
1068 VOLUME 18J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

q 2001 American Meteorological Society

A Correction to the Baroclinic Pressure Gradient Term in the Princeton Ocean Model

ROBIN ROBERTSON,* LAURIE PADMAN,1 AND MURRAY D. LEVINE

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

(Manuscript received 26 May 2000, in final form 7 December 2000)

ABSTRACT

An error in the calculation of the baroclinic pressure gradient term in the Princeton Ocean Model (POM) was
identified while modeling the M2 tidal current near its critical latitude in the southern Weddell Sea. The error
arises from the present calculation of density, which involves the subtraction of a background density profile
from the density field calculated at each internal time step. The small displacement of sigma surface depths
relative to the surface, as surface elevation changes, causes a slight error in the calculation of the vertical and
horizontal gradients of potential density. The error is largest at the seabed over rapidly changing bathymetry
such as the continental slope. The baroclinic pressure gradient error is typically much smaller than the Coriolis
term in the momentum equations and, therefore, usually unimportant. Close to the critical latitude, however,
near-resonance between the error and Coriolis terms can cause an energetic and spatially complex spurious
inertial mode to develop. The error is significant when modeling tides near their critical latitudes, and will
contribute to the error in the baroclinic pressure gradient in other simulations. Two methods were suggested for
fixing this problem. The preferred method was tested by applying the new form of POM to the southern Weddell
Sea. The new results are consistent with both current meter data and predictions of linear internal wave theory.

1. Introduction

Various numerical errors arising from the baroclinic
pressure gradient term in sigma coordinate models have
been previously discussed (e.g., Kleim and Pietrzak
1999; Mellor et al. 1994, 1998). Kleim and Pietrzak
(1999) evaluate the baroclinic pressure gradient error in
sigma coordinate models, considering specifically the
Princeton Ocean Model (POM) (described in Blumberg
and Mellor 1987; Mellor 1998; Robertson 1999). For
cases where the ocean surface is treated as a rigid lid,
they state that ‘‘The pressure gradient error arises owing
to truncation error in the discretization’’ of the baro-
clinic pressure gradient equation. The standard version
of POM, however, uses a free surface boundary con-
dition, which leads to an additional source of error in
the baroclinic pressure gradient term. This error, which
is the topic of this paper, can produce a spatially com-
plex inertial oscillation and was identified while mod-
eling the vertical structure of M2 tidal currents in the
Weddell Sea (Robertson 1999). Baroclinic tides are gen-
erally understood to be generated through interactions

* Current affiliation: Alfred-Wegener-Institut, Bremerhaven, Ger-
many.

1 Current affiliation: Earth and Space Research, Seattle, Wash-
ington.

Corresponding author address: Dr. Robin Robertson, Alfred-Wegener-
Institut, Postfach 12 01 61, D-27515 Bremerhaven, Germany.
E-mail: rrobertson@ldeo.columbia.edu or rrobertson@awi-bremerhaven.de

of the barotropic tide and the continental slope. The
continental slope in this region is close to the M2 critical
latitude ccrit , which is the latitude (c) at which the tidal
frequency vtide equals the inertial frequency f . This new-
ly identified error is associated with the incorrect treat-
ment of time-varying surface elevation (h) in the cal-
culation of in situ density. The error term is orders of
magnitude smaller than the dominant term (Coriolis) in
the momentum equations. Close to ccrit , however, the
error can resonantly force an inertial oscillation that can
grow to exceed the original energy in the barotropic
tide.

First, the error and its source are described (section
2). Details of POM appear elsewhere (e.g., Mellor 1998)
and so are not repeated here. The topographic, hydro-
graphic, and boundary conditions used are fully de-
scribed in Robertson (1999) and Robertson (2001a,b).
The modifications that were made to POM to eliminate
the error are described in section 3, and comparisons of
model results before and after the modification are pre-
sented in section 4.

2. The problem

The research that led to identification of this error
was a study of the depth variability of M2 tidal currents
in the Weddell Sea (Robertson 1999), using a quasi-
two-dimensional ‘‘transect’’ version of POM in a man-
ner similar to that of Holloway (1996). The model was
applied to a transect across the continental shelf and
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FIG. 1. The water column thickness for the Weddell Sea, contoured
at 200, 500 (thick line), 1000 (dashed line), and 3000 m. The
Filchner–Ronne Ice Shelf area is indicated by hatching. The location
of the transect used for the model domain is shown as a dashed line.

FIG. 2. Cross-slope velocity profiles at a time near the peak onshore
flow over the continental slope from simulations using the original
version of POM without stratification both (a) with and (b) without
the critical latitude in the domain. The location of ccrit is indicated
in (a).

slope (Fig. 1), where ccrit(M2) (ø748289S) is located
near the shelf break. Wave dynamics are modified in
the vicinity of ccrit , since it is the poleward limit for
both internal (Kundu 1990) and Poincaré wave propa-
gation (Middleton and Denniss 1993). Near ccrit , inertial
oscillations can be induced by the tide, and the mo-
mentum boundary layer for the tidal constituent can
become thick and complex, even without stratification
effects (Foldvik et al. 1990; Furevik and Foldvik 1996).
Boundary effects are seen in both mooring data and
analytical models, that is, they are not simply numerical
model artifacts of the type reported herein.

As part of the diagnosis of suspected errors in the
baroclinic version of POM, the model was applied to a
homogeneous ocean (uniform potential temperature, u,
and salinity, S). The model was forced by specifying
the M2 barotropic tidal elevations at the northern and
southern ocean boundaries. In this configuration, an en-
ergetic depth-dependent oscillation developed over the
continental slope. Both the magnitude and phase of the
oscillation, which was initially interpreted as variation
at the M2 frequency, had a complex cross-slope structure
(Figs. 2a and 3a). [For Fig. 3a, the major axes of the
tidal ellipses were determined using Foreman’s routines
(Foreman 1978) applied only to the last 2 days of the
model run.] When POM was used with the same to-
pography and forcing but with ccrit to the south of the
domain, the cross-slope velocity field was nearly con-
stant with depth except, as expected, for the benthic
boundary layer (Fig. 2b).

Is this depth-dependent oscillation in the critical-lat-
itude case real? Velocity profiles with such a strong
benthic signal, greater than 10 cm s21 in 1000-m water
depth, at the M2 frequency have not been observed in
current meter measurements made in this region (Mid-
dleton and Foster 1977; Middleton et al. 1982; Foldvik
et al. 1990; Woodgate et al. 1998). These observations,

combined with the strong dependence of the amplitude
of the final velocity field on model run length, persuaded
us that the oscillation was somehow an artifact of the
numerical scheme.

What then, is the apparently numerical cause of these
oscillations? This problem was approached by exam-
ining the ‘‘baroclinic mode’’ momentum equation for
the cross-slope depth-dependent velocity, V, expressed
in sigma coordinates (x, y, s). Here, x and y are the
alongslope and cross-slope horizontal distances, re-
spectively, and s is the fractional vertical distance in
the water column from the seabed to the free surface
(21 # s # 0):

]VD ]UVD ]VVD ]VW9 ]h
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FIG. 3. The major axes of the tidal ellipses of the depth-dependent
velocities (cm s21) from simulations with the critical latitude in the
domain and a homogeneous ocean from (a) the original version of
POM and (b) the modified version of POM.

In (1), U is the alongslope depth-dependent velocity,
W9 is the vertical velocity, h is the surface elevation,
and t is time. Depth D 5 H 1 h is the water column
thickness, where H is the water depth for the system at
rest. The perturbation density r9 will be described more
fully later. Other variables are the Coriolis parameter f ,
gravitational acceleration g (9.8 m s22), horizontal vis-
cosity coefficient AM (m2 s21), and the vertical viscosity
coefficient KM (m2 s21). The momentum balance con-
sists of terms for [in order of their appearance in (1)]
acceleration, advection in the alongslope, cross-slope,
and vertical directions, Coriolis force, surface elevation
pressure gradient, baroclinic pressure gradient (BPG),
vertical diffusion, and horizontal diffusion, in that order.
Only the Coriolis force, BPG, and diffusion terms varied
with depth in the POM simulation for a homogeneous
ocean. The BPG in this case, however, should be zero,
indicating that the BPG is a probable source of error.

Time series (not shown) of the various terms in (1)
for the homogeneous case and for various (y, s) co-
ordinates, show that the BPG is at least 1–2 orders of
magnitude smaller than the Coriolis term but varies sig-
nificantly with y and s, being greatest at the seabed over

the continental slope. The effect of this error acceler-
ation term in the momentum equations would normally
be small since the term itself is small relative to other
terms (in this case, the Coriolis term). When the fre-
quency of the error BPG is close to f , however, near-
resonant forcing may cause the growth of a significant
inertial mode during a sufficiently long model run.

Plausible candidates for the specific feature of the
BPG calculation that produces the error include trun-
cation errors, C-grid errors, and a systematic numerical
error in the calculation of ]p/]y. Kleim and Pietrzak
(1999) reported truncation errors in POM, which result
from the differencing of two large nearly equal values
used in the present BPG calculation. Due to the use of
the sigma coordinate system, the BPG term in (1) is the
difference of two terms:

0 ]r9 s9 ]D ]r9
2BPG 5 gD 2 ds9. (2)E [ ]]y D ]y ]s9

s

In (2), r9 is the perturbation density defined by

r9(x, y, s, t) 5 r(x, y, s, t) 2 r (x, y, s). (3)MEAN

In (3), r is the in situ density and rMEAN is a horizontally
averaged, time-independent initial in situ density field.
To maximize numerical accuracy, r (and, thus, also
rMEAN), is normalized as

r 2 rP,u,S or 5 , (4)
1000

where is the dimensional in situ density written asr9P,u,S

the sum of a function of u and S plus a function of
pressure, that is,

r (x, y, s, t)P,u,S

25 r [u(x, y, s, t), S(x, y, s, t)] 1 r (p /c ). (5)u,S p

In (4), ro is a general mean density, which was set to
1025 (or 1000) in the original POM. In (5), c is the
sound speed in meters per second, ru,S is the potential
density, rp is given by

p p
4r 5 10 1 2 0.2 , (6)p 2 21 2c c

and the hydrostatic pressure is approximated by

24 24p(sD) 5 2r g10 Ds 5 2r g10 (H 1 h)s. (7)o o

In (6) and (7), the factors 104 and 1024 convert between
pressures in Pascals and in decibars. The sound speed
c is approximated by

2c 5 1449.1 1 0.00821p 1 4.55u 2 0.45u

1 1.34(S 2 35). (8)
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Note that the constant in (8), 1449.1, is as in the original
version of the POM code. This form of the equation
follows Mellor (1991); however, the constant in (8) in
Mellor (1991) is quoted as 1449.2, whereas it was
1449.1 in the original POM code, which was used. This
difference is not expected to contribute significantly to
this error. A full discussion of the errors in the equation
of state is given in Mellor (1991).

The focus of this paper is the error that arises in the
BPG because rMEAN does not include the time-varying
pressure due to h(t) that is included in the calculation
of p in (7). While this error is very small, it will be
shown to be significant under certain conditions that are
experienced in the real ocean. To demonstrate, consider
the case of an unstratified ocean where u and S are
constant everywhere. For simplicity, it was further as-
sumed that c2 is constant. Then it was expected that r9
5 0 everywhere. Indeed, the terms dependent on u and
S cancel, however,

r [p(sD)] 2 r [p(sH)]p p
r9 5 (9)

ro

since the depth at which the pressure is calculated is
slightly different in r and rMEAN by sh 5 s(D 2 H)
meters. Note that ro here represents the 1000 in (4).
Now, defining two constants, a 5 gc22 and b 5 2 3
1025rog2c24, r9 becomes

2 2 2r9 5 2ash 2 bs (D 2 H ). (10)

Defining the integrand in (2) to be BC, it became

]h ]D ]H
2BC 5 2as 2 2bs D 2 H1 2]y ]y ]y

s ]D
2 22 [ah 2 2bs (D 2 H )]. (11)

D ]y

Equation (11), after some arithmetic, reduces to

2as H ]h ]H
2BC 5 2 2bs H 2 h . (12)[ ][ ]D D ]y ]y

In (12), the second half of the first term is much smaller
than the first half, due to the c24 factor; furthermore, it
is expected that h]H/]y will exceed H]h/]y over the
continental slope, since the topographic scales of vari-
ability are generally smaller than the wavelength of the
barotropic tide. Thus, neglecting H]h/]y and the second
half of the first term, it was found that BC } hs]H/]y.
Since the error BPG (denoted BPGerror) is the downward
integral (from the sea surface) of BC, it is given to
leading order by

2BPG } hs ]H/]y.error (13)

As expected from the model simulations with the un-
corrected version of POM, (13) predicts that the stron-
gest error forcing is at the seabed over steep topography.
The value of BPGerror is proportional to h so that a rigid
lid upper boundary condition, as in the cases studied by
Kleim and Pietrzak (1999), removes this particular
source of error. The exact BPGerror in POM as determined
on the C grid is

0 (D 2 D )(h 1 h )2g(s 1 s ) j j11 j j11k k11BPG 5 (h 2 h ) 2error E j j112 [ ]2c Dy (D 1 D )j j11s

25 2 2 2 22 3 10 r g (2H h 1 h 2 2H h 2 h ) (s 1 s ) (D 2 D )o j j j j11 j11 j11 k k11 j j112 22 (s 2 s ) 2 ]s9, (14)k k114 [ ]2c Dy 2Dy(D 1 D )j j11

where j and k refer to the indices of the location being
determined on the C grid in the cross-slope and vertical
directions, respectively. Note that this term is of the
same form as (12), however, with additional factors re-
sulting from the use of a C grid.

Since the BPGerror arises from h, which in this problem
is primarily due to the barotropic tide that is forced by
the northern and southern boundary conditions, it fluc-
tuates at the tidal frequency. Near ccrit , BPGerror is nearly
resonant with f and can, therefore, induce inertial os-
cillations whose amplitudes increase as the model time-
stepping progresses. This occurs even though the mag-
nitude of BPGerror is much less than the Coriolis term.

Two factors act to ultimately stabilize the spurious
inertial oscillations forced by BPGerror. First, as veloc-
ities increase, the increased benthic friction and mo-

mentum diffusion slow further growth of the inertial
oscillations. The effect of friction was tested with a
comparison of two homogeneous model runs, one using
the values of KM generated by POM, and the other with
friction eliminated by removing the vertical diffusion
of momentum. Without friction, it was expected that the
magnitude Ue of the error inertial mode for fixed y would
scale approximately with BPGerror (13), that is, Ue } s2.
In the high-viscosity run (Fig. 2a), vertical profiles of
V over the slope are quite smooth, whereas, for the no
friction case (not shown), Ue is much higher near the
seabed, as expected from the quadratic dependence of
BPGerror on s in (13). For this case, the spatial structure
of Ue is qualitatively similar to that shown in the major
axes for the stratified case (Fig. 6a). The difference be-
tween it and the stratified case (Fig. 6a) is a reduced
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FIG. 4. The beat period (in days) between vtide and f as a function
of latitude.

FIG. 5. Cross-slope velocity profiles at a time near the peak onshore
flow over the continental slope, from simulations using the modified
version of POM with the critical latitude in the domain and (a) without
and (b) with stratification. The location of ccrit is indicated in (a). The
region where linear internal wave theory predicts internal tides with
this location of ccrit is indicated in (b).

signal in the upper water column, which was due to the
generation of a slight internal tidal signal in the stratified
case. The effects of stratification are twofold: it may
generate internal tides and it reduces the vertical vis-
cosity coefficient, correspondingly adjusting the benthic
boundary layer thickness.

Second, true resonance only exists precisely at ccrit ,
and even there, lateral diffusion of momentum due to
horizontal viscosity will slowly detune the error inertial
mode from the surface tidal forcing. Away from ccrit ,
the period during which BPGerror will amplify the energy
of the spurious inertial mode is some fraction of the
‘‘beat period’’ of the inertial mode and the tidal peri-
odicity of h(t). This beat period is simply tb 5 (vtide 2
| f | )21. Values of tb exceed 100 days for a band ;38
wide around ccrit (Fig. 4). However, tb decreases to ,10
days near c 5 668. Thus, at this latitude, during 5 days
the phase between the forced inertial mode and the tidal
forcing will shift by 1808, and the maximum amplifi-
cation of the inertial mode by BPGerror will be limited
to the growth of the mode during a fraction of this time
interval. A model run with a homogeneous ocean, and
the domain shifted 108N of ccrit so that the shelf break
was near 658S, supports this conclusion. In this case the
effect of BPGerror was negligible (Fig. 2b).

It is then seen how a complex structure can develop
in a velocity field, when the velocity time series are
analyzed for just the end of the model run. Although
spectral analysis indicates that the variability occurred
near the forced tidal frequency, it is unable to resolve
the inertial and tidal frequencies, which results in the
inertial oscillations being attributed to tidal motion.
Depth dependence arises from the quadratic dependence
of BPGerror on depth (13). Cross-slope variation arises
from changes in bottom slope ]H/]y, the reduced effi-
ciency of the resonance forcing as the meridional dis-
tance from ccrit increases, and because, at any given
time, the phase relationship between the true tidal cur-
rent and the forced inertial mode varies as a function
of c. Additional modifications to the basic expectations

based on (13) occur due to vertical and lateral viscosity,
and ignoring H]h/]y and the second term in (12). Since
most previous internal tide investigations, such as those
of Holloway (1996) on the Australian slope or Chen
and Beardsley (1998) over Georges Bank, have not been
located near ccrit for the tidal constituent being studied,
these studies have not encountered this resonant error
inertial response. This error also exists for cases with
stronger stratification; however, the error is masked by
the more intense internal tidal field, which develops with
the stronger stratification.

3. Model modifications

The error in the BPG calculation arises through the
incorrect handling of h in the calculation of perturbation
density r9 in (3). It was choosen to correct this error by
using r directly, without subtracting rMEAN. It is then
possible to simplify further to r 5 ru,S (i.e., the potential
density), since the contribution of rP[p(sD)/c2)] to BC
is identically zero—that is, the pressure effects are ex-
actly removed when the horizontal gradient of density
is calculated for the BPG, leaving only the contribution
from variations of u and S. For the pressure effects to
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exactly cancel, however, the pressure contributions of
rP must be determined at the location of the velocity
point using derivatives and not calculated using differ-
ences on the C grid.

The primary justification for the present approach,
subtracting rMEAN from r, is to reduce the dynamic range
of density in the calculations of the BPG and the buoy-
ancy frequency N. The results, shown in the following
section, indicate that the perturbation approach is not
necessary, at least with weak stratification when work-
ing in double precision. It should be noted that r9 in
(3) is already very close to being a normalized potential

density, since the removal of rMEAN also removes the
pressure contribution to in situ density r.

The cancellation of the pressure contribution can be
easily seen if the normalized in situ density, r, is split
into two portions—one from the potential temperature
and salinity, rN, and one from the pressure, rP:

r(x, y, s) 5 r [u(x, y, s), S(x, y, s)]N

1 r [s, D(x, y)]. (16)P

The BPG would then be determined from these two
portions:

0 ]r ]r s9 ]D ]r s9 ]D ]rN P N P2BPG 5 gD 1 2 2 ds9. (17)E [ ]]y ]y D ]y ]s9 D ]y ]s9
s

Furthermore, the pressure portion of density, rP, is de-
termined at the velocity point being calculated using the
pressure relation:

22 25 2 24 2 2r 5 2gc Ds 2 (2 3 10 )r g c D s . (18)P o

Taking the derivatives in the alongsigma and cross-sig-
ma directions, while treating c as a constant, yields

]r ]D ]DP 22 25 2 24 25 2gc s 2 (4 3 10 )r g c Ds (19)o]y ]y ]y

and

]rP 22 25 2 24 25 2gc D 2 (4 3 10 )r g c D s,o]s

respectively. (20)

Substituting these relations into BPG results in

0 ]r ]D ]D s9 ]D ]rN N2 22 25 2 24 2BPG 5 gD 2 gc s9 2 (4 3 10 )r g c Ds9 2E o[ ]y ]y ]y D ]y ]s9
s

s9 ]D
22 25 2 24 22 [2gc D 2 (4 3 10 )r g c D s9] ds9. (21)o ]D ]y

After canceling terms, this reduces to
0 ]r s9 ]D ]rN N2BPG 5 gD 2 ds9. (22)E [ ]]y D ]y ]s9

s

Since the gradients of the pressure portion cancel each
other, only the potential temperature and salinity portion
remains. It is easy to see that, with a homogeneous
ocean, the gradients of the potential temperature and
salinity portion would also be zero, as would BPG. The
dependence of c in the along sigma and cross-sigma
directions has been ignored in these derivatives. An er-
ror analysis has determined that it is negligible,
,10210% given realistic values for the maximum gra-
dients of u, S, p, and H.

A second possible method for eliminating BPGerror

would be to set h 5 0 in rP used in the calculation of

r, and then continue to use the perturbation density r9
(3) with rMEAN removed. If this is done, the pressure
adjustments for the density and background density ex-
actly cancel each other in (3) and the result is equivalent.
However, this second solution method unnecessarily in-
creases the number of computations performed and can
also increase the truncation error.

To implement the above modification in POM, the
pressure correction to density was removed in the den-
sity subroutine (DENS) as was the pressure correction
to the Brunt–Väisälä frequency in the subroutine which
determines the vertical viscosity (PROFQ). Addition-
ally, since stratification is weak in the region of interest
and the majority of the change in the background density
is due to pressure, the normalized density, r, instead of
the perturbation density, r9, was used for determining
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FIG. 6. The major axes of the tidal ellipses of the depth-dependent
velocities (cm s21) from simulations with the critical latitude in the
domain and a stratified ocean from (a) the original version of POM
and (b) the modified version of POM.

the BPG term in the baroclinic pressure gradient sub-
routine (BAROPG); in other words, rMEAN was not re-
moved from r before the calculation.

Other modifications were made to POM to increase
the accuracy of the density calculation. These modifi-
cations include using double precision for all variables,
using a mean density (ro) based on the potential tem-
perature and salinity biases at the ocean surface, nor-
malizing the density by ro instead of 1000, and using
1449.2 instead of 1449.1 in the calculation of the speed
of sound in the density pressure corrections. These mod-
ifications effectively change the set of density calcu-
lations from (4)–(8) to

ru,Sr 5 2 1. r 5 r (u , S ).o u,S Bias Biasro

2c 5 1449.2 1 0.00821p 1 4.55u 2 0.45u

1 1.34(S 2 35). (23)

These corrections are, however, minor compared with
removing the h-dependent error in the BPG calculation
(i.e., removing the pressure contribution to the density).

For these studies of tides in the southern Weddell Sea,

POM was also modified to accommodate the existence
of an ice shelf. This is unnecessary for most other lo-
cations. A term was added for friction at the ice shelf
base as a surface stress for the ice shelf portion of the
domain. In addition, the pressure head of the ice shelf
was accounted for in pressure calculations at depth, with
s scaled by the water column thickness (depth from
seabed to ice base) instead of the bottom depth. The ice
shelf was assumed to float freely.

4. Test of model amendments

Having made the previously described modifications
to POM, the Weddell Sea cases were re-run, for both a
homogeneous and a realistically stratified ocean. In the
homogeneous case (Fig. 5a), the velocity field now ap-
pears well behaved over the slope when compared with
the uncorrected model run (Fig. 2a). Note that Fig. 2a
shows the effect of diffusion of momentum upwards
from the bottom-intensified oscillation due to BPGerror.
In a stratified case with the uncorrected POM code, the
vertical variation of V is more intensified towards the
seabed (see Fig. 6a) because the model-generated ver-
tical viscosity KM is very much smaller than in the ho-
mogeneous case. In a stratified case, depth-dependent
velocity structure in the corrected model run (Fig. 5b)
is constrained to the region where linear wave theory
predicts internal tide generation, over the upper slope.
The large benthic oscillation that was evident in the M2

tidal ellipse major axes with the uncorrected model (Fig.
6a) was not present when POM was modified (Fig. 6b).
Internal tides also existed in the unmodified version of
POM with stratification, but were obscured by the signal
due to BPGerror (Fig. 6a). Some tidal observations have
been made in this region and are fully described in
Robertson et al. (1998) and Robertson (1999). The ma-
jor axes of the tidal ellipses predicted by the modified
version of POM agree within the approximate mea-
surement uncertainty (2 cm s21) for 15 of the 19 ob-
servations (Table 1). This agreement is encouraging,
especially since many of the observations are not exactly
along the transect and often have different water depths
than at their location mapped onto the transect line. A
more complete discussion of the observational data is
given in another study (Robertson 2001a,b).

It was concluded that these modifications to the cal-
culation of density in POM eliminated a small but some-
times significant error in the baroclinic pressure gradient
term. Removing this error was found to be crucial to
obtaining a satisfactory model solution for baroclinic
tide generation in the vicinity of the tidal constituent’s
critical latitude. It was not investigated whether this
error is primarily a problem only when forcing is purely
sinusoidal at a single frequency near f ; it is possible
that additional energy sources prevent the resonant
growth of the inertial mode. However, no known prob-
lems were introduced to POM by these proposed so-
lutions, and it is therefore recommended that the so-



JUNE 2001 1075R O B E R T S O N E T A L .

TABLE 1. Comparison between POM and Robertson, Padman, and Edbert (1998) predictions and the observations for the major axis of
the tidal ellipses (cm s21) at the observation locations. The location and water depth are given for each of the observations along with the
principal author and year of the reference. The differences are shown in parentheses. A dash indicates a difference less than the observational
uncertainty.

Location Reference
On or off
transect

Water depth (m)

Observa-
tion Model Instrument

M2 major axis for
tidal velocity ellipse

Observa-
tion POM

75819S, 318469W Woodgate et al. (1998) Off 610 362
(601)b

257
378
484
590

5.7
6.3
6.4
5.3

5.3 (2)c

7.3 (2)
6.2 (2)
2.5 (23)

75829S, 338339W Woodgate et al. (1998) Off 574 365
(582)b

191
342
448
554

7.1
6.3
5.5
3.3

7.0 (2)
7.2 (2)
5.2 (2)
0.9 (22)

748409S, 338569W Middleton et al. (1982)a Off 475 379 375
450

6.8
4.5

7.2 (2)
3.6 (2)

748269S, 398249W Middleton et al. (1982)a On 475 483 375
450

6.8
3.4

7.6 (2)
2.5 (2)

748249S, 39869W Middleton et al. (1982)a On 465 507 400
450

5.0
2.6

7.4 (12)
1.2 (2)

748239S, 378399W Foldvik et al. (1990) Off 475 518 450 2.2 1.3 (2)
74889S, 398199W Foldvik et al. (1990) On 650 828 627 3.0 0.3 (23)
74869S, 398229W Middleton et al. (1982)a On 720 868 620 2.9 2.2 (2)
738439S, 388369W Middleton et al. (1982)a On 1915 1906 1815

1890
1.3
0.9

1.7 (2)
1.5 (2)

a Foldvik et al. (1990) is a more useful reference for these observations.
b Depth for the altered position.
c Differences shown in parentheses with dash for difference indicating the value agreed within the uncertainty range.

lutions be implemented even when the model is applied
to regions well removed from critical latitude effects.
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