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Protein kinases are an abundant class of enzymes which play important roles in 

numerous signal transduction systems. Arabidopsis TOUSLED kinase is a 

serine/threonine kinase which is essential for cell-cell communication within the shoot 

meristem. TOUSLED is encoded by a single gene in Arabidopsis. Recessive mutants in 

this gene show mild vegetative defects and severe floral abnormalities including a random 

reduction in the number of floral organs produced and defects in the formation of the 

gynoecium. 

This thesis describes the cloning and characterization of three maize genes with 

homology to TOUSLED. These genes are known as the TOUSLED-LIKE KINASE 

(TLK) genes. Partial genomic and cDNA clones of the maize TLK genes have been 

sequenced and analyzed. These genes show remarkable similarity to each other and to 

TOUSLED over the region corresponding to the TOUSLED catalytic domain. The TLK 

genes fall into two distinct classes on the basis of nucleotide and amino acid sequence. 

Both classes appear to be expressed throughout the plant. In addition, database searches 

reveal that TOUSLED-like genes are present in a diverse array of other eukaryotes, 

indicating that the TLK genes are members of a widespread, evolutionarily conserved 

class. 
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Two approaches have been taken to find mutants in the TLK genes. This thesis 

describes the tassel-lessl (t1s1) mutant, a possible mutant in one of the TLK genes. The 

t/s/ mutation maps to the same chromosomal location as one of the TLK genes, and may 

represent a lesion in this TLK gene. Characterization of the t/s/ mutant reveals that 

disruption of the TLS1 gene results in variable, progressive vegetative defects and severe 

reduction of the reproductive structures. The t/s/ phenotype is consistent with the 

hypothesis that TLS1 plays a role in regulating meristem activity. In addition, TLK 

sequences have been used in a reverse genetics screen to isolate families which contain 

Mutator transposable element insertions into the TLK genes. These families are currently 

being analyzed for phenotype and allelism to t/s/. 
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Analysis of the Maize TOUSLED-LIKE KINASE Gene Family
 

1. Protein Kinases and Signal Transduction in Plants 

In order for cells to grow, divide or differentiate appropriately, there must be 

some means of coordinating biochemical activity in response to internal and external 

conditions. One means of coordinating cellular activity is through the regulation of 

protein activity by reversible phosphorylation. Protein kinases are the class of enzymes 

which catalyze the addition of phosphate groups to other proteins, thereby activating or 

inactivating their function (Hunter, 1995; Ranjeva and Boudet, 1987). Protein kinases 

can act on and regulate the activity of metabolic enzymes. This provides a direct means 

of controlling cellular activity. Kinases can also phosphorylate transcription factors, 

resulting in changes in gene expression (Hill et al., 1993). Finally, kinases can 

phosphorylate other kinases, creating a signalling relay or cascade. This can be 

extremely effective in amplifying a weak signal as well as in relaying information from 

one part of the cell to another (Hunter, 1995). 

Many protein kinases are expressed in eukaryotes. Roughly 1-3% of eukaryotic 

genes are likely to encode protein kinases (Stone and Walker, 1995). Most eukaryotic 

protein kinases fall into two general classes on the basis of their catalytic activity: 

serine/threonine kinases and tyrosine kinases. In addition, a few histidine kinases have 

been isolated from eukaryotes, although this class is more commonly found among 

prokaryotes (Chang et al., 1993; Stone and Walker, 1995). Protein kinases can be 

recognized and tentatively classified by examining conserved regions in their catalytic 

domains (Hanks and Quinn, 1991; Stone and Walker, 1995), although kinase activity 

needs to be confirmed biochemically. 

Protein kinases play key regulatory roles in processes such as cell division and 

cell-cell communication. In eukaryotes, a number of conserved protein kinases have 

been identified which regulate the cell cycle. For example, entry into mitosis is regulated 
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by the activation of cyclin dependent kinases (CDKs) in complexes with specific cyclin 

proteins. This M-phase kinase complex is then thought to activate other proteins directly 

involved in mitotic events such as chromatin condensation and breakdown of the nuclear 

envelope (Nurse, 1990). Not only is the onset of mitosis controlled by a protein kinase, 

activity of the CDK itself is regulated through phosphorylation by other kinases 

(Lundgren et al., 1991; Nurse, 1990). 

Other pathways are essential for relaying information from the cell surface to 

other parts of the cell. The MAP kinase pathways are well-characterized signal 

transduction cascades that appear to be conserved among animals and yeast. One of the 

best characterized MAP kinases pathways is the pheromone response pathway in yeast 

(reviewed in Herskowitz, 1995). Peptide mating factors are perceived by G-protein­

coupled seven-transmembrane receptors at the cell surface. The signal is then relayed 

through activation of the G-protein and the activation of a module of three kinases, each 

activating the next signal transduction component. The output of the cascade is the 

phosphorylation of the FAR1 protein and transcription factor STE12 (Neiman, 1993). 

Interestingly, this pathway ultimately allows regulation of the cell cycle discussed above; 

FAR1 interacts with the cyclin/CDK complex, inactivating it and arresting the cell cycle 

in preparation for mating (Tyers and Futcher, 1993). 

Both the cell-cycle components and the three component MAP kinase module are 

highly conserved throughout eukaryotes. Similar MAP kinase modules participate in a 

wide range of response pathways, although the triggering mechanism can vary. In 

animals, for example, the cascade is often triggered by the binding of ligands to specific 

receptor tyrosine kinases at the cell surface (Hill and Treisman, 1995; Hunter, 1995). 

Other types of receptors have been identified in yeast and plants, which do not appear to 

have receptor tyrosine kinases. 
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Signal Transduction in Plants 

Plants provide an interesting context in which to examine signal transduction. 

Because of their sessile nature, plants must be able to perceive and respond to 

environmental changes exclusively on a developmental or biochemical level, rather than 

through behavioral responses. In general, higher plants cannot flee their environment or 

alter it to make it more favorable. On the other hand, plants are able to modify their 

developmental program according to environmental cues. For example, the physical 

pressure that a germinating seedling might encounter when blocked by soil particles has 

been shown to induce the production of the plant hormone ethylene (reviewed in Ecker, 

1995). In response to ethylene, seedlings show increased thickening of the roots and 

hypocotyl, and an exaggeration of the apical hook, which may facilitate growth of 

seedlings through soil while minimizing damage to the shoot apex. Plants also respond 

to environmental cues for normal developmental processes. In Arabidopsis seedlings, 

for example, light stimulates morphological programs including the differentiation of 

chloroplasts in the shoot, expansion of cotyledons, and production of new leaves (Deng, 

1994). 

Signal transduction is also likely to be critical in the process of laying down the 

plant body. Because plant cells have rigid cell walls, all morphogenetic processes must 

take place by cell division, differentiation or death. New organs are initiated by 

meristems, pools of undifferentiated stem cells, which proliferate to give rise to the 

reiterated structures of the plant body. Clonal analysis has shown that cell lineage is not 

the primary determinant of cell fate in plants, as it is in animals (Poethig et al., 1990). 

Rather, cells rely on positional information for developmental cues, suggesting that cell-

cell communication plays a large role in determining cell fate in plants. In addition, the 

continual process of organ initiation makes plants an ideal system in which to study the 

signal transduction systems which govern plant development. Plants grow and develop 

new structures throughout their lives. Therefore, cell division and differentiation, as well 
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as the regulatory mechanisms which control these processes, are ongoing and can be 

studied throughout the life cycle of a plant. 

Protein Kinases in Plants 

Complete signalling pathways have not yet been worked out in plants, but a great 

deal of evidence indicates that protein kinases play critical signal transduction roles in 

plants as well as in animals and yeast. Numerous genes encoding putative protein 

kinases have been isolated from plants, including some which have been been 

demonstrated to play important signalling roles (Stone and Walker, 1995). Three protein 

kinases from Arabidopsis have been implicated in mediating the response to the plant 

hormone ethylene (Ecker, 1995; Hua et al., 1996). ETR1 and ERS are putative histidine 

kinases which act early in ethylene perception (Chang et al., 1993; Hua et al., 1996). 

Dominant mutants in both the ETR1 and ERS genes are defective in ethylene binding and 

have an ethylene insensitive phenotype (Bleecker et al., 1988). ETR1 and ERS may act 

as an ethylene receptors or components of an ethylene sensing complex and start the 

signalling cascade which ultimately results in changes in gene expression. Recessive 

mutants in the CTR1 gene display the opposite phenotype; plants show a constitutive 

ethylene response when grown in the absence of ethylene (Kieber et al., 1993). CTR1 

encodes a putative serine/threonine kinase (Kieber et al., 1993). Epistasis studies 

suggest that CTR1 acts downstream of ETR1 and ERS to negatively regulate ethylene 

signal transduction (Ecker, 1995; Hua et al., 1996; Kieber et al., 1993). CTR1 shows 

homology to the mammalian Raf kinases which operate in MAP kinase pathways; CTR1 

may play a similar role as an intermediate step in signal transduction (Kieber et al., 

1993). 

Although receptor tyrosine kinases have not been found in plants, plant receptor-

like kinases are likely to play a similar role in cell-cell communication and the integration 

of extracellular signals. Plant receptor-like kinases feature diverse extracellular receptor 
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domains, a transmembrane domain, and conserved intracellular serine/threonine catalytic 

domains (Stone and Walker, 1995; Walker, 1994). The receptor-like kinase genes which 

have been identified include genes from Brassica napes (Goring and Rothstein, 1992) 

and B. oleracea (Stein and Nasrallah, 1993) which are tightly linked to self-

incompatibility loci. Some self-compatible Brassica lines have been shown to contain 

mutations which result in non-functional S-Locus Receptor Kinase genes, suggesting 

that these kinases are necessary for the self-incompatibility response (Goring et al., 1993; 

Nasrallah et al., 1994). The CLAVATA I gene of Arabidopsis also encodes a putative 

receptor kinase (S. Clark, personal communication). Mutants in this gene show 

progressive enlargement of the meristem throughout development, suggesting that the 

CLAVATA1 receptor kinase is necessary for restricting meristem size (Clark et al., 

1993). 

Calcium fluxes in plant cells occur in response to a variety of stimuli and many 

protein kinases have been identified which are directly or indirectly activated by calcium 

(Stone and Walker, 1995). Unlike animals and fungi, plants contain a large class of 

kinases which can be activated directly by calcium. These calcium-dependent protein 

kinases feature a calmodulin-like domain fused to a serine/threonine catalytic domain 

(Hrabak et al., 1996). Although the specific actions of these kinases are not known, 

some have been shown to be functional kinases which are activated by calcium (Hrabak 

et al., 1996). 

Many other putative protein kinases have been identified in plants. Several genes 

with homology to yeast cell-cycle components have been cloned. One Arabidopsis CDK 

homologue has been shown to play a role in cell division. A dominant negative mutant 

phenotype which suppresses cell division results when a mutated version of this CDK 

gene is over-expressed in tobacco (Hemerly et al., 1995). In addition, kinases with 

similarity to those regulated by second messengers in other systems have been identified 

in plants (Stone and Walker, 1995). Although the exact function of these kinases is not 
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yet known, it is clear that protein kinases are common and play important roles in signal 

transduction in plants. 

Genetic Redundancy in Protein Kinase Families 

Many protein kinases are members of families of closely related genes, often with 

overlapping function. Functional redundancy of genes is a common phenomenon. 

Thomas (1993) classified various scenarios under which genetic redundancy could be 

selectively maintained. Genes with identical function could serve simply to increase gene 

dosage, allowing greater production of an important gene product. Alternatively, having 

redundant genes for extremely important processes such as cell-cycle regulation ensures 

that the loss or mutation of one gene will not render an organism inviable. Finally, 

redundant genes may evolve new functions, either distinct from a shared function or in 

combination with each other, providing a new function. 

There are many examples of genetic redundancy among protein kinases. For 

example, in the yeast pheromone response pathway, the MAP kinases FUS3 and KSS1 

both can phosphorylate the transcription factor STE12, activating gene expression. 

Single mutants in either FUS3 or KSS1 show no defect in this pathway, but double 

mutants are unable to respond to pheromones. However, while these two kinases are 

completely redundant in this pathway, KSS1 cannot compensate for the loss of FUS3 in 

other pathways (reviewed in Herskowitz, 1995). FUS3 and KSS1 have overlapping but 

non-identical functions. 

Redundant kinase families have also been documented in plants. The 

Arabidopsis ethylene response genes ETR1 and ERS give translation products with 75% 

homology in the amino terminal domains (Hua et al., 1995). Dominant mutants in both 

genes display identical ethylene insensitive phenotypes, suggesting a similar role for the 

two kinases. No recessive mutants have been isolated in either gene, which may be due 

to functional redundancy. If one gene can compensate for the loss of the other, both 
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genes would need to be knocked out in order to completely disrupt ethylene perception 

(Hua et al., 1995). 

Another family of closely related kinases is the PTO family in tomato. PTO 

encodes a serine/threonine kinase which confers resistance to the pathogen Pseudomonas 

syringae pv. tomato. Southern analysis indicates that there are at least six closely related 

genes in tomato (Martin et al., 1993). One of these related genes, FEN, has been cloned 

and shown to encode a serine/threonine ldnase which is 80% identical to PTO at the 

amino acid level. However, the phenotype conferred by the FEN gene is quite different; 

FEN mediates sensitivity to the insecticide fenthion, but does not confer resistance to 

Pseudomonas (Martin et al., 1994). Although these two kinases are very closely related, 

they have different functions. Additional players in the pathway have also been 

identified. PTI1 encodes a different serine/threonine kinase which interacts specifically 

with PTO but not FEN (Zhou et al., 1995). PRF has been shown to act upstream of 

both PTO and FEN (Salmeron et al., 1994). Clearly, PTO and FEN are components of 

closely related, but not completely overlapping signalling systems. 

TOUSLED Kin ase 

TOUSLED kinase (TSL) is a putative serine/threonine kinase which is essential 

for many aspects of Arabidopsis development (Roe et al., 1993). TSL is a single gene in 

Arabidopsis. It contains 16 exons and encodes a 2.7 kb transcript. TSL is expressed 

throughout the plant, but is expressed most highly in developing floral buds. In addition 

to a C-terminal catalytic domain, the N-terminal portion of TSL has a glutamine rich 

region, three nuclear localization signals and two predicted coiled-coil regions (Roe et al., 

1993). TSL has been expressed in yeast, and in vitro studies show that it encodes a 

functional serine/threonine kinase which can both autophosphorylate and 

transphosphorylate exogenous substrates (Roe et al., 1997a). TSL fusion proteins 

localize to the nucleus when expressed in tobacco protoplasts, indicating that the nuclear 
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localization signals are functional (Roe et al., 1997a). Studies of deletion mutants 

indicate that the N terminal coiled-coil region is essential for catalytic activity. Coiled-

coils such as those found in TSL, are a-helical regions with a hydrophobic face. They 

are thought to be important in protein-protein interactions (Cohen and Parry, 1986). In 

TSL, oligomerization, perhaps through interactions of these coiled-coil regions, is 

necessary for catalytic activity (Roe et al., 1997a). Oligomerization with different protein 

partners may play a role in the regulation of TSL activity. 

TOUSLED plays a critical role in Arabidopsis morphogenesis. Recessive 

mutants in the TSL gene display a variety of abnormal traits (Roe et aL, 1993). Leaf 

shape is slightly altered and cauline leaves curl up around the main stem, rather than lying 

perpendicular to it. Flowers in tsl mutants consistently lack the normal complement of 

floral organs, although the particular organs which are missing vary from flower to 

flower. In addition, the gynoecium fails to fuse completely, and lacks a complete style 

and stigma. Microscopy of tsl mutants reveals that the floral meristem fails to initiate 

organs in the proper position or number. In the gynoecia, cell division appears to be 

poorly coordinated, resulting in uneven growth and failure of the carpels to fuse and 

form a closed style and stigma (Roe et aL, 1997b). The phenotype of tsl mutants is 

consistent with the expression pattern and the possible role of TSL in cell-cell 

communication and signal transduction in the meristem. TSL clearly plays an important 

role in coordinating proper development in Arabidopsis. 

The TOUSLED-LIKE KINASE Gene Family of Maize 

The catalytic domain of TOUSLED is quite conserved and TOUSLED-like 

homologues have recently been found in a diverse array of organisms including maize, 

Caenorhabditis species, mice, and humans (Roe et al., 1997a). Mice and humans have 

two TOUSLED-like genes each. The mammalian genes fall into two distinct classes, 

with one gene of each class found each species. In maize, a small family of genes shares 
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homology to the TOUSLED catalytic domain. A partial cDNA of one maize TOUSLED­

LIKE KINASE, or TLK gene was isolated and sequenced by Helentjaris et al. (1995). 

When used to probe genomic Southern blots, multiple bands are detected, indicating that 

this TLK gene is a member of a small family of related genes, rather than a single gene 

as in Arabidopsis. Helentjaris et al. (1995) mapped three TLK loci to chromosomes 1L, 

4L , and 5S. 

It is not surprising that the TLK genes form a small gene family in maize, while 

TOUSLED is a single gene in Arabidopsis. Mapping studies in maize have shown that 

there are large chromosomal blocks which are duplicated elsewhere in the genome 

(Helentjaris et al., 1988). The TLK loci on chromosomes 1L and 5S are on one such 

duplicated block, suggesting that they may have been duplicated as part of a large scale 

genome duplication. Comparisons between maize and other closely related grasses show 

that these blocks are conserved linkage groups among the cereals, although they are only 

represented once in the genome of species such as rice (Aim and Tanksley, 1993). Maize 

is currently a true diploid with a haploid chromosome number of 10. However, 

cytogenetic studies suggest an allotetraploid origin for maize, with a base chromosome 

number of 5 (Molina and Naranjo, 1987). The genome duplication could have occurred 

when two related diploid species hybridized to form the tetraploid maize progenitor. 

Some duplications could have been subsequently lost. Alternatively, duplications of 

large chromosomal regions could have occurred internally (Helentjaris et al., 1988). 

Duplicated loci include many known structural genes, some of which display 

functional overlap (Gottleib, 1982; Rhoades, 1951). Two genes, C2 and Whp, both 

encode the anthocyanin biosynthesis enzyme chalcone synthase (Franken et al., 1991). 

Although they display functional overlap in mediating pollen coloration and viability (Coe 

et al., 1981), the two genes are regulated differently at both the transcriptional and 

translational levels and do not complement each other in other parts of the plant (Franken 

et al., 1991). These two closely related genes have evolved independent specificity 
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despite their functional similarity. There is genetic redundancy in the regulation of the 

anthocyanin pathway as well. The genes B and R are roughly 85% identical at the 

nucleotide level (Chandler et at, 1989), and both encode putative transcriptional 

activators (Chandler et aL, 1989; Ludwig et al., 1989). There are numerous alleles of 

each gene, and the degree of functional overlap between the genes varies according to 

alleles and tissues examined. These genes map to chromosomal locations believed to be 

duplicated regions of each other, suggesting that this is an ancient duplication of genes 

which now have overlapping but non-identical functions (Chandler et al., 1989). 

Whether or not the TLK genes currently display functional overlap, this gene 

family provides a convenient system in which to examine the evolution of multiple gene 

families. The presence of three mapped loci can be explained by either the loss of one 

gene following duplication of an entire genome containing two TLK genes, or the 

independent duplication of one of two TLK loci present in an ancestral genome. It is 

possible that TLK gene function has diverged since duplication, either through 

independent regulation of the expression of each individual gene, or from specification in 

the action of the gene products. The latter may occur through modifications in the non-

catalytic protein-protein interaction domain, allowing for specific regulation through 

interactions with different protein partners. Molecular analysis of the TLK genes will 

yield information about the structural and functional relationship between the various 

members of the family. 

Mutants in the TLK Genes 

Mutant analysis is extremely useful in elucidating the role of particular genes in a 

whole organism. The tassel-less 1 morphological mutant (Albertsen et al., 1993) maps to 

the same location as the chromosome 1L TLK gene, and may represent a lesion in this 

gene. The tassel-less 1 phenotype has only been briefly characterized (Albertsen et al., 

1993), but may be due to a mutation in the same gene as the barren-sterile mutant 
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(Woodworth, 1926), which has been lost. Both mutants display a highly variable 

phenotype resulting in severe reduction of both the male and female inflorescences and 

reduced stature. The phenotype is similar to that of tousled mutants, with major floral 

defects and a milder vegetative phenotype. 

Analysis of tassel-less 1, a potential TLK mutant, and isolation of other TLK 

mutants will be useful in determining the role of the various TLK genes. It will be 

particularly interesting to examine mutant phenotypes in maize, which has very different 

plant architecture from Arabidopsis and which has multiple related TOUSLED-LIKE 

KINASE genes. In addition to allowing analysis of the phenotypes resulting from 

disruption of each individual TLK gene, the construction of double and triple mutants 

will yield information on the interaction of the TLK genes with each other. Isolation of 

mutants will also permit studies of the interactions between the TLK genes and other 

genes known to play a role in maize development. The combination of molecular 

information on the TLK genes and gene products with the characterization of mutants 

will provide powerful tools for understanding one of the signal transduction pathways 

which is likely to be critical in coordinating plant development. 
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2. Maize Contains a Small Family of TOUSLED-LIKE KINASE Genes
With High Homology to Arabidopsis TOUSLED 

Abstract 

The TOUSLED gene of Arabidopsis encodes a member of a novel class of 

serine/threonine protein kinases. TOUSLED plays a role in shoot development and is 

essential for the correct partitioning of the floral meristem into organs (Roe et al., 1993). 

In maize, a small family of genes show homology to the TOUSLED catalytic domain 

(Helentjaris et al., 1995). Partial genomic and cDNA clones representing three distinct 

maize TOUSLED-LIKE KINASE (TLK) genes show extremely high homology to each 

other and to the catalytic domain of TOUSLED. The TLK genes are highly conserved, 

but appear to fall into two classes, on the basis of both nucleotide and predicted amino 

acid sequences. Preliminary expression studies indicate that both classes of TLK genes 

are expressed in maize. Database searches reveal the presence of TOUSLED-like genes 

in a diverse array of other eukaryotes, indicating that the maize TLK genes are part of a 

widespread, evolutionarily conserved class of kinases. 

Introduction 

Growth of higher plants occurs as cells in the meristems, pools of 

undifferentiated stem cells, proliferate and give rise to the various organs which make up 

the plant body. Development is an ongoing process in plants, and is a primary means by 

which plants respond to their environment. New organ primordia must be initiated 

correctly in time and space, and then must perceive and respond to developmental cues in 

order to undergo appropriate patterns of growth and differentiation. The coordination of 

cell division and differentiation is a complex process involving cell-cell communication 

and regulated gene expression. It is possible to gain some insight into these aspects of 

plant development by examining some of the genes involved in the process. 
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Recently, analysis of mutant phenotypes has led to the identification of many 

genes with critical roles in plant development, including some which coordinate shoot 

apical meristem activity in angiosperms. Some of these genes have been cloned, yielding 

information on the possible specific roles of these genes. These include a number of 

probable transcription factors such as those encoded by genes related to the maize 

homeobox gene KNOTTED] (Hake et al., 1995), and the various MADS box genes 

which play important roles in floral development (Okada and Shimura, 1994; Weigel and 

Meyerowitz, 1994). Another major class of developmentally important genes include 

signal transduction elements. Phosphorylation cascades are one important means of 

signal transduction (reviewed in Hill and Treisman, 1995), and numerous protein kinases 

have been identified in plants (Stone and Walker, 1995). Plant protein kinases have been 

implicated in the relay of a number of environmental signals, including the presence of 

the plant hormone ethylene (reviewed by Ecker, 1995), recognition of self pollen by self-

incompatible plants (Goring et al., 1993; Stein and Nasrallah, 1993), and response to 

pathogen attack (Martin et al., 1993). CLAVATA1 is a receptor-like kinase which is 

necessary for the maintenance of meristem size in Arabidopsis (S. Clark, personal 

communication). Mutants in Clavatal display an abnormally large meristem and 

developmental defects including fasciation and the production of extra carpels (Clark et 

al., 1993). 

The Arabidopsis gene TOUSLED (TSL) is another plant kinase with a probable 

role in meristem function. It was first identified as a floral mutant, and is likely to play a 

role in cell signaling in the meristem (Roe et al., 1993). Disruption of the TSL gene 

causes mild vegetative defects and severe defects in floral morphology. tsl mutant plants 

display a random reduction in the number of floral organs produced (Roe et al., 1993) 

and show incomplete development of the gynoecium, with significant defects in the 

stigma and style (Roe et al., 1997b). TSL encodes a functional serine/threonine kinase 

which is nuclearly localized and acts as an oligomer (Roe et al., 1997a). In addition to 
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the catalytic domain, the TSL protein contains an N-terminal coiled-coil region which is 

necessary for activity and likely is involved in oligomerization (Roe et al., 1997a). 

Although TOUSLED is a single gene in Arabidopsis, there appear to be multiple 

TOUSLED-LIKE KINASE (TLK) genes in maize. A partial cDNA clone from maize 

with very high homology to the catalytic domain of TSL was isolated by Helentjaris et al. 

(1995) as part of a maize sequencing project. This clone identifies three loci in maize, 

which map to chromosomes 1L, 4L and 5S (Helentjaris et al., 1995). 

Multiple gene families and genetic redundancy are common phenomena. Protein 

kinases may be duplicated to ensure a functional kinase for important processes or may 

have arisen through duplications but subsequently diverged, allowing functional diversity 

(Thomas, 1993). This study describes the isolation of partial genomic clones of the TLK 

genes from maize. Analysis of the structural relationships between the members of this 

small gene family and examination of gene expression should help reveal how the 

multiple TLK genes of maize are related to each other and to Arabidopsis TOUSLED 

both structurally and functionally. 

Methods and Materials 

TLKI Partial cDNA Clone 

A partial cDNA clone representing one TLK gene was obtained from T. 

Helentjaris (then at University of Arizona). This cDNA was isolated from a developing 

endosperm library. The ASph subclone of this cDNA corresponds to the translated 

portion of the catalytic domain and was used as a probe in the experiments described 

below. 

Isolation of Genomic and cDNA Clones 

The ASph probe was used to screen a B73 maize genomic library in EMBL3 

(Clontech). Duplicate plaque lifts were made on Magnagraph 0.45 pm nylon filters 



19 

(MSI). Filters were baked for two hours in an 80° oven and hybridized with 1.5 x 106 

dpm/m132P-dCTP labeled random-primed DNA (Feinberg and Vogelstein, 1984) in 5 ml 

of 250 mM NaH2PO4, 7% SDS. Lifts were prehybridized for 30 minutes and 

hybridized overnight at 65° in a rotating hybridization oven (Robbins Scientific). Lifts 

were washed three times for 45 minutes each in approximately 100 ml of 0.2X SSC, 

0.1% SDS. Positive clones were visualized by exposing lifts to X-omat AR X-ray film 

(Kodak) for 2-3 days. Positive clones were isolated and purified. 

A cDNA library in X-Zap II (Stratagene) made from B73 developing ear shoot 

RNA was provided by Sarah Hake (U. C. Berkeley). This library was also screened as 

described. 

Analysis of DNA 

Lambda DNA was extracted from positive clones using the Wizard Lambda DNA 

Purification kit according to manufacturer's directions (Promega). Clones were 

restriction mapped by running 250 ng DNA digested with various restriction 

endonucleases on 0.8% agarose gels in Tris-Borate buffer (Sambrook et al., 1989). 

Gels were capillary blotted onto 0.45pm Magnagraph nylon membranes (MSI) and 

baked and hybridized as described above. Hybridization was detected by exposing blots 

to a phosphorimager detection screen (Molecular Dynamics). Results were analyzed 

using the ImageQuant program (Molecular Dynamics). 

Southern blots were performed in the same manner to analyze plasmid subclones 

and maize genomic DNA. Maize DNA was purified according to Dellaporta (1994), and 

3 to 4µg DNA was digested and run per lane. 

Subcloning and Sequencing 

The entire cDNA insert and hybridizing restriction fragments of genomic clones 

were gel purified using the Geneclean II kit according to manufacturer's protocol (Bio 

101). These inserts were ligated into pBluescript II SK- (Stratagene) and transformed 
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into competent E. coli strain DH5a. DNA was prepared from cells carrying recombinant 

plasmids using the QIAprep-spin plasmid miniprep kit according to instructions (Qiagen, 

Inc.). Plasmids were sequenced by Oregon State University's Central Services 

Laboratory using dye primer chemistry on an automated sequencer (Applied 

Biosystems). 

Sequences were analyzed and compared to each other using Genetics Computer 

Group Version 8 (1994) software. Sequences were compared to databases over the 

World Wide Web using FASTA (Pearson and Lipman, 1988). 

RNA Analysis 

Plant material was taken from B73 and W22 plants grown in the field nursery and 

greenhouse in Corvallis, OR. Tissue was immediately frozen in liquid nitrogen and 

stored at -80° until used. RNA was isolated from 7 day old W22 seedlings, 17 DAP 

W22 kernels, mature B73 leaves, and an immature 3 cm W22 ear. Large scale RNA 

preps were done according to Wessler (1994). RNA micropreps were done using the 

PUREScript R-5500A RNA Isolation Kit (Gentra Systems) according to the protocol for 

plant material. This RNA was further purified by precipitation with an equal volume of 4 

M LiC1 before use. For northern blots, poly(A) RNA was prepared using the Poly 

ATtract IV System (Promega). Total or poly(A) RNA was run on 1.2% agarose, 2.2 M 

formaldehyde gels in MOPS buffer (Sambrook et al., 1989). Gels were blotted and 

hybridized as described for DNA gels. Reverse transcription PCR (RT-PCR) was also 

done, as described below. 

PCR Analysis 

Genomic and cDNA sequences were used to develop PCR primers which amplify 

various portions of the genes (Figure 2.1). Primers A(5'GGTTCATCCAAACATTGT­

CAGGCTATGGGA-3'), B (5'-AGCTGGCTTTGAAGGGAACTCCACTCT-3), C 

(5'-CAATGCACGGAGAGTGGAG'TTCCCI i CAA-3'), D (5'GGTGGITTCTGATT­
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Figure 2.1 PCR primers and their positions relative to the TLKI cDNA clone. Primer 4 is specific to clones MTK3 and MTK4. 
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TGGCAGACCA 1 ACC-3') and 4 (5' AAGGAGATCTCAGTCAAAGGGTAAATGG-3') 

were synthesized by the Central Services Laboratory (Oregon State). Primers C and D 

were used to amplify genomic DNA. 50m1 PCR reactions were run in 0.25 mM dNTP 

mix, 10% sucrose, 1.5 mM MgC12 with 3 U Hot Tub DNA Polymerase (Amersham). 

40 ng of B73 total genomic DNA was used as template. Amplification was conducted in 

a Twin Block FasyCycler (Fricomp), with 10 min at 94° (once), 1 min at 94° and 62°, 2 

min at 72° (40 times), and 5 min at 72° (once). The DNA polymerase was added after the 

initial 10 min incubation at 94°. 

Primers pairs A-B, A-D and A-4 were used in RT-PCR. First strand cDNAs 

were prepared from total RNA using the Super Script Preamplification System (Life 

Technologies). These cDNAs were then amplified using the PCR reaction mix described 

above with a reaction profile of 10 min at 94° (once), 1 min at 94° and 58°, 2 min at 72° 

(40 times), and 5 min at 72° (once). Negative controls included reactions with no 

template and with RNA treated with no reverse transcriptase. 

PCR products were analyzed by running 10111 of the reaction on 1.0% agarose 

gels and blotting and hybridizing as described above. Some fragments were gel purified, 

cloned and sequenced as described above. RT-PCR products from primers A to D were 

digested with Sad before being analyzed. 

Results 

Isolation of TLK Clones 

860,000 plaques from a B73 random genomic library were screened with the 

ASph probe. Five positive clones were identified for further analysis. These clones are 

referred to as Maize Tousled Kinases (MTK) because they have not been assigned to 

specific TLK loci. All the MTK genes described here appear to fall into the TLK family. 

Restriction mapping indicates that two clones cover overlapping regions of the same gene 

(MTK2). The other three clones, MTK1, 3, and 4, represent distinct loci (Figure 2.2). 
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Figure 2.2 The MTK clones are highly homologous to the TLKI cDNA. The coding regions of MTK1 and MTK2 are identical to 
the cDNA, while MTK3 and 4 are only 91% identical to the cDNA. Intron Z is also highly conserved. 
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Restriction fragments which hybridized to the ASph catalytic domain probe were 

subcloned, mapped more thoroughly, and sequenced. All five clones contained 

sequences with high homology to the 3' end of the TLK1 partial cDNA clone. After 

obtaining more information about the orientation of the gene sequence within the clones, 

it was possible to subclone flanking regions of MTK4. Unfortunately, none of the 

lambda clones contained complete copies of the genes; the most 5' sequence of each 

clone ended within the catalytic domain. 

Additional MTK1 sequence was obtained through PCR amplification of B73 

genomic DNA using primers C and D. These primers were expected to amplify a 

product of 508 by from an intronless gene or cDNA and a product of roughly 790 by in a 

gene containing introns. When used to amplify genomic DNA, the primary product was 

790 bp. When cloned and sequenced, this fragment corresponded to MTK1. This PCR 

clone included 5' sequence which was not present in the lambda clone due to a 

rearrangement. Interestingly, I was not able to amplify the 508 by product predicted to 

correspond to the intronless gene represented by the MTK2 clones. Genomic Southern 

blots also failed to give RFLPs predicted by MTK2, although other bands were 

consistent with the sequence information from the other clones. 

160,000 plaques from a developing ear shoot cDNA library were also screened, 

yielding one positive clone, cEAR. This clone is identical in sequence to Helentjaris's 

TLK1 partial cDNA, except that it extends 300 by further upstream. In addition, the 

cEAR clone lacks the most 3' portion of the untranslated region. This clone ends in an 

A-rich region, suggesting that the oligo(T) primer used to initiate cDNA synthesis may 

have annealled to this site rather than to the poly(A) tail further downstream. The cEAR 

clone includes sequence corresponding to nearly the complete catalytic domain of 

Arabidopsis TSL, but lacks the extensive 5' non-catalytic portion of TSL. Both cDNAs 

also correspond exactly to the predicted transcripts of MTK1 and 2. 
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Primers A and 4 were used to amplify a seedling cDNA. The resulting fragment 

was cloned and sequenced. This RT-PCR product corresponded to MTK4 and also 

contained 5' sequence which was not present in the genomic clone. 

Comparison of the Maize TLK Genes to Each Other 

The maize TLK genes which we have cloned are extremely similar to each other, 

but appear to fall into two distinct classes on the basis of nucleotide sequence (Figure 

2.2). The coding regions of MTK1 and 2 are 100% identical to each other, but MTK1 

contains an intron, while MTK2 lacks introns over the entire region sequenced. The 

putative coding regions of MTK3 and 4 are 96% identical to each other, but only 91% 

identical to MTK1 and 2. 

Interestingly, the 3' untranslated regions of all the genes are also conserved. 

MTK3 and 4 are 94% identical to each other over the sequenced portions of their 3' 

untranslated regions, and 75% identical to MTK1 and 2. The most 3' intron is also 

conserved. This intron is 84% identical in MTK3 and 4, which are both 75% identical to 

MTK1 in this region. Intron homology apparently does not continue to this degree in the 

more 5' regions of the genes. A portion of intron W of MTK4 (as shown in Figure 2.2) 

can be used as a gene-specific probe, identifying a single band on genomic Southern 

blots while the ASph probe recognizes multiple bands (Figure 2.3). 

Homology to Arabidopsis TSL and Other TSL Homologues 

All four genes cloned have extremely high homology to each other and to TSL 

(Figure 2.4). The predicted translation products of the maize genes are over 84% 

identical and 91% similar to TSL at the amino acid level. In addition, gene structure is 

conserved in three of the four genes. MTK1, MTK3 and MTK4 all contain introns in 

exactly the same positions as they occur in TSL. Although the MTK clones do not cover 

the complete catalytic domain, the last 8 of 11 conserved serine/threonine kinase 

subdomains are present and contain the conserved residues common to all 
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Figure 2.3 Genomic Southern blot probed with ASph (left) and MTK4 intron W 
(right). B73 and W22 maize DNA was digested with BglII. The position of size 
standards is indicated in the middle. 
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TSL EEKKQSYIRH ANRECEIHKS LVHHHIVRLW DKFHIDMHTF CTVLEYCSGK 
GEAR VHPNIVRLW DIFEIDHNTF CTVLEYCSGK 
MTK1 
MTK2 
MTK3 
MTK4 VHPNIVRLW DIFDIDHNTF CTVLEYCSGK 

* * * 

TSL DLDAVLKATS NLPEKEARII IVQIVQGLVY LNKKSQKIIH YDLKPGNVLF 
GEAR DLDAVLKATP ILPEKEGRII IVQIFQGLVY LNKRGQKIIH YDLKPGNVLF 
MTK1 
MTK2 
MTK3 
MTK4 DLDAVLKATP ILPEKEARII IVQIFQGLVY LNKRGQKIIH YDLKPGNVLF 

* * ** 

TSL DEFGVAKVTD FGLSKIVEDN VGSQGMELTS QGAGTYWYLP PECFELNKTP 
GEAR DEVGVAKVTD FGLSKIVEND VGSQGMELTS QGAGTYWYLP PECFDLSKTP 
MTK1 
MTK2 VRND VGSQGMELTS QGAGTYWYLP PECFDLSKTP 
MTK3 
MTK4 DEVGVAKVTD FGLSKIVEDD VGSQGMELTS QGAGTYWYLP PECFDLSKTP 

* * 

TSL MISSKVDVWS VGVLFYQMLF GKRPFGHDQS QERILREDTI IKAKKVEFPV 
GEAR FISSKVDVWS AGVMFYQMLF GKRPFGHDQT QERILREDTI INARRVEFP­
MTK1 NARRVEFP­
MUW2 FISSKVDVWS AGVMFYQMLF GKRPFGHDQT QERILREDTI INARRVEFP­
MTK3 FMYQMLY GRCPFGHDQT QERILWEDTI INARRVEFP­
MTK4 FISSKVDVWS AGVMFYQMLY GRRPFGHDQT QERILREDTI INARRVEFP­

* 

TSL TRPAISNEAK DLIRRCLTYN QEDRPDVLTM AQDPYLAYSK K 
GEAR SKPAVSNEAK DLIRRCLTYN QSERPDVLTI AQDPYLSYAK R 
MTK1 SKPAVSNEAK DLIRRCLTYN QSERPDVLTI AQDPYLSYAK R 
MTK2 SKPAVSNEAK DLIRRCLTYN QSERPDVLTI AQDPYLSYAK R 
MTK3 SKPAVSNEAK DLIRRCLTYN QSERPDVLTI TQDPYLSYAK K 
MTK4 SKPAVSNEAK DLIRRCLTYN QSERPDVLTI TQDHYLSYAK K 

Figure 2.4 Comparison of translation products of Arabidopsis Tousled catalytic domain 
and partial maize TOUSLED-LIKE KINASE clones. Stars (*) indicate residues which 
are conserved among all serine/threonine kinases. 
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serine/threonine kinases (Hanks and Quinn, 1991), indicating that the TLKgenes encode 

potentially functional kinases. 

Database searches reveal the presence of homologous genes in such distantly 

related species as Caenorabditis elegans, mouse and human. Genes from these diverse 

species show extensive stretches of homology over the catalytic region and encode 

translation products with 44% identity in this area (Figure 2.5). 

Expression of the TLK Genes 

Cloning of partial cDNAs and an RT-PCR product indicate that the TLK genes 

corresponding to clones MTK1 or 2 and MTK4 are transcribed in maize. Northern blots 

show a transcript size of roughly 2.8 kb, which is similar to the size of the TSL 

transcript. The TLK genes are expressed at very low levels and are difficult to detect and 

impossible to distinguish from one another on northern blots. Therefore, RT-PCR was 

used to monitor expression of the TLK genes in different tissues. The translated region 

of MTK2 contains a Sad restriction site which is not present in MTK4. The 

corresponding regions of the MTK1 and MTK3 genes have not been sequenced, but 

MTK1 is likely to contain the Sad site and MTK3 is likely to lack it, based on their high 

degree of similarity to MTK2 and MTK4 respectively. By amplifying cDNAs using 

primers A and D, and then digesting the PCR products with Sad, it is possible to 

distinguish between MTK2-related and MTK4-related transcripts. Both classes of genes 

are expressed in all tissues examined (Figure 2.6). 

Discussion 

The Maize TOUSLED-LIKE KINASE Genes Form a Small Gene Family 

Genomic and cDNA clones representing portions of four distinct genes with high 

homology to the catalytic domain of the Arabidopsis gene Tousled have been isolated 

from maize and sequenced. These maize TOUSLED-LIKE KINASE genes are likely to 
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TSL .VHHHIVRLW DKFHIDMHTF CTVLEYCSGK DLDAVLKATS NLPEKEARII
 
maizel .VHPNIVRLW DIFEIDHNTF CTVLEYCSGK DLDAVLKATP ILPEKEGRII
 
C.elg .DHCRIVKQY DLLTIDNHSF CTVLEYVPGN DLDFYLKQNR SISEKEARSI
 
mouse .DHPRIVKLY DYFSLDTDSF CTVLEYCEGN DLDFYLKQHF LMSEKEARSI
 
human .DHPRIVKLY DYFSLDTDTF CTVLEYCEGN DLDFYLKQHK LMSEKEARSI
 

TSL IVQIVQGLVY LNKKSQKIIH YDLKPGNVLF ...DEFGVAK VTDFGLSKIV 
maizel IVQIFQGLVY LNKRGQKIIH YDLKPGNVLF ...DEVGVAK VTDFGLSKIV 
C.elg 
mouse 

IMQVVSALVY 
IMQIVNALKY 

LNEKSTPIIH 
LNEIKPPIIH 

YDLKPANILL 
YDLKPGNILL 

ESGNTSGAIK 
VNGTACGEIK 

ITDFGLSKIM 
ITDFGLSKIM 

human VMQIVNALRY LNEIKPPIIH YDLKPGNILL VDGTACGEIK ITDFGLSKIM 

TSL EDN..VGSQG MELTSQGAGT YWYLPPECFE LNKTP.MISS KVDVWSVGVL
 
maizel END..VGSQG MELTSQGAGT YWYLPPECFD LSKTP.FISS KVDVWSAGVM
 
C.elg EGESDDHDLG IELTSQFAGT YWYLPPETFI V..PPPKITC KVDVWSIGVI
 
mouse DDDSYNSVDG MELTSQGAGT YWYLPPECFV VGKEPPKISN KVDVWSVGVI
 
human DDDY..GVDG MDLTSQGAGT YWYLPPECFV VGKEPPKISN KVDVWSVGVI
 

TSL FYQMLFGKRP FGHDQSQERI LREDTIIKAK KVEFPVTRPA ISNEAKDLIR
 
maizel FYQMLFGKRP FGHDQTQERI LREDTIINAR RVEFP.SKPA VSNEAKDLIR
 
C.elg FYQCIYGKKP FGNDLTQQKI LEYNTIINQR EVSFP.SKPQ VSSAAQDFIR
 
mouse FYQCLYGRKP FGHNQSQQDI LQENTILKAT EVQFPP.KPV VTPEAKAFSR
 
human FYQCLYGRKP FGHNQSQQDI LQENTILKAT EVQFPV.KPV VSSEAKAFIR
 

TSL RCLTYNQEDR PDVLTMAQDP YLAYSKK*
 
maizel RCLTYNQSER PDVLTIAQDP YLSYAKR*
 
C.elg RCLQYRKEDR ADVFELAKHE LFRPRGASV
 
mouse RCLAYRKEDR IDVQQLACDP YLLPHIRKS
 
human RCLAYRKEDR FDVHQLANDP YLLPHMRRS
 

Figure 2.5 Alignment of predicted translations of the catalytic domains of TOUSLED-
like genes from five different organisms. Predicted translation products are based on 
cDNA sequences from Arabidopsis TOUSLED (Roe et al., 1993), maize (cEAR clone), 
C. elegans (Wilson et al., 1994), mouse (Shalom and Don, 1996) and human (Nomura, 
1995). Boldface residues are conserved among all five species. 
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Figure 2.6 Southern blot of RT-PCR products digested with Sad and probed with the 
cEAR clone. PCR amplification using primers A and D was done on first strand 
cDNAs from maize seedlings, developing ears, kernels and mature leaves. The 
MTK1/MTK2 class transcripts are cleaved by Sad resulting in fragments of 689 and 
331 bp. MTK3/MTK4 class transcripts remain uncleaved, at 1020 bp. 
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encode functional serine/threonine kinases, based on their predicted translation products. 

At least two of these genes are expressed throughout the plant. These clones are likely to 

represent all of the TLK genes in maize, based on the number of genomic clones 

screened, and previous mapping data (Helentjaris et al., 1995). 

It is possible that the two intronless MTK2 clones do not represent an actual 

gene, but are instead some sort of artifact in the library we screened. I have been unable 

to confirm the existence of an intronless gene in B73 genomic DNA. In addition, the 

MTK1 and MTK2 sequences are 100% identical, even in the 3' untranslated region, 

except for the lack of introns in MTK2. The two MTK2 clones may actually be cDNAs 

of M11(1 transcripts. Although the MTK2 clones could also represent a pseudogene, 

such a locus should still be detectable by PCR and Southern blotting. The finding of 

three actual TLK genes is consistent with the mapping data of Helentjaris et al. (1995), 

although two closely linked loci would not necessarily be detectable as two separate 

genes in a mapping survey. It is unclear how cDNAs could have appeared in a genomic 

library. The development of gene-specific probes and subsequent mapping of the MTK 

sequences to previously established TLK loci may help clear up this uncertainty. 

Mapping will also provide clues to the evolution of this gene family in maize. 

Comparative mapping studies between maize and other related grasses have shown that 

large portions of the maize genome have been duplicated in blocks. The 1L and 5S TLK 

loci reported by Helentjaris et al. (1995) fall within chromosomal regions which appear 

to be syntenous. Large blocks of the maize genome are duplicated, either as a result of 

an tetraploidization event, or through duplication of individual chromosome segments 

(Helentjaris et al., 1988). It will be interesting to see if the more closely related MTK3 

and 4 map to these locations. If so, they may have arisen through a relatively recent 

duplication event, explaining the higher homology they share with each other than with 

MTK1/MTK2. Maize is presumed to have a tetraploid origin, and it is possible that the 

progenitors of maize each had two genes. Following hybridization, one of the MTK1­
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like genes could have been lost from the new tetraploid resulting in the current three 

genes. Alternatively, there could have been two TLK genes following tetraploidization, 

perhaps due to the hybridization event. The MTK3/MTK4 progenitor gene could have 

then been duplicated to give the current number of three genes. 

Regardless of the exact number of TLK genes in maize, at least two TLK genes 

are expressed. The presence of multiple, related genes may lead to functional overlap. 

For example, the Arabidopsis ethylene response genes ETR1 and ERS share sequence 

homology, and are likely to share function too. Dominant mutations in either gene result 

in an identical ethylene insensitive phenotype (Hua et al., 1995). The failure to recover 

recessive mutants in these genes may be due to complete functional overlap; both genes 

would need to be eliminated in order to see a phenotype. In other cases, genetic 

redundancy may lead to a diversification of function. In tomato, a cluster of homologous 

genes have evolved distinct functions. Two of these genes, PTO and FEN, encode 

active protein kinases with 80% identity and 87% similarity at the amino acid level 

(Martin et al., 1994). Despite their structural similarity, they have non-overlapping 

functions: PTO confers resistance to Pseudomonas syringae pv tomato, while FEN leads 

to sensitivity to the insecticide fenthion (Martin et al., 1993; Martin et al., 1994). 

Functional copies of both genes are needed to give both phenotypes. 

Expression data suggest that there may be differences in the relative levels of the 

two classes of TLK genes which are expressed in different tissues, but it is premature to 

conclude that there is differential regulation of the TLK genes at the transcriptional level. 

The development of gene-specific probes will facilitate quantitative comparisons of the 

expression level of each TLK gene in different tissues. 

The structure of the TOUSLED protein suggests the potential for the evolution of 

distinct functions in the TLK gene family. TSL contains an extensive N-terminal domain 

which includes coiled-coil regions likely to be involved in protein-protein interactions 

(Roe et al., 1993). This portion of the TSL gene is not as highly conserved between 



33 

Arabidopsis and maize, based on Southern analysis (data not shown). It is possible that 

the various members of the maize TLK family each have unique non-catalytic domains, 

allowing their specific regulation at the protein level through interactions with specific 

protein partners. Alternatively, different TLK proteins could interact with each other, 

creating various combinations of homo- and heterodimers with varying activities. 

Cloning and analysis of the 5' portions of the TLK genes will allow comparison of the 

non-catalytic domains and permit biochemical studies on the action of and interaction 

between various members. 

The TLK Genes Contain Highly Conserved Untranslated Sequences 

The extremely high sequence homology of the 3' untranslated region (3' UTR) 

and the most 3' intron was surprising. Although untranslated, these sequences may play 

important roles in the regulation of these genes. Either region could act as a distal 

regulatory element such as an enhancer. Such an enhancer has been found in an intron 

in a mouse immunoglobin heavy chain gene. This intron contains three enhancer sites of 

8 nucleotides each which can act as enhancers even when moved elsewhere in the gene 

(Gil lies et al., 1983). In plants, transposable elements inserted into introns have been 

implicated in altering gene expression. Insertions into introns of both maize KNOTIED1 

and Antirrhinum PLENA cause dominant mutations marked by expression of the KN 1 

and PLENA genes in tissues where they are not normally expressed. It has been 

suggested that either the transposable elements themselves act as enhancers, or they 

prevent binding or activity of inhibitors associated with sequences near the insertions 

(Bradley et al., 1993; Greene et al., 1994). Either way, these findings suggest that 

intron sequences are potentially important in regulating gene expression. 

The 3' UTR could also play a role in transcript stability. Various proteins have 

been identified which bind mRNA and affect message stability (reviewed in Ross, 1996). 

A variety of motifs have been identified in 3' UTRs which are binding sites for proteins 
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which affect message stability. The poly(A)-binding protein confers stability to mRNAs 

with a poly(A) tail. AURE-binding proteins are believed to bind to AU-rich regions in 

the 3' UTRs of many mRNAs to destabilize the message (Ross, 1996). Other proteins 

have been found which bind specifically to the 3' UTRs of unique or closely related 

mRNAs to alter stability, sometimes under highly specific conditions. For example, 

transforming growth factor131 stimulates binding of various protein factors to a 6 

nucleotide repeat in the 3' UTR of the hyaluronan receptor RHAMM mRNA, resulting in 

increased stability (Amara et al., 1996). Finally, 3' UTRs may contain sites for 

endoribonucleoytic cleavage, leading to degradation of the message. It has been shown 

that the transferrin receptor mRNA is cleaved at a specific site in the 3' UTR, likely 

beginning the degradation process (Binder et al., 1994). 

The Maize TLK Genes are Members of an Evolutionarily Conserved Class of Kinases 

Until recently, TOUSLED was classified as a novel type of serine/threonine 

kinase, with no homologues identified in other organisms (Stone and Walker, 1995; Roe 

et al., 1993). However, the cloning of a family of maize TOUSLED-LIKE KINASES, 

as well as the recent addition of TSL homologues from various species to sequence 

databases indicates that TSL is in fact a representative of an evolutionarily conserved 

class of kinases. The high degree of conservation in the predicted catalytic domains from 

such distantly related organisms as C. elegans, plants, and mammals may indicate that 

there has been strong selective pressure to minimize alterations in TOUSLED-like 

proteins. Interestingly, no TSL homologues have been found in yeast (Hunter and 

Plowman, 1997) so the conservation of TOUSLED-like genes specifically in higher 

eukaryotes suggests that this family of kinases plays a important role in multicellular 

organisms. 

There are two classes of TOUSLED-like genes in mouse and human as well as in 

maize. The redundancy of apparent TSL homologues may indicate the need for fidelity 
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of TSL function. A second possibility is that gene duplication may have led to 

diversification of function in organisms other than Arabidopsis . Alternatively, multiple 

functions could have been taken over by a single gene following the loss of other family 

members in Arabidopsis. Although the mouse and human genes can be clearly assigned 

to two classes, with each species containing one member of each, these do not appear to 

correspond to the two classes of maize genes. Each of maize TLK genes is equally 

similar to both classes of mammalian genes. The existence of two TOUSLED-like genes 

appears to predate the radiation of mammals, but it is not known how many TLK genes 

may have been present in the common ancestor of plants and animals or of maize and 

Arabidopsis. 

The specific biochemical function of the TOUSLED protein has not yet been 

determined, but it has been shown to be a nuclear-localized, active serine/threonine 

kinase with a probable role in cell-signalling events (Roe et al., 1993, 1997a). By 

continuing analysis of this gene family in maize, as well as of the single gene TSL in 

Arabidopsis, it should be possible to gain more insight into the role of TOUSLED -like 

kinases in general and the coordination of families of closely related TSL homologues 

within single organisms. Future studies of the maize TOUSLED-LIKE KINASE gene 

family can help address questions on a number of levels, from issues surrounding the 

evolution of multiple gene families to the specific role of TOUSLED-LIKE KINASES in 

the signalling pathways involved in plant development. 
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3. Characterization of the tassel-lessl Mutant of Maize 

Abstract 

Mutant analysis is a powerful tool in gaining understanding of developmental 

processes. The tassel-lessl (t1s1) mutant of maize is a recessive mutation which shows a 

unique phenotype of variable vegetative and reproductive defects. Mutant plants 

consistently lack a well-developed, fertile tassel, and display a severe reduction in ear 

size and fertility. In addition, as/ plants can show reduction in stature, leaf size, and 

alterations in leaf morphology. The range and severity of defects is environmentally 

sensitive. The broad effects of the as/ mutation on organ formation suggest that the 

TLS1 gene product may play a critical role in regulating the partitioning of the meristem 

and/or the initiation of organ primordia. 

Introduction 

Maize has a distinctive architecture and well-defined developmental program. A 

large body of descriptive and genetic information has been gathered on maize, making it a 

model system for the study of developmental processes. The shoot apical meristem 

produces vegetative nodes through the proliferation of a ring of cells around the base of 

the meristem to form a leaf primordium (Sylvester et al., 1990). The sheath of maize 

leaves wraps around the shoot axis. The blade extends outwards from the axis and has 

characteristic ligule and auricle structures at the blade-sheath boundary (Sylvester et aL, 

1990). After producing a fixed number of vegetative nodes, the shoot apical meristem 

elongates and becomes developmentally determined to from a terminal inflorescence, the 

tassel (Irish and Nelson, 1991). The transition from vegetative to a floral meristem 

identity occurs in a series of steps. Tassel branches are initiated and then spikelet pair 

primordia form. Each spikelet pair primordium forms two spikelets in which two florets 

each are initiated (Cheng et al., 1983). In tassels, the gynoecium of each floret is 

aborted, leading to staminate flowers. Axillary buds in the lower portion of the plantcan 
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form tillers, or basal branches, in which the structure of the main axis is reiterated. In 

intermediate nodes, axillary branches form ear shoots, which are terminated by female 

inflorescences, or ears. Ears are unbranched, and one floret of each spikelet, as well as 

the stamens of the remaining floret, are aborted, giving rise to a pistillate inflorescence 

(Cheng et al., 1983). 

Various mutants of maize have been described in which defects in meristem 

activity have been implicated in causing abnormal shoot development. Several mutants 

have been described in which the leaf-sheath boundary is disrupted, resulting in 

displacement of sheath tissue into the blade and displacement or absence of the ligule and 

auricles. These include dominant gain of function mutants in several homeobox genes of 

the Knotted 1 family, whose expression is normally limited to the shoot meristem 

(reviewed in Freeling, 1992). 

Overall leaf shape can also be affected by mutations. The narrow sheath mutant 

has short internodes and narrow leaves (Scanlon et al., 1996). The leaf phenotype is 

most severe at the base of the plant, but upper leaves are still unusually narrow. Scanlon 

et al. (1996) propose that the NARROW SHEATH gene is necessary for the recruitment 

of meristematic cells to the lateral regions of new leaf primordia. 

There are also many maize mutants with altered inflorescence development 

(reviewed in Veit et al., 1993), although the specific role of these genes in the 

inflorescence apex has not been detennined. These include sex determination mutants. 

Mutations in anther ear and some dwarf genes result in stamen development in ears, 

while tasselseed mutants contain pistillate tassels (Irish, 1996). Other inflorescence 

mutants include the barren stalk mutants which fail to produce ear shoots, the ramosa 

mutants, in which some spikelet pairs are transformed into branches in both the ear and 

tassel, and branched silkless in which florets are converted to indeterminate structures 

(Veit et al., 1993). 
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The tassel-lessl (t1s1) mutant of maize displays a variety of defects and is likely 

to represent a lesion in a gene required for proper meristem function. This mutant was 

briefly described by Albertsen et al. (1993) and is likely to be defective in the same gene 

as the barren-sterile mutant described by Woodworth (1926) but subsequently lost. The 

as/ phenotype segregates as a simple recessive. The severity of the mutant phenotype is 

variable. However, the most striking defects are the lack of a tassel and the severe 

reduction of the ears, although ear shoots are produced. This study represents an attempt 

to characterize the t/s/ phenotype more fully, in order to gain a better understanding of 

the role of this gene in maize development. 

Methods and Materials 

Plant Material 

Seeds from three families segregating for the tassel-lessl (t1s1) mutation were 

obtained from M. Albertsen (Pioneer). These lines had been introgressed previously into 

the A632 genetic background. Seeds were grown in the Corvallis, OR field nursery in 

the summer of 1995. Progeny of these families were grown in the field nursery in 1996, 

and in the greenhouse in 1996 and 1997. Stocks were maintained and increased by 

crossing phenotypically wild type heterozygous tlsl /+ plants with each other and onto 

th//t/s/ siblings. 

Observations and Data Collection 

Plants were observed throughout the growing season and observations were 

made from the time that as/ plants could reliably be detected as phenotypically distinct 

from their wild type siblings. Observations continued until the time that wild type 

siblings were fully mature, at anthesis, and with expanded silks. 

In 1995, measurements were taken on mature as/ plants. Height was measured 

as the distance from the ground to either the top of the highest structure on the main axis, 
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or to the point of emergence of a terminal structure. Nodes were counted from the first 

node above the soil to the uppermost structure on the main axis. Similar measurements 

were made on heterozygous siblings at the same time. Height was measured as the 

distance between the ground and the base of the tassel. The number of above-ground 

nodes below the tassel was recorded. These measurements were made late in the season, 

2 to 4 weeks after anthesis. 

Field-grown t/s/ plants were dissected in order to more closely examine shoot 

apices and lateral branches in 1995 and 1996. Shoot apices were examined under 12X 

and 20X magnification in a Zeiss dissecting microscope. Observations were recorded on 

the contents of lateral branches and the presence of any apical structures or additional 

unexpanded leaves which could not be seen in the intact plant. 

Results 

tassel-lessl mutant plants displayed a wide range of defects including altered 

vegetative growth, abnormal leaf morphology, and a severe reduction of reproductive 

structures. The mutant phenotype was extremely variable and appears sensitive to 

environmental conditions. 

Severe t/s/ Phenotype 

Field-grown t/s/ plants were strikingly abnormal and could be positively 

identified as different from their wild type, heterozygous siblings by four to five weeks 

post germination. Mutant plants were shorter, with less-expanded internodes. Leaf 

morphology became progressively more abnormal toward the top of the plant, and upper 

leaves were shorter, narrower, rougher, and much stiffer than comparable leaves on wild 

type plants. 

By approximately 10 weeks after germination, heterozygous plants were 

reproductively mature, having produced an average of 16 above-ground vegetative 

nodes, and a fertile tassel. In 1995, these wild type plants were approximately 2 meters 
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tall, and also produced one or more fertile ear shoots. In contrast, t/s/ plants were 

variable in height, but averaged under a meter, and produced an average of only 10 

above-ground nodes (Figure 3.1). None of the mutants had a tassel of any sort, or 

produced fertile ear shoots. The upper portions of these plants were extremely abnormal. 

In many cases, the uppermost one or two nodes were not fully expanded, and could be 

found only by dissecting away outer, older leaves. Leaves in the upper third of the plant 

were much smaller than comparable wild type leaves, and were extremely stiff and 

somewhat thick. Many leaves displayed a reduction in the leaf blade, so that it was either 

asymmetrical, with one side of the leaf wider than the other, or virtually absent, leading 

to a spike-like appearance (Figure 3.2a). The ligule and auricles were missing in many 

of these upper leaves and the blade-sheath boundary was not clear, especially since there 

was no culm continuing up inside the leaf to define a functional sheath region. 

In 1995, the main axis of all t/s/ plants terminated in an abnormal vegetative 

structure. In many plants, the most apical structure was leaf-like, but very narrow and 

reduced (Figure 3.2). These structures were often solid cylinders of tissue at the base, 

but flattened out to have more leaf-like bilateral symmetry at the tip. This is unlike the 

flat wild type leaves, which wrap around the main axis to form a hollow cylinder. 

Mutant plants produced lateral branches at the appropriate nodes for ear shoots, 

but these lacked well-developed ears inside. Most ear shoots either appeared arrested or 

terminated in structures similar to those found at the top of the main axis. A few ear 

shoots contained apices which looked distinctly reproductive, having an elongated shape 

and a few spikelet or spikelet pair primordia. However, all apices examined were at a 

very early stage of development even though wild type plants of the same age had 

produced mature ears with silks. In many plants, the ear shoots expanded and elongated 

while the primary axis did not, so that the highest part of a plant was part of an axillary 

branch, rather than the main axis (Figure 3.2b). 
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Figure 3.1 Comparison of wild type and tassel-less siblings from three families, 
grown in the summer of 1995 showing a) height from ground to base of tassel or 
other most apical structure and b) number of above ground nodes. 



Figure 3.2 Field-grown t/s/ plants. a) Many plants produced abnormal vegetative structures at the apex. b) In some plants, elongatedear shoots were the highest point on the plant. 
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Plants grown in the 1996 field nursery showed similar defects, although most 

plants examined produced reproductive primordia in the ear shoots. These varied from 

small elongated apices with a few spikelet primordia to very reduced but otherwise 

normal ears (Figure 3.3a). Seed was obtained from 9 plants out of 60, with small ears 

producing 1 to 50 seeds each. A few plants produced a tassel structure, although tassels 

failed to expand and emerge out the top of the plant, and were completely sterile (Figure 

3.3b). 

Mild t/s/ Phenotype 

Greenhouse-grown t/s/ plants showed a much milder phenotype, and could not 

be distinguished from their wild type siblings until about nine weeks after germination. 

Mutants were as tall as their heterozygous siblings, produced as many vegetative nodes, 

and had phenotypically normal leaves at all but the most uppermost nodes. Some plants 

displayed reduced, stiff upper leaves and a complete lack of tassel, but grew to roughly 

the same height as wild type siblings (Figure 3.4a). Other plants had a rudimentary, 

sterile tassel (Figure 3.4b). Over half the_plants produced partially fertile ears, with seed 

set varying from 1 to 35 seeds per ear in 1996. Although ears were fertile, ear 

morphology was altered. Many ears were truncated and some looked spherical when 

harvested. Three ears out of 19 harvested were branched, with three, six, and eight 

branches respectively. All branches were clearly ear-like in nature, most with some seed 

set. Kernels were not all aligned properly on the ear. Normally, the kernel is positioned 

with the embryo on the upper, abaxial side of the seed. A few kernels were observed on 

as/ ears in which the embryo faced to the side, perpendicular to the normal position. 

Many kernels were mispositioned at an intermediate angle. This alteration in kernel 

alignment occurred on unbranched as well as branched ears. 



a) b) 

Figure 3.3 t/s/ a) ear and b) tassel. 



a) b) 

Figure 3.4 Greenhouse-grown t/s/ plants with a) no expanded tassel and b) a rudimentary tassel. 
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Discussion
 

Mutations in the tassel-less] gene cause a variable range of vegetative and 

reproductive defects. The phenotype appears to be highly sensitive to environmental 

conditions and was much milder in greenhouse-grown plants than in plants grown in the 

Corvallis, OR field nursery. In the field, t/s/ plants show striking vegetative defects. 

The plants become progressively more abnormal toward the top of the plant, suggesting 

that the TLS1 gene product is critical for maintaining proper development. These plants 

generally terminate in unusual vegetative structures. In greenhouse -grown t/s/ plants, 

vegetative development is relatively normal, but mutants fail to produce functional tassels 

or complete ears. 

Comparison to Similar Developmental Mutants 

Mutants in t/s/ show a number of defects in organ production. Other organ 

formation mutants have been described, but do not display the pleiotropy found in t/s/ 

mutants. One type of defect found in t/s/ plants is the disruption of the blade-sheath 

boundary in upper leaves. Several liguleless mutants show a displacement or absence of 

ligules and auricles, with the displacement of sheath tissue into the blade (Free ling, 

1992). These include the dominant mutants Knotted] and Rough Sheath, which encode 

homeodomain proteins normally expressed only in the meristem (Hake et al., 1995). 

Both recessive and dominant liguleless mutants are characterized by the presence of 

sheath tissue in the blade region. 

Because maize leaves differentiate from tip to base, one interpretation of the 

liguleless phenotypes is that patches of blade tissue are delayed in becoming determined 

and do not assume an identity until the developmentally appropriate time to assume 

sheath fate (Free ling, 1992). It is possible that a similar delay in cell determination could 

be operating in t/s/ plants, if overall plant growth is slowed. If absolute growth is 

slowed in t/s/ plants, but developmental timing is not retarded to the same extent, it is 
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possible that very few cells will be competent to perceive and respond to a "make blade" 

signal when it is produced. This scenario could also explain the more severe reduction of 

blade than sheath. 

In addition to lacking the blade-sheath boundary, t/s/ plants display abnormally 

narrow, and sometimes asymmetrical leaves. Mutations in the narrow sheath gene 

dramatically reduce leaf width and often lead to asymmetrical postitioning of the 

remaining blade tissue around the midrib (Scanlon et al., 1996). However, the blade-

sheath boundary remains intact, and leaf narrowing is most severe at the base of the blade 

and in lower leaves. These aspects of the narrow sheath phenotype are unlike the 

characteristics of t/s/ mutants. 

In severe cases, as/ plants produce abnormal vegetative structures which are 

cylindrical at the base and then flatten somewhat at the tip. Two Arabidopsis mutants, 

arrested development 1 and 2, produce two to three leaf primordia before arresting when 

grown under high temperature conditions. The leaves which are produced are "finger­

like projections that lack dorsoventrality" (Pickett et al., 1996). Pickett et al. (1996) 

suggest that not only is a functional meristem necessary for leaf initiation, but it is also 

necessary for proper leaf morphogenesis and the establishment of dorsoventrality. The 

formation of abnormal spike-like structures in t/s/ plants may also result from the failure 

of leaf primordia to receive proper developmental signals from the meristem. 

The reproductive defects in t/s/ plants are more consistent than the alterations in 

leaf morphology, but also differ from defects described in other well-characterized 

mutants. Ears are present, but poorly developed, while tassels are absent or extremely 

rudimentary and sterile. There does not appear to be any disruption of sex determination, 

as the occasional tassel floret is staminate, though sterile, and ear florets are consistently 

pistillate. The presence of branched ears is an interesting finding. In the ranzosa mutant, 

spikelet pair primordia in both the tassel and ear develop into branches instead of 

spikelets (Gernert, 1912). However, in as/ plants, the tassel is very reduced and rarely 
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has any branches at all, while the ear branches appear to be all from the base, rather than 

all the way up the axis as in ramosct. The unusual positioning of kernels on some ears 

may be due to a disruption of positional information. One possibility is that the lack of a 

single strong apical-basal axis in severely truncated or branched ears interferes with 

important physical or chemical positional cues. 

Many field-grown t/s/ plants show an unusual appearance due to the extensive 

growth of ear shoots, while the main axis remains small. Often an ear shoot is the 

highest structure on the plant. These ear shoots are much more elongated than normal, 

suggesting that they may have a partial tiller identity, or be otherwise released from 

inhibition of intemode elongation. In addition, these ear shoots are often much larger in 

circumference than the main axis, suggesting an alteration in the relative numbers of cells 

or degree of cell growth and proliferation in the primary shoot as compared to the axillary 

meristems which give rise to the ear shoots. 

The Role of the TLS1 Gene Product 

The t/s/ phenotype could be explained in part if the meristem initiates an 

appropriate number of nodes in t/s/ plants, but upper nodes then fail to develop, 

arresting or becoming necrotic. The observations of greenhouse plants are consistent 

with this hypothesis; all nodes appear to be initiated but the tassel fails to expand and 

appears arrested as do infertile ears. However, dissections of mature field-grown plants 

often reveal arrested vegetative apices or abnormal, terminal vegetative structures, 

suggesting that reproductive nodes are never initiated. Closer examination of apices at 

different developmental stages is necessary to eliminate the possibility that inflorescence 

primordia are initiated but become necrotic extremely early in development. However, 

this model fails to provide an explanation for the abnormal ear and leaf morphology 

observed. 
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An alternative model suggests that the TLS1 gene product is necessary for the 

initiation of organs. TLS1 may be necessary for meristem maintenance or partitioning. 

In mutants, the meristem may fail to partition cells correctly, or be defective in 

replenishing and maintaining itself, so that all meristematic cells are used up by 

organogenesis prematurely. A gradual depletion of the meristem may explain the 

progressive nature of the as/ phenotype. Allocation of an unusual number or 

distribution of cells to new primordia may lead to the increasingly defective morphology 

of upper leaves. Improper recruitment of cells to the lateral regions of new leaf primordia 

has been proposed in the narrow sheath mutant (Scanlon et al., 1996). Improper 

partitioning of the meristem could also explain the presence of large, robust axillary ear 

shoots while primary shoots are extremely small. Perhaps a disproportionate percentage 

of meristem cells are allocated to the axillary meristems, allowing the formation of large 

ear shoots, but depleting the cells available for the continuation of the main axis. In 

addition, ear branches could possibly arise if too many cells were allocated to some 

spikelet pair primordia, transforming them into indeterminate branch primordia. 

Alternatively, the primary inflorescence meristem itself may branch. 

The t/s/ phenotype is clearly environmentally sensitive. The rate of meristem 

depletion in the model described above could be affected by environmental conditions. 

Greenhouse plants grown in pots are under different nutritional stresses than soil-grown 

plants. In addition, both light intensity and temperature are very different in the 

greenhouse than in the field. Light induces numerous developmental pathways which 

could be affected by disruption of TLS1 gene function. Temperature can affect process 

such as protein folding and complex formation as well as enzyme activity. There is a 

large temperature difference at night. The average low temperature for western Oregon is 

only 12° C during the growing season, while the greenhouse is maintained at a minimum 

temperature of 20°. If the t/s/ mutation causes production of an abnormal protein, it may 

retain more activity under greenhouse conditions than field conditions. Alternatively, 
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loss of the TLS1 gene product may be partially compensated for by other proteins, which 

have higher activity, or higher affinity for the TLS1 substrate(s) at higher temperatures. 

The effect of specific environmental conditions on the t/s/ phenotype can be assessed in 

future studies. 

The observations in this study are consistent with TLS1 playing a role in 

meristem partitioning and organ initiation. This is a particularly intriguing finding 

because t/s/ maps to the same location on chromosome 1 as a homologue of the 

Arabidopsis gene Tousled (Helentjaris et al., 1995). Mutants in Tousled have a similar 

phenotype, with mild vegetative defects and severe floral abnormalities. Tousled 

encodes a serine/threonine kinase which is essential for the appropriate initiation of floral 

organs (Roe et al., 1993). Recently, several families containing probable Mu insertions 

in the maize TOUSLED-LIKE KINASE genes have been identified. Future studies will 

focus on the analysis of these families for mutant phenotypes as well as testing for 

allelism to tassel-lessl. 
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4. Conclusions and Future Directions 

The studies described in this thesis cover preliminary molecular analysis of a 

small family of TOULSED-LIKE KINASE (TLK) genes in maize as well as a descriptive 

study of the maize mutant tassel-lessl, which may represent a lesion in one of the TLK 

genes. By approaching the question of TLK function in maize from both the molecular 

and organismal levels, this work should contribute to an understanding of the role of the 

TLK genes and TASSEL-LESS1 in maize development. Through detailed analyses of 

specific genes such as these, it will ultimately be possible to construct models of how 

different genes interact to coordinate developmental processes in plants. The TLK gene 

family appears to be part of a highly conserved class of kinases which have been found 

in a diverse array of multicellular eukaryotes. By studying the TLK genes, it may be 

possible to address broad evolutionary issues as well as the details of plant development. 

Molecular Analysis of the TLK Genes 

I have cloned and sequenced portions of the three TOUSLED-LIKE KINASE 

genes from maize. The sequenced portions of all three genes show remarkable similarity 

to each other and to the catalytic domain of TOUSLED kinase from Arabidopsis. The 

maize TLK genes fall into two distinct classes; two genes are more similar to each other 

than either is to the third gene. Expression data indicate that both classes of genes are 

expressed throughout the plant. In addition to the extreme conservation of TOUSLED-

like genes between maize and Arabidopsis, database searches have revealed the presence 

of homologues in much more distantly related eukaryotic species. Clearly, the TLK 

genes are members of a larger class of conserved kinases. Based on the high degree of 

conservation of TOUSLED-like genes from such distantly related species, it is likely that 

this class of kinases performs some essential function in multicellular organisms. 

Members of the Rivin lab are continuing to screen for genomic clones which 

extend further upstream. Isolation of new clones will yield information on both the 
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complete catalytic domains and any non-catalytic regions which are present in the maize 

TLK genes. Tim Helentjaris and colleagues (Pioneer Hi Bred International) have recently 

provided some additional cDNA clones which they have isolated and sequenced. 

Preliminary sequence data indicate that two of these clones overlap the 5' portion of 

genomic clone MTK4, but extend further upstream. The region covered is within the 

highly conserved catalytic domain, so these new clones should be useful in isolating 

upstream regions of the other genes, as well as in providing additional information about 

the MTK4 gene. 

Obtaining more sequence data will be valuable for several reasons. Additional 

sequence information will allow further comparisons of the individual TLK genes to each 

other and to TOUSLED. It will be particulary interesting to see whether the high degree 

of conservation extends into the non-catalytic region. It is possible that the TLK genes 

are divergent in this region, allowing individual regulation through interactions with 

specific protein partners. Ultimately, full-length clones will be useful in conducting 

biochemical studies of TLK function and in isolating interacting proteins. 

Divergent regions will be useful in making gene specific probes and primers. In 

additions to the possibility of divergent non-catalytic domains, it is likely that upstream 

introns have diverged. Gene-specific probes will allow the cloned sequences to be 

assigned to specific chromosomal locations. This information will be valuable in the 

isolation and characterization of mutants in the TLK genes, and potentially could offer 

some insight into the origins of this duplicated gene family. 

Gene-specific probes and primers will also be helpful in conducting further 

studies on the expression of the TLK genes. It remains to be determined whether all the 

TLK genes are expressed. The development of gene specific probes and primers will be 

useful in gaining more information about the specific expression patterns of each gene. 

This will be helpful in elucidating the functional relationship of the various TLK genes. 
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Mutant Analysis 

Mutant analysis will be a very useful tool for studying the roles of the maize TLK 

genes individually and as a group. The tassel-lessl (tls1) mutant of maize, described in 

the previous chapter, is one possible TLK mutant. The tisl gene maps to the same 

chromosomal location as one of the TLK genes (Helentjaris et al., 1995) and may 

represent a lesion in this gene. Mutant plants display variable vegetative defects, ranging 

from abnormally stiff upper leaves, to the production of unusual, small spike-like leaves 

and a dramatic reduction in overall height and nodes produced. t/s/ plants consistently 

fail to produce a fertile tassel, and produce greatly reduced ears with limited fertility. The 

severity of the t/s/ phenotype is strongly affected by environmental conditions. The t/s/ 

phenotype may be due to the disruption of a gene which is necessary for proper meristem 

partitioning, maintenance, or organ initiation. The phenotype of severe reproductive 

abnormalities accompanied by some vegetative defects is similar to that of the 

Arabidopsis tousled mutant (Roe et al., 1993), and is consistent with the hypothesis that 

as/ represents a mutant in a TLK gene. 

Despite these similarities, maize has a very different architecture than 

Arabidopsis, and the TLK genes may show some functional overlap. Therefore, 

accurately predicting a mutant phenotype is difficult. These problems would complicate a 

traditional mutant screen based on phenotype. However, a reverse genetics system has 

been established in maize. The Trait Utility System for Corn (TUSC) screen allows 

researchers to identify lines containing Mutator (Mu) transposon insertions into any gene 

with known sequence (Meeley and Briggs, 1995). Scientists at Pioneer HiBred 

International have developed a large collection of plants containing Mu insertions 

throughout the genome. DNA and self-pollinated seeds were collected from each plant. 

In an automated PCR-based screen, scientists at Pioneer use gene-specific primers in 

combination with primers to the Mu terminal repeats to detect insertional mutants in 

specific genes (Figure 4.1). Only DNA from plants containing an insertion in a particular 
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.. TIR .­..­
41 

1B

A A 

A + B No Product 

A + TIR No Product 

B + TIR No Product 

Wild type Mu Insertion 

Figure 4.1 The TUSC reverse genetics screen uses gene-specific primers (indicated 
by A and B) in combination with Mu terminal inverted repeat primers (TIR). In this 
example, primers A and B amplify a specific fragment when used with DNA from a 
wild type plant. In plants which contain a Mu insertion between A and B, both A 
and B in combination with TM amplify fragments, while primers A and B together 
amplify a very large product or no product. 
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gene will give amplification products when amplified with one gene specific primer and 

the Mu terminal repeat primer. In a collaboration with Pioneer, TLK primers B and D 

were used (described in Chapter 2) to identify nine families with putative insertions into a 

TLK gene. 

Seeds from six TUSC families are currently growing in the greenhouse. There 

are numerous Mu elements throughout the genome in all the TUSC lines, so it is 

premature to propose a link between any of the wide array of abnormal phenotypes in 

these families and mutations in the TLK genes. However, these plants are being 

outcrossed and molecular analysis is underway to determine which individuals contain 

insertions into a TLK gene. Any positive PCR products will be cloned and sequenced, 

allowing determination of which gene contains the insertion as well as the position of the 

insert within the gene. 

PCR screens will allow TUSC plants and their progeny to be accurately assigned 

a genotype at the TLK loci. This will permit the identification of individuals which are 

heterozygous or homozygous for an insertion, facilitating mutant analysis. In addition, it 

will permit positive identification of plants carrying insertions, even if mutant phenotypes 

are difficult to detect. If the TLK genes are functionally redundant, then mutations in a 

single TLK gene may have minimal effects on a plant. However, it will be possible to 

construct double or triple mutants by following the PCR genotypes. Construction of 

double and triple mutants will also offer insight into the interactions between the different 

TLK genes. In addition, TLK mutants will be crossed to t/s/ plants to test for allelism. 

Future Directions 

Ultimately, future studies involving the TLK genes could explore a wide variety 

of biological questions. Because the TLK genes are so highly conserved, they may be 

useful for phylogenetic and evolutionary studies. Comparisons of maize TLK sequences 

with those of closely related species may offer insight into the origins of this redundant 
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gene family in maize. If the gene duplication was in part due to a polyploid event, 

comparison of TLK genes in members of the genus Zea and in closely related taxa may 

shed some light on the origins of maize and its congeners. 

The redundancy of this gene family also opens up various genetic and 

developmental questions. How are the individual members related functionally, and do 

they play independent or overlapping roles in maize development? One possibility is that 

the various TLK proteins interact with each other to regulate overall TLK activity. The 

combination of molecular sequence information and available mutants will be ideal for 

addressing these issues. Biochemical studies of TLK proteins can address the details of 

the interactions of these kinases with each other and with other proteins. The universality 

of TLK function could be tested by transforming Arabidopsis tousled mutants with the 

TLK genes. If the TLK proteins are as highly conserved as partial gene sequences 

suggest, one or all of the maize genes may be able to rescue tousled mutants. In maize, 

analysis of double and triple mutants in the TLK genes, as well as in combinations with 

other developmental mutants, can yield insight into the role of the TLK genes in the 

whole organism. While some studies of this nature have been done in Arabidopsis (Roe 

et al., 1997b), both the unique architecture of maize and the availability of mutants in 

different types of genes make mutant analysis a worthwhile pursuit in maize as well. 

The TLK gene family of maize provides an excellent context in which to study 

plant development. The TLK genes are part of a family of highly conserved kinases in 

eulcaryotes and may play a role in some fundamental processes common to all 

multicellular organisms. Molecular data will permit studies of the mechanisms of TLK 

gene regulation and protein function. It is possible that the findings of these studies can 

be extended to other organisms. Mutant analysis provides a means for studying the role 

of these kinases and their interactions with each other and with other gene products in an 
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intact organism. In addition, overall questions of maize genome evolution and the 

evolution of multiple gene families can be addressed by studying the maize TOUSLED­

LIKE KINASES. 
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