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Abstract  

 We explore the possibility of estimating sparse inverse covariance matrices when for scientific 

reasons the covariance matrix is restricted to be a non-negative matrix.  The process mirrors the 

graphical lasso process developed by Friedman and others (2008) that did not have this additional 

constraint.  Accordingly, the Lasso procedure is done through coordinate descent.  To easily add the 

constraint, we modified the LARS function created by Efron and others (2004) to perform positive Lasso 

(pLasso) estimation.  The process is demonstrated on several time series generated datasets to clearly 

show the effectiveness and limitations. 

 

Introduction 

 Recent work into mapping gene regulatory networks has led to the use of Fortuin–Kasteleyn–

Ginibre (FKG) inequalities to identify unexpected correlations.  These correlations can be unexpected for 

various scientific reasons.  However, advancing technology combined with practical/financial constraints 

gives rise to systems with 𝑛 (~40) ≪ 𝑝 (~10,000).  For example, 𝑛 could be the number of gene 

expression samples, and 𝑝 could be the number of genes for which gene expression is measured.  

Additionally, most of these genes will be conditionally uncorrelated.   The graphical Lasso algorithm 

developed by Friedman and others (2008) was made to deal with this estimation of sparse inverse 

covariance matrices.  However, the desire to eliminate the unexpected correlations from networks 

results in a simple constraint on this estimation problem.  We develop a similar and easy to implement 

algorithm, utilizing previous work, for performing estimation under these conditions. 

 

Estimation of 𝚺−𝟏 

Let Θ = Σ−1 and 𝑆 be the sample covariance matrix.  The penalized log-likelihood is then 

 ln|𝛩| − tr(𝑆Θ) − 𝜌‖Θ‖1 (1) 
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where ‖Θ‖1 = ∑ |Θ𝑖𝑗|𝑖,𝑗 .  We wish to find the positive semi-definite matrix Θ that maximizes this 

function.  Banerjee and others (2007) showed that this is convex and instead outlined a method for 

estimating Σ.  It is shown that the problem can be solved in block coordinate descent fashion.  If 𝑊 =

Θ−1 is the estimate of Σ, then we can partition 𝑊 and 𝑆. 

 
𝑊 = (

𝑊11 𝑤12

𝑤12
𝑇 𝑤22

)  ,          𝑆 = (
𝑆11 𝑠12

𝑠12
𝑇 𝑠22

) (2) 

Then the solution for each row and column is  

 𝑤12 = argmin𝑦{𝑦𝑇𝑊11
−1𝑦 ∶ ‖𝑦 − 𝑠12‖∞ ≤ 𝜌} . (3) 

By convex duality, this is equivalent to solving 

 
min

β
{
1

2
‖𝑊11

1 2⁄
𝛽 − 𝑏‖

2
+ 𝜌‖𝛽‖1} (4) 

with 𝑏 = 𝑊11
−1/2

𝑠12.  Then, 𝑤12 = 𝑊11𝛽 is the solution to equation (3), where 𝛽 is the solution to 

equation (4). 

 

Equivalence Verification 

 To maximize the log-likelihood, we take a matrix derivative with respect to Θ and set equal to 

zero.  We get 

 𝑊 − 𝑆 − 𝜌Γ = 0 , (5) 

with Γij = 𝑠𝑖𝑔𝑛(Θ𝑖𝑗) if Θ𝑖𝑗 ≠ 0 and Γ𝑖𝑗 ∈ [−1, 1] if Θ𝑖𝑗 = 0.  The upper right component of this equation 

gives 

 𝑤12 − 𝑠12 − 𝜌𝛾12 = 0 . (6) 

To perform the minimization in equation (4), first note that 

 1

2
‖𝑊11

1 2⁄
𝛽 − 𝑏‖

2
+ 𝜌‖𝛽‖1 =

1

2
𝛽𝑇𝑊11𝛽 − βT𝑊11

1

2 𝑏 +
1

2
𝑏𝑇𝑏 + 𝜌 ∑ |𝛽𝑖|𝑖   (7) 

Therefore, taking the derivative of equation (7) with respect to 𝛽 and setting equal to zero gives 

 𝑊11𝛽 − 𝑠12 + 𝜌𝜈 = 0 , (8) 

with 𝜈 = 𝑠𝑖𝑔𝑛(𝛽).  Since 𝑊Θ = 𝐼, we know that 𝑊11𝜃12 + 𝑤12𝜃22 = 0, and thus 𝜃12 = −𝜃22𝑊11
−1𝑤12.  

Then, 𝛾12 = 𝑠𝑖𝑔𝑛(𝜃12) = −𝑠𝑖𝑔𝑛(𝜃22𝑊11
−1𝑤12) = −𝑠𝑖𝑔𝑛(𝑊11

−1𝑤12) = −𝑠𝑖𝑔𝑛(𝛽) = −𝜈, since 𝜃22 > 0.  

Also, we know 𝑤12 = 𝑊11𝛽, thus equations (6) and (8) are equivalent. 

 

Algorithm 

From equation (5) it can be seen that 𝑤𝑖𝑖 = 𝑠𝑖𝑖 + 𝜌 since 𝜃𝑖𝑖 > 0 ∀ 𝑖.  Equation (4) is effectively 

Lasso regression with 𝑋 = 𝑊11
1/2

 and 𝑦 = 𝑏 = 𝑊11
−1/2

𝑠12.  Starting with 𝑊 = 𝑆 + 𝜌𝐼, recursively solve 
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for and replace each row/column of 𝑊, 𝑤12, by inputting the rest of 𝑊, 𝑊11, and the corresponding 

row/column of 𝑆, 𝑠12, through Lasso regression until convergence. 

 

FKG Inequality and MTP2 

There are many biological contexts, particularly in genetics, where certain types of correlation 

cannot be physically possible.  In these situations, if the data suggests a physically inconsistent 

correlation, we know it is due to noise.  These occurrences are referred to as unexpected correlations.  

Mathematically, these are any correlations that do not satisfy the Fortuin–Kasteleyn–Ginibre (FKG) 

inequalities.  Fortuin and others (1971) state that if the FKG condition, 𝜇(𝑥 ∧ 𝑦)𝜇(𝑥 ∨ 𝑦) ≥ 𝜇(𝑥)𝜇(𝑦), is 

met for some non-negative function 𝜇 and 𝑥, 𝑦 in a finite distributive lattice 𝑋, then if 𝑓 and 𝑔 are 

monotonically increasing functions the FKG inequality states 

 [∑ 𝑓(𝑥)𝑔(𝑥)𝜇(𝑥)𝑥∈𝑋 ][∑ 𝜇(𝑥)𝑥∈𝑋 ] ≥ [∑ 𝑓(𝑥)𝜇(𝑥)𝑥∈𝑋 ][∑ 𝑔(𝑥)𝜇(𝑥)𝑥∈𝑋 ]. (9) 

If 𝜇(𝑥) is a probability measure, this simply becomes 

 Cov(𝑓(𝑥), 𝑔(𝑥)) ≥ 0. (10) 

Rinott and Scarsini (2006) state that a distribution whose probability measure fulfills the FKG 

condition is equivalently Multivariate Totally Positive of order 2 (MTP2).  This is important because Karlin 

and Rinott (1980) showed that when a density is MTP2, then all off-diagonal elements of Θ = Σ−1 are 

non-positive.  This then implies that all elements of 𝑊 are non-negative. 

 

Estimation of positive 𝚺 

The construction of the previous algorithm does not break down with the additional condition 

that 𝑤12 ≥ 0, since convexity remains.  The only change that must be made is that the solution to the 

Lasso regression must be non-negative, 𝛽 ≥ 0.  Augmentation of the Lasso algorithm into a Positive 

Lasso (pLasso) regression is not simple.  However, both Lasso and pLasso are specific examples of Least 

Angle Regression (LAR).  Efron and others (2004) describe the method by which LAR is used to calculate 

Lasso estimates and list the few changes necessary to instead calculate pLasso estimates. 

 

New Algorithm 

The LAR function in R was edited so that the Lasso option instead calculated pLasso estimates.  

The previous algorithm was then followed with a pLasso solution instead of a Lasso solution for 𝛽.  To 

remove bias in particular locations in Σ that may arise from the order in which rows/columns are 

updated, the order is randomly selected.  This new algorithm is named pLarso. 
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Example 1 

𝑛 = 1000,        𝑝 = 10,        𝑦𝑡 = 0.6𝑦𝑡−1 + 𝜖𝑡 ,        𝜖𝑡 ∼ 𝑁 (0,
1

4
) 

Σ1−2,1−2
−1 =

1

1−𝜌2 (
1 −𝜌

−𝜌 1 + 𝜌2) = (
1.5625 −0.9375

−0.9375 2.1250
)  

The above AR(1) time series was simulated using arima.sim, where 𝑛 is the number of times 

series simulated and 𝑝 is the length of each time series.  Estimates of Σ−1 are found in Tables 1-3 in the 

Appendix.  While gLasso results in some sparsity, the pLarso algorithm results in the sparsest estimate.  

The LAR algorithm results in no sparsity, but slightly better (less biased) estimates on the tri-diagonal. 

 

Example 2 

𝑛 = 10,        𝑝 = 20,        𝑦𝑡 = 0.6𝑦𝑡−1 + 𝜖𝑡,        𝜖𝑡 ∼ 𝑁 (0,
1

4
) 

Σ1−2,1−2
−1 =

1

1 − 𝜌2
(

1 −𝜌

−𝜌 1 + 𝜌2) = (
1.5625 −0.9375

−0.9375 2.1250
) 

 The same series is simulated in Example 2, but longer and with fewer replications.  In this case 𝑆 

is not full rank and thus not invertible.  Left half of estimates of Σ−1 are found in Tables 4-6 in the 

Appendix.  In terms of sparsity, the results roughly match Example 1.  However, actual estimates are 

now all inflated.  Of course, for model selection (or network mapping) this is not a concern. 

 

Example 3 

𝑛 = 1000,         𝑝 = 10,        𝑦𝑡 = 0.6𝑦𝑡−1 − 0.2𝑦𝑡−2 + 𝜖𝑡 ,        𝜖𝑡 ∼ 𝑁 (0,
1

4
) 

Σ1−3,1−3
−1 = (

1.3889 −0.8333 0.2778
−0.8333 1.8889 −1.0000
0.2778 −1.0000 1.9444

) 

 An AR(2) time series was chosen for Example 3 to specifically have positive off-diagonal 

elements in Σ−1.  Estimates of Σ−1 are found in Tables 7-9 in the Appendix.  Relative sparsity among the 

methods is similar to Example 1.  However, the elements that should be equal to 0.2778 have been 

suppressed to zero by the pLarso algorithm. 
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1.5056 -0.8674 0 -0.0238 -0.0194 0 -0.0010 0 0 0

-0.8674 2.0031 -0.8454 -0.0349 0 0 0 0 0 0

0 -0.8454 1.9612 -0.8272 0 0 0 0 0 0

-0.0238 -0.0349 -0.8272 1.9850 -0.8460 -0.0091 -0.0115 -0.0215 0 0

-0.0194 0 0 -0.8460 2.0249 -0.9069 0 0 0 0

0 0 0 -0.0091 -0.9069 1.9947 -0.8134 0 0 0

-0.0010 0 0 -0.0115 0 -0.8134 1.9847 -0.8990 0 0

0 0 0 -0.0215 0 0 -0.8990 2.0698 -0.9138 0

0 0 0 0 0 0 0 -0.9138 2.0441 -0.8744

0 0 0 0 0 0 0 0 -0.8744 1.4999

Table 1: Inverse of output (estimate of Σ) of pLarso algorithm from Example 1

1.4809 -0.8397 0 -0.0091 -0.0382 0 -0.0097 0 -0.0024 0.0173

-0.8397 1.9551 -0.8148 -0.0663 0.0412 0 0 0.0313 0 -0.0081

0 -0.8148 1.9154 -0.8007 0 0 0 0.003 0 0.0642

-0.0091 -0.0663 -0.8007 1.9527 -0.8263 -0.0116 -0.0072 -0.0508 0 0.0021

-0.0383 0.0412 0 -0.8263 1.972 -0.8746 0 0 0 0.0117

0 0 0 -0.0115 -0.8746 1.9486 -0.8006 -0.0049 0.02 0.0398

-0.0095 0 0 -0.0072 0 -0.8006 1.9493 -0.8617 -0.0321 0

0 0.0313 0.003 -0.0508 0 -0.0049 -0.8617 2.0168 -0.8829 0

-0.0024 0 0 0 0 0.02 -0.0321 -0.8829 2.0062 -0.8572

0.0173 -0.0081 0.0642 0.0021 0.0117 0.0398 0 0 -0.8572 1.4828

Table 2: Inverse of output (estimate of Σ) of gLasso algorithm from Example 1

Appendix 
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1.5122 -0.8854 0.0246 0.0007 -0.0766 0.0246 -0.0218 -0.0191 -0.0205 0.0596

-0.8854 2.0262 -0.8603 -0.0885 0.1069 -0.0544 0.0249 0.0691 -0.0143 -0.0533

0.0246 -0.8603 1.9704 -0.8416 0.0031 0.0340 -0.0358 0.0310 -0.0043 0.0841

0.0007 -0.0885 -0.8416 2.0316 -0.8790 0.0030 -0.0136 -0.0975 0.0309 0.0020

-0.0766 0.1069 0.0031 -0.8790 2.0346 -0.9404 0.0506 0.0249 -0.0373 0.0203

0.0246 -0.0544 0.0340 0.0030 -0.9404 2.0305 -0.8569 -0.0326 0.0745 0.0378

-0.0218 0.0249 -0.0358 -0.0136 0.0506 -0.8569 2.0056 -0.8820 -0.0480 -0.0107

-0.0191 0.0691 0.0310 -0.0975 0.0249 -0.0326 -0.8820 2.0810 -0.9454 0.0413

-0.0205 -0.0143 -0.0043 0.0309 -0.0373 0.0745 -0.0480 -0.9454 2.0916 -0.9110

0.0596 -0.0533 0.0841 0.0020 0.0203 0.0378 -0.0107 0.0413 -0.9110 1.5145

Table 3: Inverse of output (estimate of Σ) of LAR(Lasso) algorithm from Example 1

3.1462 -1.6959 0 -0.9301 0 0 0 0 0 0

-1.6959 4.3236 -2.3663 0 0 0 0 0 0 0

0 -2.3663 5.6203 -3.0561 0 0 0 0 0 -0.0024

-0.9301 0 -3.0561 7.9218 -3.7612 0 -0.1505 0 0 -0.2735

0 0 0 -3.7612 12.3947 -5.0724 -3.6257 -0.1499 0 0

0 0 0 0 -5.0724 7.9446 -1.9011 -0.6035 0 0

0 0 0 -0.1505 -3.6257 -1.9011 6.1417 0 0 0

0 0 0 0 -0.1499 -0.6035 0 3.4113 -1.1010 -1.5233

0 0 0 0 0 0 0 -1.1010 3.1324 -0.0589

0 0 -0.0024 -0.2735 0 0 0 -1.5233 -0.0589 3.4171

0 0 0 0 0 0 0 0 -1.7624 0

0 0 0 0 0 0 0 -0.0602 0 0

0 0 0 0 0 0 0 0 0 -1.3757

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-0.2797 0 0 0 0 0 -0.1543 0 0 0

-0.0206 0 0 0 0 0 0 -0.0615 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -0.4159 0 0 0 -0.2128

Table 4: Inverse of output (estimate of Σ) of pLarso algorithm from Example 2
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12.4188 -2.2936 0 -4.3120 -1.3956 0.3457 0 0 -2.3488 0 -0.4647

-2.2901 21.3005 -9.7546 -4.2540 0 1.1153 0 0 0 -2.6434 0

0 -9.7495 17.1178 -5.4848 0 -2.8118 0.8760 -0.1900 0 -0.0736 0

-4.3185 -4.2598 -5.4758 25.9561 -9.4632 0 -5.2095 0 -1.5316 -2.3697 0

-1.3950 0 0 -9.4680 27.3717 -7.4723 -8.2166 -0.6053 -1.3006 0 0

0.3475 1.1152 -2.8112 0 -7.4735 14.8091 -4.0524 -3.9312 1.7541 1.9021 0

0 0 0.8761 -5.2063 -8.2156 -4.0508 21.0457 -1.0232 -2.2429 -0.5392 5.4366

0 0 -0.1879 0 -0.5995 -3.9325 -1.0232 14.8466 -2.6279 -5.8466 0

-2.3540 0 0 -1.5377 -1.3021 1.7544 -2.2417 -2.6212 15.3517 -4.0624 -10.7217

0 -2.6317 -0.0701 -2.3598 0 1.8989 -0.5435 -5.8612 -4.0648 16.5843 2.2512

-0.4608 0 0 0 0 0 5.4356 0 -10.7223 2.2511 15.4004

5.0436 0 0 2.4875 0 -0.5356 0.1337 -8.6657 0 0 -1.4524

-4.6434 0.6056 0.0274 0 0 1.5573 3.3219 -0.0342 3.0835 -6.4215 0.2777

-0.0822 7.0133 4.1396 -0.5415 -2.1777 0 -3.8107 1.3228 -4.0411 0 -1.4936

4.6626 0 -2.9576 0 2.8172 -3.2526 0 0 0 -0.8269 0

-3.9862 -1.4158 -1.1618 0 2.3633 -1.4629 0 1.3935 2.8937 1.4392 0

-1.4356 0.5976 1.8082 2.7794 0 -2.2560 -2.3517 -5.1910 0.4580 4.2709 2.7320

0 0 -0.3258 0.9714 2.2396 1.6001 0 -1.9013 -0.7353 -3.8471 0

-1.1481 4.5271 -5.9532 0 -0.6741 -1.8757 4.8312 0 0.7229 1.9416 -4.3819

2.2297 3.5357 0 -0.1363 -4.2406 -0.7215 -0.5071 2.4460 1.6405 -4.8341 3.3250

Table 5: Inverse of output (estimate of Σ) of gLasso algorithm from Example 2

48.1578 -7.7932 -5.0459 -15.1693 -11.0201 0.9645 0.7606 4.0984 -4.1538 1.4590

-7.7932 67.2252 -26.6232 -13.8947 1.9417 2.8044 -1.3338 -2.3469 -1.7653 -9.9177

-5.0459 -26.6232 58.9937 -14.8519 -3.2736 -13.8538 5.3595 -2.2720 2.6667 -3.0253

-15.1693 -13.8947 -14.8519 78.2234 -17.0745 -8.8387 -15.2151 2.0243 -10.0855 -9.4562

-11.0201 1.9417 -3.2736 -17.0745 74.8705 -20.3087 -20.4840 -5.1971 -5.4564 -1.9678

0.9645 2.8044 -13.8538 -8.8387 -20.3087 59.7051 -16.2666 -16.3593 7.1587 12.8059

0.7606 -1.3338 5.3595 -15.2151 -20.4840 -16.2666 67.1612 -6.5885 -7.2983 -6.6760

4.0984 -2.3469 -2.2720 2.0243 -5.1971 -16.3593 -6.5885 54.9394 -9.2780 -14.5028

-4.1538 -1.7653 2.6667 -10.0855 -5.4564 7.1587 -7.2983 -9.2780 51.3849 -13.4897

1.4590 -9.9177 -3.0253 -9.4562 -1.9678 12.8059 -6.6760 -14.5028 -13.4897 57.0630

-8.0142 3.8772 -5.0645 0.7572 3.4042 3.1238 16.2758 -2.7773 -33.2528 7.8932

18.7914 3.0152 -0.2792 9.7340 2.4974 -10.9708 6.1105 -30.5868 1.4801 -5.8783

-25.3290 4.3730 5.2105 1.5217 1.5109 9.8152 13.4171 -10.3438 12.1243 -23.2735

-3.9013 24.4030 22.2877 -0.7869 -8.5631 -5.3765 -11.8773 5.0786 -15.9954 -0.3308

19.0854 -0.8155 -11.2107 1.5385 7.3093 -10.3446 -0.0212 0.3292 -0.0470 -4.7142

-12.7529 -4.3020 -8.3663 -1.0655 6.3405 -10.1591 1.7865 8.5694 12.4548 9.5291

-11.8628 9.3376 10.3273 8.6901 -2.2537 -13.5452 -5.9670 -19.8709 8.3076 12.8394

2.1157 -2.5330 -3.3761 5.6058 13.5272 7.8011 0.9834 -9.1342 -8.8499 -16.8759

-4.0501 12.5220 -17.1694 2.6200 -4.0855 -12.8830 19.9055 1.0409 2.6759 8.6921

12.0444 13.4060 -2.1185 -5.8498 -12.2300 -4.3127 -5.0086 11.2673 9.2006 -16.6991

Table 6: Inverse of output (estimate of Σ) of LAR(Lasso) algorithm from Example 2
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1.3069 -0.6289 0 0 0 0 0 0 0 -0.1058

-0.6289 1.6542 -0.6954 0 0 0 0 0 0 0

0 -0.6954 1.7141 -0.7035 0 0 0 0 0 0

0 0 -0.7035 1.6551 -0.6216 0 0 0 0 0

0 0 0 -0.6216 1.6447 -0.6907 0 0 0 0

0 0 0 0 -0.6907 1.6807 -0.6671 0 0 0

0 0 0 0 0 -0.6671 1.5809 -0.5633 0 0

0 0 0 0 0 0 -0.5633 1.5764 -0.6615 0

0 0 0 0 0 0 0 -0.6615 1.6329 -0.6367

-0.1058 0 0 0 0 0 0 0 -0.6367 1.3130

Table 7: Inverse of output (estimate of Σ) of pLarso algorithm from Example 3

1.3273 -0.7062 0.1331 0.0902 0.0217 0.0300 -0.0160 0 0 -0.1052

-0.7062 1.7510 -0.8903 0.1947 -0.0225 0 -0.0189 -0.0069 0 0.0181

0.1331 -0.8903 1.8632 -0.9085 0.1769 0 0.0323 -0.0061 -0.0091 0

0.0902 0.1947 -0.9085 1.8301 -0.8590 0.2338 0.0858 0 0.0180 0

0.0217 -0.0225 0.1768 -0.8590 1.8217 -0.9312 0.1624 0.0282 -0.0227 0.0112

0.0300 0 0 0.2338 -0.9312 1.8389 -0.8254 0.1019 0.0757 -0.0680

-0.0160 -0.0189 0.0323 0.0858 0.1624 -0.8254 1.6862 -0.7145 0.1710 -0.0050

0 -0.0069 -0.0061 0 0.0282 0.1019 -0.7145 1.6929 -0.8663 0.2367

0 0 -0.0091 0.0180 -0.0227 0.0757 0.1710 -0.8663 1.7584 -0.7511

-0.1052 0.0181 0 0 0.0112 -0.0680 -0.0050 0.2367 -0.7511 1.3351

Table 8: Inverse of output (estimate of Σ) of gLasso algorithm from Example 3
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1.3636 -0.7635 0.1868 0.0677 0.0363 0.0577 -0.0341 -0.0036 0.0380 -0.1480

-0.7635 1.8423 -0.9974 0.2908 -0.1062 0.0257 -0.0422 0.0045 -0.0236 0.0593

0.1868 -0.9974 1.9848 -1.0347 0.3037 -0.0890 0.0920 -0.0317 -0.0312 0.0014

0.0677 0.2908 -1.0347 1.9597 -0.9895 0.3457 0.0388 -0.0067 0.0996 -0.0621

0.0363 -0.1062 0.3037 -0.9895 1.9463 -1.0503 0.2236 0.0500 -0.1194 0.0899

0.0577 0.0257 -0.0890 0.3457 -1.0503 1.9554 -0.9082 0.1290 0.1201 -0.1183

-0.0341 -0.0422 0.0920 0.0388 0.2236 -0.9082 1.7738 -0.7969 0.2346 -0.0417

-0.0036 0.0045 -0.0317 -0.0067 0.0500 0.1290 -0.7969 1.7886 -0.9662 0.3093

0.0380 -0.0236 -0.0312 0.0996 -0.1194 0.1201 0.2346 -0.9662 1.8596 -0.8259

-0.1480 0.0593 0.0014 -0.0621 0.0899 -0.1183 -0.0417 0.3093 -0.8259 1.3825

Table 9: Inverse of output (estimate of Σ) of LAR(Lasso) algorithm from Example 3


