-cells, that may offer a solution. More research is needed in this area. We leave

this problem unsolved at this time. Due to the linearity of Wachspress rational ba-

sis functions and isoparametric bilinear basis functions, integration over the edges

of a zone is trivial, and is described in Section 4.2.

In order to accelerate our transport iterations, and in order to understand how

our discretization will behave in the thick, diffusive limit, an asymptotic analysis

was performed in Section 5. This analysis resulted in a diffusion discretization

that is consistent with our transport discretization. The need for acceleration was

addressed in Section 6. We used our asymptotically derived diffusion discretization,

and our derived boundary conditions, to create an asymptotic DSA preconditioner

to accelerate our iterations. The asymptotic DSA preconditioner is known to

degrade on problems with highly scattering regions however, so we derived the

asymptotic-Pi DSA preconditioner in Section 6.2. This preconditioner was first

developed in [War 92], and is known to perform well on highly scattering problems

with orthogonal or skewed meshes. This acceleration scheme was used to generate

all of our numerical results.

Finally, we presented three test problems and their numerica.l results. Test



problem 1 (Section 7.1) demonstrates the performance of Wachspress rational func-

tions on both orthogonal and skewed grids. This problem is strongly heterogeneous,

with highly scattering regions adjacent to highly absorbing regions. We solved this

problem with both unlumped and fully lumped schemes, demonstrating the need

for lumping to ensure a robust solution. The implementation performs well on

both the orthogonal and the skewed grids.

Test problem 2 (Section 7.2) shows the convergence of the transport discretiza-

tion to the asymptotically derived diffusion discretization as the problem becomes

increasingly optically thick and diffusive. This problem was solved on both or-

thogonal and skewed meshes. As expected, the discretization correctly converges

to the diffusion limit. The error is greater in the skewed case, and this is likely due

to mesh effects, as well as some error inherent in the construction and integration

algorithms on highly skewed zones, and is to be expected.

Test problem 3 (Section 7.3) compared the accuracy of a solution using a Wach-

spress rational basis function discretization and a solution using an isoparametric

bilinear basis function discretization on a coarse, skewed mesh by comparing them

to solutions using a bilinear basis function discretization on a fine orthogonal mesh.

We found that the error is always largest near material boundaries because the

coarse solutions cannot capture boundary layers as accurately as the fine solution.

In addition, we found that the error of the isoparametric bilinear basis function

solution is somewhat less, possibly due to small inaccuracies in the construction

and integration algorithms for the Wachspress rational functions.

There are several areas involving Wachspress rational functions that warrant

further investigation. Of utmost importance is the discovery of an efficient method

for integration of Wachspress rational functions over the area (or volume) of an

arbitrary polygonal or polyhedral zone. We believe this may be one of the last



hurdles to overcome before Wachspress rational functions can be made available

for widespread use. Other topics that warrant future investigation are the behavior

of Wachspress rational functions on polyhedra, as well as zones with curved (non-

linear) sides and faces. We are also interested in the use of Wachspress rational

basis functions in characteristic-based transport discretizations.
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