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1

Comparison of Time-Domain and Frequency-Domain

Phase Noise Analyses

1. INTRODUCTION

1.1. Background and Motivation

During the past decade the popularity of wireless products has grown

rapidly. Due to an increase in the number of customers, new communication stan-

dards use limited allocated spectrum range with the highest possible efficiency.

This is done by accommodating a large number of channels with narrow band

widths. The density of communication channels depends on the spectral purity of

the local oscillators (LO) in transmitters and receivers [1]. Figure 1.1 shows how

the LOs are used for up- and down-conversion of the signal. In the transmitter,
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Figure 1.1. Transmitter and receiver block diagrams.

the data signal is upconverted by mixing with an LO signal, it is then amplified by

a power amplifier (PA) and transmitted. A transmitter’s upconversion oscillator

with a noisy spectrum results in energy leakage to adjacent bands [2] and causes

interchannel interference. This interference is depicted in Figure 1.2.
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Figure 1.2. Channel interference due to a transmitter’s LO.

(a) Upconversion with ideal LOs. (b) Upconversion with noisy LOs.

Figure 1.2(a) shows that data signals, upconverted into two adjacent RF

channels by mixing with ideal LO signals, stay within their channel bandwidths.

RF signals in the adjacent channels interfere with each other if noisy oscillators

are used for upconversion (Figure 1.2(b)).

In the receiver front-end, the received radio-frequency signal is passed to a

low noise amplifier (LNA) and downconverted by mixing with the LO signal from

the oscillator. In the presence of a strong unwanted RF signal in a neighboring

band, a noisy oscillator in the receiver causes channel interference. In Figure 1.3(a)

data signals obtained by downconversion of RF signals using an ideal LO signal do

not interfere with each other. However, data obtained using a noisy LO is distorted

by a strong downconverted RF signal from a neighboring band (Figure 1.3(b)).

In both of these cases, the signal-to-noise ratio (SNR) of the received signal

is degraded by a noisy oscillator.
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Figure 1.3. Channel interference due to a receiver’s LO.

(a) Downconversion with an ideal LO. (b) Downconversion with a noisy LO.

Oscillators are also used in digital systems. One of these applications is

clock skew reduction. A noisy oscillator causes synchronization problems, which

results in a degradation of the bit-error rate (BER) and limits the frequency of

operation, and therefore, the performance of a digital system [1].

From the above description, it is clear that oscillators with low noise need

to be designed. The phase noise of an oscillator (see Section 2.1) is a property that

characterizes the spectral purity of the oscillator’s output signal and its timing

characteristics. It is important to predict the phase noise of an oscillator during

the design stage through simulation.

Circuit simulation is an important part of an integrated circuit (IC) design

flow [3]. It decreases the number of costly and time-consuming chip fabrication

cycles required for an operational IC. Once a mathematical model of a circuit is

created, the circuit design can be simulated and refined iteratively. When the

simulated performance of a circuit design satisfies the given specifications the

design is sent for fabrication. For this reason, circuit simulators must support

phase noise analysis.
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An oscillator’s phase noise analysis provides an understanding of the os-

cillator’s spectrum characteristics and its sensitivity to external noise, such as

substrate noise or power supply noise. Phase noise analysis can be performed

using either the time-domain or the frequency-domain response of an oscillator.

Various phase noise analysis techniques have much in common but there are im-

portant differences. These are of interest to both circuit-simulator developers and

designers who use the circuit simulator as a tool.

The contribution of this thesis is in the implementation of phase noise

calculation techniques that work in conjunction with either the time-domain or

the frequency-domain periodic steady-state (PSS) analyses. These phase noise

techniques are now available in our version of the public-domain circuit simulator

SPICE3. A detailed evaluation of the performance of the implemented techniques

in terms of accuracy, speed, and scalability is also provided. This then leads to a

comparison between the accuracy and speed of the time-domain and frequency-

domain analyses.

1.2. Thesis Outline

The thesis is organized as follows. Chapter 1 introduces the phase noise

problem and provides a motivation for this work. Chapter 2 presents the mathe-

matical theory and numerical methods for phase noise calculation. In Chapter 3

the frequency-domain technique is applied to a set of test oscillator circuits. Then

the simulation results are compared with phase noise simulation results from the

time-domain based method. A comparison of the simulation performance of the

different techniques is presented. Finally, in Chapter 4, conclusions and possible

directions for future work are summarized.
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2. PHASE NOISE THEORY AND NUMERICAL METHODS

This chapter describes the various phase noise calculation techniques and

is organized as follows. First, the definitions of phase noise and timing jitter

are given. Then Floquet theory and a perturbation analysis for ordinary dif-

ferential equations (ODE) are presented. The perturbation analysis is based on

perturbation projection vectors (PPV). Time- and frequency-domain algorithms

for calculation of the PPVs are also described. The singular value decomposition

(SVD) solver for the frequency-domain calculation of the PPVs is chosen based

on theoretical and practical comparisons of two different SVD solvers.

2.1. Phase Noise and Timing Jitter

Let the output of an unperturbed free-running oscillator be denoted as

xs(t). This is a periodic waveform with a period T . In the frequency domain xs(t)

is represented by its power spectral density (PSD) Sx(f). For a purely periodic

signal the PSD is a sequence of impulses at multiples of the oscillation frequency

fosc = 1/T as shown in Figure 2.1. In practice, noise from semiconductor devices,

0 0.25 0.5 0.75 1

0

Time (ns)

x s(t)

0 1 2 3 4
Frequency (GHz)

S x(f)

Figure 2.1. Output waveform of an unperturbed oscillator and its PSD.

substrate noise, etc., cause frequency instabilities. A perturbed oscillator’s output

can be represented as xs(t+α(t))+a(t), where α(t) describes the phase deviations



6

and a(t) represents deviations of the amplitude [4]. Figure 2.2 shows the output

of an oscillator with phase deviations.

0 0.25 0.5 0.75 1

0

Time (ns)

x s(t+
α(

t))

0 1 2 3 4
Frequency (GHz)

S x(f)

Figure 2.2. Output waveform of a perturbed oscillator and its PSD.

Due to phase deviations, the period of an oscillator at each cycle is different,

and there is an uncertainty in the zero-crossing point of xs(t + α(t)) as shown in

Figure 2.3. The cycle-to-cycle jitter is a statistical measure of the uncertainty in

0.5

0

Time (ns)

x s(t+
α(

t))

 

τavg

τn

τn−τavg

Figure 2.3. Zero crossings of a perturbed oscillator’s output.

the zero crossings [5], [6]. It measures the variance of each period with respect to

the average period:

σ2

c = lim
N→∞

(

1

N

N
∑

n=1

(τn − τavg)
2

)

(2.1)
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One can also express the cycle-to cycle jitter in terms of a noise constant c, which

is a scalar constant that characterizes both the timing jitter and the spectral

spreading in a noisy oscillator [4]:

σ2

c =
c

fosc

(2.2)

The spectrum of a perturbed oscillator in Figure 2.2 has sidebands around

the frequency of oscillation fosc and its harmonics (2fosc, 3fosc, . . . ). These are

generally referred as the phase noise sidebands [1]. In the frequency domain an

oscillator’s instabilities are characterized by a single sideband (SSB) noise spectral

density L(fm). The units of L(fm) are (dBc/Hz), i.e., decibels below the carrier

per Hertz. L(fm) is defined as the power of Sx(f) in a 1Hz band around the

fosc + fm frequency, normalized to the total power of Sx(f) around the frequency

of oscillation [1]:

L(fm) = 10log10

P1Hz(fm)

Pcarrier

(2.3)

where fm is the offset from the carrier frequency, as shown in Figure 2.4.

��
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1 �
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−+

=

Figure 2.4. Oscillator spectrum and characterization of SSB phase noise.

The definition of L(fm) in Equation (2.3) takes into account the effects of

the phase deviation α(t) and the amplitude deviation a(t).
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The single sideband noise spectral density L(fm) can be approximated as

a function of the noise constant c [4]:

L(fm) = 10log10

f 2

oscc

π2f 4
oscc

2 + f 2
m

(2.4)

As we will see later in Section 2.5, the noise constant c itself is a function of the

offset frequency fm.

The noise from various noise sources is projected into the noise constant c

by the perturbation projection vectors (PPVs). Floquet theory and perturbation

analysis provide the mathematical background for calculation of the PPVs.

2.2. Floquet Theory

Consider a linear periodic time-varying (LPTV) system of homogeneous

ordinary differential equations (ODE):

ẋ = A(t)x (2.5)

where A(t) is a T -periodic n × n matrix. There can be n linearly independent

solutions of Equation (2.5) [7]. These solutions form a linear n-dimensional space

of solutions X(t) = [x1(t), . . . , xn(t)], which is also called the fundamental matrix.

Any solution of Equation (2.5), x(t), can be represented as a linear combination

of the columns of the fundamental matrix X(t), i.e.,

x(t) =
n
∑

i=1

kixi(t) = X(t)k (2.6)

where k is a vector of coefficients ki that map the columns of X(t) into x(t). If

the fundamental matrix is an identity matrix at time t0, X(t0) = In, then it is

called the state-transition matrix Φ(t, t0). The solution x(t) can be determined as

x(t) = Φ(t, t0)x(t0) (2.7)
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The state-transition matrix at time t0 + T is referred to as a monodromy matrix,

Φ(t0 + T, t0) [8]. The monodromy matrix maps the system state at some time t

into the future state at time t + T .

x(t + T ) = Φ(t + T, t)x(t) (2.8)

The matrices Φ(t + T, t) describe the properties of (2.5) and indicate whether the

system exhibits growing, decaying, or oscillatory behavior. For any time t, the

monodromy matrices Φ(t+T, t) are similar, i.e., they are related to each other by

a similarity transformation M−1ΦM . This implies that the spectrum of Φ(t+T, t)

is independent of t and is defined by the system (2.5) [7]. This spectrum describes

the behavior of the system. The eigenvalues of Φ(T, 0) are called the characteristic

(Floquet) multipliers of the system. If λi is a characteristic multiplier of the

system, then a non-trivial solution xk(t) exists, such that

ui(t + T ) = λiui(t) (2.9)

and ui(t) is an eigenvector of Φ(t + T, t) that corresponds to the eigenvalue λi.

The state-transition matrix Φ(t, s) can be represented [9] as

Φ(t, s) = U(t)D(t − s)V (s) =
n
∑

i=1

λi(t − s)ui(t)v
T
i (s) (2.10)

where the columns of U(t), ui(t) are the eigenvectors of Φ(t + T, t), the rows

of V (t) = U−1(t), vT
i (t) are the transposed eigenvectors of ΦT (t + T, t), D is a

diagonal matrix spanned by λi(t) = eµit, λi(T ) = λi. The numbers µi are called

the characteristic (Floquet) exponents of the system (2.5). Let us substitute (2.10)

into (2.7) and represent the initial condition x(0) as a summation of the rows of

U(0) scaled by the coefficients kj:

x(t) = Φ(t, 0)x(0) =
n
∑

i=1

λi(t)ui(t)v
T
i (0) ·

n
∑

j=1

kjuj(0) (2.11)
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Using the fact that ui(t) and vi(t) are biorthogonal, i.e., vT
i (t)uj(t) = δij (Kro-

necker delta), particularly when t = 0, x(t) can be written as a summation of the

eigen modes of the system:

x(t) = λ1(t)u1(t) · k1

+ λ2(t)u2(t) · k2

+ . . .

+ λn(t)un(t) · kn (2.12)

The system (2.5) has an asymptotic orbitally stable solution x(t) if [7]

Re(µn) ≤ . . . ≤ Re(µ2) < µ1 = 0 (2.13)

or equivalently

|λn| ≤ . . . ≤ |λ2| < λ1 = 1 (2.14)

as µi and λi are related by

λi = eµiT (2.15)

In this case, the first component in (2.12), λ1(t)u1(t)k1, is a stationary component

of the solution x(t), also called the oscillatory eigen mode, while the remaining

components are the decaying eigen modes that die out after a sufficiently long time.

The perturbation analysis is based on the fact that the stationary component of

the solution x(t) is aligned along u1(t).

2.3. Perturbation Analysis for ODEs

Let b(t) be a T -periodic n-vector of perturbations to the system (2.5).

Then a perturbed system of ODEs is represented by

ẋ = A(t)x + b(t) (2.16)
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The solution for Equation (2.16) can be written in terms of the solution of the

unperturbed system (2.5) as x(t+α(t))+a(t), where a(t) is the amplitude deviation

and α(t) is the phase deviation. Figure 2.5 shows that a single perturbation ba

at some time t may cause only an amplitude deviation. In Figure 2.6 another

0 1 2 3 4
Time (ns)

x(
t)+

a(
t) ba

Figure 2.5. Perturbation ba causes only amplitude deviation.

0 1 2 3 4
Time (ns)

x(
t+

α(
t)) bα

Figure 2.6. Perturbation bα causes only phase deviation.

perturbation bα is shown, that results only in a phase deviation. Here, ba and

bα were applied to a system satisfying conditions (2.14), i.e., with an asymptotic

orbitally stable solution x(t). Generally, a perturbation vector b(t) can cause both

amplitude and phase deviations, and it is useful to represent it as a superposition

of two perturbation vectors:

b(t) = bα(t) + ba(t) (2.17)

where bα(t) is a perturbation that causes only a phase deviation α(t), and ba(t)

changes only the amplitude by a(t) [10].

As seen from Figures 2.5 and 2.6, the amplitude deviation dies out af-

ter some time and the phase deviation remains forever. Our goal is to extract
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bα(t), the component of the perturbation vector b(t) that results only in a persis-

tent phase deviation. The component bα(t) is aligned with the oscillatory eigen

mode u1(t) of the system, while the component ba(t) lies in the space spanned by

u2(t), . . . , un(t), i.e., the decaying eigen-modes.

b(t) = bα(t) + ba(t) = c1(t)u1(t) +

n
∑

i=2

ci(t)ui(t) (2.18)

The time-dependent scalar c1(t) is a measure of how much of b(t) is projected onto

the phase deviation.

2.4. Calculation of PPVs

If u1(t), . . . , un(t) form an orthogonal basis, i.e., the system (2.5) is self-

adjoint, then c1(t) can be calculated as an orthogonal projection of b(t) onto

u1(t) [10]. Unfortunately, linearization of the oscillator model at the periodic

steady state generally does not give rise to a self-adjoint system. Therefore, all

the eigen modes ui(t), i = 1, . . . , n have to be calculated to extract c1(t) from

U(t)c(t) = b(t) (2.19)

This requires computation of a sequence of monodromy matrices Φ(t + T, t) for

each time t ∈ [0, T ) and a complete eigenvalue decomposition of these matrices.

However, using the fact that U−1(t) = V (t), c1(t) can be calculated as

c(t) = U−1(t)b(t) = V (t)b(t) (2.20)

or


















c1(t)

c2(t)

...

cn(t)



















=



















vT
1
(t)

vT
2
(t)

...

vT
n (t)



















· b(t) (2.21)
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The scalar c1(t) can be expressed from (2.21) as

c1(t) = vT
1
(t) · b(t) (2.22)

where v1(t) is an oscillatory eigen mode of the adjoint system ẏ = −AT (t)y cor-

responding to Equation (2.5). Equation (2.22) implies that c1(t) is an orthogonal

projection of the perturbation vector b(t) onto vT
1
(t). This is an expected result,

as from the bi-orthogonality condition of vi(t) and uj(t), it follows that the oscil-

latory eigen mode of the adjoint system v1(t) is orthogonal to all of the decaying

modes ui(t), i = 2, . . . , n of the original system (2.5) [10]. Thus there is no need

to calculate any other T -periodic eigen modes other than v1(t). The ith coordinate

of v1(t), i = 1, . . . , n is a measure of how much of a perturbation of the ith equa-

tion of the system (ith coordinate of b(t)) at time t will be projected into phase

deviation. Therefore, a set of n T -vectors v1 is referred to as the perturbation

projection vectors (PPV) of the system.

The monodromy matrix of the adjoint system Ω can be written in terms

of Φ, the monodromy matrix of the original system as

Ω(t, t + T ) = ΦT (t + T, t) (2.23)

The vector v1(t) for each time t ∈ [0, T ) can be extracted from Ω(t−T, t) by doing

an eigenvalue decomposition. However there are more efficient ways of calculating

v1(t) [8] that will be described in Sections 2.4.1 and 2.4.2.

An analysis similar to the ones performed for ODEs in Sections 2.2, 2.3 and

above, can be carried out for the following LPTV system of differential-algebraic

equations (DAEs) as well [8]:

d

dt
(C(t)x) + G(t)x = 0 (2.24)

The linear system (2.24) is obtained by linearization of

d

dt
q(x) + g(x) + u = 0 (2.25)
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around the PSS solution, where q(x) represents the charges (fluxes) of capacitors

(inductors), g(x) represents the currents through resistive components, and u

represents the independent current and voltage sources. The matrices G(t) and

C(t) from (2.24) are obtained as

G(t) =
d

dx
g(x)

∣

∣

∣

∣

x=xs

(2.26)

and

C(t) =
d

dx
q(x)

∣

∣

∣

∣

x=xs

(2.27)

where xs is a periodic solution of the autonomous system of DAEs (2.25). These

systems are obtained from autonomous circuits, such as oscillators.

2.4.1. Time-Domain Algorithm for PPV Calculation

An algorithm for calculation of v1(t), based on a linearization of the time-

domain PSS solution of an oscillator consists of the following steps:

1. Calculate the large-signal PSS solution xs(t), t ∈ [0, T ) of an oscillator

described by (2.25) using a time-domain technique, such as the shooting

method or the finite-difference method [3]. Save the matrices G(t) and C(t)

that form the linear model of the oscillator (2.24), linearized around the PSS

solution.

2. Calculate the monodromy matrix Ω(0, T ) of the adjoint system given by

CT (t)dy/dt − GT (t)y = 0. To do this, calculate the state transition matrix

Ω(t, T ) by numerically integrating the adjoint system backwards in time

starting from the initial condition Ω(T, T ) = In, to time t = 0. The state

transition matrix Ω(t, T ) evaluated at time t = 0 is the monodromy ma-

trix Ω(0, T ). Note that integration backwards in time is used because the
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characteristic exponents of the adjoint system are negative of the character-

istic exponents of the original system. Also, the characteristic multipliers

of the adjoint system are reciprocals of the characteristic multipliers of the

original system. This means that decaying eigen modes of the original sys-

tem correspond to unstable eigen modes of the adjoint system: λi > 1,

i = 2, . . . n. Therefore, integration of the adjoint system forward in time is

not numerically stable.

3. Calculate the oscillatory eigen mode u1(T ) of the original system (2.24) as

u1(T ) = ẋs(T ). The derivative ẋs(t) points in the direction of the tangent to

the orbit of the oscillator and any small perturbation in that direction will

result only in a phase deviation, without changing the orbit itself. Therefore,

ẋs(T ) can be chosen to be an oscillatory eigenvector at time T .

4. Calculate v1(T ) by computing the oscillatory eigenvector of Ω(0, T ) cor-

responding to the oscillatory eigenvalue λ1 = 1. Scale v1(T ) to satisfy

vT
1
(T )C(T )u1(T ) = 1. If it is difficult to distinguish the oscillatory eigen

mode among several nearly oscillatory eigen modes λi ≈ 1, then choose the

eigenvector which points more than others in the direction of C(T )ẋs(T ),

i.e., the one which has the largest inner product with C(T )ẋs(T ).

5. Calculate v1(t) along a PSS period, t ∈ (0, T ]. To do this, integrate the

adjoint system starting from an initial condition v1(T ) at time T backwards

in time to t = 0. The reason for integration backwards in time is the same

as in Step 2.

The algorithm for calculation of v1(t), based on a linearization of the time-

domain PSS solution of an oscillator is illustrated in Figure 2.7.
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Figure 2.7. Block diagram of the time-domain algorithm for PPV calculation.

2.4.2. Frequency-Domain Algorithm for PPV Calculation

Instead of going directly to the algorithm for calculating v1(t), let us first

define the problem in the frequency domain. The frequency-domain formulation

of the autonomous system of DAEs (2.25) is represented as

Ωqf (X) + gf(X) + uf = 0 (2.28)

where Ω represents the derivative operator in the frequency domain (do not con-

fuse with the notation used for the monodromy matrix of the adjoint system),

qf (X) represents the Fourier coefficients of charges (fluxes) of capacitors (induc-

tors), gf(X) represents the currents of resistors in terms of their Fourier coeffi-

cients, and uf represents the Fourier coefficients of the independent current and

voltage sources. X = Γx is the set of Fourier coefficients of all circuit unknowns,

and Γ is a Fourier transform matrix operator that maps the time-domain wave-
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form into the frequency-domain spectrum. Linearization of (2.28) results in the

frequency-domain Jacobian matrix

J =
[

Jij

]

, i, j = 1, . . . , n (2.29)

where Jij is a K × K matrix, and K is the number of Fourier coefficients that

represent a single variable. Block Jij contains the sensitivities of all the Fourier

coefficients of the ith equation of (2.25) with respect to all the Fourier coefficients

of the jth unknown of (2.25). Jij is defined in terms of G and C as follows:

Jij = ΓGij(t)Γ
−1 + ΩΓCij(t)Γ

−1 (2.30)

where Gij(t) and Cij(t) are T -vectors that correspond to dgi(x)/dxj and

dqi(x)/dxj, from (2.26) and (2.27) at each time point along the period of the

PSS solution.

An algorithm for calculation of v1(t), based on a linearization of the

frequency-domain PSS solution of an oscillator is summarized:

1. Calculate the large-signal frequency domain PSS solution Xs of an oscil-

lator described by (2.28). Save the Jacobian matrix J at the solution

point. Transform Xs into time domain waveforms xs(t). Save C(0) =

dq(x)/dx, x = xs(0), as available from the time-domain evaluations of the

nonlinearities.

2. Calculate u1(0) = ẋs(0), where the time-derivative of the PSS solution ẋs(t)

is calculated analytically in the frequency domain ẋs(t) = Γ−1ΩXs.

3. Calculate the null space of the transposed Jacobian matrix by doing a singu-

lar value decomposition and choosing the right singular vector correspond-

ing to the singular value 0. The null space of JT is the frequency-domain

representation of v1(t), V1 = null(JT ). Convert V1 into the time domain,

v1(t) = Γ−1V1. Scale v1(t) to satisfy vT
1
(0)C(0)u1(0) = 1.
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The algorithm for calculation of v1(t), based on a linearization of the

frequency-domain PSS solution of an oscillator is illustrated in Figure 2.8.
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Figure 2.8. Block diagram of the frequency-domain algorithm for PPV calcula-

tion.

2.5. Calculation of Phase Noise

Once the perturbation projection vectors v1(t) have been determined, a

single-sideband noise spectral density L(fm) can be calculated as [4]

L(fm) = 10log10

f 2

oscc(fm)

π2f 4
oscc

2(fm) + f 2
m

(2.31)

The frequency of oscillation fosc is known from the underlying PSS analysis, and

the scalar noise constant c(fm) is calculated as a sum of two components:

c(fm) = cw + cc(fm) (2.32)

where cw represents the frequency-independent contribution of all white noise

sources, and cc(fm) is the contribution of all colored noise sources at the offset
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frequency frequency fm. If there are pw white and pc colored noise sources in the

circuit, then the constants cw and cc(fm) can be calculated [4] as

cw =

pw
∑

i=1

cwi =

pw
∑

i=1

∫ T

0

(

vT
1
(τ)bwi(xs(τ))

)2

dt (2.33)

and

cc(fm) =

pc
∑

i=1

cci(fm) =

pc
∑

i=1

∫ T

0

(

vT
1
(τ)bci(xs(τ), fm)

)2

dt (2.34)

where bwi(xs(τ)) maps the ith white noise source to the equations of system (2.25),

bwi(xs(τ), fm) maps the ith colored noise source at the offset frequency fm to

the equations of system (2.25). The noise sources are calculated given the bias

conditions corresponding to the PSS solution xs(t) at time t = τ . A practical

implementation and structure of the noise matrices are well illustrated in [11].

2.6. Implementation Notes

Phase noise analyses based on the frequency-domain harmonic balance

method and the time-domain shooting method were implemented in our in-house

version of SPICE3, a general purpose analog circuit simulator.

As shown in Section 3.2.1, the SVD computation is the primary contribu-

tor to the overall phase noise computation time in the frequency-domain method.

The accuracy of the PPVs and phase noise is directly related to the accuracy of

harmonic balance Jacobian null space, which is calculated using the SVD. There-

fore, while choosing an SVD algorithm, not only its speed but also its accuracy

should be taken into consideration.

Currently, there are two SVD algorithms which are better than others in

terms of speed, i.e., variations of the QR-iteration and the divide-and-conquer

algorithm [12]. In terms of speed, the divide-and-conquer algorithm is more ef-

ficient compared to the QR-iteration when working with dense matrices larger



20

than 25 × 25. Harmonic balance matrices that rise from practical problems are

much larger than this size but are generally sparse. These algorithms including all

other SVD algorithms are iterative [13], and they have different properties. The

QR-iteration finds all the singular values with a high relative accuracy, whereas

the divide-and-conquer algorithm finds the singular values with a high absolute

accuracy. Our goal is to obtain the right singular vector that corresponds to the

smallest singular value. Therefore, relative accuracy is of higher priority in phase

noise calculations.

To make a proper choice of the SVD algorithm, speed and accuracy of

two LAPACK [14] SVD solvers were compared. The first solver is an implemen-

tation of the QR-iteration algorithm, and it is accessed through the DGESVD

driver routine. The second solver is an implementation of the divide-and-conquer

algorithm, and it is accessed through the DGESDD driver routine [15].

The phase noise of a three-stage ring oscillator (see Section 3.1.1) was cal-

culated using both the DGESVD and DGESDD SVD solvers. A colored noise

constant at 1kHz offset frequency was chosen to be a figure of merit while com-

paring the two SVD solvers. As we can see from Figure 2.9, the SVD algorithm

does not have a significant effect on the accuracy of the phase noise constant.

Table 2.1 shows that the phase noise constants calculated using the two different

SVD solvers are practically indistinguishable from each other. In Table 2.1 Nharm

is the number of harmonics, Jsize is the size of the harmonic balance Jacobian

matrix, εabs is the difference between the phase noise constants calculated using

the different SVD solvers.

Figure 2.10 shows that it takes less time for the divide-and-conquer SVD

solver to perform an SVD of the harmonic balance Jacobian matrices of practical

sizes.
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Figure 2.9. Phase noise constants calculated using different SVD solvers.

Nharm Jsize εabs

10 105 +1.85 × 10−32

20 205 −1.79 × 10−31

30 305 −9.18 × 10−31

40 405 −2.10 × 10−31

50 505 +2.13 × 10−31

60 605 −3.39 × 10−31

70 705 −1.27 × 10−30

80 805 +6.04 × 10−31

Table 2.1. Difference between phase noise constants.

While showing a comparable accuracy in SVD computation for a given

problem, the divide-and-conquer based solver shows better speed performance

compared to the QR-iteration based one. Therefore, for this work the DGESDD
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Figure 2.10. SVD computation speed using different SVD solvers.

driver based on the divide-and-conquer algorithm was chosen for calculation of

the null space of the harmonic balance Jacobian matrix.
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3. SIMULATION RESULTS AND COMPARATIVE ANALYSIS

A set of test oscillator circuits were simulated to compare the frequency-

domain and time-domain phase noise analyses. The frequency-domain analysis

that was implemented during this work, is based on the harmonic balance method

available in our in-house version of the SPICE3 simulator [16], [17]. The time-

domain phase noise analysis is based on the time-domain PSS solution. The

original analysis was implemented to work with data obtained from a transient

analysis that was run for a sufficiently long time [11]. This analysis was modified

to work in conjunction with the shooting method, also available in our version of

SPICE3 [16].

This chapter presents results and comparisons of phase noise and PPV

simulation for three oscillator circuits using the time-domain and the frequency-

domain techniques. The simulated oscillators are a three-stage ring oscillator,

NMOS cross-coupled oscillator, and a Colpitts oscillator.

3.1. Phase Noise and PPV Calculations

Simple level-one models [18] and the more accurate and complex BSIM3

models [19] were used to model MOS transistors in the oscillator circuits. Sec-

tions 3.1.1, 3.1.2 and 3.1.3 present and explain in detail the phase noise and the

PPVs calculated using the level-one models. Phase noise and the PPVs obtained

using the BSIM3 models are presented in Section 3.1.4

3.1.1. Three-Stage Ring Oscillator

A three-stage ring oscillator circuit is shown in Figure 3.1. The transistor

sizes and capacitor values are identical for each of the three inverters in the ring

oscillator. The frequency of oscillation is 435.8MHz.
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Figure 3.1. Schematic of a three-stage ring oscillator.

There are 5 unknowns in the mathematical model of this circuit, and its

behavior is modeled by 5 equations, each corresponding to a certain physical law.

The circuit unknowns are the node voltages and the current through the power

supply voltage source V dd. This formulation is known as the modified nodal

analysis (MNA) [20]. Table 3.1 shows the physical laws with their equation units

and the circuit unknowns.

equation : unit unknown

KCL at node 1 : current v1

KCL at node 2 : current v2

KCL at node 3 : current v3

KCL at node 4 : current v4

BCE for V dd : voltage iV dd

Table 3.1. Equations and unknowns of the three-stage ring oscillator circuit.

For a PSS simulation with the time-domain Newton’s shooting method,

a fine time discretization of about 1000 time points per period was used. For
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the harmonic balance method, the signals were approximated by a truncated

Fourier series with 81 nonzero coefficients, i.e., a DC component and coefficients

of sines and cosines at 40 distinct frequencies that are multiples of the oscillation

frequency. Tight absolute and relative tolerances (εabs = 10−12 and εrel = 10−7)

were applied to the convergence criteria for Newton’s method.

Two families of PPV waveforms are shown in Figure 3.2. In this figure
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Figure 3.2. PPVs of the three-stage ring oscillator.

and in the following figures, results obtained based on the time-domain PSS and

frequency-domain harmonic balance are marked as TD PSS and FD HB, respec-

tively. The PPVs are in good agreement.

Each PPV provides information of an oscillator’s phase sensitivity to per-

turbation of certain signals in the circuit at any time along a period of the steady-

state. These signals can be determined from the circuit’s equations. The units

of the equations help to verify the nature of the signals. In our example of the

ring oscillator, four PPVs project a perturbation of current to phase deviation
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and one PPV projects a perturbation of voltage to phase deviation. For example,

the PPV that corresponds to the first circuit equation, i.e., KCL at node 1 (see

Table 3.1), depicts how sensitive the phase is to the injection of extra current into

node 1, or equivalently, to perturbation of any of M1 and M2 gate currents ig1,

ig2, M3 and M4 drain currents id3, igd4 and the capacitor current iC1. The 5th

PPV corresponds to the branch constitutive equation (BCE) for V dd and shows

the sensitivity of the phase to the changes in the power supply voltage, or to

perturbations of v4 or vground.

As expected, the PPVs in Figure 3.2 are periodic vectors. The PPVs of

KCLs at nodes 1, 2 and 3 are ±2π/3 phase shifted copies of each other, as there is

±2π/3 delay between the three inverters. Positive peaks of these PPVs occur when

inverters switch from high to low, and negative peaks occur when inverters switch

from low to high. This is an expected result as the phase of the circuit is more

sensitive to signal perturbations during transitions. The phase is not sensitive

to current injection into node 4 as voltage v4 is supplied by an ideal (with zero

resistance) voltage source V dd, and therefore, any extra current injected into node

4 is shorted to ground and does not affect the circuit. The PPV of the BCE for

V dd was scaled up by 10 times for a clear visual demonstration. It is a periodic

signal at 3fosc, where 3 is the number of stages. It is always negative implying

that a positive impulse in v4 always shifts the circuit waveforms backwards in time

relative to the waveforms of the unperturbed oscillator.

The phase noise spectrum SL(f) of the oscillator is shown in Figure 3.3.

The phase noise calculated using the time-domain and the frequency-domain tech-

niques are in good agreement. The transistor noise model includes both thermal

and flicker noise information. It can be seen from Figure 3.3 that at small offset

frequencies where flicker noise dominates, the slope of the phase noise spectrum
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Figure 3.3. Phase noise of the three-stage ring oscillator.

is -30dB/dec. At high offset frequencies the slope of the spectrum is -20dB/dec,

because white noise is dominant in that region.

3.1.2. NMOS Cross-Coupled Oscillator

The schematic of an NMOS cross-coupled oscillator is shown in Figure 3.4.

The circuit was analyzed in our version of SPICE3. The oscillation frequency is

2.37GHz.

The circuit operation is described by 9 physical laws in terms of 9 circuit

unknowns which are listed in Table 3.2.

The PPVs of the cross-coupled oscillator obtained using the harmonic bal-

ance information in the periodic steady state are in good agreement with the PPVs

calculated based on the time-domain PSS solution. The PPVs that project per-

turbations in 9 circuit equations to the phase of the oscillator circuit are presented

in Figure 3.5.
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Figure 3.4. Schematic of an NMOS cross-coupled oscillator.

equation : unit unknown

KCL at node 1 : current v1

KCL at node 2 : current v2

KCL at node 3 : current v3

KCL at node 4 : current v4

KCL at node 5 : current v5

KCL at node 6 : current v6

BCE for L1 : voltage iL1

BCE for L2 : voltage iL2

BCE for V dd : voltage iV dd

Table 3.2. Equations and unknowns of the NMOS cross-coupled oscillator circuit.
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Figure 3.5. PPVs of the NMOS cross-coupled oscillator.

There are three pairs of PPVs that look symmetric around the abscissa

axis, i.e., the PPVs of i3 and i4, i5 and i6, vL1 and vL2. In fact, they are 180◦

shifted replicas of each other. This observation is explained by the symmetric

topology and the differential operation of the circuit. Therefore, there is a 180◦

phase shift between the signals in the left and right half’s of the circuit. There is

a ±90◦ phase difference between the PPVs of currents into the capacitor terminal

and the PPVs of the voltages across the inductors, as the energy storing signals

of the capacitor and inductors themselves differ from each other by ±90◦.

There are two pairs of overlapping PPVs, like the PPV of current into

node 5 and the PPV of voltage across L1. Though, these PPVs are related to

signals of different nature, they are of the same amplitude. This is because any

positive perturbation +∆vL1 decreases both vR1 and iR1 by the same amount

−∆vR1 = −∆iR1, as R1 = 1Ω. The perturbation −∆iR1 in the left branch of the
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circuit causes +∆iR2 response in the right branch, which is equivalent to injection

of +∆i5 = +∆iR2 = +∆vL1 current into node 5. The same effect of perturbations

+∆i6 and ∆vL2 on phase can be explained in a similar way.

Those PPVs that do not have a pair, correspond to KCLs at common

nodes 1 and 2, and the BCE for V dd, can not be related to any half of the

circuit. These PPVs are either constants or periodic vectors at 2fosc like the PPV

corresponding to KCL at node 1. The phase of the circuit signals is not sensitive

either to injection of current into node 2, or to perturbation of voltage at node 2.

The first is true, because any extra current injected into node 2 is shorted to

ground through the ideal voltage source V dd. The second can be explained as

follows. The ideal current source does not fix the voltage at node 1. It is defined

by the rest of the circuit, so whenever there is a perturbation of v2, voltage v1

follows it to keep v2 − v1 constant. Therefore, a perturbation of v2 affects only

amplitudes of all the voltages in the circuit and it does not affect the phase. If the

ideal current source is replaced by a real source with a finite resistance, such as

an NMOS transistor tail current source, as in Figure 3.6, the PPV corresponding

to the perturbation of the voltage at node 2 will differ from zero, as shown in

Figure 3.7. This PPV can be used to estimate the sensitivity of the oscillator’s

phase noise to the power supply noise [21].

The phase noise spectrum SL(f) of the cross-coupled oscillator is shown in

Figure 3.8. The spectrum obtained using the frequency-domain harmonic balance

based analysis is in good agreement with the spectrum calculated using the time-

domain based technique. The phase noise of the circuit is affected both by flicker

and thermal noise sources. This can be seen from the phase noise spectrum plot

as it has slopes of -30dB/dec and -20dB/dec at low and high offset frequencies, re-

spectively. This NMOS cross-coupled oscillator has a lower 1/f 3 corner frequency
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Figure 3.6. An NMOS cross-coupled oscillator with a transistor tail current

source.
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Figure 3.7. PPV of the power supply noise in the NMOS cross-coupled oscillator

with transistor tail current source.

of about 10kHz compared to about 200kHz in our previous example (three-stage

ring oscillator).
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Figure 3.8. Phase noise of the NMOS cross-coupled oscillator.

3.1.3. Colpitts Oscillator

Figure 3.9 shows the schematic of a Colpitts oscillator and Table 3.3 shows

its 7 circuit equations and 7 circuit unknowns.

equation : unit unknown

KCL at node 1 : current v1

KCL at node 2 : current v2

KCL at node 3 : current v3

KCL at node 4 : current v4

BCE for L1 : voltage iL1

BCE for V bias : voltage iV bias

BCE for V dd : voltage iV dd

Table 3.3. Equations and unknowns of the Colpitts oscillator circuit.
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Figure 3.9. Schematic of a Colpitts oscillator.

The oscillator provides an output signal at a frequency of 61.6MHz. As we

can see from Figure 3.10, the PPVs are in good agreement.

The PPVs that are related to voltages in the BCEs for L1, V bias and

V dd are scaled up by 20 times. From the figure we can observe that the phase of

the oscillator is more sensitive to injection of extra current into node 1 than into

node 2. The PPV of the power supply voltage at node 3 and the PPV of voltage

across L1 are mirror images of each other, as a positive perturbation of voltage at

node 3 will cause the tank to charge, and a positive perturbation of the voltage

across L1 will cause the tank to discharge.

To understand the shape of the PPV of the gate voltage v4, let us look at

Figure 3.11, where the transistor drain current and the tank voltage waveforms

are shown. The PPV of v4 is close to zero only inside the time interval where the

drain current is low and around the point where the PPV crosses the abscissa axis.

In the first half of the period the sign of the PPV changes from negative to positive
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Figure 3.10. PPVs of the Colpitts oscillator.
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Figure 3.11. Voltage v1 and current id of the Colpitts oscillator.

as the tank voltage slope changes from negative to positive. The point where the

PPV crosses zero corresponds to the extremum point of the tank amplitude where

any perturbation of v4 will project only into amplitude noise. Note that at the

moment when the drain current peaks and the transistor 1/f noise is high, the

phase is not sensitive to current injections into nodes 1 and 2. This improves the

phase noise performance of the Colpitts oscillator [1] (see Figure 3.12).
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Figure 3.12. Phase noise of the Colpitts oscillator.

Indeed, for the given example, the phase noise at 1kHz offset frequency is

as low as -100dBc/Hz. Note that most of the transistor flicker noise was projected

into amplitude noise, and there are no other colored noise sources in the circuit.

The thermal noise of the 2kΩ resistor is the primary contributor to the oscillator’s

phase noise, which can be seen from the phase noise plot. The slope of the phase

noise spectrum is -20dB/dec at any offset frequency, indicating that thermal noise

is dominant at any offset frequency.

3.1.4. Calculations with BSIM3 Models

The BSIM3 model was used for calculation of the PPVs and the phase

noise of the oscillators from the previous sections. The PPVs and the phase noise

obtained using the BSIM3 model are presented in this section, and they generally

do not match the results obtained using level-one models. This is because these

models reflect the behavior of the transistors fabricated in a different process.
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Figure 3.13 shows the PPVs of the three-stage ring oscillator from Sec-

tion 3.1.1. Figure 3.14 shows the phase noise of the ring oscillator. The PPVs

0 1 2 3 4 5 6 7
−60

−50

−40

−30

−20

−10

0

10

20

30

PP
Vs

Time (ns)

TD PSS
FD HB

current into 2current into 3current into 1

20×voltage at 4

current into 4

Figure 3.13. PPVs of the three-stage ring oscillator with the BSIM3 MOSFET

model.
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Figure 3.14. Phase noise of the three-stage ring oscillator with the BSIM3 MOS-

FET model.

and the phase noise obtained using the time-domain and the frequency-domain

methods are in good agreement.
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Figure 3.15 shows the PPVs of the NMOS cross-coupled oscillator pre-

sented in Section 3.1.2. The phase noise of the oscillator is presented in Fig-

ure 3.16.
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Figure 3.15. PPVs of the NMOS cross-coupled oscillator with the BSIM3 MOS-

FET model.
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Figure 3.16. Phase noise of the NMOS cross-coupled oscillator with the BSIM3

MOSFET model.

The PPVs and the phase noise obtained using different techniques are in

good agreement.
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The PPVs and the phase noise of the Colpitts oscillator from Section 3.1.3

are shown in Figures 3.17 and 3.18, respectively. The results obtained using the
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Figure 3.17. PPVs of the Colpitts oscillator with the BSIM3 MOSFET model.
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Figure 3.18. Phase noise of the Colpitts oscillator with the BSIM3 MOSFET

model.

time-domain and the frequency-domain calculations are in good agreement.
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3.2. Comparative Analysis

As seen from Section 2.6, there are no error control parameters in the

phase noise analysis. The accuracy of the PPVs, noise matrices and phase noise

spectrum is completely determined by the properties and accuracy of the LPTV

system obtained from the underlying PSS analysis. This is true with either the

time-domain shooting method or the frequency-domain harmonic balance method.

Furthermore, the phase noise simulation of a particular circuit also depends on

the capabilities of the underlying PSS method to converge to the solution.

An extensive number of simulations were run to show how simulation pa-

rameters and problem size affect the phase noise calculation time and accuracy

using both the frequency-domain and time-domain techniques implemented in our

version of SPICE3. These simulations were run on a Sun Fire 280R workstation

with 1.2GHz UltraSPARC III Cu processor and 8Gb of main memory.

3.2.1. Simulation Time and Scalability

The computation time for the frequency-domain phase noise analysis de-

pends mostly on the size of the Jacobain matrix of the harmonic balance method

at the PSS solution. The size of the Jacobian matrix depends on both the number

of the circuit unknowns and the number of Fourier coefficients that represent the

solution. In case of the time-domain approach, the phase noise computation time

depends both on the size of the circuit matrix and the number of time points in

one period of the steady-state solution.

A slight modification of the three-stage ring oscillator circuit from Sec-

tion 3.1.1 was used for simulations. To increase the number of circuit unknowns,

additional nodes were introduced in the circuit as in Figure 3.19. Each additional

node (a, b, . . . ) adds a voltage (va, vb, . . . ) to the list of unknowns.
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Figure 3.19. Schematic of a ring oscillator with additional nodes.
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Figure 3.20. Harmonic balance based phase noise computation time surface.

Figure 3.20 shows the simulation time which forms a surface. This surface

is a function of the coordinates of a two-dimensional space spanned by the number

of circuit unknowns and the number of harmonics. The harmonic balance PSS

simulation time is not included. The major contributor to the harmonic balance

based phase noise computation time is the SVD calculation. Other operations,

such as evaluations of noise sources, analytical differentiation in the frequency
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domain, IFFT and computation of phase noise constants are insignificant, and

their contribution is about 1% of the total time. The SVD computation time

does not directly depend on the number of harmonics or on the number of circuit

unknowns. It depends only on the matrix size, its sparsity and conditioning.

Figure 3.21 shows the phase noise computation time as a function of the harmonic

balance Jacobian matrix size. Theoretically, the algorithm chosen for singular

200 400 600 800 1000 1200 1400
0

50

100

150

Size of HB Jacobian

Si
m

ul
at

io
n 

tim
e 

(s
)

O(n2.8)
O(n4.0)

Figure 3.21. Harmonic balance based phase noise computation time.

value decomposition (see Section 2.6) computes the SVD of a dense matrix in

O(n3) floating-point operations (flops) [15]. However, our time measurements

show that the total simulation time scales as O(n2.8) if the Jacobian size is less

than 900×900 and as O(n4.0) for larger matrices. This can be also seen form

Figure 3.22 where both the simulation time and the size of the harmonic balance

Jacobian are plot on a logarithmic scale. While working with large dense matrices,

the simulation time does not only depend on the number of flops, but it also

depends significantly on the computer memory organization. A larger amount
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Figure 3.22. Phase noise computation time in logarithmic scale.

of cache helps to extend the range of problem scalability, as less operations with

memory are needed. The Sun Fire 280R workstation has a 64Kb data cache on

chip and an 8Mb external level-2 cache.

One way to improve the efficiency of the frequency-domain phase noise

analysis is to use an SVD implementation optimized to work with large sparse

matrices.

In our current implementation of the phase noise calculation based on a

time-domain simulation [11], a single calculation of the monodromy matrix is the

most time consuming part of the algorithm, as it involves operations with dense

matrices. Figure 3.23 shows that the phase noise simulation time depends on the

number of circuit unknowns and also on the number of time points per period of

the PSS solution. The simulation time scales as O(n3) with an increase in the
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Figure 3.23. Time-domain based phase noise computation time surface.

number of time points, and it scales linearly with an increase in the number of

circuit unknowns. The O(n3) scaling is due to dense matrix multiplications.

To gain an insight in the time for phase noise simulations of a large prac-

tical oscillator circuit, consider a differential three-stage ring oscillator shown in

Figure 3.24. The oscillator consists of three Maneatis delay cells [22] shown in

Figure 3.25.

Figure 3.24. Block diagram of an oscillator with Maneatis delay cells.
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Figure 3.25. Schematic of the Maneatis delay cell.

method Nharm Ntpts time (s)

TD PSS 100 1.5

FD HB 15 6.8

TD PSS 500 7.7

TD PSS 1000 15.0

FD HB 20 15.9

TD PSS 2000 30.1

FD HB 35 125.9

Table 3.4. Phase noise calculation time for the Maneatis ring oscillator.

Table 3.4 shows the phase noise calculation time for a set of the time-

domain and the frequency-domain simulations, where Nharm is the number of

harmonics, Ntpts is the number of time points, and time is the phase noise com-
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putation time. The rows of the table correspond to either the time-domain or the

frequency domain simulations which are sorted in descending order of the phase

noise computation speed. The tolerances for the Newton method convergence

were fixed at εabs = 10−12 and εrel = 10−6.

Both the harmonic balance and shooting methods did not converge for

Nharm <15 and Ntpts <100. All of the simulations resulted in less than 0.05dBc/Hz

phase noise error. It is clear that for this circuit the time-domain shooting method

is more efficient. The PSS simulation time is not included in Table 3.4, but in

most cases the PSS of ring type oscillators is calculated more efficiently in the

time domain than in the frequency domain [16]. This fact makes the time-domain

simulation of the phase noise even more attractive.

One way to improve the performance of our time-domain implementation

of phase noise analysis is to avoid the calculation of the monodromy matrix.

If the time-domain phase noise analysis is based on Newton’s shooting method

that uses all circuit unknowns to compute the state transition matrix for the

Jacobian calculation, then there is no need for an explicit monodromy matrix

calculation. The monodromy matrix is the state transition matrix evaluated at

time T . Unfortunately, in the current implementation of the shooting method [16]

the time-domain Jacobian is not available in the desired form.

3.2.2. Accuracy

The accuracy of the PSS solution is crucial for an accurate phase noise

calculation. The effect of time discretization in the time-domain shooting method

and the effect of spectrum truncation in the harmonic balance method on the

accuracy of phase noise calculation was studied. As in Section 2.6, a phase noise

constant at 1kHz offset frequency was chosen to be a figure of merit for compar-

ing the accuracy. To minimize other numerical factors that may affect accuracy
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comparisons, the convergence criteria for all Newton loops used the same abso-

lute and relative tolerances: εabs = 10−12 and εrel = 10−6. An exception is the

outer Newton loop of the shooting method, which terminates when the following

condition holds |x(0) − x(T )| < 10−5.

Figure 3.26 shows the colored phase noise constant at 1kHz offset frequency
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Figure 3.26. Phase noise constant as a function of PSS parameters.

as a function of the number of time points in case of the time-domain simulations

and as a function of the number of frequencies in case of the frequency-domain

simulations. In case of the time-domain simulations, the noise constant monoton-

ically approaches its accurate value with a finer time discretization. In case of

the frequency-domain simulations, the noise constant exhibits oscillatory settling

to its accurate value. To understand this behavior, two more sets of calculations

were conducted using ‘hybrid’ methods. The first method applies the frequency-

domain phase noise calculation algorithm of Section 2.4.2 to the time-domain

PSS solution obtained using the shooting method. The second method uses the

frequency-domain harmonic balance to obtain the PSS and then the phase noise is
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calculated using the time-domain algorithm of Section 2.4.1. The noise constant

obtained using the four possible combinations, two original and two hybrid, are

shown in Figure 3.27.
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Figure 3.27. Phase noise constant obtained using original and hybrid methods.

From Figure 3.27 it is clear that the oscillatory convergence of the noise

constant is a property of the PSS solution obtained from the frequency-domain

harmonic balance method. A monotonic convergence of the noise constant is

observed for the PSS solution obtained from the time-domain shooting method.

Furthermore, given the same PSS solution, the noise constant is generally more

accurate if it is calculated using the frequency-domain algorithm. This is because

the derivative of the solution waveforms ẋs(t) used to scale the PPVs (see Sec-

tions 2.4.1 and 2.4.2) is calculated analytically in the frequency domain, and it is

more accurate than numerical differentiation in the time domain.

The oscillatory eigenvalue of the monodromy matrix and the minimal sin-

gular value of the Jacobian matrix can be used for estimating the accuracy of the

PSS analysis, and therefore, for estimating the accuracy of the phase noise calcu-
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lation. Table 3.5 shows the oscillatory eigenvalues λosc and the minimal singular

values σmin of two pairs of extreme cases from Figure 3.26, i.e., with 100 time

points and 10 harmonics for the two inaccurate cases, and with 800 time points

and 80 harmonics for the two accurate cases.

PSS model λosc σosc

ideal 1.0000 0.000000000

accurate 0.9998 0.000000365

inaccurate 0.9973 0.000103414

Table 3.5. Oscillatory eigenvalues and minimal singular values.

Figure 3.28 shows phase noise plots of the ring oscillator near the 1kHz

offset frequency that correspond to accurate and inaccurate PSS simulations. The
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Figure 3.28. Phase noise with accurate and inaccurate PSS simulation.

phase noise simulation of the ring oscillator in the frequency domain using only

10 frequencies deviates from the accurate solution by less than 0.1dB. This is also

true for a wide range of offset frequencies that are not shown in the figure.
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The phase noise analysis is very insensitive to the time discretization and

frequency truncation of the PSS solution of a well-conditioned problem, i.e., with

a distinguishable oscillatory eigen mode. The ring oscillator example is a well-

conditioned problem, as seen from Table 3.6. The oscillatory eigen mode of the

PSS model λoscillatory λdecaying σnull σrange

accurate 0.9998151 0.0064416, . . . 0.000000365 0.002158781, . . .

inaccurate 0.9858087 0.0065689, . . . 0.000103414 0.002160419, . . .

Table 3.6. Distinguishable oscillatory eigen mode and null space.

ring oscillator can be easily distinguished from the eigen mode with the slowest

decay rate even with an inaccurate time-domain PSS solution. The null space

of the harmonic balance Jacobian can also be easily distinguished from its range

space even with an inaccurate frequency-domain PSS solution. Some oscillators

have eigen modes that are numerically indistinguishable from the oscillatory eigen

mode [8]. In this case PSS analysis accuracy is of the highest priority during a

phase noise analysis. A wrong selection of the eigen mode/null space will result

in an incorrect phase noise calculation.
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4. CONCLUSIONS

In this work, a frequency-domain harmonic balance based phase noise anal-

ysis was implemented in our in-house circuit simulator SPICE3. The phase noise

analysis based on the time-domain response of an oscillator was modified to work

in conjunction with the shooting method. Simulation results of a set of oscillator

circuits were presented and described in detail. A comparative analysis of both the

time-domain and the frequency-domain phase noise analyses in terms of accuracy,

speed and scalability was conducted. Suggestions for improving the efficiency of

these analyses were provided.

The current implementation of the time-domain phase noise calculation is

more efficient than the frequency-domain implementation for comparable accura-

cies and practical problem sizes. The frequency-domain phase noise computation

speed can be improved by using an SVD solver optimized to work with large sparse

matrices. The time-domain phase noise analysis can be accelerated by computing

the monodromy matrix from the shooting method Jacobian matrix at the PSS

solution, instead of explicitly computing the monodromy matrix. The phase noise

analyses can be easily modified to work with robust implementations of the PSS

analysis, based on a homotopy transformation of the oscillator problem, available

in our version of SPICE3 [23], [24].

In future work, a circuit simulator capable of phase noise and PPV simu-

lation can be used for evaluating a cost function inside an automated phase noise

performance optimization loop for voltage-controlled oscillators (VCO). The lin-

earity and tuning range of a VCO can also be optimized. In this case a set of PSS

and phase noise simulations has to be run to evaluate the cost function. Therefore,

it is important to minimize the computation cost for phase noise calculations.
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