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CONTRIBUTION FROM TWO ON-SHELL PION EXCHANGE
 

IN NUCLEON-NUCLEON SCATTERING 

1. INTRODUCTION 

The interaction of nucleons at large distances must be dominated by the 

exchange of pions. The exchange of a single pion reaches farthest, with a range 

of m, = 1.4 fm. Uncorrelated two-pion exchange would have half that range, 

comparable to the r.m.s. charge radius of a single nucleon. At that distance 

the quark distributions of the nucleons must surely overlap significantly, so the 

exchange of multiple pions cannot be expected to give an accurate accounting 

of the nucleons' interactions. 

Nevertheless the two-pion exchange amplitude has to play a role in the 

scattering, at least to unitarize the single-pion exchange. [1] It is also thought 

to play a role in the binding energy of nuclear matter, to which single-pion 

exchange does not contribute due to isospin symmetry. The facts that the 

intermediate nucleon is inhibited by the Pauli principle, and that its self-

energy is modified by the nuclear medium, have long been argued to contribute 

to the saturation of nuclear matter at the observed average spacing of about 

2 fm. [2] 
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There are two widely applied methods to estimate the two-pion exchange 

contribution to the scattering amplitude, dispersion theory and phenomeno­

logical field theory. Dispersion theory can be used to express the NN ampli­

tude in terms of the observable rate for pion production in nucleon annihilation 

[3, 4], 

NN 4 71-7. 

This has the advantage of including the correlations of the exchanged pions, 

but is handicapped by the difficulty of the experiments and their analysis. In 

phenomenological field theory, the pion-nucleon vertices are dressed with form 

factors fit to other scattering data [5-7]. 

In a tour de force of analysis, Hamilton and Oades [8] showed that the 

amplitude for two-poin exchange in nucleon scattering can be deduced by 

applying unitarity and causality to real multiple-scattering processes in which 

pairs of intermediate particles are on their energy shells. The case which has 

been extensively studied is when the intermediate nucleons are both on-shell, 

NN NN NN, 

i.e. true multiple scattering. However there is a second case with both pions 

on-shell. This contribution would be expected to be much smaller than the 

amplitude of nucleon rescattering, because the intermediate nucleons must 

be far off -shell. That leads both to large denominators from the off -shell 

propagators, and small vertex factors from the off -shell form factors. However 

this reasonable assumption could not be tested for lack of knowledge of the 

form factors for off -shell nucleons with on-shell pions. A recent analysis of 
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pion-nucleon scattering has yielded new information in the relevant kinematic 

regime [9]. Using this new knowledge, we calculate for the first time the 

contribution of on-shell two-pion exchange to nucleon-nucleon scattering. We 

are disappointed but not surprised to confirm that the amplitude for this 

process is too small to matter. 

In the process of carrying out the computation, we developed new computa­

tional techniques which may be of interest in their own right. A judicious com­

bination of computer programs using symbolic algebra and numerical methods 

proved effective in carrying out a very complicated computation. 

Our computational technique includes a relativistic characterization of the 

spin structure of the scattering amplitude in terms of covariant operators. We 

are surprised to report that, under certain kinematic conditions, the resolution 

of the spin structure into operator amplitudes is not unique. 
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2. THEORY 

The Feynman diagrams of the two-pion exchange interaction are shown in 

figure 2. A nucleon has incoming momentum p1 and outgoing momentum p3, 

while another nucleon has incoming momentum p2 and outgoing momentum 

P4. Momenta qi and q2 are transferred by two intermediate pions. Nucleon 1 

and 2 have intermediate momenta k1 and k2 respectively. 

P2 P4 P2 P4 
k2 km1.2 eAr/eV 

I I q1 / q2ql i A q2 I
,,

I I 

/1K4 ki 414' /V ti 4. 
P1 P3 P1 P3 

(a) (b) 

Figure 2.1: Feynman diagram of TPE nucleon-nucleon interaction. Solid lines 
represent external and intermediate nucleons. Dashed lines represent inter­
mediate pions. (a) ladder diagram; (b) crossed diagram. 

We have calculated both diagrams as functions of the external 4-momenta 

and spinors. However, we did not carry out the partial wave decomposition 

of the crossed diagram, which appeared similar to the ladder diagram. The 
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scattering amplitude M of the ladder diagram can be calculated using Feyn­

man's rules described in a quantum field theory book such as [10]: 

4 

f7717 (27)4
 

x
 
f

(p3, s3)(750214Y501 + mN75027501)ui (pi, 81) 

xu2(p4, s4)(-y50202-y501 + TriN75027501)u2 (P2, 82) 

1 

X (q? je)(q3 je)(Jk2 2 if) (k2ifk2\ ( m2 . (2.1) 
2 

A Dirac spinor is 

u09,8)= V190 ± 171N _,)Xs (2.2) 
op 

Po +PIN 

where x8 is a Pauli spinor. The spinors' subscripts 1, 2 indicate nucleon 1 and 

2. We have omitted the isospin factors and antisymmetrization, which are 

most conveniently included as factors multiplying the partial-wave amplitudes. 

We can rewrite the above expression as 

4 
d4kiM = ui(p3, s3)u2(p4, s4) (f 4 DJ ui (si)u2(p2, 82), 

(2.3) 

where D is the propagator part, and the vertices make the spin operator 

Op = (75021,1750i + nrY5027541)1(^/5020175h1 + 'm750275002. (2.4) 

Again, subscripts 1, 2 outside parentheses indicate with which nucleons the 

operators associate. 

The propagator of an intermediate particle is 

1 1= P + i7ro(q2 m2), (2.5)
0,2 m2 ic q2 m2 

where P is the principle value integral. As discussed in the introduction, we 

are interested in the case where the two intermediate pions are on shell. In 



this case conservation laws require the nucleons to be off shell. Hence the 

propagator factor in the matrix element (2.3) is 

D _726(q21 m2 s(,2 m2 ) (2.6)ir ) 12 k? M2 k2 M2N 2 N 

Causality requires an equal contribution from the term with all 4 principal 

values [11]. The terms with odd numbers of intermediate particles on-shell 

are vertex corrections and are not kinematically accessible. 

The covariant variables, q, k2, q?, q3, in the propagators and Dirac 

delta function arguments suggest the transformation of coordinates from 4­

momentum k1. To do so, we have to find the Jacobian of the transformation, 

and transform the expression for the operator Op. 

The 4 external momenta, together with the loop momentum k1, define 

a pentahedron in 4-momentum space; the 4 invariant momenta correspond 

to the edges of the pentahedron adjacent to the loop momentum. [12] The 

Jacobian J of the transformation is the volume V of the corresponding par­

allellipiped, J = e. The square of this volume V is given by a determinant 

of rank 6: 

2 k2 k2 1i 0 "11 V,22 1 2 ' \ 
2qi. 0 t A A 1 

,2 t pi pi 1
V2 det 

V2 0 
(2.7) 

2 2 0
k? P1 P3 s 1 

q p22 pi 0 1s 

1 1 1 1 1 0j 

in terms of covariant Mandelstam variables s = (131 + p2)2 = (p3 + p4)2, 

t = (p3 P1)2 = (p4 p2)2, u = (P4 p1)2 = (P3 p2)2. The region of 

integration, unbounded in the 4-momentum space, is now bounded by the 

surface where the Jacobian vanishes. 
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In order to express the operator Op in term of covariant variables, we choose 

to parametrize it using four operators analogous to the nonrelativistic scalar 

(Or), spin-spin (0,), spin-orbit (Os.), tensor (Ot): 

Op = c101 + csOs + c80050+ ctOt. (2.8) 

All of these operators depend only on external momenta and spins: 

01 = 1111127 

Os = 7li721.17 

Os. = (71. + '1'2) (133 P4)(71+ '72) (Pi P 

Ot --= ((-yi + -y2) (P3 -P4 + P2))2 
1( 

+ 72)2k(Pi. /32)2 + (p3 P4)2/ (2.12) 

It is conventional to include 5 operators but two of these are not kinematically 

independent [8]. 

To parametrize Op, we operate with each of the four operators on Op and 

find the trace of the result. Therefore, we get a system of equations 

tr 01 tr Os tr Oso tr Ot \ / c1 \ 1 tr Op 

tr Os tr 0! tr OsOso tr 0.0t cs tr OsOp 
. (2.13) 

tr Oso tr 0s00, tr 0o tr OsoOt cso tr OsoOp 

tr Ot tr OtOs tr OtOso tr Ot ct tr OtOp 

We can further separate M to be suitable for computation. First we inte­

grate the continuum variables: 

dk?kMq3 a(k7, !cf., kY, kl)
Co = col)) . (2.14)

3(14, k2, qi q3) 

Then we can sum over the spin, 

4 

M Coill (P37 S3)112(P47 .54)00711(n, si)u2(p2, s2). (2.15)
Mir 

o= iso,s,so,t 

http:7li721.17
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In the center of mass system where +75'2 = p3 +p4 = 0, we can decompose 

Co as 

Co = C0APA053*/50, (2.16) 

where the Legendre polynomial can be factored into spherical harmonics 

YAm(a): 

A 
47r 

PA (75]. /53) = 2A (153)YAnz (p1). (2.17) 
m=-A 

Then we can project out the partial wave amplitudes MJLL' using the 

equation: 

MJLL' = E C.A E E f dia3c/7307,.(733)YLm,o51) 
Ao 

1 1 ,1 1 
< 2' s1; 2, s21,3,ms >< 5°,77/.5,1-2' s3 ; 2' S4 > 

< J,mjIL,m; S, ms >< L' ,m'; ,rns'LLInJ > 

0(p1, P3; S1, S2, S3, S4)PA(151 753). (2.18) 

Then we can calculate the partial wave phase shifts from the relation be­

tween the S-matrix and the scattering amplitude M: 

1231 MJLL'
8JLL' e -ILL sn &ILL'i (2.19)= 

Po 167r 

The phase shifts can then be used to construct the cross sections. In 

this final step the antisymmetrization and related isospin factors have to be 

carefully included. 

The mixing parameter E j of a triplet state [13] can be found from 

1 
EJ = arccos (2.20)

26j(J-1)(J+1)+ 
5J(J -1)(J -1)-6.1(J+1)(J+1) 



9 

So far, we have treated nucleons and pions as point particles. However, from 

the standard model, we know that hadrons contain quarks and are extended 

particles. We dress the vertices with exponential form factors as described in 

[9]: 

FlrNN ( = (1 + + a2Z4 + cv3Aq)e 
0-A4 (2.21) 

where al = 0.8, a2 = 2.0, a3 = 2.0, a = 5.2, and A2q is the deviation of the 

4-momentum from the mass shell: 

A2 (2.22) 

The parameters were chosen to fit low energy pion-nucleon scattering data. [9] 
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3. COMPUTATION AND RESULT 

In our calculation, we consider the center-of-mass system, where the ex­

ternal nucleons are on shell, i.e. pi = pi = ps = pa = m2N. We also choose 

the direction of the incoming nucleon as the z-direction, and the outgoing 

nucleons as the x-z plane: 

pi = (po, 0, 0, VI), (3.1) 

P2 = (Po, 0, 0, HA, (3.2) 

P3 = (Po, IA sin 0, 0, IA cos 0), (3.3) 

P3 -= (PO7-1/51 sin 0, 0, 1/51 cos 0 ) (3.4) 

It is convenient to define some additional variables: 

2 

P2 
(0, 0, 0, 1251), (3.5) 

P1 
P3 

2 

P4 = (o, sin 0, 0,1/51 cos 8), (3.6) 

+ q2. (3.7) 

The Mandelstam variables are: 

s = 4 (m2N + 1/512), (3.8) 

t = 21112 (1 cos 6), (3.9) 

u = 211512(1 + cos 0). (3.10) 

a (k? ,kf ,kf)
Then, the Jacobian = 1 can be found from equation (2.7),8(k?,14,4 ,q3) 16V 

V2 = t((k k3)2(4m2N s t) + s(4(m2N mD2 + s(477-4 t) 
(3.11) 

2(k? + 14) (2m2N + 2774. t) + (lc? + q)2)). 

In practice, it is convenient to transform lci and k2 to 

k_ = k? (3.12) 

k+ = + (3.13) 
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2.5 

1.5 

1c3
 

0.5 

0.5 

Figure 3.1: Region of integration for -VS = 2mN + 0.01m, at cos 0 = 0.5. The 
units of k? and k2 are (GeVI c)2 . The cross hatching illustrates the numerical 
integration scheme, but the actual grid used was much denser. 

V2 is then quadratic in k+, 

V2 (k+, k_) = + B k + + C (k _) , (3.14) 

where 

A = st, (3.15) 

B = 2st(2m2N + 2m2. t), (3.16) 

(7(k_) = st(4(r4 s(417d t)) + tk2 (4m2N s t). (3.17) 

It is straightforward to find the region where V2 > 0. That defines the in­

tegration region where on-shell TPE interactions are kinematically allowed. 

Numerical examples of the integration region are illustrated in Figure 3.1, 3.2 

and 3.3. 
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Figure 3.2: Region of integration for Ni:s = 2mN + 0.9m, at cos 9 = 0.5. The 
units of ki and q are (GeV I c)2 . 

Figure 3.3: Region of integration for Nis = 2mN + 0.9m at cos 0 = 
0.054 (pole). The units of k? and q are (GeV I c)2 . 
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Next, we parameterize the operator by solving the system of equations 

(2.13) set up by the traces of the operators, expressed in table 3.1. In calcu­

lating the operators' traces, we applied a set of simple rules to a large amount 

of variables. We found that regular expression substitution [14], whether as 

in scripting language such as perl or sed or as an editor's command, was very 

useful for this kind of manipulation. 

Operator Trace 

01 16 

Os 

OS 64 

Oso 34512 cos 0 

Os 161/514(80 cost 0 + 24) 

Os Oso 1281212 cos 0 

Ot 11512 (-64 cos 0 + 234) 

50816Ig14 (3584 cos2 8 + 8704 cos 0 + 

OtOs if512 (-128 cos 0 + 

198OtOs. 5 I1514 (33 cos2 0 49 cos 0 + 3) 

Op 16m ,(q q2)2 

0,0p tr 71142041.ft 7/260241 

Os. Op 4 (2m2Nqi q2tr7ffiici142 + trAffhihraftr i6i420201 + tr fii420iffitr 73.020200 

(8q2 + 1112)rn2N(qi q2)2OtOp 

+8tr 0420141tr 49420241 + 311-312tr -y11420irattr 4420201 

TABLE 3.1: Traces of operators in center-of-mass system. 

http:71142041.ft
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2
0

4

6
 

Figure 3.4: Amplitude c1 as function of lc? and 14: = 2mN+0.01m,, cos 0 = 
0.5. 

However, the expressions we get from substituting all covariant variables 

are too long. It is impractical to solve them analytically, even with the aid of 

a symbolic manipulation program. So, we solve the linear system numerically 

for each combination (14,1,3, cos 0). [151 Then, after we get the operators' 

amplitudes, we integrate over dk?dk3 to find the contribution at a particular 

scattering angle. 

Examples of the integrands are shown in Figure 3.4 through 3.15. The con­

tributions over k?, 1,3 show two main characteristics of exponential falloff, and 

divergences at the boundary of integration. The exponential characteristic 

comes from form factors in our formula. The divergences at the boundaries 

come from the Jacobian of the transformation in equation (2.7). These di­

vergences are integrable, leading to finite integrals for most values of cos 0. 

Integration intervals were chosen to ensure a precision much better than 1 

percent. 
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cs 

0 

0.01 
2.50.02 

0.03 1.5 

0.5 k3 

0.5 0.5 
1.5 2.5k? 

Figure 3.5: Amplitude cs as function of k? and 4: N/75 = 2mN+0.01m,, cos 0 = 
0.5. 

0
 

0.0002
 
0.0004
 
0.0006
 

Figure 3.6: Amplitude c as function of lc? and 1c3: -Nrs = 2mN + 
0.01m,, cos 0 = 0.5. 
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0 

0.004 

0.008 

0.012 

Figure 3.7: Amplitude ct as function of lc? and 1c3: Nis = 2mN+0.01m,, cos 9 = 
0.5. 

0.02 
0.06 
0.1 

0.14 

Figure 3.8: Amplitude c1 as function of lc? and Ic3: .1,s = 2mN +0.9m, cos e = 
0.5. 



17 

0.0009 
0.0006 
0.0003 

0 

Figure 3.9: Amplitude cs as function of k and k3: = 2mN + 0.9m,, cos 0 = 
0.5. 

c 
0 

0.0004 
0.0008 

2.50.0012 
1.5 

0.5 14 

0.5 
0.5 1.5 

ki
 

Figure 3.10: Amplitude c , as function of 14 and k3: = 2mN + 
0.9m,, cos 0 = 0.5. 
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ct 

0 
0.0001 
0.0002 
0.0003	 2.5 
0.0004 1.5 

0.5 k3 

0.5 
0.5	 1.5 

k? 

Figure 3.11: Amplitude ct as function of ki and k3: N/S = 2mN+0.9m, cos 0 = 
0.5. 

0
 
25000
 
50000
 
75000
 

Figure 3.12: Amplitude c1 as function of k? and 14: = 2mN+0.9m,, cos 0 = 
0.054 (pole). 

http:2mN+0.9m
http:2mN+0.9m
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0 

25000 
50000 
75000 

Figure 3.13: Amplitude c, as function of ki and 14: = 2mN+0.97n, cos 0 = 
0.054 (pole). 

c 
0 

200000 

400000 
2.5 

600000 1.5 

0.5 k3 

0.5 1.5 
0.5 

k? 2.5 

Figure 3.14: Amplitude cso as function of 14 and Ic3: \Fs = 2mN + 
0.9m,, cos 6 = 0.054 (pole). 
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150000 
100000 

50000 
0 

Figure 3.15: Amplitude ct as function of 14 and q: N\ s = 2mN+0.9m, cos 0 = 
0.054 (pole). 

Contributions from the operators are not smooth functions of cos 0 as we 

anticipated, as shown in Figure 3.16 through Figure 3.23 and especially by 

the enlarged plots near the poles' vicinity in Figure 3.24 through Figure 3.31. 

These poles occurred in every operator's contribution although they were not 

prominent at low energy, especially for scalar and spin-spin operators (Figure 

3.16 and Figure 3.17). Closer investigation (Figure 3.24 and Figure 3.25) 

revealed poles at the same locations where they occurred in the rest of the 

operators. We had to understand the reason for these poles before deciding 

how to treat them numerically. 

http:2mN+0.9m
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-0.12 

C1 -0.16 

-0.2 

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 

cos 0_ 

Figure 3.16: Contribution from scalar operator as a function of cos 0 for VS = 
2m.N + 0.01m,. 

-0.0013 

0.0017 

Cs 

-0.0021 

0.0025 

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 

cos 0 

Figure 3.17: Contribution from spin-spin operator as a function of cos 0 for 
= 2mN + 0.01m. 
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0.0004
 

0.0002
 

C, 0
 

-0.0002
 

-0.0004
 

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 

cos() 

Figure 3.18: Contribution from spin-orbit operator as a function of cos 8 for 
= 2mN + 0.01m,. 

6 x 10-5 

2 x 10-5
 

Cr
 

2 x 10-5 

--6 x 10-5 

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 

cost) 

Figure 3.19: Contribution from tensor operator as a function of cos 0 for V7s 
2mN + 0.01m,. 



23 

0 

-0.001 

-0.002 

-0.003 

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 

cos 
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Figure 3.25: Poles' vicinity of Figure 3.17. 
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Figure 3.26: Poles' vicinity of Figure 3.18. 
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Figure 3.27: Poles' vicinity of Figure 3.19. 
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Figure 3.28: Poles' vicinity of Figure 3.20. 
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Figure 3.30: Poles' vicinity of Figure 3.22. 
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We would like to point out that these singularities were not due to the 

divergences at the boundaries of the integration. Figure 3.12 through 3.15 are 

operators' amplitudes at a pole. Their distributions do not differ greatly from 

Figure 3.8 through 3.11, which are operators' amplitudes at other cos 8 for the 

same energy. The differences are the sizes of the amplitudes. To understand 

these unexpected poles, we studied the eigenvalues and eigenvectors of the 

4-dimensional spin-operator space. 

From Figure 3.28 3.31, and Table 3.2, poles are located at cos 0 = 0.0541 

and cos 8 = 0.0734 for = 2rn,N + We can see that one of eigenvalues 

is zero in both poles. So, the determinant of the system we use to parameterize 

the operator is zero. Physically, this means that there is an ambiguity in the 

parameterization by operators at a particular angle. From linear algebra, we 

know that the solution of a. system of equations is inversely proportional to 

the determinant of the system. For a system of zero determinant, the answer 

is not well-defined. 

The equation of the zero eigenvalue is a. homogeneous equation. We can 

change any of the components as long as the combination gives zero eigenvalue. 

Specifically, from table 3.2 we see that the eigenvectors of zero eigenvalues at 

the poles consist mainly of the spin-orbit operator. This implies an ambiguity 

in the amplitude of the spin-orbit operator at the poles. 

Ambiguities are familiar in the partial wave analysis of scattering.[16] What 

we encounter seems to be another kind of ambiguity. 

To treat the poles numerically we observe that they appear as localized 

irregularities on an otherwise smooth distribution. Since the singularities are 

first order we expect the net contribution to be small. We compare the results 

from two numerical integration methods, trapezoidal integration and Gaus­

sian quadrature. [17] The result, is shown in Table 3.3. The two dissimilar 

integration methods give quite similar results. Therefore, we believe that the 
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cos 9 eigenvalues eigenvectors 

0.0541 15.047 ( -0.974, -0.077, 0.180, 0.106) 

113.323 ( 0.069, 0.565, 0.145, 0.808) 

42.162 ( 0.165. -0.809. 0.243, 0.508) 

0.000 ( 0.133, 0.136. 0.941, -0.276) 

0.0734 15.301 ( -0.974 -0.057, -0.196, 0.089) 

114.200 ( 0.068. 0.553, -0.130, 0.819) 

43.553 ( -0.146, 0.815. 0.258, -0.497) 

0.000 ( 0.155, 0.159, -0.936, -0.269) 

TABLE 3.2: Eigenvalues and eigenvectors for = 2777.AT + 0.9m,. 

pole contributions are reasonably well estimated by both methods. However, 

trapezoidal integration is not convenient because it requires exact location of 

the poles so that we can remove small regions around the poles symmetrical­

ly. On the contrary, noticing that the poles always locate near cos 9 = 0, we 

can avoid the poles by using even-order Gaussian quadrature whose Gaussian 

points lie far from zero. Therefore, we choose Gaussian quadrature in our 

study. It is not only more convenient but it is less sensitive to the poles. 

The numerical results from our calculation are shown in Table 3.4 and 

Table 3.5. All the amplitudes are very small, corresponding to phase shifts 

much less than 1 degree. By contrast, the observed phase shifts are many 

degrees, nearly resonant in the / = 0 channels. OPE and off-shell TPE are 

similar to the observed amplitudes and many orders of magnitude larger than 

the on-shell TPE. In all channels, the contributions from on-shell TPE are 
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Method of integration Son 6ioo 6122 6102 Ei 

Trapezoidal 5.40 x 10-5 1.54 x 10-4 3.20 x 10-6 4.88 x 10-7 6.48 x 10-3 

Gaussian 4.78 x 10-5 1.44 x 10-4 9.72 x 10-7 4.52 x 10-7 6.34 x 10-3 

TABLE 3.3: Comparison between methods of integration for the case \is = 
2n-1N + 0.9771A- . 

negligibly small. In view of these we did not bother to refine our numerical 

estimates any further. 

We only carried out the partial wave decompositions for the TPE ladder 

diagram. However; we did calculate the momentum-space spinor amplitudes 

for both direct and crossed diagrams shown in Figure 2.1. We found that both 

diagrams gave comparable amplitudes. Since these amplitudes were so small 

we feel confident that the effects of on-shell pion exchange are unimportant in 

nuclear scattering. 

We also would like to know how the form factor affected our calculation. 

We hypothesized that the form factor's cut-off would lead to small on-shell 

contributions of two pion exchange. However, as seen in Figure 3.32, the 

contributions with form factor = 1 are still very small, even though they are 

much larger than with a realistic form factor. We conclude that kinematics 

alone are sufficient to make on-shell two-pion exchange small. 

To illustrate the latter point, we consider the distribution of the operators' 

amplitude as shown in Figure 3.33 through 3.36. In the kinematic region of 

integration, the form factor is not needed to make the integrals converge. In 

scattering, ki and k3 are far from singularities of on-shell poles. 
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s
 6011 6100 6122 6102 

3.58 -1.28 x 10-4 7.95 x 10-4 3.32 x 10-5 -1.09 x 10_8 2.85 x 10-5 

3.63 -1.13 x 10-4 6.65 x 10-4 2.33 x 10-5 9.36 x 10-8 2.92 x 10-4 

3.68 -7.26 x 10-5 5.53 x 10-4 1.53 x 10-5 2.37 x 10-7 8.83 x 10-4 

3.74 -3.12 x 10-5 4.50 x 10-4 9.29 x 10-6 3.71 x 10-7 1.68 x 10-3 

3.79 2.51 x 10-6 3.62 x 10-4 5.45 x 10-6 4.67 x 10-7 2.62 x 10-3 

3.84 2.66 x 10-5 2.89 x 10-4 3.41 x 10-6 5.20 x 10-7 3.63 x 10-3 

3.90 4.20 x 10-5 2.32 x 10-4 2.67 x 10-6 5.34 x 10-7 4.65 x 10-3 

3.95 5.04 x 10-5 1.88 x 10-4 2.72 x 10-6 5.20 x 10-7 5.61 x 10-3 

4.00 5.40 x 10-5 1.54 x 10-4 3.20 x 10-6 4.88 x 10-7 6.48 x 10-3 

4.06 5.43 x 10-5 1.27 x 10-4 3.81 x 10-6 4.48 x 10-7 7.24 x 10-3 

4.11 5.26 x 10-5 1.07 x 10-4 4.41 x 10-6 4.06 x 10-7 7.90 x 10-3 

4.17 4.99 x 10-5 9.10 x 10-5 4.90 x 10-6 3.66 x 10-7 8.50 x 10-3 

4.22 4.67 x 10-5 7.82 x 10-5 5.25 x 10-6 3.33 x 10-7 9.12 x 10-3 

4.28 4.33 x 10-5 6.79 x 10-5 5.45 x 10-6 3.08 x 10-7 9.86 x 10-3 

4.33 3.99 x 10-5 5.94 x 10-5 5.52 x 10-6 2.94 x 10-7 1.09 x 10-2 

4.39 3.68 x 10-5 5.23 x 10-5 5.48 x 10-6 2.94 x 10-7 1.26 x 10-2 

4.45 3.38 x 10-5 4.63 x 10-5 5.34 x 10-6 3.10 x 10-7 1.51 x 10-2 

4.50 3.10 x 10-5 4.12 x 10-5 5.12 x 10-6 3.45 x 10-7 1.91 x 10-2 

4.56 2.84 x 10-5 3.68 x 10-5 4.84 x 10-6 4.02 x 10-7 2.51 x 10-2 

TABLE 3.4: Phase shift from TPE for the case of j = 0, 1 in unit of degree. 
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S 6211 6233 6213 E2 

3.58 -1.10 x 10-4 -2.92 x 10-6 -2.22 x 10-8 4.14 x 10-4 

3.63 -9.68 x 10' -2.72 x 10-6 -6.23 x 10-8 1.33 x 10-3 

3.68 -6.22 x 10-5 -2.07 x 10-6 -1.12 x 10-7 3.71 x 10-3 

3.74 -2.68 x 10-5 -1.49 x 10-6 -1.61 x 10-7 1.27 x 10-2 

3.79 2.13 x 10-6 -1.09 x 10-6 -2.10 x 10-7 1.30 x 10-1 

3.84 2.28 x 10-5 -8.30 x 10-` -2.62 x 10-7 2.22 x 10-2 

3.90 3.59 x 10-5 -6.51 x 10-7 -3.16 x 10-7 1.73 x 10-2 

3.95 4.32 x 10-5 -4.89 x 10-7 -3.72 x 10-7 1.71 x 10-2 

4.00 4.62 x 10-5 -3.10 x 10-7 -4.25 x 10-7 1.83 x 10-2 

4.06 4.65 x 10-5 -1.03 x 10-` -4.68 x 10-' 2.01 x 10-2 

4.11 4.51 x 10-5 1.23 x 10-7 -4.96 x 10-7 2.21 x 10-2 

4.17 4.27 x 10-5 3.52 x 10-7 -5.05 x 10-7 2.38 x 10-2 

4.22 4.00 x 10-5 5.68 x 10-7 -4.92 x 10-7 2.50 x 10-2 

4.28 3.71 x 10-5 7.56 x 10-7 -4.57 x 10-7 2.52 x 10-2 

4.33 3.42 x 10-5 9.06 x 10-7 -4.01 x 10-7 2.40 x 10-2 

4.39 3.15 x 10-5 1.01 x 10-6 -3.24 x 10-7 2.12 x 10-2 

4.45 2.90 x 10-5 1.07 x 10-6 -2.27 x 10-7 1.63 x 10-2 

4.50 2.66 x 10-5 1.09 x 10-6 -1.10 x 10-7 8.61 x 10-3 

4.56 2.44 x 10-5 1.07 x 10-6 2.89 x 10-8 2.48 x 10-3 

TABLE 3.5: Phase shift from TPE for the case of j = 2. 
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4. CONCLUSION
 

The overall contribution from TPE ladders is small and smooth as expected. 

The contribution is negligible compared with one pion exchange and two pion 

exchange with on-shell nucleons. 

There were ambiguities in parameterizing spin operators at particular an­

gles. These ambiguities gave rise to the poles in spin operators' distributions 

over cos O. However, the partial wave amplitudes calculated by integrating 

over cos 0 are finite and well defined, as are the spin-projection amplitudes at 

each angle. The fact that the spin-operator decomposition of the scattering 

amplitude is not always unique is our only truly surprising result. 
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APPENDIX A: TRACE OF OPERATORS 

We collect here the trace algebra used in our calculations: 

tr = 4(a b), (Al) 

tr 4/301= 4((a b)(c d) (a c)(b d) + (b c)(a d)), (A2) 

tr7P9i0tr-yoqf =16 ((a b)(c d)(e f) (a b)(e c)(d f) 

+(a b)( f c.)(d e) (a c)(b d)(e f) 
+(a c)(b e)(d f ) (a c)(b f )(d e) (A3) 

+(b c)(a d)(e f ) (b c) (a e)(d f ) 

+(b c)(a f)(d e)). 

Below are explicit form of traces of operators in Table 3.1: 

tr 0,0p = (qi q2)((ki k2)(qi q2) (qi k2)(q2 ki) (qi ki)(q2 k2)) 

+m. ((qi ki)(qi k2) + (q2 k1)(q2 k9)) (A4) 

tr Os°Op = 2m2N(q1 q2)
 

x (((p1 p3) + (p2 p4 ) (P1 .P4) (P2 P3))(qi q2) 

((q2 P3) (q2 P4))((qi (qi 292)) 

+((qi P3) (q1 P4))((q2 P1) (q2 .P2))) 

+ ((k2 pi)(qi	 q2) (k2 P2)(qi q2) (qi Pi)(q2 k2)
 

+(qi P2)(q2 k2) (qi k2)(q2 p')+(gi'k2)(g2.P2))
 
(A5) 

x ((k1 P3)(qi q2) (k1 P4)(qi q2) (qi p3)(q2 ki) 

+(qi P4)(q2 k1) (qi ki)(q2 p3) + (qi ki)(q2 P4)) 

+ ((k1	 Pi)(qi q2) (ki P2)(qi q2) (qi Pi)(q2 ki) 

+(q) P2)(q2 k1) ki)(q2 P1) + (qi ki)(q2 P2)) 

x	 ((k2 -P3)(qi q2) (k2 P4)(qi q2) (qi P3)(q2 k2) 

+(q1 P4)(q2 k2) (q1 k2)(q2 P3) + k2)(q2 P4)). 

http:p')+(gi'k2)(g2.P2
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trOtOP = (8(q1 + q2)2 + . q2)2 

+877((g1 kl) (q2 41))((q1 k2) (q2 k2))
 

8_71
 
PI2M't q2Mtc K.:2)(qi q2) ic2M2 icmq2 h;2)) 

+M.27((q1 kl)(ql k2) (q2 kl)((12 k2))) (A6) 

3
I 

Then, we can express dot products in terms of covariant variables, using 

the relationship between momenta at the vertices as shown in Figure 2.1. For 

example, from pi = k1 + qr, we get three dot products for the ladder diagram: 

pi2 k? q? 
k1 qi (A7) 

2 

k? q? pi
(II p1 = (A8) 

_2 
P1 ^ 1pl kt = (A9)
9 
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APPENDIX B: SOURCE CODES
 

In this appendix, we include source codes of the programs used in our calcu­

lation. The first program, tpe. c was for calculating the operators' amplitudes 

and integrating over internal loops. It took as input command line argument 

as follow: 

# tpe epsilon kxstep 

where epsilon is a. parameter related to the Mandelstam variable s as 

2mN + epsilon m, (B1) 

and kxstep is the subinterval of integration over the internal loop. The output 

is a table of operators' contributions at each Gaussian point of cos 0. Each 

Output line consists of the value of s, cos 0, the integration weight at the point, 

scalar, spin-spin, spin-obit, and tensor operator's contributions, respectively. 

The second program, pwa. c, scans each line from standard input for the 

data. whose format has just been described. Hence, we can pipe the output 

from the first program as input for this program: 

# tpe epsilon kxstep pwa 

The output is then phase shifts and mixture parameters. 

In pwa. c, we use a function plm(1,m,x) which calculates the associated 

Legendre polynomial, Pr(x). The code for this function, as well as other 

special functions, could be found in a numerical method text such as [18]. 

The subroutine getline which scans the input from standard input is not in 

C's standard library but could also be found in a C programming book such 

as [19] . 



44 

Source for tpe.c
 

#include <stdio.h>
 

#include <stdlib.h>
 

#include <math.h>
 

#define Mn 0.93956563
 

#define Mpi 0.1349764
 

#define K_INT_RANGE 19.8
 

#define Mnsq (Mn*Mn)
 

#define Mpisq (Mpi*Mpi)
 

#define EPS 1E-32
 

#define CORDER 3
 

const double
 

gpoint[GORDER]={0.238619186083197,
 

0.661209386466265,
 

0.932469514203512};
 

const double
 

gweight[GORDER]={0.467913934572691,
 

0.360761573048139,
 

0.171324492379170};
 

double form_factor_sq(double delqsq) {
 

double res,alphal=0.8,alpha2=2.0,alpha3=2.0,sigma=5.2;
 

res=(1.0 + alphal*delqsq + alpha2*delqsq*delqsq \
 

+ alpha3*delqsq*delqsq*delqsq) \
 

*exp(-sigma*delqsq*delqsq);
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return res;
 

}
 

main(int argc, char **argv){
 

double s,t,u,costheta,epsilon;
 

double denom,jacobian,Form;
 

double Oiso,0s,0s2,0so,Oso2,0t,0t2,0sOso,OtOs,OtOso;
 

double p,p2,p4;
 

double p1p3,p2p4,p1p4,p2p3;
 

double
 

dklsq,dk2sq,
 

k1sq,k2sq,q1sq,q2sq,
 

Op, 0s0p, OsoOp, OtOp,
 

TRpfpiqlq2, TRpfq2k1q1, TRpfq2k2q1,
 

TRpiq2k1q1, TRpiq2k2q1,
 

klk2, k1p1, klp2, klp3, klp4, k2p1, k2p2, k2p3, k2p4,
 

q1k1, q1k2, qlpl, q1p2, q1p3, q1p4, q1q2, q2k1, q2k2,
 

q2p1, q2p2, q2p3, q2p4;
 

double TrMat[16],TrVec[4],TrMatLapack[16],WORK[24];
 

double C[4],Coef[4];
 

int row,col;
 

int i,j,lapack_info,lda=4,1db=4,n=4,nrhs=4, ipiv[4],lwork=16;
 

char trans='N',uplo='L';
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double qa,qb,qc,qd; // For quadratic equation
 

double kx,dkx,ky,kyi,kyf,kystep,kymid,kyrange,kxsq,kxsq_min;
 

double kxstep;
 

int kypoint,kylastpoint,totalpoin
 ;
 

int sign=-1,tsign=-1;
 

int pt,tpt;
 

double beforeloop,contrib;
 

if(argc!=3){
 

printf("Usage %s epsilon kxstep\n",&argv[0][0]);
:
 

exit(1);
 

}
 

epsilon=atof(&argv[1][0]);
 

kxstep=atof(&argv[2][0]);
 

s = (2*Mn + epsilon*Mpi)*(2*Mn + epsilon*Mpi);
 

for(tpt=0;tpt<GORDER;tpt++){
 

do
 

{
 

tsign*=-1;
 

costheta = tsign*gpoint[tpt];
 

t = (2.0*Mnsq-0.5*s)*(1-costheta);
 

u = (2.0*Mnsq-0.5*s)*(1+costheta);
 

p = sqrt(s/4.0-Mnsq);
 

p2=p*p; p4=p2*p2;
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//external dotproducts
 

p1p3 = p2*costheta
 

p2p4 = p2*costheta
 

pip4 = -p2*costheta
 ;
 

p2p3 = -p2*costheta
 ;
 

// Initialize result matrix
 

for(i=0;i<4;i++)
 

Coef[i]=0.0;
 

qlsq=Mpisq; q2sq=Mpisq;
 

Oiso=16;
 

Os=0;
 

0s2=64;
 

Oso=32*p2*costheta;
 

Oso2=16*p4*(80*costheta*costheta + 24);
 

OsOso=128*p2*costheta;
 

Ot=p2*(-64*costheta+224.0/3.0);
 

0t2=p4*(3584*costheta*costheta+8794*costheta+50816.0/9.0);
 

OtOs=p2*(-128*costheta+896.0/3.0);
 

OtOso=128.0/3.0*(33*costheta*costheta 49*costheta +3);
 

TrMat[0]=Oiso;
 

TrMat[1]=0s;
 

TrMat [2] =Oso;
 

TrMat[3]=0t;
 

TrMat[4]=0s;
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TrMat[5]=0s2;
 

TrMat[6]=OsOso;
 

TrMat[7]=0t0s;
 

TrMat[8] =Oso;
 

TrMat[9]=OsOso;
 

TrMat[10]=Oso2;
 

TrMat[11]=0t0so;
 

TrMat[12]=0t;
 

TrMat[1.3]=OtOs;
 

TrMat[14]=0tOso;
 

TrMat[15]=0t2;
 

cparray(16,TrMat,TrMatLapack);
 

dgetrf_(&n,&n,TrMatLapackAlda,ipivAlapack_info );
 

// We write jacobain in ky-quadratic form
 

// jacobian = sqrt( q_a*ky*ky + q_b*ky + q_c )
 

qa = 4*s;
 

qb = -4*(2*Mnsq + 2*Mpisq t)*s;
 

qd = s*(4*Mnsq*Mnsq 8*Mnsq*Mpisq \
 

+ 4*Mpisq*Mpisq + 4*Mpisq*s s*t);
 

kxsq_min = (qb*qb/4.0/qa qd)/4.0/u;
 

kx=fabs(sqrt(kxsq_min));
 

do
 

beforeloop=Coef[3];
 

kxsq = kx*kx;
 

qc=4*u*kxsq + qd;
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kymid=-qb/2.0/qa;
 

kyrange=fabs(sqrt(qb*qb 4*qa*qc))/2.0/qa;
 

for(pt=0;pt<GORDER;pt++){
 

sign=-1;
 

do{ // We will have to do both plus and minus
 

sign*=-1;
 

ky=kymid + sign*gpoint[pt]*kyrange;
 

k1sq=ky+kx;
 

k2sq=ky-kx;
 

// Proceed Calculation with k1sq k2sq as usual
 

dk1sq=k1sq-Mnsq;
 

dk2sq=k2sq-Mnsq;
 

Form=form_factor_sq(dk1sq)*form_factor_sq(dk2sq);
 

denom=((dk1sq)*(dk2sq));
 

jacobian=16*fabs(sqrt(t*(qa*ky*ky + qb*ky + qc)));
 

// Dotproducts
 

// Explicit
 

q1q2 = (t q1sq q2sq )*0.5;
 

klk2 = (k1sq k2sq u )*0.5;
 

klpl =-(q1sq-Mnsq-klsq)*0.5;
 

q1k1 =(Mnsq-klsq-qlsq)*0.5;
 

q1p1 =-(k1sq-q1sq-Mnsq)*0.5;
 

klp3 =-(q2sq-klsq-Mnsq)*0.5;
 

q2k1 =-(Mnsq-q2sq-k1sq)*0.5;
 

q2p3 =(k1sq-Mnsq-q2sq)*0.5;
 



SO
 

k2p2 =-(q1sq-k2sq-Mnsq)*0.5;
 

q1k2 =-(Mnsq-q1sq-k2sq)*0.5;
 

q2k2 =(Mnsq-k2sq-q2sq)*0.5;
 

q1p2 =(k2sq-Mnsq-qlsq)*0.5;
 

k2p4 =-(q2sq-Mnsq-k2sq)*0.5;
 

q2p4 =-(k2sq-q2sq-Mnsq)*0.5;
 

// Implicit
 

klp4 =(k1k2+q2k1);
 

k2p1 =(k1k2+q1k2);
 

q2p2 =(q2k2-q1q2);
 

q1p4 =(q1k2+q1q2);
 

q2p1 =(q2k1+q1q2);
 

q1p3 =(q1k1-q1q2);
 

klp2 =(k1k2-q1k1);
 

k2p3 =(k1k2-q2k2);
 

// Trace of operators
 

TRpfpiq1q2 = (p1p3+p2p4-p1p4-p2p3)*q1q2 \
 

(q2p3-q2p4)*(q1p1-q1p2) \
 

+ (q1p3-q1p4) (q2p1-q2p2);
 

TRpfq2k1q1 = (q2p3-q2p4)*q1k1 \
 

(k1p3-k1p4)*q1q2 + (q1p3-q1p4)*q2k1;
 

TRpiq2k2q1 = (q2p1-q2p2)*q1k2 \
 

(k2p1-k2p2)*q1q2 + (q1p1-q1p2)*q2k2;
 

TRpiq2k1q1 = (q2p1-q2p2)*q1k1 \
 

(k1pl-k1p2)*q1q2 + (q1p1-q1p2)*q2k1;
 

TRpfq2k2q1 = (q2p3-q2p4)*q1k2 \
 

(k2p3-k2p4)*q1q2 + (q1p3-q1p4)*q2k2;
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Op=16*Mnsq*q1q2*q1q2;
 

OsOp=q1q2*(k1k2*q1q2 q1k2*q2k1 q1k1*q2k2)
 

Mpisq*(q1kl*q1k2 + q2kl*q2k2);
 

Oso0p= 2*Mnsq*q1q2*TRpfpiqlq2 \
 

TRpfq2klql*TRpiq2k2q1 \
 

+ TRpiq2k1ql*TRpfq2k2q1;
 

OtOp = (8*t + 8.0/3.0*p2)*Mnsq*q1q2*q1q2 \
 

+ 8*(Mpisq*Mpisq*(q1k1+q2k1)*(q1k2+q2k2)) \
 

+ 8.0/3.0*p2*(q1q2*(k1k2*q1q2-q1k2*q2k1 \
 

q1k1 q2k2) + Mpisq*(q1kl*q1k2+q2k1*q2k2);
 

TrVec[0]=0p;
 

TrVec[1]=0s0p;
 

TrVec[2]=Oso0p;
 

TrVec[3]=0t0p;
 

dgetrs_(&trans,&nAnrhs,TrMatLapack,\
 

&lda,ipiv,TrVecAldb,&lapack_info);
 

if (lapack_info==0)
 

{
 

for (i=0; i<4; i++)
 

{
 

C[i]=TrVec[i]*Form/jacobian/denom;
 

Coef[i]+=gweight[pt]*kxstep*C[i];
 

} 

} 

} while(sign==1);
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// foreach ky point
 

kx+=kxstep;
 

contrib=fabs((Coef[3]-beforeloop)/Coef[3]);
 

}while (contrib>EPS); // while kx loop
 

printf("%1.16g %1.16g %1.16g",
 

s,costheta,gweight[tpt]);
 

for (i=0; i<4; i++)
 

printf(" %1.16g",Coef[i]);
 

printf("\n");
 

while(tsign==1); // costheta loop
 

// foreach tpoint = gausspoint
 

}// main
 

Source for pwa . c
 

#include <stdio.h>
 

#include <stdlib.h>
 

#include <math.h>
 

#define MAXLINE 256
 

#define MAX_J 5
 

#define M_N 0.93956563
 

#define M_PI 0.1349764
 

#define M_Nsq 0.8827835730772969
 

typedef int spin_mat[4];
 

const spin_mat mat_i= {1,0,0,1 };
 

const spin_mat mat_plus={0,1,0,0};
 

const spin_mat mat_minus={0,0,1,0};
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const spin_mat mat_z={1,0,0,-1};
 

int sp_in[4]={1,-1,1,-1},
 

sp_out[4]={1,1,-1,-1};
 

double Power(double x, int i) {
 

if (i==2) return x*x;
 

else return x*Power(x,i-1);
 

double CGspinspin(int s, int m_s, int sl, int s2) {
 

double cgres;
 

if (((s>1) II (abs(m_s)>1))I1((abs(s1)!=1)11(abs(s2)1=1)))
 

cgres=0.0;
 

else
 

{
 

if (s = =1)
 

{ 

if(m_s==1)
 

{
 

if((s1+s2)==2)
 

cgres=1.0;
 

else
 

cgres=0.0;
 

}
 

else
 

if(m_s==-1)
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{
 

if((sl+s2)==-2)
 

cgres=1.0;
 

else
 

cgres=0.0;
 

}
 

else // m_s==0
 

if(s1+s2!=0)
 

cgres=0.0;
 

else
 

cgres=1.0/sqrt(2.0);
 

}
 

}
 

else // s==0
 

if((m_s!=0)II(s1+s2!=0))
 

cgres=0.0;
 

else
 

cgres=1.0*s1/sqrt(2.0);
 

}
 

}
 

return cgres;
 

int getline(char str[], int lim)
 

{
 

int c,n;
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for (n=0;n<lim-1 && (c=getchar())!=EOF && c!='\n';++n)
 

str[n]=c;
 

if (c=='\n'){
 

str[n]=c;
 

++n;
 

}
 

str[n]='\0';
 

return n;
 

}
 

double CGspinl(int j, int m, int 1, int m_s) {
 

// Calculate Clebsh-Gordon coef with the case of spin = 1
 

// Hence, 1 = j-1, j, j+1 and m_s = -1,0,1
 

double cgres;
 

if ((1<0)II(j<0))
 

cgres=0.0;
 

else
 

{
 

if (( abs(l -j) >1 ) II ( sbs(m s)>1 ))
 

{
 

cgres=0.0;
 

}
 

else
 

{
 

int indx= (l -j) *3 (m_s)+4;
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switch (indx) {
 

case 0:
 

cgres = sqrt((j+m)*(j+m-1)/((2.0*j-1)*2.0*j));
 

break;
 

case 1:
 

cgres = sqrt((j-m)*(j+m)/(j*(2.0 j-1)) );
 

break;
 

case 2:
 

cgres = sqrt((j-m)*(j-m-1)/(2.0*j*(2.0*j-1)));
 

break;
 

case 3: if (j==0)
 

cgres=0.0;
 

else
 

cgres = -sqrt((j+m)*(j-m+1)/(2.0*j*(j+1)));
 

break;
 

case 4: if (j==0)
 

cgres=0.0;
 

else
 

cgres = m/sqrt(j*(j+1)); break;
 

case 5: if (j==0)
 

cgres=0.0;
 

else
 

cgres = sqrt((j-m)*(j+m+1)/(2.0*j*(j+1)));
 

break;
 

case 6:
 

cgres = sqrt((j-m+1)*(j+m+2)/((2.0*j+2)*(2.0*j+3)));
 

break;
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case 7:
 

cgres = -sqrt((j-m+1)*(j+m+1)/((j+1)*(2.0*j+3)));
 

break;
 

case 8:
 

cgres = sqrt((j+m+1)*(j+m+2)/((2.0*j+2)*(2.0*3+3)));
 

break;
 

}
 

}
 

return cgres;
 

}
 

double yyy(int 11, int 12, int m, int ms){
 

double pi;
 

pi=2.0*asin(1.0);
 

return sqrt((2*11 + 1)*(2*12+1)/12/pi)\
 

*CGspin1(11,0,12,0)*CGspin1(11,m,12,ms);
 

}
 

double find_contrib_mix(int j,int m, int 11, int 12,
 

spin_mat mats, spin_mat mat2,
 

int msl, int ms2,
 

double mixcoef[MAX_J])
 

{ 

int spindex1,spindex2,m1,m2,1ambda;
 

double res=0.0;
 

lambda=j;
 

for (lambda=j-2;lambda<=j+2;lambda++)
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{
 

for (m1=-1;m1<=1;m1++) for (m2=-1;m2<=1;m2++)
 

{
 

for (spindex1=0;spindexl<4;spindex1++){
 

for (spindex2=0;spindex2<4;spindex2++){
 

res+=CGspinspin(1,m1,sp_out[spindex1],sp_in[spindexl])
 

*CGspinspin(1,m2,sp_out[spindex1],sp_in[spindex2])
 

* CGspinl (j,m,l1,ml) *CGspinl(j,m,12,m2)
 

*yyy(11,1ambda,m1,ms1)*yyy(12,1ambda,m2,ms2)
 

*mixcoef [lambda]
 

*mat1[spindex1]*mat2[spindex2];
 

} // for spindex2
 

} // for spindex1
 

} // mlm2 double loop
 

} //lambda (double) loop
 

return res;
 

}
 

double find_contrib_nonmix(int j,int m, int 1,
 

spin_mat matl, spin_mat mat2)
 

{
 

int spindex1,spindex2,m1,m2;
 

double res=0.0;
 

for (m1=-1;m1<=1;m1++) for (m2=-1;m2<=1;m2++)
 

{
 

for (spindex1=0;spindex1<4;spindexl++){
 

for (spindex2=0;spindex2<4;spindex2++){
 

res+=CGspinspin(1,m1,sp_out[spindexl],sp_ n[spindexl])
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*CGspinspin(1,m2,sp_out[spindexl],sp_in[spindex2])
 

*CGspinl(j,m,l,m1)*CGspinl(j,m,l,m2)
 

*mati[spindexl]*mat2[spindex2];
 

} // for spindex2
 

// for spindexi
 

} // mlm2 double loop
 

return res;
 

}
 

double contrib_nonmix(int j, int 1, double p, double Cl[MAX_J],
 

double Cs[MAX_J], double Ct[MAXJ])
 

{
 

double nonmix;
 

nonmix=(C1[1] 8*p*p/3*Ct[1])
 

*find_contrib_nonmix(j,1,1,mat_ ,mat
 ;
 

nonmix+=(Cs[1] 8*p*p/3*Ct[1])
 

*find_contrib_nonmix(j,1,1,mat_plus,mat_plus);
 

nonmix+=(Cs[1] 8*p*p/3*Ct[1])
 

*find_contrib_nonmix(j,1,1,mat_minus,mat_minus);
 

nonmix+=(Cs[1] 8*p*p/3*Ct[1])
 

*find_contrib_nonmix(j,1,1,mat_z,mat_z);
 

return nonmix;
 

// contrib_nonmix
 

double contrib_mix(int j, int 11, int 12,
 

double p, double mixcoef[MAX_J] )
 

{ 
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double mix;
 

mix = find_contrib_mix(j,0,11,12,\
 

mat_plus,mat_plus,-1,-1,mixcoef);
 

mix += -find_contrib_mix(j,0,11,12,\
 

mat_plus,mat_minus,-1,1,mixcoef);
 

mix += sqrt(2.0)*find_contrib_mix(j,0,11,12,\
 

mat_plus,mat z,-1,0,mixcoef);
 

mix+= -find_contrib_mix(j,0,11,12,\
 

mat_minus,mat_plus,1,-1,mixcoef);
 

mix+= find_contrib_mix(j,0,11,12,\
 

mat_minus,mat_minus,1,1,mixcoef);
 

mix+= -sqrt(2.0)*find_contrib_mix(j,0,11,12,\
 

mat_minus,mat_z,1,0,mixcoef);
 

mix+= sqrt(2.0) find_contrib_mix(j,0,11,12,\
 

mat_z,mat_plus,0,-1,mixcoef);
 

mix+= -sqrt(2.0)*find_contrib_mix(j,0,11,12,\
 

mat_z,mat_minus,0,1,mixcoef);
 

mix+= 2.0*find_contrib_mix(j,0,11,12,\
 

mat_z,mat_z,0,0,mixcoef);
 

return mix;
 

// contrib_mix
 

main(){
 

int spindex1,spindex2;
 

int j= 1,l,spinl,spin2;
 

char line[MAXLINE];
 

long points;
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double s,costheta,weight,coef0,coef0s,coef0so,coefOt;
 

double PI,legendre;
 

double N,p,K,t;
 

double nonmix,mix,mix2;
 

double deg;
 

double S,S11,S22,S12,cos_eps;
 

double Cl[MAX_J], Cs[MAX_J], Cso[MAXJ],
 

Ct[MAX_J],mixcoef[MAX_J];
 

PI=2.0*asin(1.0);
 

coup=Power(0.95/M_PI,4)/64/Power(PI,6);
 

deg = 180/PI;
 

for (j=0;j<MAX_J;j++)
 

{
 

C1 [j] =0.0;
 

Cs[j]=0.0;
 

Cso[j]=0.0;
 

Ct[j]=0.0;
 

} 

// First we scan the input
 

while (getline(line,MAXLINE)>2)
 

// Read data from STDIN
 

sscanf(line,"%lf 7.1f %1f 7.1f %1f %1f %1f 7.1f",
 

&s,&costheta,&weight,&coef0,&coefOs,&coefOso,&coefOt);
 

t=(2.0*M_Nsq-0.5*s)*(1-costheta);
 

for (j=0;j<MAX_J;j++)
 

{
 



legendre=weight*plm(j,0,costheta
 

// printf("Pj=%g\n",legendre);
 

C1[j] += coef0 *legendre;
 

Cs[j] += coefOs*legendre;
 

Cso[j] += coef0so *legendre;
 

Ct[j] += coefOt*legendre;
 

}
 

// done scanning
 

N=sqrt(s/4.0)+M_N;
 

p=sqrt(s/4.0-M_Nsq);
 

K=-2*PI*sqrt(s)/sqrt(s/4-M_Nsq)/coup;
 

for (j=0;j<MAX_J;j++)
 

mixcoef[j]= 2.0*p*p*8*PI/12.0*(4.0 * Cso[j] 8.0 * Ct[j]);
 

printf("%1.2e %1.2e",s,
 

contrib_nonmix(0,1,p,C1,Cs,Ct)/K*deg);
 

for (j=1;j<3;j++)
 

{
 

S11=contrib_nonmix(j,j-1,p,C1,Cs,Ct)/K;
 

S22=contrib_nonmix(j,j+1,p,C1,Cs,Ct)/K;
 

S12=contrib_mix(j,j-1,j+1,p,mixcoef)/K;
 

S = 2.0*S12/(S11-S22);
 

cos_eps = sqrt(1.0/(1.0+S*S));
 

printf(" %1.2e %1.2e %1.2e %1.2e",
 

S11*deg,S22*deg,S12*deg,acos(cos_eps));
 

http:printf("%1.2e
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}
 

printf (" \n") ; 

}
 




