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NONSYMMETRICAL COUPLED MICROSTRIP LINES FOR

APPLICATIONS AS IDEAL DIRECTIONAL COUPLERS

I. INTRODUCTION

Transmission lines have been an important topic of investiga-

tion for many years. The types of lines that are currently of greatest

interest result from speed and packaging advances in digital computers

and an increase in frequency capabilities and sophistication in micro-

wave systems. The propagation of high speed digital signals makes

similar demands on the propagating medium. Impedance levels must be

constant to minimize reflections, coupling to neighboring transmission

lines should be controllable and losses must usually be low. Micro-

strip can fulfill these requirements and is suitable for high density

digital systems as well as microwave applications. The planar geometry

of microstrip is rugged, easily fabricated, and particularly appropriate

for use with integrated circuits.

The work to be presented here deals with the coupling properties

of two coupled microstrip transmission lines. The properties of

nonsymmetrical coupled microstrip lines on composite substrates and

with dielectric overlay for applications as ideal directional couplers

are presented in this thesis.

Designing with microstrips obviously requires knowledge of its'

propagation characteristics and circuit properties. Evaluation of the
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propagation characteristics of a specific class of structures is the

basis for this thesis. The propagation parameters result from solution

of the Maxwell equations.

The technique used to solve the field problem depends on the

boundary conditions involved. The Maxwell equations can be solved in

closed form only for simple structures and charge distributions. As

structures become more complicated, by use of multiple dielectrics

and nonuniform conducting surfaces, it soon becomes very difficult to

solve the Maxwell equations directly and techniques must be developed

to obtain the required information efficiently. In general one uses

the simplest method that yields the required system parameters. For

the class of problems considered here, nonsymmetrical coupled lines in

an inhomogeneous dielectric medium, the boundary conditions make the

application of most techniques impractical, i.e., conformal mapping,

finite difference equation, potential function expansion.

A spectral domain approach has been shown in the past [6, 7, 8]

to be an easily implemented efficient way to get accurate results for

quasi-TEM transmission line parameters for single microstrip and

coupled symmetrical microstrip structures in simple dielectrics. The

technique has been applied to the case of nonsymmetrical coupled

microstrip lines in composite and overlay dielectric structures.

Until recently the study of transmission line directional couplers

has been confined to symmetrical and nonsymmetrical coupled lines in
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a homogeneous medium [5] and symmetrical coupled lines in an inhomo-

geneous medium [3,4]. Tripathi [9] has analyzed the general non-

symmetrical inhomogeneous case, found the general four port parameters

and applied them to show that various circuit elements can be realized.

From the general four port scattering matrix Tripathi [10] has shown

that ideal directional couplers are realizable if the line parameters

are interrelated in a specified manner.

In this thesis Yamashita's variational method [6,7] is used to

find the normal mode parameters and show that the conditions required

by Tripathi can be met and an ideal directional coupler using non-

symmetrical coupled lines in an inhomogenous dielectric is physically

realizable. This work, by applying the general results, makes possible

a new option in the design of directional couplers that was not previously

available.



II. DIRECTIONAL COUPLERS

Background

Uniformly coupled transmission line systems can be classified

into four groups according to the conductor cross section and the

dielectric medium variations. These are coupled symmetrical and

nonsymmetrical lines in a homogenous medium, coupled symmetrical

lines in an inhomogeneous medium and coupled nonsymmetrical lines

in an inhomogeneous medium. Symmetric homogeneous couplers have

been investigated by Oliver [1], for the case of wire pairs, and Jones and

Bolljahn [2] for the case of striplines. Their results show that for a

homogeneous dielectric medium an ideal directional coupler is possible

and is impedance matched at all frequencies. This type of coupler

has equal port impedances and typically has a half power bandwidth

of three to one for small coupling [2].

Coupled symmetrical lines in an inhomogeneous dielectric medium,

such as microstriplines, have been investigated [13] and results

show that the even and odd normal mode velocities must be made equal

to obtain an ideal coupler. Dalley's work with non-ideal couplers

utilizing broadside coupled lines indicate that directivities greater

than 20db can be achieved over a relatively narrow bandwidth,

approximately 20%, when care is taken in choosing the port impedances.
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Nonsymmetrical lines in a homogeneous medium have been studied by

Cristal [5]. Ideal matched couplers can be designed and have the

same expressions for coupling and bandwidth as the symmetric case.

The advantage here over the symmetrical case is that the two lines

can have different impedances, allowing the coupler to also perform

as a transformer. The planar structures discussed in this thesis

are amenable to integrated circuit or hybrid design with their

associated advantages. Sun [12] has derived the general port voltages

for a pair of nonsymmetrical coupled inhomogeneous lines terminated

in impedances satisfying Cristal's homogeneous case conditions for

an ideal coupler.

The non ideal coupler is not matched at all frequencies. How-

ever, for symmetric coupled microstrip lines the mode velocities

can be matched by using a dielectric overlay [14]. This was shown

to result in an ideal coupler. Bandwidths of the order predicted by

Oliver were measured for 6db and 10db couplers using two cascaded

quarter wave sections. Examination of the expression for the

eigenvalues of the [I.] [C] or [Z] [Y] matrix characterizing the coupled

distributed system reveals that for an inhomogeneous nonsymmetrical

coupled line case the eigenvalues cannot be made degenerate, i.e.,

the mode velocities cannot be synchronized. For a proof of this

refer to Appendix C.

The general properties of coupled nonsymmetrical inhomogeneous

lines has been investigated by Tripathi [9], as mentioned previously.



The conditions required to produce an ideal coupler of this type

have been found by examining the four port scattering matrix [10].

Synchronization of the mode velocities satisfies the scattering matrix

but can be shown to be physically impossible for an inhomogenous

dielectric medium, (Appendix C). Relations between the normal mode

impedances (Appendix A) were also found to lead to an ideal coupler.

Two distinct cases can be identified: 1. A co-directional coupler

and 2. Contra-directional coupler. Figure 1 is a schematic

representation of two coupled transmission lines terminated in

impedances Zl and Z2. A co-directional coupler will transfer power

incident at port 1 to ports 3 and 4 with no power out of port 2

while a contra-directional coupler will transfer power to ports

2 and 4 with no power out of port 3. The co-directional condition

between the normal mode impedances is:

Z
1

= 7
cl

= Z
Trl

and 7 = Z
c2

= Z (1)

It is easily shown that for the system being considered in this

thesis, a planar inhomogeneous system, this condition cannot be

satisfied. To realize such a co-directional coupler requires the

addition of capacitive loading to make the capacitive coupling

constant equal in magnitude but of opposite sign to the inductive

coupling constant [1, 16]. This requires a non planar four line

system as shown by Speciale [16]. The relation between the normal

mode impedances for the contra-directional case is:
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coupled
port

3

isolated
port

Figure 1. Directional coupler terminated in characteristic

impedances Z1,Z2 and driven at port 1.
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Z1 = Zcl = -Z71 and Z2 = -Zc2

or Z
1

= -Z
cl

= Z
71

and Z2 = Z
c2

= -Z7
2

Utilizing the expressions for normal mode impedances in terms of the

per unit length line constants from Appendix A, equations (A13) -

(A16) and (A21) - (A24), and using equations (A6), (A8), (A19), (A20)

results in the following simple conditions for the lossless quasi-

TEM case:

z
m Ym

ziz2 yiy2

L

or
Lm

L
1

L
2

C
1

C
2

(4)

(5)

Where
z1,2' Y1,2'

L1,2, C1,2 are the self impedance, admittance,

inductance and capacitance per unit length of lines 1 and 2, while

zm, ym, Lm, Cm are the mutual impedance, admittance, inductance,

and capacitance per unit length of lines 1 and 2. This condition

merely states that the inductive and capacitive coupling constants

must be equal to realize an ideal directional coupler. An examina-

tion of the coefficient of coupling for nonsymmetrical microstrip

lines reveals that the inductive coefficient of coupling is always

larger than the capacitive coefficient of coupling. The latter



can, however, be increased by utilizing the composite substrate or

a dielectric overlay and can be made equal to or larger than the

inductive coefficient of coupling.

Use of Quasi-TEM Approximation to Express Line Parameters

in Terms of Capacitances

To predict the performance of a coupled line system it is

necessary to know the four port parameters. For the case of coupled

nonsymmetrical lines in an inhomogeneous medium Tripathi [9] has

found the general four port impedance and admittance matrices and

the scattering parameters [10] for the ideal directional coupler

in terms of the normal mode parameters. The normal mode parameters

are given in terms of the line impedances and admittances per unit

length [Z] and [Y]. Therefore to be able to analyze specific coupled

line configurations these matrices must be known.

If the Maxwell equations could be solved for the geometries

considered, microstrip lines on composite substrates or with a

dielectric overlay, then the line impedance and admittance matrices

could be found. Solving the Maxwell equations for the structures of

interest here is very difficult due to the boundaries involved. It

has been shown that to match boundary conditions the field solution

must be a hybrid [21] that can be expressed in terms of a TEM mode

and a series of TE and TM modes. At low frequencies if losses are



small and transverse dimensions are much less than the wavelength

the waves propagating on the system may be approximated by a TEM

mode. The system is then called quasi-TEM. Using this approxima-

tion the three dimensional problem is reduced to a two dimensional

static problem and the impedance and admittance matrices are

simplified. Since the object here is to show that the requirements

for an ideal directional coupler can be met using certain specific

geometries the frequency can be chosen small enough so that non TEM

effects, e.g., dispersion, may be ignored. An analysis that accounts

for dispersive effects and can be used to design such couplers at

higher frequencies would be worthwhile after it is established that

ideal couplers are realizable. For a TEM wave the impedance and

admittance matrices can be written simply in terms of the line

inductance and capacitance:

[Z] = jw[L] = jw

[Y] = jw[C] =

Lm-

Lm L2

Cl -C
m

-C C
m 2

(6)

(7)

In a vacuum the phase velocity is equal to the velocity of light,

c, so [L] can be expressed in terms of [C] by use of:

1

c
2

(8)

10
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L
1

L
m

L
m

L
2

1

-2a

maCma

Cma

la

(9)

c
2
(C C - C2 )
la 2a ma

The capacitances per unit length when the dielectric is removed

are C
la'

C
2a'

C
ma'

The problem is now reduced to finding the

capacitance per unit length for the given cross sectional geometry

with and without the dielectrics.

Computational Method to Find Capacitance

Many methods have been devised for solving this type of field

problem. The relative usefulness of some methods that might be

considered will be discussed. Some that have been useful in solving

strip line problems are conformal mapping, Green's function, finite

difference and a variational integral method.

Conformal mapping can be used to find exact solutions for field

problems when there is a high degree of symmetry, e.g., symmetric

coupled lines in a homogeneous medium. Since the system here has a

high degree of asymmetry this method is not feasible.

The Green's function integral equation approach attempts to

directly find the charge distribution on the conductors. Then,

knowing the strip potentials the capacitances can be calculated.
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This method was considered since it was used successfully for the

problem of asymmetric microstrip lines on a simple dielectric [11].

However, finding the Green's function would be difficult for the case

of composite or overlay dielectric and the computing time to get

the charge distribution would likely be relatively large.

The finite difference method is an attractive straight-forward

approach used to find potentials at a large number of grid points.

This is done by expanding Poisson's equation as a difference

equation and iterating to find the potentials at the grid points.

This method is simple and has been shown to give useful results

to microstrip problems [22] but it was felt that the added complexity

of composite substrates and dielectric overlays would dictate a

very large number of grid points for accurate calculations which

would make the computer time excessive.

The variational integral method of Yamashita [6] overcomes most

of the difficulties listed above while still being relatively

straight-forward so it was implemented to find the capacitances.

This method uses the variational expression:

1 _ 1

Q
2 4(x,Y) P(x,Y ds (10)

where (1) is the strip potential, Q is the total charge on the strip,

p(x,y) is the charge function, S is the x-y plane, and the direction
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Figure 2a. Cross section of composite substrate structure
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w24
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H2

ground plane 0 6-}0 x

Figure 2b. Cross section of overlay dielectric structure.
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of propagation is z. Refer to figure 2. The charge distribution

p(x,y) is the variational parameter and is chosen to maximize capac-

itance, that is, to minimize energy stored in the electric field.

This results in a lower bound estimate for capacitance. For the

calculation of capacitance, however, the integral is rewritten,

using Parseval's theorem, in the Fourier transform domain to make

the derivation of the potential function much easier. The particular

functions used in the integral depend on geometry and are described

in the next chapter.
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III. EVALUATION OF NORMAL MODE PARAMETERS

Introduction

Coupled microstrip transmission lines with compound dielectrics

(Figure 2) can be characterized in terms of the normal mode phase

velocities and partial mode impedances. For the quasi-TEM, low

frequency case, these parameters can be expressed in terms of the

self and mutual capacitances of the coupled lines calculated with

and without the dielectrics. In this chapter Fourier transforms

of the charge and potential functions will be found and it will be

shown that the capacitances per unit length of the coupled system

can be calculated by utilizing the variation integral. These capac-

itances are then used to evaluate the characteristic normal mode

parameters of the coupled system.

Potential Function

The potential function is found by using Poisson's equation

and the specific boundary conditions (from Figure 2).

X,Y) = --
1

P(XIY)

If the conducting strips are assumed to be infinitesimally thin

then the charge can be written:



p (x,y) = f(x) (5(y-H) (12)

where 6(y-H) is the Dirac delta function.

Define the one dimensional Fourier transform of f(x) to be:

F(s) f(x) e3i3x dx (13)

Then the transform of the potential c(x,y) may similarly be written

`11
(D(3,y) = gx,y) ej" dx (14)

-

and Poisson's equation may be transformed to be:

2
( -134. + -27 (31) = 0 1 y H (15)

ay"

This may now be solved separately for the composite and the overlay

cases. The boundary conditions can be deduced from Figure 2.

Case 1: Composite Substrate

(1) (3,0) = D (16)

ct.

1 '
H

1
) = (1)

2 '
H

1
) (17)

16



17

1(,y)

62
d

1)2(3,Y)

d I-
y=Hi

= E
dy 2

(1)

2
(a,H) = (S,H)

y=H 60

d

dy

4)0 '3"Y.÷°°)
0

s,y)

y=H2

y=H
- F(a)

(18)

01)

0!
(D

2
are the transformed potentials in regions 0, 1, and 2

respectively. In the regions 0 y H1 and H1 y H the solutions

are linear combinations of e-ay and OY. In the region y H the

solution is of the form e-If3IY. Writing these solutions and applying

the above boundary conditions results in a set of simultaneous

equations which may be solved for the coefficients in the three

regions.

(D(f3,H)

Using

F(F(s)

these coefficients cD(a,H) may be written:

el coth (aH1) + 62 coth (aH2)

(22)

Eo
coth (1-1 )[',2W +-Ele2a coth ( HO] + coth (a1-11) + 13622

1
For later simplification define (D(a,H) = F(s) Goo

'o

Case 2: Dielectric Overlay

The boundary conditions are:

(23)



El
d

(1)1(s,Y)

E2

y=H1 62

41,

2
($,H)

=H

(1)

0 '

= 0

(2(13,H

0 '

(1) (a H

[

,,,

0 dy '0'(''''

= 0

y=H

0 \

- F($)

1

y=H

(24)

(25)

(26)

(27)

(28)

(29)

The solutions to the overlay geometry are similar to those of the

composite geometry and the coefficients are obtained in the same

manner. The result is:

(30)

e1$
+ coth ($-12)

62

18

(D(a,H) = F(s)

Co

El$ coth ($H [coth ($H
2 E

) + 1$1 + 1$1 coth ($H2) + $E
2

2

1

As before define (1)($,H) = F(s) G(8)
60

(31)

Both solutions of the transformed Poisson equation were compared

with Yamashita's result after taking the limit as H 0 and E2 1

and were the same.
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The Variational Integral in the Transform Domain

To avoid the necessity of finding the inverse transforms of

4)(s,H) for the two cases the variational integral, equation (10),

can be transformed into the Fourier transform domain by use of

Parseval's theorem. The resulting integral is:

C 242f 1F(a) (1)03,H)1 da

CO

or =
1

,2
IF(s)1

2
G(s) ds

7E0

CO

Equation (33) follows from the definition of G(s) and the fact

that 1F(s)12 and G(s) must be even functions.

The Charge Function, F(3)

(32)

(33)

The transform of the charge function is the variable used to

maximize capacitance so the function f(x) that gives the largest

value is the best. Yamashita [6] had good results using polynomial

functions that increased steeply at the strip edges so for this

work a function was chosen that could increase rapidly near the

edges.



f(x)

S+W
1

2

1
W +

1 7
< _

2

<
, -2-- x< - 2- - w2

Al and A
2
are amplitudes, K

1,2
are constants and from Figure 2;

S is the spacing between strips, W1,2 are strip widths and 11,2

(34)

determine the position of minimum charge on the strips. In addition,

A
2

is chosen so that both strips have the same total charge by

solving the following equation.

_2 S S

fl
S

Q = (x) dx =

W 4-

+2- f 2(x) dx (35)

S
-

2 2-

The charge function Fourier transforms are:

-K
1

W
1

4 e
/
,

2 /W1 (K1-J0
F (f3) = Ale

1 K,-j13

-K
2
W
2

e
2

F
2
(13) = A

2
e

j(3

2
2
i-j(3,

-j )

(36)

K1W1

2 I W (K +jf3)

-1,
K +Ja

K W2

e
-

2 ( -W ( -jf3)

K2-313
e

(37)

20



Transmission Line Capacitances in Terms of Calculated Capacitances

The capacitances calculated from the variational integral can

be related to the line capacitances through the definition of the

capacitance matrix and electrostatic energy.

-Cm
- -
V

1

(38)

Q2 -Cm V
2

= [Q] [V] (39)

where Q1,2 and V1,2 are the charge and voltage on strips 1 and

2, and W is the system electrostatic energy.

of W.

The calculated capacitances, Ci, can now be written in terms

1 W

Ci Q2
(40)

Using equations (38) and (39) to substitute for W in equation 40

gives the desired result.

12
[Q] [C]

-1
[4]Q2

(41)

21
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2
+ 20 Q

2
C
m

+
z

C,

Q
2
(C1C2 - Cm2 )

Since the lines are in general not symmetric, C1 # C2 and three

independent calculations are required to be able to find Cl, C2,

and C
m

.

Case a: Ql = 0, Q2 = 0; F(s) = i(s)

1

C2

Ca C1C2 - Cm
2

Case b: Q1.= 0, Q2 = Q; F(s) = F (s)

Case c: Ql

C C -
1 2 m

2

= Q; F(s) = + F
2

1

-C1 + C
2
+ 2C

m

Cc
C1C2 - Cm

(42)

(43)

(44)

(45)

(46)

(47)

(48)

These equations for C
a'

C
b'

C
c

in terms of C
1,

C2, C
m

may be solved

to find the line capacitances Ci, C2, Cm in terms of Ca, Cb, Cc.
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Cb
C
2 Ca

C
m

Cl

1 + C / 1 _ 1)
\Ca

Cc

(49)

(50)

When the line capacitances are known for the system with and without

dielectric present, i.e., the inductance and capacitance matrices

are known, then the normal mode parameters can be found from equations

(A19) - (A24) in Appendix A.
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IV. NUMERICAL RESULTS

Introduction

A Fortran program was written to solve numerically the varia-

tional integral to find the line capacitances and calculate the

normal mode parameters. Usually five to twenty different geometries

were analyzed for each run of the program so that a range of param-

eters was available to find conditions where inductive and capac-

itive couplings were equal. Successive runs were used to narrow down

the range of couplings calculated until kL and kc were very close.

For the overlay case H2 was varied and for the composite case both

H
1

and H
2
were varied so that total height, H, stayed constant.

Optimization of the Charge Function, F(s)

The criteria for choosing the best charge function is that the

calculated capcitances be maximized. There are four variables in

F(f3) that are used to maximize the C.. K
1,2

and D
1,2'

The variables

K
1,2

multiply the argument of the hyperbolic cosine function

controlling the steepness of f(x) near the strip edges. The terms

D
1,2

are used to shift the charge minimum from the strip center.

These are always set to one for the calculation of Ca and Cb since

only one strip has charge and therefore there is no reason to have

an asymmetric charge distribution. This was verified by the computer
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by making the distribution asymmetric and noticing that Ca, Cb had

decreased. To calculate capacitance when both strips have charge,

C
c'

D
1,2

can be chosen to be less than one to maximize C
c

. This

effect was also verified by the computer. Even though the function

F(s) could have been easily optimized for this last case the optimum

distribution for the first two calculations, Ca,b, was not easily

found. The matrix capacitances depend strongly on Cc and less

strongly on C
a,b

so if C
c
was optimized by choosing appropriate

D
1,2

and C
a,b

were not quite as good estimates of the real values

then the resulting capacitances C1, C2, Cm could become meaningless.

The best compromise was to choose Di = D2 = 1 for all cases. This

had the effect of maximizing C1, C2, Cm which were compared, for

some test cases for which results were available, to results found

independently using a different method [11]. The best values of

K
1
and K

2
were found to depend on the strip width as K = a/W.

Tables 1 and 2 contain comparisons of mode Parameters and capacitances

calculated using this and a Green's function method for the case

of a single substrate material and no overlay. The intermediate

capacitances, Ca,b, for the cases when only one strip has charge

were found to agree closely with previously published results for single

lines. Capacitances calculated using the variational method described

in this paper, setting c2 = and d the corresponding coupling con-

stants are presented in Table 1. Capacitances for the same structure

calculated using a different method by Chang and Tripathi [11] are

included for comparison. There are relatively large differences



between corresponding values of capacitance, the largest being 18%

for the C
ma

results. This results in errors in coupling constant,

k, of the order of 10%. Also it may be noticed that all the values

calculated here are lower than their counterpart. This is reasonable

since the variational integral used here results in a lower bound

estimate [6]. However, the ratios of coupling constant with e = E0

to that when E = 10 are very close, only 2.5% difference. Since

the condition of interest can be expressed as kL /kC = 1 the trial

function F(s) may be considered to be near optimum for the purposes

of showing that the ideal coupler condition can be realized.

Normal mode parameters calculated from the capacitances in Table

1 are presented in Table 2. The percent differences are also shown

and are a maximum of 10%.

A variety of cases of ideal directional couplers have been found

for both overlay and composite dielectrics. The curves in Figures 3

and 4 can be used to choose H
2

or
'- 2

given H
1,

E and e2 or H
2.

Dielectric Overlay Ideal Coupler Results

Data for the case of overlay dielectric, Figure 3, has some

interesting and useful aspects in addition to describing ideal

coupler conditions. For each curve the impedances, Z1 = -

26

and Z2 = Zc2 = -Z 2, are constant over the range. This is a potentially
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Table 1: Comparison of calculated capacitances for a single dielectric

using the variational integral of this thesis and a Green's

function integral [11] for: Wi = 2, W2 = 1, S = 0.2,

H = H1 = 1, E = El = 10 andand H2 = 0. Capacitances are

in pf/cm.

Cl C
m

C2 Kc c
la Cma

C
2a KL

Variational
Integral

202 -58 297 0.235 33 -13.5 44.4 0.355

Green's
Function

183 -49 276 0.218 29 -11 41 0.321

sy-

=
£0

Table 2: Comparison of normal mode parameters calculated by the

variational integral of this thesis and by a Green's

function integral for: Wi = 1, W2 = 2, S = 0.2, H = H1 = 1,

6 = El = 10, H9 = 0. Impedances Zci, Z71,2 are in ohms

and c is the free space velocity of light.

Vc
V
7

R
7

Z
cl

Z
c2

Z Z
72

Green's
Function

0.36c 0.41c 1.06 -0.55 65.5 38.1 34.4 20

Variational
Integral

0.37c 0.42c 1.05 -0.55 68 39.2 38 22

A% 2.7 2.4 1 0 3.7 2.8 9.5 9.1
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o c

1 1.5 2.0 2.5 3.0 3.5

62/El

Figure 3. Some solutions for H2 and C2 required

to satisfy ideal nonsymmetrical direc-

tional coupler conditions using a

dielectric overlay.

(a) Z1 = 19o, Z2 = 29c, k = 0.207

W1 /H1 = 4, W2 /H1 = 2, S /H1 = 0.4, H1 = 0.5

(b) Z1 = 29c, Z2 = 43n, k = 0.321

Wl /H1 = 2, W2 /H1 = 1, S/H1 = 0.2, H1 = 1.0

) Z1 = 30o, Z2 = 55o, k = 0.381

wi/H1 = 2, 142/H1 = 0.5, S /H1 = 0.1, H1 = 2.0
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very useful property that would allow a designer to choose the impedance

ratio and either Z
1
or Z2, find the appropriate curve and then choose

H
2
and c2 freely without needing to consider changing impedances.

Also it is obvious that the coupling constant, k, does not vary along

each curve. From S
12

the maximum coupling can be found to depend

on the ratio R
7r

/R
c

(Appendix B). In all cases the coupling calculated

this way was very close to k. This result means that the nonsymmetrical

inhomogeneous coupler has approximately the same maximum coupling as

the symmetrical homogeneous type.

Composite Substrate Ideal Coupler Results

The composite substrate case, Figure 4, also has some very

interesting properties. The most striking feature of these curves

is that for a given e1,e2 with e2>E1 there is more than one H1 /H2

that satisfies the ideal coupler condition. This may be easily

understood by noting that for each curve H = H1 + H2 is a constant.

If H
1

> H
2

then H
2
can be adjusted to set k

L
= k

C
since intuitively

adding a thin layer of high permitivity material will increase

coupling faster than it will increase capacitance to the ground plane.

If H2 > H1 then we have just the opposite situation and H1 is used

to reduce the self capacitance while having relatively little affect

on coupling. Since the effective dielectric constant is being

altered when H
1
/H

2
is adjusted the impedances are expected to change

and indeed they do.
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8

6

H
1

H
2

(a)

0

(b)

2 3 4 4.5

2/1

Figure 4. Some solutions for H2 and 62 required to

satisfy ideal nonsymmetrical directional

coupler conditions using a composite

substrate. (61 = 10)

(a) Wi/H = 2, 1!2/H = 0.5, S/H = 0.05, H = 2

k = 0.406 coupling 12 8db

(b) Wi/H = 2, W2/H = 1, S/H = 0.2, H = 1

k = 0.321 coupling 22 10db
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H
2
/H

Figure 5. Mode voltage ratios Rc,R7r for a composite

substrate versus normalized dielectric

height H2/H.

H = 2, el = 2.5, e2 = 10, W2 = 8, Wi = 1
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Figure 6. Normal mode impedances, Zo, Zffl, versus

normalized H
2
for a composite substrate.

W1 /W2 = 8, W2 = 1, H = 2, El = 2.5, e2 = 10
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Figure 7. Normal mode impedances, Zc2, Zr2, versus

normalized H
2
for a composite substrate.

Wi/W2 = 8, W2 = 1, H = 2, el = 2.5, e2 = 10
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It is interesting, and not surprising, that there is a minimum

62/61 to allow kL = kc that depends on total height, H, and strip

separation S. As height decreases the minimum E2 /El will increase

and as separation decreases the minimum E2/E1 should decrease also.

There is not enough information in Figure 4 to evaluate each affect

independently but curve 4a has a smaller minimum c2/el than curve

4b and also has larger dielectric height and smaller strip spacing.

Although the magnitudes change, the impedance ratios along

the curves are nearly constant, within the resolution of the calculated

parameters.

The parameters Rc, R7, Zcori, Zcor2 as a function of H2/H are

plotted in Figures 5, 6, 7 for a composite type geometry. From the

expression for the mode voltage ratios (Appendix A) it is seen that

R
7
will be zero when either C

ma
/C

la
= C

m
/C

1
or C

ma
/C

2a
= C

m
/C

2
and

R
c

is singular when C
ma

/C
2a

= C
m
/C

2'
So the zero crossing of R

is not required to be coincident with the singularity of Rc. These

voltage ratios are important design parameters since coupling depends

on R
7
/R

c
and the impedance ratios depend on R

c
R
7

. Bandwidth can be

found from S
12

and is found to depend on the ratio R
7
/R

c
also.

The coupled power is plotted as a function of line length for some

of the cases found here in Figure 8. The resulting bandwidth is

found to be close to that for a homogeneous coupler, approximately 3:1.
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Normal mode parameters corresponding to the equal coupling cases

investigated are tabulated in Table 3. The impedances are seen to

vary widely depending on strip width, dielectric height, permitivity

and strip spacing. Coupling only varies from 8db to 14db but this could

easily be increased by increasing the strip separation.

From a practical standpoint the large variations in impedance

near equal coupling points requires that the dielectric thickness

by closely controlled.
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Figure 8. Normalized coupled power magnitude.

I

S
1

1 /IS
12

1

max
versus line electrical length, a

s
.

'

(a) 10db coupler, I

12I Max
0.1, Rc = 7.5, Rir = 0.2

(b) 14db coupler normalized to 10db coupler

1S121Max
0.39, Rc 12.8, R7 = 0.13
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Table 3: Normal mode parameters for

the composite coupler cases in Figure 4.

Figure Hi/N2 62/61 Z1 Z
2

Vc/C Vff/C

4a 9 3 28 53 0.23 5.33 0.304 0.309

5 2.5 27 50 0.310 0.316

2.4 2.3 26 49 0.28 6.5 0.283 0.286

2.1 2.3 26 49 0.28 6.5 0.283 0.286

1 2.5 23 45 0.09 3.7 0.268 0.271

0.58 3 22 41 0.32 7.1 0.235 0.238

4b 8.1 4 28 40 0.25 8 0.329 0.331

3.9 3 27 39 0.20 7.5 0.320 0.321

1.9 2.7 25 36 0.13 5.4 0.303 0.304

0.8 3 24 33 0.19 7.1 0.274 0.275

0.4 4 20 28 0.20 7.5 0.233 0.234
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V. CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

Conclusion

It has been shown that in a lossless, quasi-TEM system, planar

ideal directional couplers utilizing nonsymmetrical coupled lines

in an inhomogeneous dielectric medium are possible by using either a

dielectric overlay or a composite substrate. A variety of specific

cases were presented that indicate that coupling, impedances, and

impedance transformation ratios can be easily controlled by strip

widths and spacings and dielectric heights and permitivity. With

the technique shown in this thesis it will be possible to generate

sets of design curves like Figures 3 and 4 which will, for example,

allow a particular design to be a matter of choosing the desired

coupling and impedances and then finding on the curve the required

dielectric thicknesses and permitivities.

The variational integral method in the Fourier transform domain

was shown to be particularly efficient and easy to use for this type

of planar multiple dielectric structures. For example, finding the

potential function in the transform domain is much easier than finding

the Green's function directly for these problems considering the

multitude of boundary conditions to satisfy.
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Suggestions for Further Work

The numerical calculations done are sufficient to verify the

physical behavior of these coupled line systems but for actual design

work the accuracy should be improved. This can be done by optimizing

the trial function to agree with known capacitance values for some

special cases. It should be possible to get very good agreement

with published results. To give more weight to such calculations it

is also possible to calculate an upper bound on capacitance using

a similar variational technique as shown by Araki and Naito [20].

Perhaps the most important step at this point is to verify exper-

imentally these analytical results. The design could begin with more

accurate calculations or could be guided by the data presented here

if some empirical fine tuning is allowed. Since this theory is based

on lossless quasi-TEM propagation the frequency should be chosen

low enough to minimize high frequency effects.

Since the intent of this thesis was to use the variational integral

approach to show that overlay and composite substrate structures can

be made to produce ideal couplers no effort was made to go beyond the

limitations of a quasi-TEM system. Now that the feasibility has been

demonstrated it would be very useful from a practical standpoint to

know how these devices act at higher frequencies, where the quasi-TEM

approximation is not valid. In particular dispersion effects are not

known and could have a significant effect on bandwidth and directivity.
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With two coupled lines it is difficult to achieve large values

of coupling so it has been necessary to use three or more lines for

3db couplers [18, 19]. The use of a composite substrate or dielectric

overlay, as illustrated here for two lines, should also improve the

performance of these couplers. The variational integral technique

could easily handle the added complexity. For the interdigitated

couplers referenced, alternate lines are connected together with

jumper wires so it would only be necessary to split the charge function

into two pieces before taking the Fourier transform. The rest of

the procedure would remain the same.

As it stands now a coupler design would result from using graphs

to first narrow the range of dielectric parameters and cross sectional

geometries and then use the analysis technique shown here to get

precise numerical values to build a prototype. A much more convenient

scheme is to have a synthesis procedure which could accept certain

requirements, e.g., coupling and impedance transformation, and arrive

at several possible geometrical configurations from which a convenient

one may be chosen. Conceivably, such a procedure could be used for

more general microstrip applications since the variational technique

is quite general. The obvious obstacle is the requirement for many

computer iterations to optimize a particular design. Even with a

relatively efficient way to calculate the mode parameters a large amount

of computer time might still be required.



41

BIBLIOGRAPHY

[1] B.M. Oliver, "Directional Electromagnetic Couplers," Proc. IBE,
vol. 42, no. 11, pp. 1686-1692; November 1954.

[2] E.M.T. Jones and J.T. Bolljahn, "Coupled Strip Transmission
Line Filters and Directional Couplers," IRE Trans. Microwave
Theory and Techniques, vol. MTT-17, pp. 753-759; October 1969.

[3] T.G. Bryant and J.A. Weiss, "Parameters of Microstrip Trans-
mission Lines and of Coupled Pairs of Microstrip Line," IEEE
Trans. Microwave Theory and Techniques, vol. MTT-16, pp. 1021-
1027; December 1968.

[4] G.I. Zysman and A.K. Johnson, "Coupled Transmission Line Networks
in an Inhomogeneous Dielectric Medium," IEEE Trans. Microwave
Theory and Techniques, vol. MTT-17, pp. 753-759; October 1969.

[5] E.G. Cristal, "Coupled Transmission Line Directional Coupler
with Coupled Lines of Unequal Characteristic Impedance," IEEE
Trans. Microwave Theory and Techniques, vol. MTT-14, pp. 337-
346; July 1966.

[6] E. Yamashita and R. Mittra, "Variational Method for the Analysis
of Microstrip Lines," IEEE Trans. Microwave Theory and Tech-
niques, vol. MTT-16, pp. 251-256; April 1968.

[7] E. Yamashita, "Variational Method for the Analysis of Microstrip-
Like Transmission Lines," IEEE Trans. Microwave Theory and Tech-
niques, vol. MTT-16, pp. 529-535, August 1968.

[8] E. Yamashita and S. Yamazaki, "Parallel-Strip Line Embedded in
or Printed on a Dielectric Sheet," IEEE Trans. Microwave Theory
and Techniques, vol. MTT-16, pp. 972-973; November 1968.

[9] V.K. Tripathi, "Asymmetric Coupled Transmission Lines in an
Inhomogeneous Medium," IEEE Trans. Microwave Theory and Tech-
niques, vol. MTT-23, pp. 734-739; September 1975.

[10] V.K. Tripathi, "Nonsymmetrical Coupled Inhomogeneous Lines for
Applications as Directional Couplers," unpublished.

[11] V.K. Tripathi and C.L. Chang, "Quasi-TEM Parameter of Nonsym-
metrical Coupled Microstrip Lines," Int. J. Electronics, vol 45,
pp. 215-223; 1978.

[12] Y.Y. Sun, "Analysis of a Generalized Coupled Transmission Line
Directional Coupler," Int. J. Electronics, vol. 41, pp. 125-
136; 1976.



42

[13] J.E. Dailey, "A Strip-Line Directional Coupler Utilizing a Non-
Homogeneous Dielectric Medium," IEEE Trans. Microwave Theory
and Techniques, vol. MTT-17, pp. 706-712; September 1969.

[14] B. Sheleg and B.E. Spielman, "Broad Band Directional Coupler
Using Microstrip with Dielectric Overlays," IEEE Trans. Micro-
wave Theory and Techniques, vol. MTT-22, pp. 1216-1220;
December 1974.

[15] D.D. Paolino, "MIC Overlay Coupler Design Using Spectral Domain
Techniques," IEEE Trans. Microwave Theory and Techniques, vol.
MTT-26, pp. 646-649; September 1978.

[16] R.A. Speciale, "Wideband Totally Coupled Directional Transformers,"
IEEE Trans. Microwave Theory and Techniques, International Micro
wave Symposium Digest, pp. 122-124; May 1975.

[17] D.J. Gunton and E.G.S. Paige, "An Analysis of the General
Asmmetric Directional Coupler with Non-Mode Converting Termi-
nations," IEEE J. Microwave Opt. and Acoust., vol. 2, pp.
31-36; January 1978.

[18] V. Tulaja, B. Schiek and J. Kohler, "An Interdigitated 3db
Coupler with Three Strips," IEEE Trans. Microwave Theory and
Techniques, vol. MTT-26, pp. 643-645; September 1978.

[19] A. Presser, "Interdigitated Microstrip Coupler Design, " IEEE
Trans. Microwave Theory and Techniques, vol. MTT-26, pp. 801-
805; October 1978.

[20] K. Araki and Y. Naito, "Upper Bound Calculations on Capacitance
of Microstrip Line Using Variational Method and Spectral Domain
Approach," IEEE Trans. Microwave Theory and Techniques, vol.
MTT-19, pp. 19-25; January 1971.

[21] P. Daly, "Hybrid-Mode Analysis of Microstrip by Finite-Element
Methods," IEEE Trans. Microwave Theory and Techniques, vol.
MTT-19, pp. 19-25; January 1971.

[22] B.L. Lennartsson, "A Network Analogue Method for Computing the
TEM Characteristics of Planar Transmission Lines," IEEE Trans.
Microwave Theory and Techniques, vol. MTT-20, pp. 586-591;
September 1972.

[23] J.D. Jackson, Classical Electrodynamics, second edition New
York; Wiley; 1962.



43

[24] E. Kreyszig, Advanced Engineering Mathematics, New York; John
Wiley & Sons; 1962.

[25] P.M. Morse and H. Feshbach, Methods of Theoretical Physics;
New York; McGraw-Hill; 1953.



APPENDICES



APPENDIX A: COUPLED LINE THEORY

A brief outline of coupled transmission line theory and some of

the important results [9] is presented here.

Begin with the transmission line equations:

dx [V] = -[z] [I]

-a-.)( [I] = -[Y] [V]

44

[V] and [I] are the two dimensional voltage and current vectors

and [Z], [Y] are 2x2 impedance and admittance matrices.

[Z] =

zl zm

z
2

[Y] =

vl y
m

Ym Y2

The voltages and currents, when the lines are uniformly coupled,

are the solutions of:

d2
[V] - [Z] [Y] [V] = 0

dx

d
2

dx
2 [I] [Y] [Z] [I] = 0

The characteristic equation

2
y - [Z] [Y] = 0

(A3)

(A4)

(A5)



can be solved to get the normal mode propagation constants:

ycor vT= [(Z
1

Y
1

+ Z
2

Y
2

- 2Z
m

Y
m
) ± /(ZiYi - Z + 4(ZW1 - Z2Ym) (ZmY2 - ZiYm)
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1/2 (A6)

From the voltage eigenvectors are found the mode voltage ratios,

V9

R
C,

A (
Tr V/

C,ir

C,7

(Z2Y2 - 7
1
Y

1
)

(A7)

Z
1
Y

1

)

2
+ 4(Z Y

m m
2(ZmY2 -

Z2Ym) (ZmY2 - Z Ym)

The general solution for the voltages on the two lines is then

-y x y X -y X y X
V

1
=A

1
e c + A2ec + A + A

4
e

7 7

V
2

=

-y
c
x y

c
x

c
e + A2Rc e +

(A8)

(A9)

-y x y
7
x

(A10)
7

e +ARe
7 4 7

Where A
l'

A2, A3, A
4
are amplitude coefficients. The solutions

for currents are found by using equations (A9), (Ala) in equation (Al).

They are

-y
c
x y

i
1
= A

1

Y
c1

e - A
2
Y
cl

e
c

+
Tr

-y x y X
- A Y7T1 e

7
(All)

-y
c
x y

c
x -y x y x

7i2 = AlRcY
c2

e - A2RcY
c2

e
7

e -A
4
R
7
Y72 e (Al2)



Partial mode admittances Y
cl'

Y
c2'

Y
71'

Y are the ratios of

current to voltage on a given line when the corresponding mode is

excited. They should not be confused with uncoupled normal mode wave

admittances which are always positive real for lossless lines.

Partial mode admittances and impedances are given below.

Y =
1

z
2

- Rczm

Y
Cl cZ

cl Z
1

Z
2

- Z
m

2

1

y_ ziRc - zm
Y
c2

c

Z
c2 c z

2

1z2 - zm

z2 - zmR7
Y
71

Y
7 2

ziz2 zm

1

y
7

z R
7

- zm
Y =

Z 72 2R7 zmz2 - z
Mode Parameters for the Lossless Quasi-TEM Case
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(A13)

(A14)

(A15)

(A16)

Equations (A6), (A8), (A13) - (A16) can be used to express the normal

mode parameters in terms of self and mutual capacitances with and

without dielectric present by substituting for zl, z2, zm and yl,

Y2' Y



[Z] = jw[L]
[ca]-1

cr

.w

c
2
Aa

C2a Cma

Cma la

47

(A17)

[C
a
] is the matrix of self and mutual capacitance per unit length

of the two lines with the dielectric removed and c is the velocity of

light, and Aa is the determinant of the capacitance matrix.

C1 -C
m

[Y] = jw[C] = jw
-C

m
C
2

The normal mode parameters can now be written:

Mode propagation velocities

V
C a

+ C
2
C
la

- 2C
m
C
ma

+

/(C
la

C
2

- C
2a

C
1
)2 + 4( -CmaC m) (CmaC2 - C2aCm)

Mode voltage ratios

RCor = (-1)

(A18)

-1/2 (A19)

(C C - C C ) ± /(Cla 2 2a 1 la C2aC1)2 + 4(CmaCi - CiaCm)
(CmaC2

-

2(C C2 C
2a

Cm)

am (A20)



Mode impedances

1 1

Zcl
v C1 R

c
C

c 1 m

1 1
Z

v
+ R C

MTr

Z
c2

= -R R
C

Cl

Zir2
= RcR,TZ

71

Four Port Parameters
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(A21)

(A22)

(A23)

(A24)

The four port impedance or admittance parameters can be found

from the expressions for voltage and current on the two lines.

Equations (A9) (Al2) can be used to find port voltages and currents

by replacing the variable "x" with either zero or the line length 2.

vi

V
2

V3

V
4

1

Z Y Z Y Z
Rc e

c
e Tr Rye R

Tr
e

e
-Y

c
Z

c
Z -Y7 Z 7

Al

e e

A
2

(A25)



I1

1
2

1
3

1
4

Al

2 A2

R
c
Y
c2

e
-Yc2'

-R
c
Y
c2

e RY, e -R
Ycz

Tr Trc

-Y7
Y e

7 72

Y7
A
3

A4

Y
c1 Ycl 71

-YTy
1

R
c
Y
c2

-R
c
Y
c2

R -RY
7 TT

Y-Y7
Yc2 e

-Ycz
-Yc2 e

Yc2'
YTr2 e -Y

72
e

Now the amplitude coefficients may be eliminated to end up with

an equation relating V1, V2, V3, V4 to 11, 12, 13, 14.

[V] = [Z] [I]

Where now [Z] is a 4x4 matrix relating port parameters.

49

(A26)

(A27)
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APPENDIX B: DIRECTIONAL COUPLER THEORY

The condition for ideal directional couplers can be written simply

in terms of the four port scattering parameters expressing infinite

directivity and impedance matching. Referring to Figure 1

S
13

S
24

= S
3

= S
42

0 (B1)

and S
11
=S

22
=S

33
= S44 =0 (B2)

From the general four port scattering parameters two conditions

that satisfy the above requirements can be found. They are the

equalization of mode velocities and relating the mode impedances in

the following way:

Z
1

Z
cl

-Z
71

and Z
2
= -Zc2 =

Tr

or Z
1

= - Zcl = Z
71

and Z
2

= Z
c2

- -Z
72

(B3a)

(B3b)

Refer to Appendix A for the definition of mode impedances. For

the non symmetrical case of interest here it can easily be shown that

mode velocities cannot be made equal (Appendix C). It has been shown

in this thesis that the second condition can be met. If the mode

impedances are equal and have the same sign corresponding to kc

then a co-directional coupler results. This condition cannot be sat-

isfied with microstrip-Tike transmission lines that share a ground plane.



Substituting in (B3) from equations (A13) - (A16) and using the

expressions for ycoT and Rco, in terms of the line constants leads

to a simple form:

Lm Cm

11-71:1 r-C-7
1 2 1 2

or

C
ma

Cm

V'C
la

C
2

1/7771
1 2

This is the criteria used to find the ideal coupler cases.
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(B4a)

(B4b)

When ports 2, 3, and 4 are terminated as in Figure Bl and power

applied to port 1 then V2 = -Z2I2, V3 = -Z3I3, and V4 = -Z4I4. Using

this along with equations (A25) and (A26) and condition (B3) the

amplitude coefficients turn out to be:

A
2

= A
3

= 0

-j(e eTr)
A4 = -A1 (Rc/RIT) e , ec,7 = yc,,z

(B5)

(B6)

Again using (A25) and (A26) with these results shows that there are no

reflections at the ports (all ports are matched) and the port voltages

are:
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The coupling magnitude is
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Coupling can be defined as C = 10 log10 (IS

Coupling bandwidth can be defined to be at the half power points

where:

that is
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Figure Bl. General coupled line four port schematic.



APPENDIX C: SHOW THAT MODE VELOCITIES CANNOT BE MADE EQUAL

IN AN INHOMOGENEOUS MEDIUM

To show this first rewrite equation (A19) for the mode velocities

in terms of capacitance.

v
c,7

= 1/-2-7c CiCia + C2Cia - 2CmCma ±

(C C C
2a

C
1

)2 + 4 (C
ma

C
1

C
la

C
m

) (C
ma

C
2 - C2aCm))

If the mode velocities v
C

, v are to be equal then the square

root term must be zero. It is easy to see that this is not the case

if the two lines are not in a homogeneous medium. To make this

clear find the condition for the velocities to be equal.

(C1aC2 C aC
)2 + 4 (CmaC, - ClaCm) (CmaC2

C2aCm)

The first term is obviously zero if the lines are symmetric

or the medium is homogeneous since in both cases C2/C2a Ci/Cia.

The second term is more subtle. Rearranging and rewriting simplifies

it:

4 CmaCm
C
ma

C
m

C
ma

C2;)
C
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(A19)

(C1)

Clearly this term will be zero only when the dielectric is homogeneous.


