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Pre-harvest sprouting in wheat costs farmers millions of dollars every year. Pre-

harvest sprouting tolerance (PST) has minimized this problem, but improvement of PST

is still necessary. Synthetic hexaploid wheats (synthetics) have been used as sources of

genes coding for many useful traits. Two studies evaluated the PST of a synthetic (Altar

84/Aegilops tauschii) and investigated its potential as a source of PST in crosses with

wheat cultivars.

The first study compared the synthetic with selected wheat checks for PST and

with its parent Altar 84 for the germination response of these genotypes to controlled

wetting treatments applied to field-grown intact spikes and threshed seed. Spikes were

rolled in wet germination paper and the percentages of germinated seed were

determined after seven days. Threshed seeds in Petri dishes were wetted with water and

vegetative floral tissues (chaff) extracts. Germinating seeds were counted daily for 14
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days. The synthetic was more tolerant than Altar 84 and was classified as moderately 

sensitive. The improved PST of the synthetic over Altar 84 was attributed to Aegilops 

tauschii. Seed dormancy and water-soluble substances in the chaff of the synthetic and 

other genotypes appeared to contribute to their PST. 

The second study used random inbred F5 lines obtained from single and 

backcrosses between the synthetic (red-seeded) and the sensitive wheat cultivars Opata 

85 (red-seeded) and Bacanora 88 (white-seeded). Seed coat color and germination 

responses of the F5 lines subjected to a five-day spike wetting treatment were evaluated. 

Pre-harvest sprouting tolerance was moderately to highly inheritable and largely 

controlled by additive gene effects in the studied populations. An association between 

red seed coat color and PST was observed but white recombinant lines more tolerant 

than their sensitive parent were obtained. The synthetic can be used to improve wheats 

with red and white seed coats. The potential use of the synthetic as a PST source was 

discussed and a breeding strategy suggested. 



PRE-HARVEST SPROUTING TOLERANCE OF A SYNTHETIC HEXAPLOID
 

WHEAT (Triticum turgidum L. x Aegilops tauschii Coss.) 

by
 

Andre Cunha Rosa
 

A THESIS 

submitted to 

Oregon State University 

in partial fulfillment of 
the requirements for the 

degree of 

Master of Science 

Completed January 4, 1999
 

Commencement June, 1999
 



Master of Science thesis of Andre Cunha Rosa presented on January 4, 1999

APPROVED:

Major Professor, represent' Crop Science

Head of Crop and Soil Science Department

Dean of Grad School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Andre Cunha Rosa, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude and appreciation to Dr. Warren E. 

Kronstad for his guidance, encouragement, support, patience, and friendship throughout 

my graduate studies at Oregon State University. Unfortunately, words can not express 

how much I am thankful to him. 

Special thanks are extended to Drs. David Thomas, Patrick Hayes, and Gregory 

Perry, members of my committee for their time and assistance during the course of this 

research. 

A very special thanks to Dr. Bob Metzger for his friendship, for his wish to 

share experience, and for his valuable suggestions. I wish to thank Mr. Dale Brown 

from the Oregon State Seed Laboratory for his friendship and help in obtaining 

laboratory supplies. 

Special thanks to Mr. Mark Larson and Dr. Karim Ammar for their friendship, 

advice, and innumerous suggestions to this thesis. I would like to offer a special thanks 

to my friend and colleague Ms. Alicia Del Blanco for kindly providing the four wheat 

populations used in this study. 

Sincere thanks and gratitude are extended to all staff and members of the Cereal 

Project, as well as my fellow graduate students. Your daily help and friendship were 

essential for the completion of this experience. 



11 

TABLE OF CONTENTS 

Page 

1. INTRODUCTION 1
 

2. LITERATURE REVIEW 4
 

2.1 THE SPROUTING PROBLEM 4
 

2.2 MECHANISMS OF PRE-HARVEST SPROUTING TOLERANCE 5
 

2.2.1 Seed Dormancy 6
 
2.2.2 Chemical Inhibitors in Vegetative Floral Tissues 11
 

2.2.3 Spike and Seed Morphological Characteristics 12
 

2.3 GENETICS 14
 

2.3.1 Association between Seed Coat Color and Seed Dormancy 14
 
2.3.2 Inheritance of Pre-Harvest Sprouting Tolerance and its Mechanisms 15
 

2.3.3 Molecular Markers and Mapping 17
 

2.4 ASSESSMENT OF PRE-HARVEST SPROUTING TOLERANCE 18
 

2.4.1 Influence of Environment and Developmental Stage 18
 

2.4.2 Field Methods and Designs 20
 

3. MATERIALS AND METHODS 22
 

3.1 STUDY I 22
 

3.1.1 Genotypes and Field Evaluations 22
 
3.1.2 Laboratory Evaluations 24
 
3.1.3 Statistical Analysis 27
 

3.2 STUDY II 28
 

3.2.1 Genotypes and Field Evaluations 28
 
3.2.2 Laboratory Evaluations 29
 
3.2.3 Statistical Analysis 30
 

4. RESULTS AND DISCUSSION 32
 

4.1 STUDY I 32
 



111 

TABLE OF CONTENTS (Continued) 

ragt 

4.1.1 Comparisons among the Synthetic and Check Cultivars 32
 
4.1.2 The Effect of Chaff Extracts on Dormancy 38
 

4.2 STUDY II 42
 

4.2.1 Analysis of Variance and Heritability Estimates 42
 
4.2.2 Association between Seed Coat Color and Pre-Harvest Sprouting
 

Tolerance 44
 
4.2.3 Pre-harvest sprouting tolerance in parents and F5 lines 49
 

4.3 PRE-HARVEST SPROUTING TOLERANCE OF THE SYNTHETIC 
POTENTIAL AND BREEDING STRATEGY 53
 

5. SUMMARY AND CONCLUSIONS 56
 

BIBLIOGRAPHY 58
 

APPENDIX 68
 



iv 

LIST OF FIGURES
 

Figure ragc 

1. Germination progress curves of genotypes in Study I germinated in water (a) 
or chaff extract (b) for 14 days. 35 

2. Germination progress curves of genotypes RL 4137 (a), Frontana (b), BR-35 
(c), synthetic Altar/At (d), BR-23 (e), Altar 84 (f), and Bacanora 88 (g) 
germinated in water and chaff extract for 14 days 40 

3. Frequency distribution of red and white-grained F5 lines in (a,b) Population 1 
(Altar /At/ /Opata) and (c,d) Population 2 (Altar/At//2*Opata), according to 
their mean Percentage of Germinated Seeds (PGS). Horizontal bars represent 
LSD at P = 0.05 for each population. 47 

4. Frequency distribution of red and white-grained F5 lines in (a,b) Population 3 
(Altar/At//BCN) and (c,d) Population 4 (Altar/At//2*BCN), according to their 
mean Percentage of Germinated Seeds (PGS). Horizontal bars represent LSD 
at P = 0.05 for each population. 48 



V 

LIST OF TABLES 

Table Pit= 

1. List of genotypes in Study I with their seed coat color, pre-harvest sprouting 
tolerance (PST) and origin. 23 

2. Non-transformed means for Germination Index in water and chaff extract, 
Percentage of Germinated Seeds (PGS), Wet Stirring Number (WSN), and 
Dry Stirring Number (DSN). Except for DSN, all variables result from wetting 
treatments of seven days at 20 °C. 34 

3. Observed means squares for Area under the Germination Progress Curve 
(AUGPG) from ANOVAs in groups of two genotypes (RL 4137 and Frontana) 
and five genotypes (BR-35, Synthetic, BR-23, Altar 84, and Bacanora 88). 39 

4. Means of AUGPC of genotypes in Study I germinated in water and in their 
own chaff extracts. One-sided probability values (P-value) refer to t-tests 
for the difference between water and chaff extract AUGPC means within each 
genotype 39 

5. Observed means squares for Percentage of Germinated Seeds (PGS) of F5 lines 
of Populations 1-4 accompanied by narrow sense heritability (h2) estimates for 
the same trait. 43 

6. Summary of Percentage of Germinated seeds (PGS) results for F5 lines with 
red and white seed coats from Populations 1-4 accompanied by the estimated 
differences in PGS mean values between red and white lines and the one-sided 
probability values (P-values) for the test of each difference. 45 

7. Percentages of Germinated Seeds (PGS) means and ranges from parents of 
populations in Study II 50 

8. Number and percentage of tolerant F5 lines in each population. Tolerant lines 
had PGS mean values not significantly different (P>0.05) from the synthetic. 52 



vi 

IN DEDICATION 

To
 

Gilda and Ottoni, my parents
 

Maria, my grandmother
 

and
 

to my wife, Erenice, whose help, patience,
 

perseverance, and love enabled me to carry out this study
 



PRE-HARVEST SPROUTING TOLERANCE OF A SYNTHETIC HEXAPLOID
 
WHEAT (Triticum turgidum L. x Aegilops tauschii Coss.) 

1. INTRODUCTION 

The occurrence of rain before cereal crops are harvested may induce the kernels 

to sprout on the spike or panicle. This phenomenon is named pre-harvest sprouting and 

affects various cereal crops. On wheat (Triticum aestivum L.), pre-harvest sprouting 

reduces yield and test weight, and damages the end-use quality of the grain. Losses to 

sprouting cost farmers millions of dollars every year (Derera, 1989a). Countries most 

affected by pre-harvest sprouting include Argentina, Australia, Brazil, Canada, Kenya, 

Norway, Sweden, and the United States. 

Much effort has been dedicated to develop cultivars with pre-harvest sprouting 

tolerance (PST), which can be defined as "the failure of viable kernels to germinate in 

intact spikes when subjected to favorable conditions of temperature, moisture and 

oxygen" (DePauw and McCaig, 1991). Pre-harvest sprouting tolerance is usually 

attributed to seed dormancy but, chemical inhibitors in the bracts, physical 

characteristics of plants and spikes, and other characteristics have also been shown to 

contribute to PST (Derera et al., 1976; Mares, 1987; Paterson et al., 1989). The 

development of cultivars with PST has alleviated the sprouting problem in many areas. 

However, most tolerant cultivars have red grains because of an association between red 

seed coat color and seed dormancy (DePauw and McCaig, 1983; Gfeller and Svejda, 

1960). Therefore, white wheat growing areas tend to be more prone to sprouting 
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damage. Further enhancement of PST is still necessary in red and white wheats. This 

can be achieved by pyramiding genes already available or by introducing new sources 

of genetic tolerance. 

Many synthetic hexaploid wheats (2n = 42, AABBDD) obtained by crossing 

various accessions of Triticum turgidum L. var. durum (2n = 28, AABB) and Aegilops 

tauschii Coss. (2n = 14, DD) have been produced and utilized as sources of many useful 

traits during the past decade (May and Lagudah, 1992; Mujeeb-Kazi et al., 1996; 

Villareal et al., 1996). Many wild species, such as Aegilops tauschii, have strong seed 

dormancy or other mechanisms to delay germination and ensure their survival (Mac 

Key, 1989; Xin-Jin et al., 1997; Gatford, 1998). Thus, it is reasonable to expect that the 

synthetic hexaploid wheats (hereafter called synthetics) may have contributed to the 

wheat gene pool some mechanisms to delay germination and improve PST. In fact, 

Xiu-Jin et al. (1997) has provided the prima facie evidence that PST can be found in 

Aegilops tauschii and can be transferred into wheat cultivars. The possibility of PST 

coming from durum wheat (Triticum durum L. var. durum) also deserve consideration 

due to previous reports showing that some of these wheats have some PST. Preliminary 

studies in the laboratories at Oregon State University suggested that, a synthetic (Altar 

84/A egilops tauschii - unknown accession) from the International Wheat and Maize 

Improvement Center (CIMMYT) has PST levels approaching those observed for 

Frontana, which is known for its excellent PST (data not shown). 
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The main purpose of this study was to evaluate the PST of the synthetic Altar 

84/A egilops tauschii (Altar/At) and determine the potential of this genotype as a source 

of PST in crosses with wheat cultivars. To accomplish this, two studies were conducted. 

In "Study I" the following objectives were considered: i) compare the PST of the 

synthetic Altar/At (synthetic) with the PST of check cultivars, ii) determine which 

parent(s) contributed to the PST in the synthetic, and iii) investigate the mechanism(s) 

that confer PST to the synthetic. "Study II" aimed to: i) determine the nature of the 

inheritance of PST and the heritability of this character in four F5 random inbred 

populations from synthetic/wheat crosses, ii) investigate a possible association between 

seed coat color and PST in the selected populations, and iii) evaluate the synthetic as a 

source of PST for wheats with red and white seed coats. 
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2. LITERATURE REVIEW 

2.1 THE SPROUTING PROBLEM 

Pre-harvest sprouting can seriously affect the quantity and quality of the wheat 

crop. Grain yield losses occur during threshing because plumules, radicles, and light 

kernels are winnowed out. Test weight and seed viability may be also compromised. 

Qualitywise, the activation and de novo synthesis of hydrolytic enzymes, particularly a-

amylase, during germination makes the wheat end use quality inappropriate for most 

end products. Sprouting damage is usually evaluated with the Falling Number apparatus 

(Hagberg, 1960) or with the more recently developed Rapid Visco-Analyser (RVA) 

(Ross et al., 1987). If sprouting damage (above a specific threshold) is detected, the 

wheat lot is downgraded or even considered as feed grain. In Australia, Derera (1980) 

reported that downgrading represents a loss of 15-40 dollars per ton, which translates to 

an estimated annual loss of 18 million dollars. 

Bread made from sprout-damaged wheat exhibits a sticky crumb, pale crust, 

coarse texture, and sometimes the loaf volume collapses (Derera, 1989b; Sorrels et al., 

1989). Other authors referred to a too-dark crust rather than a pale one (Orth and Moss, 

1987; Mansour, 1992). The sticky crumb is a result of the excessive a-amylase activity, 

which causes an unbalanced ratio of a and 13-amylases. This unbalance impairs the 

hydrolysis of dextrins by 13-amylase, while the a-amylase continues degrading starch 

and producing low-molecular-weight dextrins. The accumulation of these dextrins is 

responsible for the crumb stickiness and the crust browning (Dapron and Godon, 1987). 
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There is considerable variation in sensitivity of various end products to sprout-

damaged wheat. Orth and Moss (1987) found that Cantonese-style noodles were more 

sensitive than pan bread, while flat bread and chapattis were quite tolerant. Sorrels et al. 

(1989) demonstrated that cookies can tolerate high levels of sprouting with little effect 

on quality. According to Nagao (1996), the sensitivity of a specific product to sprout-

damaged flour depends on the moisture content and temperature used to process the 

dough. The time during which the enzymes are allowed to degrade the flour before their 

inactivation by high temperatures of baking, cooking, or other similar process is critical. 

Finally, even when it is possible to produce some end products with acceptable quality 

using sprout-damaged wheat, mills have always preferred sound wheat because of its 

better milling and processing qualities (Orth and Moss, 1987; Sorrels et al., 1989; 

Nagao, 1996). 

2.2 MECHANISMS OF PRE-HARVEST SPROUTING TOLERANCE 

Pre-harvest sprouting tolerance (PST) is a complex trait. It is the result of a 

combination of mechanisms that can be divide into three classes: i) seed dormancy, ii) 

chemical inhibitors in vegetative floral tissues, and iii) spike and seed morphological 

characteristics. 
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2.2.1 Seed Dormancy 

Seed dormancy can be defined as "any condition inherent in the seeds which 

prevents the germination of viable seeds for a definite period after harvest" (Gfeller and 

Svejda, 1960). Chemical or physical effects that originate outside the seed do not 

characterize seed dormancy. 

Seed dormancy is the major mechanism responsible for PST in most of the 

existing wheat cultivars (Mares and Ellison, 1990; Mares, 1993). It is an efficient 

system to avoid pre-harvest sprouting damage, but presents limitations. The major 

limitation is the association between seed dormancy and red seed coat color, which 

impairs the production of tolerant wheats with white grain. Despite the difficulties, 

white wheats with reasonable levels of dormancy and PST have been obtained in the 

last decades. Some of the most promising include: Clarks Cream (Upadhyay et al., 

1988), SC8021V2 (DePauw et al., 1992), and AUS1408 (Mares, 1987). Another 

limitation is that a strong dormancy may cause germination problems when the period 

between harvesting and sowing is short. This is particularly true in winter wheat 

production areas (Reddy, 1978), and for breeding programs that grow more than one 

generation per year (Rajaram et al., 1990). In such breeding programs, germination 

problems due to dormancy result in germplasm with higher levels of dormancy being 

discarded. Some breeding programs overcome this problem by breaking dormancy with 

a high temperature incubation (37°C) for seven days. Due to the limitations associated 

with dormancy, breeding efforts are in progress to develop alternative mechanisms, 

such as the presence of water-soluble chemical inhibitors in the glumes which, 
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hopefully, will not relate to seed color and will be easily removed by threshing 

(Gatford, 1998, personal communication). 

Seed dormancy and therefore PST are affected by the interaction of a number of 

mechanisms. The mechanisms that control seed dormancy can be classified into two 

classes: seed-coat-related and embryo-related mechanisms. 

2.2.1.1 Seed-Coat-Related Mechanisms 

Physico-chemical barrier - the physical barrier to water uptake imposed by the 

seed coat has been the subject of few studies and does not appear to be an important 

mechanism in the control of seed dormancy in wheat (Ching and Foote, 1961; Belderok, 

1976). More recently, this system was found to be working in Aegilops tauschii 

(Gatford, 1998, personal communication). According to Come et al. (1984), dormancy 

in cereals is caused by a limitation in oxygen exchange imposed by the seed coat and 

pericarp. They postulated that the enzymatic oxidation of phenolic compounds on these 

integuments consumes most of the available oxygen, thus limiting embryo growth. The 

weakening of dormancy observed during after-ripening would be a result of a decrease 

in the efficiency of the oxygen diffusion barrier. Their conclusions were based on 

studies with barley. In wheat, this theory has been subject of discussion and remains to 

be proven (Belderok, 1976; Gordon, 1980; King, 1989). 



8 

Chemical inhibitors in the seed coat - the wheat seed coat has been shown to 

harbor water-soluble inhibitors, which interact with the embryo affecting seed 

dormancy. Miyamoto et al. (1961) identified catechin, catechin-tannins (CT), and 

alkaloids as water-soluble inhibitors from the wheat seed coat. Only traces of such 

compounds were detected in the pericarp. They found that wheats with dark-red grain 

had more CT than light-red wheats and twice as much as white wheats. Furthermore, as 

dormancy diminished with after-ripening, so did the amount of CT. Miyamoto and 

Everson (1958) suggested that the strong dormancy observed in red wheats is not 

caused directly by the seed coat pigment, namely phlobaphene, but by its precursors, the 

uncolored catechins and catechin tannins. In addition, the weakening of dormancy 

observed during after-ripening was considered to be caused by the inactivation of CT. 

Later studies demonstrated that genotypes clearly differed in the sensitivity of their 

embryos to CT (Stoy and Sundin, 1976) and this difference was controlled by a single 

gene (Stoy and Olsen, 1980). 

Woodbury and Wiebe (1983) demonstrated that coumarins and other phenolic 

substances inhibit wheat germination under high moisture condition. At low moisture 

levels, the same inhibitors either had no effect or slightly increased germination. They 

suggested that as the water enters into the seed through cracks in the pericarp within the 

brush region, the inhibitors are then carried to the embryo. Effects of temperature and 

rate of drying on the final structure of the phenolic polymers were thought to be the 

basis of the response of dormancy to these two phenomena. The authors, however, 
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failed to indicate evidence of how coumarins and the other phenolics could be found in 

the seed integuments. 

2.2.1.2. Embryo-Related Mechanisms 

True embryo dormancy - true embryo dormancy is characterized by an inherent 

condition of the embryo to remain dormant and by the reversibility of this condition 

when cytokinins are applied (Belderok, 1976). This type of dormancy is known to occur 

in various tree species and Belderok (1976) has suggested its presence in wild oats, 

barley and wheat. While, experiments based on germination of excised embryos have 

indicated that wheat embryos germinate promptly when excised from the seed and 

placed on germination media (Miyamoto and Everson, 1958; Stoy and Sundin, 1976; 

McCrate et al., 1982). Recently, Gatford (1998, personal communication) encountered 

true embryo dormancy in Aegilops tauschii and transferred it to synthetic wheats. The 

embryos of the most dormant synthetic (870192/AUS18975) took 14 days to initiate 

germination after being placed on moist paper. However, the whole seeds of the same 

synthetic initiated germination in three days indicating a possible germination-

promoting effect by the seed coat. Since a three-day period is thought to be adequate for 

Australian conditions, and true embryo dormancy is not expected to depend on seed 

coat color, there is hope that such trait can be introduced into white wheat cultivars. 

Embryo inhibition/promotion - even though the excised embryos of wheat are 

ready to germinate when placed in moist media, a variety of substances external to the 
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embryo can inhibit this process. The effect of these "external" inhibitors is usually 

reversed by gibberelic acid (GA) rather than by cytokinins (Belderok, 1976). The effect 

of CT, coumarins, and other phenolics on wheat embryos was previously mentioned. 

Others substances that have been reported to interact with wheat embryos are the 

plant growth regulators GA and abscisic acid (ABA). While GA promotes germination 

and production of a-amylase, ABA suppresses both phenomena and stimulates the 

synthesis of amylase inhibitors (Stoy and Sundin, 1976; King, 1989). Stoy and Sundin 

(1976) showed that the inhibition produced by ABA was stronger than that produced by 

CT, and that GA counteracted ABA more efficiently than it counteracted CT. Embryo 

sensitivity to ABA has been found to be proportional to seed dormancy. As seed 

dormancy was reduced by after-ripening, sensitivity of embryos to ABA was also 

reduced (Walker-Simmons et al., 1990). These results indicate that not only the amount 

and kind of inhibitors/promoters is relevant for seed dormancy control, but also that the 

sensitivity of the embryo to each of these substances is important. 

Genotypic differences in embryo sensitivity to ABA and GA have been reported 

and used in breeding programs (Stoy and Sundin, 1976; McMaster, 1976; Flintham, 

1990). The importance of GA insensitivity is not as related to dormancy enhancement 

as it is to the inhibition of a-amylase synthesis. Gibberelic acid insensitive genotypes 

can still produce enough a-amylase to sustain germination, but the overall a-amylase 

activity is reduced in both sound and sprouted samples (Flintham and Gale 1980; 

McMaster, 1976). Such reduction in a genotype may constitute the difference between 
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failure and success in the commercialization. Insensitivity to GA correlates with plant 

height (Derera et al., 1976). The genetic basis of this correlation will be reviewed in 

section 2.3.1. 

2.2.2 Chemical Inhibitors in Vegetative Floral Tissues 

The presence of water-soluble germination inhibitors in vegetative floral tissues 

of wheat and triticale has been demonstrated (Derera et al., 1976; Salmon et al., 1986; 

Trethowan et al., 1993). Vegetative floral tissues, commonly designated as chaff, are all 

the components of a wheat spike (glumes, lemmas, rachises, peleae, and awns) with the 

exception of the kernels. Derera et al. (1976) studied the germination response of after-

ripened (80 days) seed of a group of cultivars to their own chaff inhibitors. They 

observed differential germination inhibition response among cultivars, varying from no 

inhibition to strong inhibition (in the case of the cultivar Kleiber). Using another set of 

cultivars, McCrate et al. (1982) demonstrated that during after-ripening the inhibition 

caused by chaff extracts decreases as seed dormancy is reduced until there is practically 

no inhibition. Thus, non-dormant seeds of the cultivar Kleiber should not have been 

inhibited. Possible explanations to conciliate results of both studies are that i) some 

dormancy was still present even after the 80 days, ii) Kleiber and the other responsive 

cultivars are different in this regard from the cultivars studied by McCrate et al. (1982), 

and iii) differences on concentration of inhibitors in the chaff caused the different 

responses. In any case, it seems clear that dormancy and chaff inhibitors combined 
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should provide a better protection to pre-harvest sprouting than any of these two 

mechanisms alone. 

Some other findings have also contributed to a better understanding of chaff 

inhibitors and their effects. McCrate et al. (1982) found evidence that the decrease in 

germination inhibition with after-ripening was due to a loss of the embryo sensitivity 

and not to a decrease in the amount or activity of the inhibitor in the chaff. Such loss of 

embryo sensitivity is similar to that previously related for ABA. Recent studies 

concluded that the inhibitory substances on the glumes of a certain accession of 

Aegilops tauschii are a phenolic acid or a glycoside of either vanillic or p-coumaric acid 

(Gatford, 1998, personal communication). 

2.2.3 Spike and Seed Morphological Characteristics 

Spike morphological characteristics have been shown to affect rates of water 

absorption and consequently PST (King, 1987; King and Licis, 1990). In this regard, 

one of the most important spike morphological characteristics appears to be related to 

the awned or awnless phenotypes. King and Richards (1984) found that under simulated 

rain, awnless genotypes consistently absorbed less water and had reduced sprouting 

when compared with awned genotypes. Results were similar whether the comparison 

was made between groups of cultivars (awned vs. awnless) or between near-isogenic 

lines. Surprisingly however, mechanical removal of the awns did not reduce water 

uptake, indicating that the observed differences may not reside on the awns themselves. 
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Spike nodding angle has also been demonstrated to affect pre-harvest sprouting 

tolerance (PST). King and Licis (1990) concluded that wheat lines in which the spikes 

droop at maturity are less predisposed to pre-harvest sprouting. The advantage of the 

droopy lines seems to be mostly related to the projected surface area (or area directly 

exposed to the rain). Thus, spikes that are upright at maturity are still less predisposed 

to pre-harvest sprouting than spikes that acquire any near-horizontal position. In 

addition, the same authors did not find evidence that waxy spikes would be better than 

non-waxy in terms of PST and water absorption. Other spike traits that have been 

studied are glabrousness (King, 1987), floret openness, and glume tenacity (Hong, 1979 

- cited in Paterson et al., 1989). Differences of up to two-fold in rate of water uptake by 

threshed seeds have been reported, however, this variation could not be attributed to 

differences in seed characteristics such as, seed coat color or hardiness (King, 1987). 

One important limitation of the studies discussed in this section is that their 

measurements were made in a maximum period of 50 hours from the beginning of the 

wetting treatments. Therefore, the observed effects of spike and seed morphology may 

or may not be relevant if spikes are submitted to longer periods of rainy weather. 
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2.3 GENETICS 

2.3.1 Association between Seed Coat Color and Seed Dormancy 

Seed coat color is controlled by three independent R loci located on chromosome 

arms 3AL, 3BL and 3DL. The alleles that determine red color are dominant and 

symbolized as R-Alb, R-Blb, and R-Dlb (Flintham and Gale, 1996). Various reports 

have indicated the existence of additional seed coat color alleles (Baker, 1981; Flintham 

and Humphray, 1993; Flintham and Gale, 1996). 

Initially, it was assumed that there was a perfect association between dormancy 

and seed coat color, which could be due to tight linkages or pleiotropism. Selection for 

genotypes carrying the three alleles for redness would result in strong dormancy. It was 

suggested that no white dormant genotypes could be recovered from crosses with 

dormant red wheats (Gfeller and Svejda, 1960). 

There is no doubt that an association between seed dormancy and red seed coat 

color exists. However, Reitan (1980) suggested that selection for red seed coat should 

only be used as a guide and not as a systematic method to select for PST. Although no 

white wheat as dormant as the most dormant red has been identified, the least dormant 

reds are not different from the least dormant whites (Mares and Ellison, 1990). Flintham 

and Gale (1996) compared the dormancy of five near-isogenic lines, each one carrying a 

different allele for red seed coat color, in a non-dormant white background. The lines 

were all more dormant than the white parent and did not differ among themselves. 
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Based on the these results, the authors concluded that the alleles for red coat color from 

anyone of the five donors had the same effect, and that the pigmentation produced by 

the alleles is apparently a dormancy factor itself. However, various dormant white lines 

have been recovered from different crosses between red dormant and white seed coat 

non-dormant parents (DePauw and McCaig, 1987; DePauw et al., 1992; Lawson et al., 

1997). 

2.3.2 Inheritance of Pre-Harvest Sprouting Tolerance and its Mechanisms 

Genetic studies regarding PST have evaluated either PST per se or its individual 

mechanisms. Results from the study of PST have more practical application in breeding 

programs but usually lack the precision to identify the responsible mechanisms. In most 

cases, however, dormancy is the major underlying mechanism. Moderate to high broad 

sense heritability estimates of visual sprouting scores were observed (Upadhyay et al., 

1988; Upadhyay and Paulsen, 1988). For seed dormancy in white wheats, moderate to 

low narrow sense heritability estimates were reported (Allan, 1992; Paterson and 

Sorrels, 1990). In every instance these authors suggested that progress could be 

achieved through selection. 

A number of studies have addressed the inheritance of seed dormancy. The 

dormant red coat colored cultivar RL 4137 has been reported to carry at least two 

independent mechanisms for seed dormancy (DePauw and McCaig, 1987). The number 

of genes involved was not reported, but at least two genes must control the dormancy 
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character. Bath et al. (1983) reported two major recessive genes controlling dormancy 

of the white wheats Kenya 321 sib and Ford. Similar results were obtained by Mares 

(1992) studying AUS 1408, one of the best sources of dormancy in white wheats. In 

other cases, dormancy in white wheats was considered as a multigenic character 

(Upadhyay and Paulsen, 1988; Allan, 1992). Dormancy of the red wheat RL 4137 has 

been shown to be partially dominant, which would facilitate its transfer to other 

genotypes (Noll et al., 1982). The breeding of sprout tolerant cultivars, such as 

Columbus, has demonstrated the soundness of this approach (Campbell and Czarnecki, 

1981). The fact that dormancy of various white dormant wheats is recessive and digenic 

or multigenic will make transferring dormancy from these sources to adapted cultivars 

more laborious and therefore, less attractive. 

Derera and Bhatt (1980) found that 13% of the F3 and 21% of the F4 lines from 

a cross between Kleiber and Gamut had chaff with high level of inhibitory effect, being 

similar to that from Kleiber. The authors attributed this phenotype to the presence of 

germination inhibition. However, since the chaff of the F3 and F4 lines was tested on 

seed from the corresponding line and not on a unique seed source (Kleiber for 

example), the observed response can not be conclusively attributed to differences in 

chaff inhibitors. Differences in embryo response can not be ruled out. Stoy and Olsen 

(1980) reported embryo sensitivity to CT being controlled by a single semi-dominant 

gene while studying reciprocal crosses between Snabbe (insensitive) and U 67653 

(sensitive). 
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Three dwarfing (Rht) alleles are known to affect GA sensitivity in wheat. These 

alleles may be linked or pleiotropic to the Gai alleles (Hu and Konzak, 1974; Flintham 

and Gale, 1980). The allele Rht3 is stronger than Rhtl or Rht2, but they all reduce GA-

induced production of a-amylase (GA insensitivity) in the seed as well as plant height. 

Some agronomic problems have been associated to Rht3. Thus, Rhtl and Rht2 are 

widely used (Derera et al., 1976; McMaster, 1976; Flintham and Gale, 1980; Flintham, 

1990). The existence of genes that cause premature production of a-amylase (even in 

absence of rain) has been reported in Australia and United Kingdom. Results are 

consistent with a single recessive gene hypothesis. Evidence indicates that the Rhtl 

allele can largely overcome the effects of the pre-maturity a-amylase gene and provide 

commercially accepted levels of a-amylase in the grain (Gale et al., 1987; Mares and 

Gale, 1990). 

2.3.3 Molecular Markers and Mapping 

Molecular markers linked to important genes or quantitative trait loci (QTL) for 

PST have great potential as selection tools for breeders. Nevertheless, progress in 

developing pre-harvest sprouting tolerant wheats with assistance of molecular markers 

is still limited. Anderson et al. (1993) studied two populations of F5 recombinant white 

winter wheat inbred lines for PST and for the segregation of RFLP (restriction fragment 

length polymorphism) makers. For each population, four different QTL's were 

positively associated with PST. Multiple regression models using such markers 

accounted for 44% and 51% of the genotypic variation in PST in each of the two 



18 

populations. These QTL were mapped to chromosomes 1 AS, 2S, 2L, 5DL, 6BL, 3BL 

and 4AL. 

In another study, 110 F,- derived double haploid lines from a cross between the 

Japanese cultivars "Fukuho-komugi" (tolerant) and "Oligo culm" (sensitive) were tested 

for PST. Data analysis after 65 RAPD (randomly amplified polymorphic DNA) markers 

were scored identified ten markers positively associated with PST and five markers 

negatively associated (Ban et al., 1996). 

More recently, Flintham et al. (1997, 1998) denominated a major gene 

controlling seed dormancy as Phs. The gene appears to be located on chromosome 1A 

and to have no effect on seed coat color. Finally, the mapping of three R loci for seed 

coat color using RFLP markers (Flintham and Gale, 1996) is likely to facilitate and 

increase precision of new PST mapping efforts. The precise definition of how many 

alleles each mapping line carries will allow scientists to account for the effect of R 

alleles on the PST data. It may also allow a better estimation of the effect of each R 

allele and their interactions. 

2.4 ASSESSMENT OF PRE-HARVEST SPROUTING TOLERANCE 

2.4.1 Influence of Environment and Developmental Stage 

Temperature needs to be taken under consideration to obtain an accurate 

assessment of PST. Temperature regimes prior and after maturity strongly affect seed 
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dormancy and, consequently, PST (Reddy, 1978; Mares, 1984). Low temperatures 

during seed development enhance seed dormancy while high temperatures reduce it 

(Reddy, 1978). In addition, fast drying caused by a low humidity environment has been 

demonstrated to reduce dormancy similarly to high temperatures (Gale et al., 1983). 

During after-ripening, the relationship with temperature is maintained and seeds stored 

at low temperatures lose dormancy at a slower rate. A practical example is the method 

of storage at -15°C proposed by Noll and Czarnecki (1980) to preserve seed dormancy 

for up to ten months. Their results greatly facilitated the study of PST. Samples can be 

frozen soon after harvest and wait to be analyzed at a more appropriate time. 

The response to temperature, however, is reversed when seeds absorb water 

from rainfall in the field or from a wetting treatment in the laboratory. Under these 

conditions, low temperatures will break dormancy down, rather than preserve it. In 

contrast, high temperatures will allow full expression of dormancy (George, 1967; 

Mares, 1984). For example, George (1967) found that none of the genotypes studied 

showed dormancy at 10°C, but at 20°C differences among cultivars were clear. After a 

few weeks, with dormancy weakened by after-ripening, differentiation was possible 

only at 30°C. Consequently, there is no unique ideal temperature to detect differences in 

dormancy among genotypes. The germination temperature that will work best depends 

on the environmental conditions observed during development and on the potential of 

the genotypes to develop dormancy. 
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Other environmental factors that affect PST are rainfall, photoperiod, light 

quality, water stress, and nutritional factors (King, 1989; Mares, 1993). In addition, the 

stage of development in which spikes are harvested is critical. Mares (1984) measured 

dormancy parameters starting 20 days before harvest maturity. Dormancy was greatest 

at that particular time and decreased constantly through seed maturation and after-

ripening. 

2.4.2 Field Methods and Designs 

To obtain a reliable assessment of PST, Mares (1989) recommended the use of 

an identifiable stage of the plant cycle as a reference point for the comparison of 

different genotypes. For that purpose, some authors prefer to tag the spikes at anthesis, 

others directly harvest them at physiological maturity or at a fixed moisture content 

(Plett and Larter, 1986; DePauw and McCaig, 1987; Lawson et al., 1997). To account 

for rainfall and temperature effects in the evaluation of breeding lines of different 

maturities, Mares (1989) used a set of check cultivars with similar PST, but different 

maturity dates. On the other hand, DePauw and McCaig (1987) found no significant 

correlation between days to heading and nine variables used to estimate PST. 

Various kinds of field designs have been used for PST evaluations. Mares 

(1989) recommended the use of a randomized complete block design, which gave 

consistent results to his program. Other authors, however, have not found enough 

reduction in error variance due to this design and opted for complete randomized 
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designs or simply side-by-side rows (Mc Crate et al., 1981; Upadhyay et al., 1988; 

Paterson et al., 1989). 
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3. MATERIALS AND METHODS 

3.1 STUDY I 

3.1.1 Genotypes and Field Evaluations 

A set of seven genotypes represented the experimental material used in Study I. 

Genotypes included the synthetic Altar/At, the durum wheat parent of the synthetic 

(Altar 84), and five wheat cultivars used as checks for PST. Seed coat color, pre-harvest 

sprouting tolerance (PST) and origin of the experimental material are provided in 

Table 1. 

These genotypes were cultivated at Oregon State University Crop Science Field 

Laboratory at Hyslop Farm (Corvallis, OR) during the spring-summer of 1998. Random 

side-by-side plots (one per genotype) were hand-planted on April 15 at a rate of 75 

seeds m'. A second planting date was sown on April 25 to allow synchronization of 

flowering of late and early genotypes. Plots consisted of three 16.5m- long rows spaced 

0.25m apart for both dates of seeding. Each plot was divided into three 4.5m-long sub

plots by 1.5m-wide alleys to allow the mechanized application of agrochemicals. Plots 

were fertilized with 56 Kg of N ha' prior to planting and top-dressed with 15 Kg N ha' 

during tillering (Haun stage 3.6 to 3.9). In order to avoid leaf rust (Puccinia recondita) 

and stripe rust (Puccinia striiformis), three fungicide applications employed. 

Propiconazole (0.144 Kg A.i ha') was used twice and Bayleton® (0.56 Kg ha') once. 

Weed control was maintained by the application of MCPA (0.336 Kg A.i. ha') plus 
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Table 1. List of genotypes in Study I with their seed coat color, pre-harvest sprouting 
tolerance (PST) and origin. 

Genotypes Seed Coat Color PST Origin 

Altar 84 white unknown Mexico 

Synthetic red unknown Mexico 

RL 4137 red tolerant' Canada 

Frontana red tolerant' Brazil 

BR-35 red moderately tolerant2 Brazil 

BR-23 red moderately sensitive2 Brazil 

Bacanora 88 white sensitive3 Mexico 

1. Gale, (1989) 
2. Comissao Centro-Sul Brasileira de Pesquisa de Trigo, (1996). 
3. Based on results from preliminary experiments. 
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Bromoxynil (0.336 Kg A.i. ha') and complemented by hoeing. Irrigation was used to 

avoid water stress. 

All seven genotypes were headed on June 26, either in the first or in the second 

planting date. For each genotype, plots headed on June 26 were selected for tagging 

regardless of planting date. The remaining plots were discarded. For each sub-plot, 30 

spikes that were half-emerged from the boot (Haun stage 10.5) were tagged with 

laboratory tape (Fisherbrand® Colored Label Tape - Fisher Scientific, Pittsburgh, PA). 

Tagged spikes from each sub-plot were hand-harvested when more than 50% had 

achieved physiological maturity (PM). Physiological maturity was determined by the 

complete lost of green color from the glumes (Hanft and Wych, 1982). After harvesting, 

spikes were bundled to dry at room temperature (24°C ± 6°C). After six days they were 

frozen and kept at - 8°C until analyzed. Spikes were thawed for 24 hrs at room 

temperature prior to analysis. 

3.1.2 Laboratory Evaluations 

A complete randomized design (CRD) with three replications was employed for 

all laboratory experiments (Study I and Study II). The 30-spike sample obtained from 

each sub-plot in the field constituted a replication in the laboratory experiments. It was 

assumed that the geographic position of a sub-plot in the field had little impact on the 

parameters evaluated in the laboratory. 
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3.1.2.1 Evaluation of Pre-Harvest Sprouting Tolerance 

To assess PST a sub-sample of ten spikes from the 30-spike sample made up a 

experimental unit. Following immersion in distilled water for eight hours, each spike 

was sprayed with approximately one milliliter of Thiram Granuflo® 0.2% (1.5 g A.i. L-') 

and rolled between two sheets of germination paper (Anchor Paper Co., St. Paul, MN) 

previously imbibed in distilled water. To avoid drying, the ten rolls were placed into a 

reclosable plastic bag (33 x 47.5 cm). After incubation for seven days at 20°C (±1°C) in 

an upright position, the ten spikes were placed together into a dry paper bag and dried at 

40°C for 48 hours. Following threshing, two variables were evaluated: 

Percentage of Germinated Seeds (PGS) - seeds with the pericarp ruptured by the 

radicle were counted as germinated. 

Wet Stirring Number (WSN) - seeds from the PGS determination were ground to 

pass a 0.5mm sieve. The whole-meal flour was then used to estimate starch damage 

as result of a-amylase activity in the Rapid Visco-Analyzer (RVA - Newport 

Scientific Instruments & Engineering, Narrabeen, Australia) using the Stirring 

Number method (American Association of Cereal Chemists, Method 22-08). 

A second set of 10 spikes, which received no wetting treatment, was also 

threshed, ground, and used for determination of the "Dry Stirring Number" (DSN) in the 

RVA. This determination was conducted to verify if the synthetic had pre-mature 

production of a-amylase and also to serve as a basis for the interpretation of the WSN. 
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3.1.2.2. Evaluation of Dormancy and Chaff Inhibitors 

A third sub-sample of ten spikes from each sub-plot was hand-threshed with the 

seed and chaff retained. The chaff was ground to pass a 0.5mm sieve and a sample of 

4.2 g was stirred into 60 ml of distilled water and agitated for 24 hours to extract water-

soluble chemical inhibitors. The extract was then centrifuged (Sorvall® RC-5B, Du Pont 

Instruments, Hoffman Estates, IL) at 3000 rpm to separate the solid matter. Seeds were 

surface-sterilized for 10 minutes in a 0.5% sodium hypochlorite solution and rinsed 

three times with distilled water. Ten Petri dishes (100 x 15mm) were each filled with 25 

seeds. Seeds, with the crease down, were placed on top of two sheets of blue blotter 

paper. Five dishes received nine milliliters of distilled water and five received the same 

amount of chaff extract. Stacks of five dishes were placed into a closed plastic container 

and incubated at 20°C (±1°C) for 14 days. 

Each stack of five dishes constituted an experimental unit. The experimental 

design was a Split Plot where genotypes constituted the main plot and media (water and 

chaff extract) constituted the sub-plots within each genotype. Germinated seeds (same 

criteria used for PGS) from each experimental unit were counted and discarded daily for 

14 days. Non-germinated seeds remained for an additional 45 days (15 days at 5°C and 

30 days at 20°C) in the germinator before being considered dead. Percentage of 

Germination (PG) was calculated cumulatively for each day taking into account the 

total number of viable seeds. Based on these percentages, the variables Germination 

Index (GI) (Hagemann and Ciha, 1984) and Area Under the Germination Progress 

Curve (AUGPC) (Mundt and Leonard, 1986) were calculated by the equations 
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GI = (PGix 7) + (PG, x 6) + +(PG2x 1) and 

AUGPC PG1) - [(PG, + PG,4)/2], 

where PG; = PG on the ith day; and PG1, PGI4= PG on day 1, day 2, ..., and day 

14, respectively. Germination Index only used information of the first seven days and 

gave more weight for the first and less for the last days. Area Under the Germination 

Progress Curve used the 14 days of data equally. 

3.1.3 Statistical Analysis 

Statistical analysis utilized the SAS (SAS Institute Inc., 1995) statistical 

software. For the comparison of the synthetic and other cultivars the variables PGS, GI, 

WSN, and DSN were used. Original data of the variables PGS, GI and WSN violated 

the homogeneity of variance assumption of the analysis of variance (ANOVA). These 

variables were then rank transformed. Observations were ranked from the smallest to 

the largest value and ranks were assigned consecutively (1,2,..., n). Ties were assigned 

with average ranks (1, 2.5, 2.5, n). Analyses of variance and Fisher's Protected 

Least Significant Difference (FPLSD) multiple comparison procedures were conducted 

on the rank transformed data as if they were common parametric data as indicated by 

Conover and Iman (1981). The variable DSN required no transformation. 

The variable AUGPC was used to compare the effects of water and chaff 

extracts on dormancy of each genotype. In order to meet the ANOVA's assumptions, 

data analysis was performed separately in two groups, one with five genotypes and the 
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other with two. The variances within each group were homogeneous. Within each 

genotype, t-tests were performed to compare the AUGPC of water and chaff extract 

treatments. One-sided probability values were reported since chaff extracts are only 

expected to reduce AUGPC (Derera et al., 1976; McCrate et al., 1982; Salmon et al., 

1986; Trethowan et al., 1993). 

3.2 STUDY II 

3.2.1 Genotypes and Field Evaluations 

Random inbred F2:5 lines from single and backcrosses between the synthetic 

Altar/At and the Mexican cultivars Opata 85 (Opata) and Bacanora 88 (BCN) were used 

in this study. Both Opata and BCN have little or no PST. Seed of Opata are red while 

BCN seed are white. F5 lines heterogeneous for seed coat color were discarded. The 

total number of lines studied per cross included: i) 24 lines each from Altar /At/ /Opata 

and Altar/Ae//2*Opata populations, ii) 19 lines of Altar/At//BCN, and iii) 22 lines of 

the Altar/At//2*BCN population. These populations were respectively designated as 

Population 1, 2, 3 and 4. 

The parent Altar/At was sent by the International Maize and Wheat 

Improvement Center (CIMMYT) to Oregon State University in 1994. Following single 

and backcrosses with Opata and BCN, the subsequent populations were advanced from 

F2 to F4 by single-seed-descend (SSD). Prior to every sowing, seed dormancy was 

removed by a 37°C-treatment for seven days. In 1997, F4 lines were provided for the 
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present study and advanced to the F5 in the same year at Crop Science Field Laboratory. 

From F2 to F5 no selection was applied other than discarding sterile or very late plants. 

Each F5 population accompanied by their respective parents was hand-planted at 

Hyslop Farm in side-by-side plots on April 16, 1998. Parents were replicated three 

times while the F5 lines were not replicated. Each plot consisted of two 1.5m-long rows 

with 0.25m space between rows. A second planting date was sown ten days later in the 

same manner. Lines were sowed at a rate of 27 seeds rn-2 or less, depending on seed 

availability. Cultural practices were identical to those described for Study I. 

According to the heading dates, each genotype (lines and parents) was assigned 

to be harvested from only one of the two planting dates. Late heading genotypes were 

assigned to the first planting date while early genotypes were assigned to the second. 

This was done to better synchronize the stages of development of all genotypes and 

minimize error due to environmental influence on the parameters to be estimated. When 

at least 50% of the spikes in a plot had achieved PM, twelve spikes were hand-

harvested. Spikes were handled until analysis as described previously. Additional four 

random spikes were collected to classify genotypes for seed coat color. 

3.2.2 Laboratory Evaluations 

Nine spikes from each plot were taken for the assessment of PST. A sub-sample 

of three spikes was considered as a replication. F5 lines were replicated three times with 

nine replicates for the parents. Percentage of Germinated Seeds (PGS) was accessed 
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using intact spikes rolled in germination paper as described for Study I, except the 

period of incubation that was reduced from seven to five days. 

Seed coat color was visually assessed with the help of a 1-M sodium hydroxide 

solution (Chemelar and Mostovoj, 1938 cited by DePauw and McCaig, 1983) to 

emphasize contrast. Lines were classified as red or white. 

3.2.3 Statistical Analysis 

Statistical analysis was performed independently for each population using the 

software mentioned in Study I. Graphical assessment (residual plots) of data from P1 

(Altar /At/ /Opata) and P2 (Altar/Ae//2*Opata) indicated that an arcsine square root 

transformation might be appropriate to minimize the slight heterogeneity of variance 

present in these two populations. Since the only significant change obtained with the 

transformation was a reduction in the coefficients of variation, statistical analysis of the 

four populations was performed using the non-transformed data. In addition, the 

analysis of a model were heading date was included as a covariate provided evidence 

that it was not necessary to account for this variable when estimating PGS means. 

Narrow-sense heritability (h2) estimates for each population were obtained 

according to Singh and Chaudhary (1977) by the formula 
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h2= a2g /alp 

where a2g = genetic variance or (a2, - a2E)/r, and a2p = phenotypic variance or (a2g + 

Cr2E). From the ANOVA table a2L = variance of the F5 lines or expected mean square of 

lines; a2E = variance of error or expected mean square of error; and r = number of 

replications. The estimates of h2 were considered as narrow-sense because at the F5 level 

of inbreeding, dominance variance is minimal and additive by additive epistatic 

variance can be included in the estimates. 

The association between red seed coat color and PST was addressed through the 

use of single contrasts comparing the means of red and white lines in each population. 

Previous reports about this association and the hypothesis used to explain it indicate that 

the association between red seed coat color and PST is expected to be positive 

(Miyamoto and Everson, 1958; Gfeller and Svejda, 1960; DePauw and McMaig, 1983; 

Come et al., 1984; Flintham and Gale, 1996; Lawson et al., 1997). Therefore, one-sided 

probability values were reported. A multiple comparison procedure (FPLSD) was used 

to compare lines and parents. 
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4. RESULTS AND DISCUSSION 

4.1 STUDY I 

4.1.1 Comparisons among the Synthetic and Check Cultivars 

To evaluate the potential of the synthetic Altar/At as a source of pre-harvest 

sprouting tolerance (PST) it was necessary to compare it with wheat cultivars of known 

PST. Comparisons in this section were based on the variables PGS (Percentage of 

Germinated Seeds), GI (Germination Index) in water and GI in chaff extract. As PGS is 

measured from intact spikes subjected to a wetting treatment, it is influenced by various 

mechanisms that affect PST under natural conditions such as, dormancy, chaff 

inhibitors, and spike and seed morphological characteristics. For this reason, PGS is 

viewed as a better indicator of PST under natural conditions than germination tests in 

Petri dishes. However, a limitation of PGS is that it reflects the germination response at 

a specific moment (the seventh day in this study). Germination Index in water and chaff 

extract do not account for spike morphological differences but integrate data from 

several days giving more weight to the response on the first days. Therefore, the chosen 

variables complement each other to allow a more thorough evaluation of the PST of 

each genotype. 

Temperatures during grain filling period were 1.9°C above average. Maximum 

daily temperatures of up to 39.4°C were observed near physiological maturity (for more 

detail refer to Appendix). High temperatures during seed development have been shown 
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to decrease seed dormancy and, consequently PST (Reddy, 1978). Comparisons made 

among genotypes were assumed to be valid since they were at similar developmental 

stages (all headed at the same day) when subjected to a high temperature period 

Results for three variables involving five check genotypes are presented in 

Table 2. The rankings were consistent with those proposed based on previous reports 

(Gale, 1989; Comissao Centro-Sul Brasileira de Pesquisa de Trigo, 1996) and presented 

in Table 1. These results support the methodology utilized to assess PST and allowed 

the ranking of Altar 84 and the synthetic for this trait in comparison with known checks. 

Multiple comparison tests based on rank transformed data indicated that the synthetic 

was less tolerant than RL 4137 and Frontana (tolerant checks) and more tolerant than 

Bacanora 88 (sensitive check) for PGS, GI in water and chaff extract (Table 2). The 

cultivar BR-35 (moderately tolerant) was more tolerant than the synthetic according to 

PGS. In addition, BR 35 mean values for GI in water and chaff extract also indicated 

BR-35 as being more tolerant that the synthetic. Germination progress curves in water 

and chaff extract illustrate the responses of all genotypes (Figure 1). 

The response of the synthetic and BR-23 (moderately sensitive) were similar 

and their relative ranking varied depending on which variable was considered. BR-23 

was more tolerant when PGS was considered. However, for GI in water and chaff 

extract the synthetic ranked as more tolerant. The examination of the germination 
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Table 2. Non-transformed means for Germination Index in water and chaff extract, 
Percentage of Germinated Seeds (PGS), Wet Stirring Number (WSN), and Dry 
Stirring Number (DSN). Except for DSN, all variables result from wetting 
treatments of seven days at 20°C. 

Threshed seed in Spikes in 

Petri dishes germination paper 

Germination Index PGS RVA Stirring Numbers 

Genotypes Water Extract (%) WSN DSN 

RL 4137 0.5a 2 0.2e 2.2i 106 113
 

Frontana 1.8a 2.3e 3.6k 71 115
 

BR-35 225h 82f 14.71 11.3 118
 

Synthetic 444E 184fg 40.3n1 4.7 103
 

BR-23 590' 293gh 22.4° 6.0 126
 

Altar 84 538' 346h 65.2° 7.0 126
 

Bacanora 88 1057d 647' 89.3' 2.7 107
 

CV (%)3 20.9 17.7 9.1 18.1 7.5 

1. Germination Index = (PG, x 7) + (PG2 x 6) +	 +(PG, x 1) where PG,, PG2,..., PG, = 
percentages of germination on day 1, day 2,..., and day 7, respectively. 

2. Means within a column followed by the same letter are not significantly different 
(P>0.05) according to a Fischer's Protected Least Significant Difference Test run 
with rank transformed data. 

3. Except for variable DSN, Coefficients of Variation (CV) are based on analysis of 
rank transformed data. 
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Figure 1. Germination progress curves of genotypes in Study I germinated 
in water (a) or chaff extract (b) for 14 days. 
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progress curves of these two genotypes helps to understand such contrasting responses 

(Figure 1). In both instances, percentage of germination at the seventh day for BR-23 

was equal or lower than the synthetic. However, the examination of the curves from the 

second to the sixth day indicates that the synthetic was slower to germinate (more 

tolerant) during this period. This difference in initial response explains why the 

synthetic had a better PST if GI rather than PGS is considered. There is no assurance 

that the synthetic also had a slower rate of germination during the initial days within the 

intact spikes, but it seems to be a valid indication that the PGS of the synthetic would be 

relatively better if the test had been run for a shorter time. In any case, a clear 

conclusion can not be drawn from this data regarding the true relative ranking of these 

two genotypes. Both can be classified for PST as moderately sensitive. 

Because the specific Aegilops tauschii genotype used to develop the synthetic is 

not known, it was necessary to compare the synthetic with its female parent Altar 84 for 

PST. Altar 84 was statistically more tolerant than Bacanora 88 for all three variables 

indicating that Altar 84 has some PST. The synthetic was ranked above Altar 84 for the 

three variables and was more tolerant for PGS and GI in chaff extract. The fact that the 

synthetic was found to be more tolerant than its parent Altar 84 provides evidence that 

Aegilops tauschii (D genome) contributed to the PST of the synthetic. Although it could 

not be proven, Altar 84 (A and B genomes) has probably contributed to the synthetic's 

PST as well. 
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The variable Wet Stirring Number (WSN) was used to indirectly assess the PST 

of the genotypes through the evaluation of their starch pasting properties as affected by 

the a-amylase activity developed during wetting treatments. Although the seven-day 

wetting treatment was effective in differentiating genotypes based on PGS, this 

treatment was too long to be able to differentiate the synthetic from wheat genotypes 

with similar levels of PST based on WSN. According to a reference table provided by 

the RVA manufacturer (Newport Scientific Instruments & Engineering, Narrabeen, 

Australia) a stirring number of 82 is equivalent to a Falling Number of 251. A Falling 

Number (FN) of 250 is commonly used as a threshold to decide whether a wheat lot is 

sprout-damaged or not. A lot with a FN at or above 250 is considered sound and 

appropriate for production of amylase sensitive end products such as pan bread. Data 

presented in Table 2 indicate that the only genotype that maintained a commercially 

acceptable stirring number (above 82) was RL 4137 (WSN = 106). Frontana remained 

at a level (WSN = 70, FN 227) that would still be acceptable for less amylase-

sensitive wheat products or for mixing with "sound" grain. All the other genotypes had 

very low stirring numbers indicating a high a-amylase activity, which compromised 

flour quality. 

Dry stirring number of all genotypes was higher than 100 indicating that low 

levels of a-amylase were present in the grains of non-wetted spikes. This indicates that, 

at least in the conditions in which this experiment was conduced, neither the synthetic 

nor the other genotypes had a pre-mature production of a-amylase. 
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Xiu-Jin et al. (1997) reported PST in a different synthetic. Their synthetic 

appeared to be more tolerant then all the checks employed. It had a mean percentage of 

germination at the seventh day of 6.06 % while the means of the checks ranged from 

27.63 to 80.34%. No reference was made regarding the level of PST of their checks. 

The PST level found for the synthetic Altar/At was less than that of RL 4137 or 

Frontana, but it may still be valuable. The cultivar BR-23, which had the PST level 

most similar to the synthetic, was cultivated in southern Brazil for many years. Even 

though this area is particularly prone to sprouting problems, BR-23 was a successful 

cultivar. Its area of cultivation decreased due to increased bread making quality 

requirements and not due to its level of PST. Therefore, the PST of the synthetic might 

be satisfactory in some regions. However, this tolerance would be more useful if added 

to the PST of other genotypes. This possibility is discussed in section 4.3. 

4.1.2 The Effect of Chaff Extracts on Dormancy 

Results of the ANOVAs for Area Under the Germination Progress Curve 

(AUGPC) are presented in Table 3. For each genotype, t-tests comparing AUGPC's 

means of water and chaff extract treatments provided evidence that chaff extracts 

reduced AUGPCs (Table 4). The germination progress curves of each genotype 

germinated in water and chaff extract are presented in Figure 2. 
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Table 3. Observed means squares for Area under the Germination Progress Curve 
(AUGPG) from ANOVAs in groups of two genotypes (RL 4137 and Frontana) 
and five genotypes (BR-35, Synthetic, BR-23, Altar 84, and Bacanora 88). 

Group of two Group of five 

Sources of variation df AUGPC P-value df AUGPC P-value 

Genotypes 1 99.8 0.78 4 131117 0.0014 

Error (a) 4 1143.5 10 12605 

Media (Genotypes)1 2 2024.1 0.10 5 56463 0.0048 

Error (b) 4 467.1 10 8133 

C.V. (%) 37.3 13.7 

1. Media refers to the two germination media employed: water and chaff extract. 

Table 4. Means of AUGPC of genotypes in Study I germinated in water and in their 
own chaff extracts. One-sided probability values (P-value) refer to t-tests for 
the difference between water and chaff extract AUGPC means within each 
genotype. 

Media RL 4137 Frontana BR-35 Synthetic BR-23 Altar 84 Bacanora 88 

Water 80 72 544 733 706 796 982
 

Extract 41 38 332 578 570 632 710
 

P-value 0.046 0.062 0.008 0.031 0.048 0.026 0.002 
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Figure 2. Germination progress curves of genotypes RL 4137 (a), Frontana (b), 
BR-35 (c), synthetic Altar/At (d), BR-23 (e), Altar 84 (f), and 
Bacanora 88 (g), germinated in water and chaff extract for 14 days. 
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The observed results indicating the existence of an inhibitory effect of chaff 

extracts on germination of red genotypes and white (Bacanora 88) are in agreement 

with results obtained by Derera et al. (1976) and McCrate et al. (1982). The inhibitory 

effect of chaff extracts on germination has also been observed in triticale (Salmon et al., 

1986). From this study, there is evidence that this effect can be observed in durum 

wheat (Altar 84) and in synthetic hexaploid wheat as well. Seed dormancy and 

inhibitory substances in the chaff appear to contribute to the PST of all studied 

genotypes. 

The inhibitory effects observed in this study depended not only on the inhibitors 

in the chaff, but also on the response of the embryos of each genotype to these 

inhibitors. It was expected that differences in these two components (inhibitors and 

embryos) would generate large differences among genotypes in terms of how they 

would respond to the chaff extracts (stronger or weaker inhibition). Instead, a visual 

assessment of the germination progress curves of each cultivar in water and chaff 

extract did not show major differences (Figure 2). 

To demonstrate that chaff extracts can play a role in inhibiting germination in 

each genotype, it was necessary to test the chaff extract of these genotypes on their own 

seed. This would answer the question regardless the responsiveness of their embryos. 

However, to make comparisons among chaff extracts one should apply all chaff extracts 

to the seed of one or a few genotypes, as suggested by Salmon et al. (1986). 
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4.2 STUDY II 

4.2.1 Analysis of Variance and Heritability Estimates 

In this study, lines and parents did not head simultaneously, but the ranges of 

flowering and harvesting dates for harvested plots was reduced by using two planting 

dates. The influence of heading date on Percentage of Germinated Seeds (PGS) was 

tested for each population by the inclusion of heading date as a covariate in the 

ANOVA. Probability values for the significance of this effect in the four populations 

ranged from 0.46 to 0.70 indicating that heading date did not significantly influenced 

PGS. Visual assessment of scatterplots (PGS vs. heading date) also did not detect any 

influence. These results validate the comparison of PGS mean values made in sections 

4.2.2 and 4.2.3 among genotypes that headed on different days. 

F5 lines showed a wide range of PGS mean values in all populations. The range 

in mean PGS (%) in each population varied between 76% (Population 1) to 87% 

(Population 2). Results of the analysis of variance of the F5 lines (parents excluded) 

from populations 1, 2, 3, and 4 for the variable PGS, measured after five days of wetting 

treatment, are presented on Table 5. Significant differences were observed among F5 

lines in all populations. Coefficients of variation (CVs) were high (from 15.1 to 34.9). 

No systematic source of error variance could be identified. Despite the CVs, narrow 

sense heritability estimates for the four populations were moderate (63.9%) to high 

(82.3%) indicating that a large portion of the observed phenotypic variance was due to 

additive genetic variance. In a similar study, where three random inbred populations 
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Table 5. Observed means squares for Percentage of Germinated Seeds (PGS) of F5 lines 
of Populations 1-4 accompanied by narrow sense heritability (h2) estimates for 
the same trait. 

Sources of Population 1 Population 2 Population 3 Population 4 

Variation df PGS df PGS df PGS df PGS 

F5 lines 23 1462.7*** 23 1695.6*** 18 1516.5*** 21 1791.3*** 

Error 48 195.3 48 113.8 3 240.3 44 151.2 

8 

C.V. (%) 34.9 15.1 29.8 20.5 

h2 (%) 68.4 82.3 63.9 78.3 

*** Significant at the 0.001 probability level. 
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were evaluated under artificial rain, Lawson et al. (1997) observed similar heritabilities 

(46% to 92%) for visual sprouting scores. According to the heritability estimates 

observed in the present study, mean PGS values of F5 lines are expected to be a good 

predictor of the future performance of their progenies. In other words, selection based 

on PGS can be efficient when applied to late generations. The efficiency of the selection 

based on PGS when applied to earlier generations is discussed in section 4.2.3. 

4.2.2 Association between Seed Coat Color and Pre-Harvest Sprouting Tolerance 

F5 lines with red and white seed coats were evaluated in all four populations 

(Table 6). Since Populations 1 and 2 originated from crosses between two red parents 

(Altar/At and Opata), white lines in these populations indicate that alleles determining 

seed coat color are different in the parents. The segregation for seed coat color and PST 

observed in the four populations represents an opportunity to study the association 

between these two traits. If these traits segregated independently, the mean values of 

PGS (the estimator of PST in this study) of the red lines should not differ from the mean 

values of PGS of the white lines. Similar studies have found a positive association 

between the red seed coat color and PST. Despite this association, in some studies the 

PST of the tolerant red parent was partially recovered in white recombinant lines 

(DePauw and McMaig, 1983; Lawson et al., 1997). This apparent association was of 

interest in the present study for two reasons. First, previous reports on PST of synthetic 

wheats have not addressed the possible association between seed coat color and PST. 

Thus, mechanisms present on Aegilops tauschii may or may not be associated with its 



Table 6. Summary of Percentage of Germinated Seeds (PGS) for F5 lines with red and white seed coats from Populations 1-4 
accompanied by the estimated differences in PGS mean values between red and white lines and the one-sided probability 
values (P-values) for the test of each difference. 

Red White 

Populations) Number Mean Range Number Mean Range Difference P- values 

of lines (%) (%) of lines (%) (%) (%) 

1 21 36 6 82 3 66 59 70 29 < 0.001 

2 22 69 11 98 2 86 74 97 17 0.055 

3 15 46 8 - 89 4 75 60 - 89 29 < 0.001 

4 7 38 16 - 95 15 70 33 - 95 32 < 0.001 

1- Population 1= Altar /At/ /Opata; Population 2 = Altar/ At//2*Opata; Population 3 = Altar/At//BCN; Population 4 = 
Altar/At//2*BCN. 
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red seed coat color. Second, since Altar 84 has no alleles for red color and some level 

of PST (identified in Study I), such tolerance may be passed to progeny independently 

of seed coat color. 

Within each of the four populations, the mean values for PGS of the red lines 

was lower (low PGS indicates tolerance) than the mean PGS values of the white lines, 

indicating a positive association between red seed coat color and PST in these 

populations (Table 6). The tendency of the white lines to exhibit high PGS mean values 

can be observed graphically in Figures 3 and 4. 

Seed coat color can be a useful tool to select for PST in crosses with the 

synthetic since red seed coat was found to be positively associated to PST in the studied 

populations. However, selection should not be based only on seed coat color because 

red seed coat was not sufficient to ensure tolerance. This can be demonstrated by the 

fact that, in all four populations, there were red lines less tolerant than the tolerant 

parent (synthetic) and not different from the sensitive parent (see Figures 3 and 4). This 

feature is especially noticeable in Population 2 (Figure 3c), where a group of lines is 

clustered near the sensitive parent BCN. 

From the 24 white lines obtained in all four populations, one of them (in 

Population 4) was not significantly different from the synthetic. Caution must be taken 

in considering this line as a white recombinant with PST similar to the synthetic since it 

had a mean PGS value of 33% while the synthetic had a mean PGS value of 23%. 
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(Altar /At/ /Opata) and (c,d) Population 2 (Altar/At//2*Opata), according to their 
mean Percentage of Germinated Seeds (PGS). Horizontal bars represent LSD 
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Whereas it is questionable that a white line as tolerant as the synthetic could be obtained 

in the present study, there is stronger evidence that some of the white lines were more 

tolerant than their sensitive parents. In Populations 1, 3, and 4, one, one, and six white 

lines, respectively, were significantly more tolerant than their sensitive parents. This 

indicates that at least part of the PST of the synthetic has been recombined with white 

seed coat color. Therefore, the synthetic can be used as a source of PST for white 

wheats. Pre-harvest sprouting tolerance in these recombinants may have originated from 

Altar 84. However, such hypothesis was not tested in the present study. 

Findings in this section can be summarized as follows: i) progenies from crosses 

between the synthetic Altar/At and the sensitive parents (Opata and BCN) show a 

positive association between red seed coat color and PST, ii) this association is not 

strong enough to assure tolerance in all F5 red lines and, iii) in spite of the association, 

white recombinant lines more tolerant than the sensitive parents can be obtained from 

single and backcrosses with the synthetic Altar/At. These findings are in agreement 

with those of DePauw and McMaig (1983) and Lawson et al. (1997) using different 

germplasm. 

4.2.3 Pre-harvest sprouting tolerance in parents and F5 lines 

Mean values and ranges of PGS observed for the parents in the four populations 

are presented in Table 7. In all populations the synthetic had significantly lower PGS 

mean values than the respective sensitive parent, as illustrated in Figures 3 and 4. The 
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Table 7. Percentages of Germinated Seeds (PGS) means and ranges from parents of 
populations in Study II. 

Population Synthetic Opata Bacanora 88 

Mean Range Mean Range Mean Range 

(%) (%) (%) (%) (%) (%) 

1 26 12 - 40 86 69 - 96 

2 22 12 - 37 91 79 - 98 

3 25 14 - 42 82 70-90 

4 23 11 - 41 86 61-95 
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presence of lines significantly more tolerant than their respective sensitive parents in all 

populations demonstrates that the synthetic can be used to improve PST in crosses with 

wheat cultivars. 

F5 lines with absolute mean PGS values outside the range of the parents were 

identified in all populations, suggesting the occurrence of transgressive segregation for 

PGS. A substantial part of the phenotypic variance observed for PST in the populations 

studied was attributed to additive effects (section 4.2.1), therefore transgressive 

segregants would be expected. However, differences in PGS between these F5 lines and 

the correspondent parents at either side of the parental range were not statistically 

significant. In addition, the existence of transgressive segregants would require the 

sensitive parents to have alleles conferring PST. Considering their consistently high 

PGS mean values (refer to Table 7), it is possible that the sensitive parents do not have 

alleles conferring PST. Therefore, until stronger evidence is available no conclusion 

should be drawn regarding transgressive segregation in the studied populations. 

The numbers and percentages of lines that were not statistically different than 

the synthetic are presented in Table 8. The relatively high proportion of lines assumed 

to be as tolerant as the synthetic in each population is an indication that few genes 

control PST in the populations studied. Due to the limited number of lines available for 

this study it was not possible to estimate the number of genes involved. Xiu-Jin et al. 

(1997) reported one recessive gene controlling PST in a different synthetic wheat. 
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Table 8. Number and percentage of tolerant F5 lines in each population. Tolerant lines 
had PGS mean values not significantly different (P>0.05) from the synthetic. 

Population Cross Tolerant lines 

Number (%) of the total number of lines 

1 Altar/AtllOpata 13 54
 

2 Altar/At//2*Opata 3 13
 

3 Altar/At/BCN 8 42
 

4 Altar/At//2*BCN 7 32
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The moderate to high narrow sense heritability estimates obtained (Section 

4.2.1) and the small number of genes that seem to be involved in the genetic control of 

PST in the populations studied, indicate that selection would be effective in earlier 

generations than F5. However, since in earlier generations smaller samples per plant are 

generally used selection efficiency is expected to be less efficient than in later 

generations. 

4.3 PRE-HARVEST SPROUTING TOLERANCE OF THE SYNTHETIC - POTENTIAL AND 
BREEDING STRATEGY 

Based on the information presented in the previous sections, it is now possible to 

make a comprehensive evaluation of the potential of the synthetic Altar/At as a source 

of PST. The level of PST observed in the synthetic (moderately sensitive) is not strong 

enough to make it a very attractive source of PST. However, it can be sufficient in areas 

less prone to pre-harvest sprouting. This limited level of PST may be compensated by 

the fact that the alleles conferring PST for the synthetic may be different from the 

alleles present in available sources of PST in wheat. Durum wheat and especially, 

Aegilops tauschii, have not been extensively used in crosses with wheat until recent 

years (Cox et al., 1990; Lange and Jochemsen, 1992; Mujeeb-Kazi et al., 1996; Xiu-Jin 

et al., 1997). The relative genetic isolation of the three gene pools has presumably 

contributed to the recent identification and transference of unique and useful alleles 

from Aegilops tauschii and durum wheat to the wheat gene pool (Lagudah and Halloran, 

1988; Cox et al., 1990; Market et al., 1995; and Villareal et al., 1996). Therefore, the 
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alleles conferring PST in the synthetic may also be unique to the wheat gene pool. 

Different alleles represent a possibility of increasing the genetic diversity for the trait. 

Furthermore, as these alleles appear to have additive effects, it seems possible to 

enhance the tolerance of current sources of PST through crossing and selection. The 

improvement of sources of PST is especially important in the case of white wheats were 

the number of sources and the level of PST available is more limited. Results of this 

study indicate that the synthetic can also contribute to the PST of white wheats. 

The potential use of the synthetic as a source of PST is also affected by how 

tolerance is inherited. Dominance, recessiveness, and potential interaction between 

alleles could not be assessed using F5 lines (nearly homozygous). Nevertheless, the 

indication that few genes control PST in the synthetic can certainly facilitate the use of 

this tolerance. 

Some other considerations about the use of the synthetic's PST for breeding 

purposes are noteworthy. First, the synthetic Altar/At has a poor agronomic plant type. 

The main agronomic problems in this study were related to threshability, lodging, and 

disease resistance. The backcrossed populations were, in general, agronomically more 

acceptable than those resulting from single crosses populations. If only few genes are 

responsible for the PST in the synthetic, the use of backcrosses seems to be an 

appropriate strategy to transfer the synthetic's PST to agronomically acceptable 

genotypes. The number of tolerant lines obtained in Population 2 and Population 4 

(Table 8), which are derived from backcrosses to sensitive parents, reinforces the 
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appropriateness of this methodology. Second, tolerant lines obtained in this study may 

be re-tested and used in crosses with the genotypes of interest instead of using the 

synthetic. This strategy would certainly improve the agronomic plant type of the 

progenies facilitating the transference of PST. 

Results in the present study support those of Xiu-Jin et al. (1997) and Gatford 

(1998, personal communication) to demonstrate that the synthetic hexaploid wheats 

represent a potentially important source of PST. A fruitful field for research relies on 

the identification of PST in Aegilops tauschii as well as in hundreds of synthetic wheats 

already available and on the transference of this PST to agronomically superior 

germplasm. 
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5. SUMMARY AND CONCLUSIONS 

Two studies were conducted to evaluate the pre-harvest sprouting tolerance 

(PST) of the synthetic Altar/At and determine the potential of this genotype as a source 

of PST in crosses with hexaploid wheat cultivars. The first study compared the synthetic 

with selected PST checks and with the synthetic's durum wheat parent, Altar 84 (donor 

of genomes A and B). Comparisons were based on the germination response of the 

genotypes to wetting treatments applied under temperature controlled conditions to 

field-grown intact spikes and threshed seeds. The second study employed random 

inbred F5 lines obtained from single and backcrosses between the synthetic and two 

sensitive wheat cultivars. Seed coat color and germination responses of the F5 lines 

subjected to a spike wetting were evaluated. The following conclusions could be drawn: 

1.	 The synthetic has a PST similar to that of the moderately sensitive check BR-23, 

and is more tolerant than its parent Altar 84. 

2. The Aegilops tauschii parent (donor of D genome) contributed to the PST of the 

synthetic. The improvement of the synthetic over Altar 84 in terms of PST can be 

attributed to the Aegilops tauschii parent. Altar 84 has some PST and has probably 

contributed to the synthetic's PST as well. 

3.	 Water-soluble substances present in the vegetative floral tissues (chaff) of the 

synthetic, Altar 84, and wheat checks, can inhibit germination of threshed seed of 
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these genotypes enhancing their dormancy. Seed dormancy and inhibitory
 

substances in the chaff appear to contribute to the PST of these genotypes.
 

4.	 Pre-harvest sprouting tolerance as measured by Percentage of Germinated Seeds 

(PGS) in the selected populations had moderate heritable values suggesting this trait 

was controlled largely by additive gene effects. Few genes appeared to control PST, 

as indicated by the relatively high proportion of lines as tolerant as the synthetic. 

Selection for PST based on PGS would be expected to be effective in late 

generations and, to a lesser extent, in early generations as well. 

5. Red seed coat was positively associated with PST in the populations studied. Seed 

coat color could be used as a selection tool for PST, but breeders can not rely only 

on seed color data since red coat color was found not only among the most tolerant 

F5 lines, but also among the most sensitive. 

6. The synthetic Altar/At can be used to improve PST of wheats with red and white 

seed coats. White recombinant lines more tolerant than their respective parent 

represented one third of all white lines obtained. One of these lines was not 

statistically different from the synthetic parent. 

7.	 In order to utilize the tolerance from the synthetic to breed for improved PST, the 

use of the more tolerant lines obtained in this study as parents in backcrosses to 

agronomically superior germplasm appears to be an appropriate strategy. 
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Appendix 1. Summary of meteorological data for the month of July at Hyslop Farm 
during the wheat growing season of 1998. 

Day 

1 

2 
3 

4 
5 

6 
7 
8 

9 
10 
11 

12 
13 

14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Mean 1998 
Mean 1961-1990 
Departure 
Total 1998 
Average 1961-1990 

Maximum 

21.1 
21.1 
24.4 
19.4 
21.7 
25.6 
29.4 
27.2 
28.3 
29.4 
24.4 
27.2 
25.6 
27.8 
28.3 
31.1 
35.0 
32.2 
28.9 
26.7 
30.0 
33.3 
33.9 
30.6 
28.9 
30.6 
37.8 
39.4 
37.2 
27.8 
26.7 

28.8 
26.8 
2.0 

Temperature (°C)
 
Minimum
 

12.8 
13.3 
12.2 
13.9 
12.8 
13.9 
12.8 
10.6 
12.8 
11.7 
9.4 
11.1 
9.4 
11.7 
11.1 
11.7 
10.6 
11.7 
11.1 
12.2 
11.7 
12.2 
11.7 
11.7 
10.6 
16.1 
16.7 
15.0 
14.4 
10.6 
15.0 

12.3 
10.5 
1.8 

Mean 

19.6 
17.2 
18.3 
16.7 
17.2 
19.7 
21.1 
18.9 
20.6 
20.6 
16.9 
19.2 
17.5 
19.7 
19.7 
21.4 
22.8 
21.9 
20.0 
19.4 
20.8 
22.8 
22.8 
21.1 
19.7 
23.3 
27.2 
27.2 
25.8 
19.2 
20.8 

20.5 
18.6 
1.9 

Precipitation 

(mm) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.3 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
0.0 

2.6 
1.3 




