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A rnechanisrn is a constrained kinernatic chain cornposed of

gears, links, carrrs, or the like. Mechanislns are the building blocks

of all rnachines, and, as such, their evaluation is of considerable

irnportance to the rnechanical designer. Because the rnathernatical

analyses of systerns with four or rnore rnoving rnernbers has been

prohibitively cornplex, the principal rnethod of rnechanisrn evaluation

has been graphical. With the developrnent and widespread distribution

of high-speed digital cornputer systerns, however, rnathernatical

rnethods for cornplex-linkage evaluation have becorne practicable.

Because of the sornewhat universal nature of the digital cornputer

language called I'ORTRAN, it is possible for an analyst to develop

a systern of analysis which not only he, but any other person as weII,

may use.
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In this paper are developed analytic techniques and cornputer

prograrrs which evaluate the principal class of rnechanisrns --

plane rnotion linkages with a single degree of freedorn, ernploying

turning joints, and having either an angular or translational input

rnotion. The fundarnental prernise is that a link rnay be represented

by a cornplex vector, and a linkage rnay be rePresented by a set of

these vectors in the forrn of closed polygons. The position vectors,

which are known and are considered to be functions of tirne, surn to

zero about a closed path. There exist, in a single degree of freedorn

linkage, one-half as rnany independent closed paths as n-Iinks free to

rotate (i.e,, links which are neither the crank nor the frarne). There-

fore, one-half -n independent vector surns may be written. By sepa-

rating the surns into their real and irnaginary parts, n independent

equations result. The first and second tirne-derivatives ol the n-set

provides two n-sets of linear algebraic equations. These two sets

are solved, by the cornputer, for the n-unknown angular rates and

the n-unknown angular accelerations. With these values of angular

kinernatic quantities, the cornputer estirnates the angular rotations

over a particular time interval. Through use of a sirnple iterative

process, these estirnated angular values are irnproved. If the angular

transition is not large, convergence is rapid. After calculation of

angular rates and accelerations in this new position, the process is

repeated, as before, untilthe desiredrangeof operationof the linkage

has been traversed.



Having deterrnined the linkage's angular kinematic values

for a particular position (or instant of tirne), the cornputer uses the

values to calculate the translational kinernatic data of any specified

point on the linkage. The translational values are placed in an abso-

lute reference by using the drive-rnernberfrarne pin as the daturn and

surnrning the translational vector cornponents to the desired point.

The mathernatical systern of equations and logic are vali-

dated by the successful evaluation of an eleven-bar, rarn-drive linkage

systern,

It is acknowledged that these rnethods and the associated

computer programs, although a significant irnprovernent over widely

practiced linkage evaluation rnethods, are but the first step in the use

of the digital computer in mechanical design. Work rnust also be done

to develop cornputer methods to assist the rnechanical designers with

dynarnic evaluation, stress analysis, bearing loading, space budgeting,

force analysis, and so forth.
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THE DEVELOPMENT OF
PROGRAMS

PLANE

ANALYTIC TECHNIQUES AND FORTRAN
FOR THE EVALUATION OF
MOTION MECHANISMS

INTRODUCTION .

A rnechanisrn is a constrained kinernatic chain in which one

link is stationary or considered so during rnotion analysis. A kine-

rnatic chain is any connected group of elernents, such as gears, links,

or carns, whose parts have rnotion(3, p. 3). These rnechanisrns are the

building blocks of any and all rnachines. Because of this, rnechanisrn

analysis is of primary concern to the rnechanical designer.

Mechanisrn analysis has two fundarnental forrns: graphics

and rnathernatics. Graphics is by far the rnost widely used, particu-

larly for rnechanisrns of rnore than four rnoving rnernbers. For exam-

ple, in Fairesr text Kinernatics, he says, ttMathernatical analyses of

linkages with forr or rnore Irnovable] lints are usually rather corr-

plex and have been traditionally avoidedlt(3, p. 114). Even rnanufactur-

ing firrns which have specialized in products requiring cornplex link-

ages perforrn rnost of their design and evaluation on a drafting board.

Graphical solutions to linkage design problerns, although

quite cornrrron and frequently effective, have several lirnitations.

First, the designer rnust be well versed in the specialized techniques,

a requirernent necessitating a great deal of experience. Secondly,

graphical rnethods have obvious accuracy lirnitations. Finally,



perforrning the graphical evaluation of a cornplex linkage is usually

quite tirne consurning, resulting in considerable expense and cornpeti-

tively dangerous delays. The effect of these lirnitations is that de-

signers tend to avoid the cornplex design and, instead, select a sirn-

pler design which rnay only crudely approxirnate the desired perforrn-

ance.

Exarnples of this are pandernic. A particular, but typical,

case was presented to the Oregon State Universityrs Engineering Ex-

periment Station. An Oregon firrn was engaged in the rnanufacture of

a product of international distribution. Several other firrns rnanufac-

tured a sirnilar product and all ernployed the sarne fundarnental link-

age design basic to the product. The sirnple linkage, although tradi-

tional, had several undesirable operating features. This linkage de-

sign was retained, apparently, because any irnproved linkage would

also have been rrrore cornplex. The Oregon fitml decided to develop

a greatly irnproved, but rnore cornplex, linkage design. After con-

siderable tirne and expense, the cornpany could see quite clearly that

the traditional graphical rnethods of design and evaluation were insuf -

ficient. They forrnally asked the Experirnent Station if a rnathernatical

technique of cornplex-linkage evaluation could be developed which

could also be prograrrrrned for cornputer analysis.

Cornpany narrre and product withheld upon reguest.
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As an answer to this specific inquiry, and to contribute to

the rnore general need of linkage designers, this paper has been

prepared. In subsequent sections, fundarnental linkage theory will

be discussed. This theory will be lirnited to that which will lead to

the developrnent of a rnathernatical technique of linkage evaluation

using well-known vector properties. After the developrnent of the

mathernatics, digital cornputer prograrns, written in FORTRAN for

the IBM 14I0 systern, will be presented and explained. The program

presented will be for use with linkages having turning joints, a single

degree of freedorn, up to ten rnoving rnernbers, and either a crank

or ram/ piston drive link. It is believed that this is no strict lirnita-

tion and will encornpass the vast rnajority of linkage designs. The

prograrn presentation will be supplernented with the cornputer solu-

tion of several significant test cases, the rnost irnportant being a

ten-rnoving-bar systern with a rarn input. Finally, suggestions will

be rnade as to how the rnathernatics and cornputer prograrns could be

expanded to cover a wider range of problerns surrounding linkage

de sign.



LINKAGE SYMBOLISM AND DEGREES OF FREEDOM

Mechanically speaking, a link is a device by which rnotion

is physically transrnitted frorn a source to an object and is syrnbolic-

ally represented by a bar or line. For rnost rnechanisrns, the link is

actually a rigid bar, but, even when it is not, the syrnbolisrn is usually

adequate. A systern of interconnected links is called a linkage. Corn-

rnon to all linkages is a driver which is the sourcerof rnotion. Sorne

linkages have more than one driver, but this is not cornrnon and, fre-

quently, is a result of two linkage systems being brought together.

Mathernatically at least, the systern can be separated into two distinct

systems with one driver for each. For instance, consider a fork-lift

truck lifting linkage: it has a vertical drive and a fork tilt drive, but

the two are (usually) independent and can be considered separately,

The nurnber of drivers required is equal to the systemrs degrees of

f reedorn,

The degrees of freedorn describe the nurnber of independ-

ent rnotions a body rnay have. A rigid bar in space has six -- three

translational and three rotational. Restricting the bodyrs rnotion to a

plane reduces the degrees of freedorn to three two translational

and one rotational. An unconstrained, plane rnotion, rigid link then

has three degrees of freedorn. Connecting two such rigid links by a

turning joint leaves one of the links with its three degrees unaffected



but reduces the otherrs

Figure I(b).

By adding two rnore rigid

comes a four bar systern

lational and four angular.

degrees of freedom to one, as shown in

(a). A systern with six
degrees of freedorn:
*1, YI, 0l , *2, YZ, 0t

(b). A systern with four
degrees of freedorn:
*1, yl, ol, rr.

Figure 1. Links showing degrees
of freedorn.

links to the systern

with six degrees of

See Figure 2(a).

of Figure I(b) it be -

freedorn -- two trans-

1

vt(x,

e-\
,I 'z

0
z

*Lf,
' Three degrees (c) One degree

freedorn! 0,, of freedorn:
Qz, e3. ' 01.

Systernatic reduction of
degrbes of freedorn.

,3

,4

(a). Six degrees of (b).

i::T;,-;i.* "'

3

oq

Yzl
e

I

oz

Figure 2.
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For the systern to be a linkage, one bar, by definition, rnust be corn-

pletely constrained, i. e. one bar is rnade the frarne. With this act,

three degrees of freedom are lost, reducing the total frorn six to

three. See Figure 2(b). Next, closing the systern by pinning the free

end of the link chain to the frarne, reduces the degrees of freedorn,

as before, by two, leaving a system total of one degree. The result

is the traditional four-bar linkage. This rnethod of link-by-link study

of freedorn and constraint will provide an answer but, for rnore corn-

plex systerrrs, is quite laborious and subject to hurnan error. It is

presented here only to provide understanding of the concept of degrees

of freedorn.

Authors on mechanism use a variety of rnethods and for-

rnulas to determine a systernrs degrees of freedorn. One such is

Grueblerrs equation as rnodified by Botterna ( l, p, l6?) z

x - 3(N-r) I qi. pi

where X = degrees of freedorn

N = nurnber of links

qi = multiPlicity of constraint

pi = nurnber of pins with a qi multiplicity of
constraint

The multiplicity of constraint q., although not defined further by

Bottema, appears to be, for turning joints at least,



qi = 2(M-I)

The terrn M is the rnultiplicity of connection of a particular pin; e. g.

a pin connecting three bars has a rnultiplicity of three. Grueblerrs

equation is rnodified to:

x = 3(N-r) )z(u.-1)n,
An alternate rnethod suggested by Paul (6, p. 196) is

based on a topological analysis of the linkage systern and does not

reguire the deterrnination of the nurnber of pins or rnultiplicity.

Instead, the analyst deterrnines, in addition to the rnoveable links

(N - 1), the number of independent loops which can be rnade in a

linkage systern. A loop, in this sense, is the circumscription of a

polygon forrned by a group of serially connected links. For inde-

pendence, the loop rnust not be capable of being forrned by cornbining

two other loops. In Figure 3, for exarnple, only two independent loops

Figure 3. A linkage showing polygon loops.

are possible, I and II, I and III, or II and III. The combination

I, II, and III can not be used .because any two can forrn the third.

o



Paulrs equation for the degrees of freedorn is:

X= (N- tl -Zt-

where L is the nurnber of independent loops.

Later in this report, Paulrs equation will be rnodified and

used to deterrnine the number of possible independent loops in a corn-

plex linkage once Grueblerrs equation has deterrnined the degrees of

freedorn.



DEVELOPMENT OF ANALYTIG TECHNIQUES

The subsequent rnathernatical developrnent will be a

utilization of the concept of defining links by cornplex vectors as

first put forth by Block in 1940 (3, p. ?49) who suggested its use in

four-bar synthesis. To date, his rnethod has been rnostly restricted

to its original usage. In this paper, however, it will be developed

for kinernatic evaluation -- first for the sirnple case of the four-bar

linkage where the validity will be obvious, and then for the cornplex

ca8e.

Cornplex Vectore Representing Linkages

A mechanical link is an object whose kinernatically im-

portant dirnensiona are its distance (or distances) between joints and

angular direction (or directions). A vector has only rnagnitude and

direction, as does the distance between two pins on a link. A link

then is quite conveniently represented by a vector; a linkage is con-

veniently represented by a collection of vectors. See Figure 4.

The rnagnitude of the vector can appropriately have & or€-

to-one correBpondence to the distance between the link pins, A vec-

tor hae a distinct directior, but, its direction rnagnitude (argurnent)

is arbitrary. Its sense (which way the arrowhead points) is a rnatter

of convenience, as is the reference line frorn which the angle is



IO

(a)

Figure 4. (a). A link and its vector representation.
( b). A linkage and its vector polygon

repre sentation.

rneasured. The one restriction is that all vectors representing links

within a single systern must have the sarne reference. Traditionally,

the'rhorizontalrris rnade the angular daturn and angles are rneasured

counterclockw'ise frorn the right. That would place the vecto" 1-B,

in Figure 4 (a), sornewhere in the first quadrant.

The linkage type of interest in this report is the one oper-

ating in a single plane; vectors restricted to a single plane can be

mathernatically described by cornplex vector notation. Mathernatical-

ly, the cornplexvector is defined as (I) the surn of two orthogonal

components, one real and one irnaginary, or (2) as the product of a

real magnitude and the Naperian base e . exponentiated by the irnagin-

ary unit i and the vector direction.

z

z

=x

=re

+iy
i0

( l)

(z)



Where x and y

nary elernent, r

tion, in radiane.

and

cartesian coordinates, i

rnagnitude, and 0 is the

are the ueual

is the vector

is the

vector

II

irnagi -

dire c -

Figure 5. Cornplex vector in x-y plane.

Referring to Figure 5 and using standard definitions:

x = rcose

Y = rsinO

Then, frorn (I), l?l, (3), and (4)

(3)

(4)

z = rcoso * irsino = ""io (5)

Given a cloeed string of vectors as in Figure 6, it is easy to see that:

ur

uz

"3

o4

x, * iy,

lxZ xr) + i(yZ - yt)

(xg xrl + i(yg - yz)

*3 * iY3



lz

Figure 6. Vectors serially added.

If uZ were added to

path would have been

,L, ,3 to zZ,

traversed and

and ( -) z+ to ,3,

the surn would be:

the closed

I,, = +

+

,z

iyI

,l

*r

,3 + (-) z+

(xz xr) + i(yZ - yt)

xr)+ilyr-yz)-*3-iy3

T
L,i

certain

I (x3

r.
)2. = Q

L, 1

By inductive reasoning it can be seen that vector addition over any closed

path, regardless of the nurnber of elernents, surns to zero, Next,

consider the situation in which the cornplex vectors z. are functions
1

of tirne, and for all tirne respresent the rnechanisrn, such that,

z.ltl = Q
1

(6)

Except under special conditions to be discussed later, the



derivatives of z, with respect to tirne, exist. These rnust

to zeto,

l3

also surn

.(")(l
(7)=0

Equations (6) and (7) are the basis of the analytic tech-

niques and cornputer prograrns to be developed. Their rigorous proof

is of only didactical importance. In this paper it will be assurned

they are true and will be validated by successful application to linkage

analysis.

For a rrore detailed introduction to cornplex vectors see

references (2, p. l) and (7, p. 527).

Angular Kinernatics of Four-bar Crank Linkages

The linkage of Figure ?(a) is the traditional four-bar

systern. It is the fundarnental forrn for a single degree of freedorn

linkage. It can be shown that sirnpler or rnore cornplex systerns are

rnerely modifications of this basic forrn. tr.or this reason, its sorne-

what obvious properties will be developed first. Following this will

be the application of the sarne properties to a rrrore cornplex systern.

Figure 7(b) shows the four-bar vector equivalent and the vector loop

L. The vector loop L is rnathernatically the surn of elernents of the

closed systern it traverses; i. e.

Ii clE

L= rl*rZ-13-14 = Q



r4

(a)

Figure 7. A four-bar linkage
equivalent showing

o4= o

(b)

and its vector
a vector loop L,

frorn ( 2),

frorn ( 5),

Then

Y_
LJ

T_)r

i0 r ie ? -. ^i0 a __ ^iOa
"I" 

L + rze " - r3u - - r4a

rr(cosO, 1 isinOr) + rr(cos0, + isinOr)

- rr(cosO, * isinOr) - rn(cosOn + isinOn) =

Differentiating equation (B) with respect to tirne

equating like coefficients (for convenience in writing let S,

and C, = cosQ.) gives:
11

(8)

and

= sinO.
1

* = rr(-s, +icr)*- rr\-sr+icz)+-rr(-sr+icr+
uo+

- ,q(-S+ * icn) 6,

* raS ZaZ- r3S3r3 - r 45464 ="Ist'l

tI cItI

(e)

and

* rrczuz'"3c3"3 - tncnun = o (lo)



d0.
where the # have been represented by oi.

angular velocity, O, is equal to ul, and ,4 is

( 10) can be written as:

' zs z'z - "3s3'3 - - rrsro

, ZC?rZ - "3C3r3 = - rf CtO

where

I5

Since the driverrs

zero, equations (9) and

(1r)

(lz)

It is presurned that the vector rnagnitudes (which in this exarnple are

constant) and original directions are known; thereforerequations (ll)

and (12) provide two equations to solve for the two unknown angular

rates, o, and or.

By sirnilar differentiation of (11) and (I2), two rnore equa-

tions can be written:

rrlsraz+ cr"1.l - rr(Sro ,+ crull= (r3l

( l4)r rlcra r- srrll - rr(cro, - srrf l = - rr(crA -

dul.
I

+ crs?1

trn')

- rr(SrA

oi = -Ei

In these equations, t^r, and r,l, are presurned known frorn (ll) and (LZI,

and A, the angular acceleration of the driver, is set equal to zero

(i. e, O = constant). Equations (13) and (14) then rnay be rewritten as:

, 
zS ZoZ 

- 
"3S3o 3 = - "tCto2 - r rC rrl+ r rC rrl

, 
zC zo z- r 

3C 3o 3= r rSta2 +, zS zr1,- "rsr"f

( 15)

1t 5)
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Frorn ( l5) ana ( I6), the unknown angular accelerations o Z and o 
3

can be cornputed.

The links having angular velocity and acceleration, not all

of which are zero, will rnove in tirne to new relative positions. Deter-

rnining these new positions is the next step in the evaluation; for this

purpose, extrapolated approxirnations will be rnade. The approxirnat-

ing assurnption is that, over reasonably srnall incrernents of tirne,

angular acceleration rnay be considered constant.

By definition,

and

then

as surTrlng

d0

-= 
a)dt

drrl

dt-e

nlD nt

\u"=\odtv v,

'o to

o = constant 
= 

oo

Solving for 0

ur = oO(t-tO)lol.

n0 ^t Ot

J^ ut = J. c,rdt = J t oo(t-to)* r,ro1 at
"ro ",0 ",0

and letting , - tO = At, then

2At0 = o0 tr uroAt * 0O ( 17)
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To gain insight as to the amount of initial error introduced by assurrr-

ing constant angular acceleration over At, a cornparison can be rnade

to the value of 0 obtained by assurning o changes linearly with tirne.

Let o be the angular acceleration at the end of the interval At and

let oO be the initial. Then, by taking the average of the two, rewrite

(17) as
(o* on) ArZe - TT- c,r,zri.tOO

The difference between (t 8 ) and (t 7 ) is:

(re)

Setting the tirne incrernent

o. =*
at

(o

z.at
o o)-a-

0.5 seconds

- oo)

produce s:

Setting At to 0. I second produces:

. =frto-oo)
Quite obviously, even large differences between successive values of

angular acceleration will have little effect if the tirne incrernent is

rnade srnall enough. Even this error, however, is overcorne to a

large extent if, after calculating new angular rates, the new rates

are used to obtain better approxirnations of angles. The equation

suggested for iterative convergence after the initial approxirnation is:

o = (or+ ,,ro)f + oo (1e)
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Note that if the angular acceleration is linear, then

(, = (o*ooff*ro
then

o = [(o*"0)]+zuol]*e,

producing equatron (18) again. This means that, in the lirnit,

equation (19) woutd yield the same result as would be obtained

if new values of o were known and equation (18) were used.

Since, hourever, new correct values of o can not be

cornputed without knowing correct values of ul, there is no

convenient alternative to using (19), after using (17) for the first

approxirnation.

When iteration has brought about the desired convergence

of the angular values, new values of 1,1 and o can be cornputed. It

would seerr that the linkage cycling process could be repeated indefi-

nitely, however, under certain conditions rnathernatical singularities

aPPear.

Mathernati cal Singularitie s

Singularities in linkage analysis occur when a link is in a

kinematic state which allows it, rnathernatically, to have zero or two

possibilities for the next stepi i. e., the tirne derivativu. of Y, are
L,

not continuous. As an exarnple of two possibilities for the next
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state, consider the Type I

and the link I, have the

singularity in Figure

same rnagnitude and

8. The driver d

direction. Motion

(b), A four-bar linkage in
a singular state where
there rnay be two possi-
bilities for the next posi-
tions of sorne links.

Figure 8. Type I singularity,

of the driver uniquely defines the rnotion of the followers

!., and, l.r, 'W'hen d has progressed to 0d = 1800, 0, also is 180o,

and all links are aligned. At this point, an incrernental counterclock-

wise change in 0a can, with equal likelihood, cause 0g to becorne

smaller or larger; i. e I t rrray remain horizontal and ! Z continue

to rotate counterclocf<,rrise, or lt rnay rotate, driving l, clockwise.

In the equation of rnotion, this condition appears as a division byzero.

Surnming position ve ctor sl

(a). A.four-bar linkage in
a non-singular state..

'Lt'z-'3-24

"tCI +rzCZ-r3C3-r4C4

rrSl t,ZSZ -r3S3-"4S4

0

0

0

ao3



zo

l4rriting the velocity equations:

' zs z'z - t3s3'3 =

'zcz'z- t3c3'3 =

"Io (SZC, -

-tIstg

-r, cro

c2sl)

Noting that, in

next

\

,3 (SzCS - CzS3)o)^
5

Figure

el

oz

og

= 

-
8(b):

= 18 oo,

- 00,

= l8 oo,

st

sz

sg

ct

cz

cl

-I,

l,

-1,

0

0

0

then!

_ "Io ,9,,(r^ - 
-(

*3 
"3 'o'

This condition will occur whenever any two connected binary links

becorne aligned, (a condition sometirnes called dead center) and where

neither is a driver.

For a singularity resulting frorn zero possibilities for the

position, consider the type II singularity in Figure 9.

,z "r=% =l
T Z=1, 048

t3=o'684

0I=03 =9Oo

Qz=-17' 55o

o4= I 8oo

,3

(a). A four -bar rnechanisrn (b). A four -bar rnechanisrn in a sin-
in a non-singular state. gular state where there are no

po s sibilitie s for the next po si -
tion of any link.

Figure 9. Type II singularity.'

ol=120o

o 
z= -3oo

o3= I 50o

o4= 1 80o



In Figure 9(a), the linkage is

state, but in Figure 9(b), links 2 ar.d 3

angles noted in the figure. The sines and

Ct = -0.5 , St

CZ = Q.866, SZ

cl = -o' 866 ' s:

The equation for 03 is the same as the

"Io (SZC, -

"3 (srca - czs3)

ZL

obviously in a non-singular

are aligned and have the

cosines are

0.866

-0.5

0.5

Prevlous case; 1. e.

czsr)

'3=

then

(-0. sx-0.5) - (0.866X0.866)

The denorninator is zero and ,3 is undefined. For the

driver to turn rnore counterclockwise, the cornbined length of ,Z

and z, rnust increase

It is interesting to note that the Type I singularity is the

lirniting case of the Type II singularity.

The conditions of singularity are solnetirnes overcorne in

practice by ensuring sufficient linkage inertia, avoiding starting in

dead-center positions, or avoiding the drive position causing it. For

kinernatic analysis, however, the rnernbers have no inertia and partic-

ular care rnust be taken to detect singularities. This is accornplished

by checking continuously for division by aero;- Unfortunately, on
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the cornputer, the incrernental step rnay seldorn exactly coincide

with a division by zero condition, but sudden rises in angular velocity

or acceleration also indicate a singularity, This condition will exist

if the denorninator approaches zero rnore rapidly than the nurnerator,

as in the linkage of Figure 9. I'ina1ly, checking linkage directions for

possible binary linkage alignrnent conditions will also detect singular

conditions. Singular conditions indicate the necessity of adding inertia

to the systern(e, E. , d flywheel) to ensure srnooth operation or of

placing lirnits on the operating positions.

Translational Kinernatics of Four-bar Crank Linkage

Once the tirne histories of angular position, velocity, and

acceleration are known, the deterrnination of translational position,

velocity, and acceleration is a relatively sirnple rnatter. Repeating

equations (3) and (a)

x = rcosO (3)

y = rsinO (4)

and differentiating both with respect to tirne twice(holding r constant)'

provides translational velocity and acceleration equations:

)i = -rsinOr,,r

i = rcosoo

i--r(sinOo*oorerz)

i - r(cosoo-sine.,lZ)
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After proper substitution, the translational equations becorne

rcos0

r sinO

-yco

)I(/)

-yo - yo

xo + :lt,r

x=

y=

x=

y=

x=

y=

(3)

(4)

( z0)

( 21)

(22)

(23)

Since vectors rnay be added by adding corresponding corrr-

ponents, equations (3), (4), (20), (21), IZZ\, and (23) rnay be used

repeatedly to find the translationaL position, velocity, and acceler&-

tion of any point on the linkage or of any point referenced to any par-

ticular link.

The first step is to establish a translational reference

origin. For convenience and consistency, the frarne pin of the driver

crank rnay be chosen. Referring to Figure 10, for exarnple, point

(or pin) A is rnade the origin. If, for exarnple, the translation posi-

tion, velocity, and acceleration of coupler points D and E are

desired, the angular position, velocity, and acceleration of the links

are computed first. A vector path is then selected frorn the origin,

pin A, to points D and E. A convenient path to point E is zn, ,3,

and zri for point D, perhaps ,1, ,2, and z, is best. For clarifica-

tion, the kinernatic equations defining point D will be presented. It
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is irnportant to note that the position, velocity, and acceleration of

each pin with respect to the previous pin along the path will be deter-

rnined; then the "relative" values will be added to give the position,
l

velocity, and acceleration of the point D with respect to the point A,

the origin.

Figure 10. Four-bar crank linkage with coupler
points D and E,

E
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*n/ e
(B/ A

Ye/ a
*a/ A
Ys/ e
*n/ A
in/ e
*cl n
Ycl e
-:*c/ n
icl e
*c/ 

B

icl n
*o/ c
Yol c

*ol c
iol c
:'-*D/ c

iot c
-o/ A
Yol a
*o/ A

etc.

= 'lcl
read as "of B with respect

= "rsI

to A'r )

-Yn/ A.'t
*n/ Aul
-Yr,lAor - vn/e"r

*B/ Ao t + {n/ A't

'zcz
'zsz

-Y cl auz
*cl r-uz

a-Ycl Bo ?. ' Ycl suz
*c/ no z t *cl e'z
"DcD

"DsD

aol cuz

*ol cuz

= -YDl 
Cd z - iOl Crz

= *ol co z * *ol c''z

= *BlA * *:c/ n t *o/ c
= YBI e,+ YClg + YO/ C

= is/e+*c/et*o/c
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KINEMATIC EVALUATION OF COMPLEX LINKAGES

Since the developrnent in the previous section relied on no

peculiarity of a four-bar system, the rnathernatical relations can be

readily extended to linkages with any nurnber of rnernbers and with

either a crank or rarn driver. The degrees of freedorn are also non-

restrictive, but, as stated, the developrnent will be for the more

comrnon single degree of freedorn systern.

In this section, as an exarnple of a cornplex linkage, an

eleven-bar plane rnotion linkage with a single degree of freedorn

and a rarn drive will be presented and then analyzed, using the

equations previously developed, This particular configuration has

been chosen because, first, it represents a linkage of unusual corn-

plexity and yet for which the developed techniques apply, and second,

it represents a problern cornparable to that of the rnanufacturerrs

rnentioned in the introduction.

Drawing the Vector Polygon

The first step in an analysis of a cornplex linkage is

drawing the vector polygon representing the system. It is unneces-

sary to be precise in the vector rnagnitudes anddirection; in fact,

it is frequently desirable to exaggerate in order to obtain a clear

schernatic (it is presumed, of course, that a drawing or a set of
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data exist which do give acceptably precise values). The vector

polygon for the eleven-bar exarrrple is shown in Figure I1.

The distance between any two pins on a link is represented

by a sirnple vector; the vector subscript and sense is arbitrary. If

a bar has n-pins, n-I vectors are drawn; if n> 2, shading is in-

cluded to show rigidity between vectors.

Vector Loops and Degrees of Freedorn

A vector loop is a closed path forrned by serial vectors.

A11 such loops must be independent; that is, no loop can be forrned

by cornbining two other loops. Each loop provides two equations,

one for the irnaginary components and one for the real. Frorn

elernentary algebra it is known that to solve a set of linear equations

there rnust be as many independent equations as there are unknowns.

Referring to the linkage of Figure 11, it is seen that two sets of ten

unknowns exist, co. and o.. Each set, then, reguires five vector

loops to provide the necessary ten equations. These loops are

shown as dashed contours rnarked Lr, LZ, 
"3, 

L4, and Lr.

For sorne linkage arrangerrrents it is not at all sirnple to

deterrnine the possible nurnber of vector loops. A rnathernatical

rnethod, elirninating guesswork, would be to first cornpute the

degrees of freedorn using the rnodified Gruebler equation (page ? ):
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I
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-1

rl\ , )r)t.,"u t
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frarne
Known! Unknown:

1. @to,"j (j = 1, 18) l. ol, ol

2. @to, o.: (i = l, 18) ?,. 03, o 
3

3. f, = constant 3. a4, o 
4

4. ul, = or, = 0 4. ,6, ,6

5. o5 = o?= 0 5. ug, og

6. ,6=-? 6, ,lO, oIO

7. ,6=o7 7. ul,, olz

8. ,4 = rlg 8. ,14, oI4

9, o4=olg 9, ol5,ol5

10. 
"lO="lI ="16 10. ,L7, ol.

11' oIo=olI =o16
,r.. og = 19 = rl3
13' og = o9 = oI3

Figure I I' lfi ;;:?1 i:'J,';l: ;:r,' :t'J"'"lo""
linkage with a rarn drive.



x = 3(N-r)- )rt*.-r)e,

z9

(24)

into Paulr s

L, the nurr-

(25)

Then substituting this value of X , the degrees of freedorn,

equation (page 8 ) for degrees of freedorn andsolvingfor

ber of independent loops becornes:

T-u- 1 -x)I
z (N-

Heretofore, a rarn drive was considered a single link of variable

length; however, to use Paulrs equation, a rarn rnust be thought of

as two rigid links with slider contact (having rnultiplicity of two).

The eleven-bar exarnple becornes a twelve-bar systern. Solving

Grueblerrs equation:

N =lZ

Pr= l4

P3=I

x = 3(Iz-rl - zlz-LXt+1 - z(3-rX1)= I

Using X = I in Paulrs equation establishes the nurnber of possible

independent loops in the systern of Figure ll.

L = (1/ Z)(tZ-l-l) = 5

The answer of five independent loops indicates that, as

might be expected, a set of equations does exist which will aIlow

solving for the unknowns. These loop equations are:
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I

Lz

LE

L+

Lu

,5 *rZ *r4 -26 -23

-27 -26 -23 *u5 *r!

-'rg*'7 l'9 -'r!''Lo

'rL*'r3t'r4-'rz=o
''r3*'16l'Lz -'L5-'r4

=0

=0

=Q

30

(z6l

lzTl

(28)

lze)

( 30)

*rg

=0

A convenient way to deterrnine if all equations are independent is to

set up a chart, as in Table I, and check to see if any row is a cornbi-

nation of any other rows. The table rnethod is nearly always reliable.

Table I. Vector loop table to show loop independence.

The table will also indicate if all vectors have been used, and will

provide a quick check on the loop equations.

Writing Equations of Angular Kinernatics

x I z 3 4 5 6 7 8 9 IO 1l LZ 13 l4 I5 15 t7 I8

L,. x -x x x -x

"z x -x x -x -x x

u3 x x -x -x -x

4
x -x x x

5
-x -x ix x x

To obtain the angular equations of rnotion, loop equations
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(26) through (30) are differentiated with respect to tirne. The re-

sulting equations, (33) through (42)' provide ten equations with ten

unknown t,l terrns, the angular velocities. Vectors on the same link

are assigned the sarne angular velocity terrn and the coefficients

are grouped accordingly. The basic forrn of the differential equa-

tions is:

),r = fkrro*r, 
products

= -)trro*n products
),

The 1i-cornponent equations have been rnultiplied by -I

the writing of a cornputer algorithrn to be explained in a

The ordering of terrns is the sarne as in Table I.

-rgSg."g I "4S4r4 - rrS,o, = 0

-13C3r3 * r 4C4r4- rrCrco, = 0

"ISIrl - "353"3 - 
(r656*rrsr)o5*tSSgrg = iICl

"t CI rI - ,3C3ur, -(rrC, * r rCr)u 5* 
t8 CBrg = -il SI

t?Szr6* 
"959"8 - (t, oSt o 

* rI tSt t )rto-"l8Sl gr4 = 0

,7CTr6* 
"9C9r8 -(rtOCtO { "t l "t, )rto-rtgCI8o4 = 0

"rIslIuro - "Izsr zarz* "r3sr3og *'r4sI4'I4 = 0

"t I ct lor o - "I zct zurz* "t 3ct 3'8 * "r 4c1 4"r4 = 0

- 
"13s13'8 

- 
"r4sr4"14- "15s15uts*"t6st6"10*"lzsr 76L?= 

0 ( 41 )

-"t3cl3"8 -"r+c14"I4-"rscl5ots*'t6ct6"1o*'t zct zut T= 
0 (42)

(3r)

(32)

to facilitate

later section.

( 33)

\34)

( 35)

( 36)

( 37)

(38)

( 3e)

( 40)
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These equations show that all products containing unknowns

surn to zero, with the exception of the eguations containing the drive

link. In this exarnple, the drive link is a rarn which has both a vari-

able rnagnitude and a variable direction. For such a link,

In these equations, only

equations (31 ) and (321,

iusu * rdCdrd.

,d is unknown. Grouping is according to

To obtain the set of equations which will provide angular

acceleration, equations (33) through ( Z) are differentiated. Sirnilar

to (31 ) and l3?l, (43) and (441 are used to establish grouping.

*u = iaCa-"dSdrd

)r

[,

= )nrro*n 
products

= lrro*n products

Equations (45) through (54) are equations (33) through (42)

differentiated. For these equations, angular rates,6l , are assurned

known frorn (33) through (42).

-rrSro3 + "4S4o4 - "656o6=r3C3rl-,nCnw?n+rrCr"l 
(45)

-rrCro 3+r 4C4o n- r rCra, = -rrsror!+ , 
nSn 

?n - , rSrul eel

Yd=

(431

l44l
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"ISIol - "3S3o, - 
("6t5 f ,zSz)o6 * rgSgog =

- 2i, S, <,r, - r I 
C 

I 4 r r rc rrrz+(, 6c 6*, 7" 1.1- r, cr rrz ( 47 )

.I CIo 
1 

- "3C3o I -(r 6C6*rTCllo 6* "gCgog =

-z; tcrrt *"ttr"rt-1sr"i-(r.Sr+rrSr)"j + rrsr"rz 1ae )

tzszo 6*"9s9og -("tosto*"t rst, )o ro-"18s18o18 =

-, ,crr! -, ,crr! I (rrocro*r 
t r 

cr 
, ) * "r, .rrri 1+9)

' 7c7o 6 *' gcgor-(rtocro*"r I 
crl' )o Io-"rgcIBo 4 =

,rsrr!+rgsg"i-(rrosr0*rrttr, )"ro'-rrrsrr"nz (so1

tt tst io 1o-' rzsLZoLz*t13si3o8 *"t4st4o 14 =

-"r 
r 
cl ,'r3r'rr"rr'r1,-'13clr"r' -'rncrr'rf, (5I )

't I 
ct 

I 
o 

1o 
-'rzc:^Zotz*'tzcrzo 8*"I4c1 4'14 =

'r rsr r'r3- 'n\z''Lz*r3srr'rt*'r.r-tin'rf (szl

-'13s13o g -tr 4st+o14-tr5sr5o r5*'16si5o io*"Izsl?o 1z =

'13cr3'8' *' r4ct4',1*1uqu" rl-'rr7r'r3-'r.rt r'r1 ( 53 )

-' 
t a9go e 

-"t+9+o t+-'ts9so ts+'1696o ro*'rzs L7o L7 =

'i:tE"e' -'r+\+'tl,- 1sts"r|* "r5sr5" rtr' rrtrr'rl ( 5'1)

Note the coriolis acceleration terrn in (47) and (48) which contained

the driver vector,



34

With angular rate and acceleration being provided by

equations ( 33) through ( 4Zl and (45) through (54), respectively, new

angular positions may be calculated for a time lapse of At by using:

o = oo + r uroAt + oo (r7)

With these approxirnated angles for the new position, approximate

values of u rnay be calculated using (33) through (42). .These new

values of o are used in (I9) to provide a better approxirnation of

the angles,

Ate = (o+,,r,)f + oo (I9)

After sufficient iteration to effect desired convergence, final new

values of angular rate and acceleration are corrrputed. The proce-

dure is repeated until the desired range of operation has been

evaluated,

Deterrnining T ranslational Kinernatics

To find the translational position, velocity, or accelera-

tion of any point, the equations presented for the four-bar systern

are used.

x = rcosO

Y = rsinO

x=-y(rJ

(3)

(4)

(20)



).(r)

-yo

xo+

These equations apply for a point on a single link. As before, the

translational origin is placed at the frarne pin of the drive link. To

deterrnine the relative position, velocity, and acceleration of a

point, say pi, on a particular link, say , j, a vector path is

chosen frorn the origin to that point. Each equation, (3) and (4),

and (20) through (23), is applied to each vector step and the corre.

sponding cornponents surnmed.

- Y(r)

x(,

y=

x=

y=

35

lzrl
(zzl

l23)
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THE COMPUTER PROGRAM TO PERFORM KINEMATIC
EVALUATION

In the previous section, kinernatic equations for an eleven-

bar linkage were developed as an exarnple of the method of evalua-

ting a cornplex linkage. To obtain specific kinernatic values in this

example it would have been necessary to:

1) perforrn around 50 arithrnetic operations to obtain

the coefficients for the rate rnatrix,

Z) solve a l0-by-10 set of linear algebraic equations

for angular rates,

3) perforrn around 80 arithrnetic operations to cornpute

better angles (except for initial position),

4l repeat steps I), 2), and 3) n tirnes for convergence,

5) perform around I20 arithmetic operations to obtain

the coefficients for the acceleration rnatrix,

6) solve a I0-by-I0 set of linear algebraic equations

for angular accelerations,

7) perform about 10 arithrnetic operations for each link
step in the vector path leading to the point whose

translational kinernatics was de sired,

8) perforrn about I40 arithrnetic operations to estirnate

angles for next position,

9) repeat steps l) through 8) as many tirnes as necessary

to traverse the desired range.
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It is also necessary to rernernber that each basic operation of I)

through 8) and each position of the linkage is entirely dependent

on previous calculations. Obviously, carrying insufficient significant

figures, rnaking any arithrnetic error, or having an error in the link

lengths, original angles, or driver input value would, in all probabil-

ity, invalidate the results. Steps Z) and 5) alone, for, say ten

driver positions requiring three iterations each for convergence

would require the error-free solution of a I0-by-I0 set of linear

equations thirty-eight tirnes. Consideration of hurnan error and

slowness, even with an electric calculator, indicates that the only

reasonable way to perforrn the calculations is with a high-speed

digital cornputer.

The fundarnental advantage in using a digital cornputer to

perforrn these calculations is the changing of the task frorn the nearly

irnpossible (for a highly cornplex linkage) to the relatively sirnple.

Next, once a general prograrn has been prepared, even an inex-

perienced person could perforrn the analysis with relative ease,

even with little understanding of the theory or rnathernatics. Ac-

curacy, too, would be enhanced, since rnost cornputers can carry

anywhere frorn one to about 20 significant figures and perforrn end-

less cornputations without error. The cost of rnaking the analysis

becornes virtually insignificant, also, because for exarnple, colrr-

puters capable of perforrning 200 to 500 rnan-years of work in one
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hour rent for around $SOO per hour. Additionally, this tirne can be

purchased on an hourly basis without the necessity of cornputer rental

for longer periods of tirne. The final advantage of significance is

that a design can be evaluated irnrnediately for each design change,

eliminating the cornpetitively dangerous long delay usually associated

with a highly cornplex linkage design evaluation.

The cornplete and working prograrns for perforrning kine-

rnatic analysis of any single degree of freedorn, plane-rnotion linkage

with turning joints and with either a crank or rarn constant input are

presented in the appendices. These prograrns are coded in the

FORTRAN language specified for the IBM l410 cornputer (5, p. 7).

This language is, with only rninor exceptions, the sarne as the

FORTRAN II language which is of virtually universal use on rnodern,

high speed computers.

The prograrns are presented as working tools for the

design analyst. The input data required for operation has, for the

rnost part, been kept sirnple and as closely related to the funda-

rnental vector-surn equations as was possible. Subsequent sections

will present an explanation of the program sectiontA input, output,

rnathernatics, and logic,

The programs, although general in nature, do, of course,

have a scope of applicability; i. e. , they apply only over a certain

class of problerns. In order for a linkage to be evaluated by these
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programs, the following conditions rnust hold:

I ) A1I connections rnust be turning joints (excluding

the sliding contact of the ram's piston and cylinder).

Z) The nurnber of rnoving links rnust not exceed ten.

3) The driving link must be either a crank or ram/ piston

device.

4l Angular rate of driver must be constant for crank

driver; length change rate of driver rnust be constant

for tarnl piston.

The foregoing conditions can be broadened, if necessary,

by certain prograrnrning rnodifications. If, however, a set of linear

equations significantly greater than ten is to be solved for the un-

known variables, a cornputer of greater speed and capacity than the

IBM l410 rnay have to be used.

The Closure Prograrn

Fundarnental to the rnathernatical technique previously

developed for linkage analysis is that the surn of the position vec-

tors about the linkage vector-polygon is zero; i. e. :

Zt=Q
where

(6)

, j = rj( cosO. + isinO .) (5)
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and r. is the distance (in any desired units) between adjacent pins
J

on a link and e. is the ang1e, in radians, frorn a right-directed
J

horizontal line to the vector, rneasured counterclockwise.

Equation (6) is rnathernatically exact, but r. and tj are rneasured

quantities and, as such, are inexact; the result is:

f)2.. = c
LJ

where e would not normally be zero if the rrs and 0's were

scaled from a drawing.

The CLOSURE prograrn in Appendix A calculates e for

each closed vector path specified and cornputes the change, if any,

in length and direction of a particular vector in the loop required to

make € = 0. By doing this the prograrn accornplishes two things:'

it detects gross errors in the measurement of the vector rnagnitude

and angles before using thern to calculate the kinernatic data, and it

provides a lneans of adjusting for unavoidable rneasurernent error.

Since the data will norrnally be frorn a flexible design, having one

link absorb the error appears justified.

The program, in Appendix A, should be referred to for

exact inforrnation concerning data forrnat specifications.

The following are the input and output variable definitions,

in order of appearance.
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Inputl

1) MATRIX, MAXR, R, THETA -- see definitions in
next subsection under prograln input.

Zl NUM -- control data: the nurnber of position vectors

in the jth loop equation.

3) NORDER -- control data: the sign and subscript of

each position vector in the jth loop equation. Not

the sarne as NORDER for prograrn MAIN.

4l MAKEUP -- control data: the signed subscript of

the position vector in the jth loop equation which is

to be adjusted so that € = 0.

Output:

1) L, I -- subscripting.

2) B(L) -- the error surn of the vector products, called

e in the text, for the 2J-I corrrponent equation.

3) MI -- absolute values of NORDER(J, K).

4l RERR -- difference between the cornputed vector
rnagnitude and R(MI). (See itern I3 in next sub-

section under prograrn input, )

5) RAD -- the adjusted R(MI),

6) ANGERR -- difference between the cornputed angle

and THETA(MI).

7) ANGLE -- the adjusted THETA(MI).
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The Basic Prograrn

The purpose of the basic prograrr, called MAIN, is to

perforrn the rnathematical operations necessary for cornplete kine-

rnatic evaluation of any linkage, if it is of the kind prescribed. The

prograrn attains this end through arithmetic and logical operations

and the use of five subroutines -- ACOE, BCOE, GAUSS, ANGLE,

and KINE. Theee subroutines are based upon previously developed

mathernatics. The logical flow of prograrn MAIN is shown in Figure

lZ, th,e flow echernatic. For obvious reasons, rninor operations are

not included.

Prograrn MAIN reads control and cornputational data.

Current values of angles are written out. Subroutine ACOE is

called and cornputes the A-coefficiente of the angular rate rnatrix,

euch as (33) through 1421. Subroutine BCOE is calledand, using

MODE 1, cornputes the surn of known products for the velocity vec-

tor rnatrix. Subroutine GAUSS uses the output of ACOE and BCOE

to cornpute angular rates frorn the rate rnatrix. If the rate matrix

is singular (as indicated by division by zerol, the adjusted A-

coefficient array (see section on GAUSS) is written out and GAUSS

is exited. This triggers the prograrn to restore the original A-

coefficient array by recalling ACOE; the original array is written

out and all further calculations on these linkage dataareterrninated.
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TRAKIN > O

First position

Compute and write
acceleration vector

residues

ations complete

Write: velocity vector residues

Figure 12. Schematic flow diagram for program MAIN
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If, however, the rate matrix is non-singular, the control proceeds

(except for the first step) to subroutine ANGLE which cornputes

better approxirnatione of the angles. If the prescribed iterations

have not been accornplished, control shifts back to the angle write-

out etaternent prior to ACOE and the entire seguence is repeated.

Upon cornpleting the required iterations, the program proceeds to

the calculation of angular accelerations. ACOE is caIled again and

using the rnost recent angular approxirnations establishes the A-

coefficient array to be used in the acceleration rnatrix such as

(45) through (54). BCOE, in MODE 2, is called to compute the

known product surrrs for the acceleration rnatrix and the velocity

vector residues (see paragraph describing BCOE). Upon exiting

BCOE, the prograrn writes out the velocity vector residues and

calle GAUSS to cornpute the angular accelerations. After deterrnin-

ing the angular accelerations, the acceleration vector residues are

cornputed.

The calculation of these residues is the only significant

cornputation not perforrned by a subroutine. The fundarnental

algorithms used are:

100 > iiP(x) = 
-]E1-

and
r 00 >ii

P(Y) = 
=Tff
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The prograrn statementg accomplishing these calculations are found

between staternents 66 and 75 in prograrn MAIN. Following the

calculations, the residues are written out.

At this point, if translational kinernatics are desired, sub-

routine KINE reads inthe control gards, rnakes the calculations, and

writes out the results. The cornputations being cornplete, the angular po-

sition, ratP, andaccelerationare written out. A decision is rnade as

to whether the Iast desired position has been reached. If not, con-

trol cycles to the beginning and the procedure (except for the read-

ing in of data) is repeated. If the end position has been reached, a

decision is rnade as to whether it is desired to reverse the drive link

and cornpute back to the original position, The last instruction cy-

cles the program back to read the next data set; if there is none, the

program exits.

The data card format and other program details can be

found in Appendix B. The input/ output data definitions for prograrn

MAIN only, are:

Input, in order of appearance:

I) MATRIX -- control data: a nurnber equal to the set

size of the unknown angular rates or angular accele-
rations; also, it is equal to twice the nurnber of z-loop
equationsi maxirnum of 10.
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Zl IPTYPE -- control data: if set equal to I, equations

for rarn drive are selected; if set equal to Z, equations

for crank drive are selected.

MXSTEP -- control data: the nurnber of discrete posi-

tions desired for the drive link, including the original
position; if HYST ) 0, twice this nurnber are corrrputed.

NUMCYC -- control data: the nurnber of tirnes, except

for the original position, that ACOE-BCOE-GAUSS-

ANGLE will be cycled through for convergence of the

angles.

4)

to

5) MAXR

value s )

control data: the nurnber of r-values (or 0-
be read into storage; maxirnurn of. ?O.

6) DELTEE -- cornputational data: the value, in tirne

units, of one tirne stepi used to compute new crank

angle or rarn length.

7) DRMR -- corrputational data: the rate value of the

drive rnernber; for IPTYPE = 1, it is the rarn length-

ening or shortening rate, in units consistent with r-
values and DELTEE; for IPTYPE = 2, it is the crank

angular rate, positive CCW and in degrees/ DELTEE

units. DRMR times DELTEE is used as the change

in the drive rnernber.

8) SIG -- computational data: A subscripted variable

(equal to 0, or *1) providing the sign of the drive

link as it appears in 2z = 0.

9l IFRAME -- control data: a subscripted, unsigned

variable providing the subscripts of the frarne vectors
(fixed links).



47

I0) HYST -- control data: if set to 0, prograrn terrni-
nates after last stepi if set to 1, prograna reverses

polarity of DRIVER and cornputes last position back to

original position. Used to determine cornputational

hyste re sis.

tI) TRAKIN -- control data: if 0, subroutine KINE is

bypassed; if 1, KINE is called.

l?l ALL -- control data: if set to 1, and KINE is caIled,

the translational kinernatics of every vector step is

printed out. If set to 0, just the data of the last vec-

tor on the path is printed by KINE. See subroutine

KINE explanation.

I3) R -- cornputational data: a subscripted, unsigned

variable containing the values of the vector magni-

tudes. Order of appearance is order of subscripting.

The first value must be for the drive link, Units

rnust be consistent with DRMR, if IPTYPE = l.

L4l THETA -- computational data: a subscripted, un-

signed variable containing the values of the vector

directions, positive CCW frorn the right horizontal.

Order rnust be consistent with r-va1ues. Units are

degree s.

I5) NORDER -- control data: a double subscriptedvari-
able containing the signed subscript of the vectors as

they appear in the loop equation. Frorn card-to-card,

corresponding fields rrrust refer to vectors on sarne

link (See Table II). On the sarne card, fields 1 and 2

are for link nurnber l, 3 and 4 are for link nurnber 2,

etc., and rnust contain subscripts of vectors on sarne
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link.

If there are no paired vectors in the loop equation,

the second field of the pair is left blank or set to zero.

If there is no vector from a particular link in the loop

equation, both fields are left blank or set to zero, No

equation may have three or rrrore vectors frorn the

sarne link, (See section on ACOE).

Output, in order of appearance:

I) THEAPP

po sition, 1n

the current approxirnations of angular

degrees ..

buffer as 7) but now containing

residues cornputed and written out

zl

3)

TTACOEF. (f, f) rc ZEROTT -- the staternent printed by

GAUSS if a divieion by zero is detected, I is the ap-

propriate subscript.

AY -- the adjusted A-coefficient array printed out by

GAUSS if division by zero is atternpted.

4) BEE -- the adjusted B-va1ue array printed with AY.

5) COLSWP -- the array which indicates the colurnn

pivoting perforrned in order to rnaximize the initial
elernents of the adjusted rnatrices. Printed with AY.

6) AY -- the restored A-coefficient array written by

MAIN if division by zero is atternpted by GAUSS.

7) Butr.tr.I -- a data buffer containing velocity vector

residues cornputed in BCOE and written out by MAIN.

8) BUFFI -- the sarne

acceleration vector
by MAIN.
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9) (Subroutine KINE) -- translational kinernatics. See

KINE description.

I0) NMSTEP -- the nurnerical value specifying which dis-

crete position of the driver is currently being calcu-

lated.

1I) R(1), THETA2(1) -- the rnagnitude and direction of the

drive vector.

lZ) THETAZ -- the final value of angles, in degrees, for
current NMSTEP. Order of output gives subscript.

l3) BUF.tr.I -- the final values of angular rates, in degrees

per unit tirne, for current NMSTEP. Order of output

give s subscript.

14) ALPHA -- the values of angular accelerations, in

degrees per tirne unit squared, for current NMSTEP.

Order of output gives subscript.

Prograrn MAIN, as it appears in Appendix B, is restricted

to ten rnoving rnernbers including rarn drive, or ten rnoving rnernbers

and crank drive. The total nurnber of vectors describing the linkage

is 20, and the total frarne vectors allowable is five. To broaden the

application to rnore cornplex single degree of freedorn linkages it is

only necessary to rnodify the DIMENSION specifications of the pro-

gram and the subroutines. For exarnple, if. a 20 rnernber systern is

desired, the DIMENSION staternents rnight be rewritten as AY(20, ZOl,

BEE(20), X(20), BUFtr.I(20), R(40), etc. Note, however, that as

prograrnrned for the IBM I410, the prograrn, subroutines, and built



in functions use virtually the entire core;

systern would require tape storage or the

cornputer.

The Matrix Evaluation Subroutines
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to expand to a 20 rnember

use of a larger capacity

The rnatrix evaluation subroutines, ACOE, BCOE, and

GAUSS, along withthe other subroutines, ANGLE andKINE, were given

distinct identities for several reasonst the saving of core storage,

ease of checkout, and the enhancernent of understanding the total

operation by sirnple presentation of distinct pieces,

The three rnatrix evaluation subroutines provide the

rneans of calculating the angular rates and angular accelerations of

the mechanism links if the link lengths and directions are known, as

well as the drive rnotion. Basically, it is a prograrnrned rnethod of

solving n equations for n unknowns, such as (45) through (54).

There exist several established rnathernatical rne.thods for doing this.

One in particulat appears well suited to handle a large rnatrix with at

least sorne zero coefficients, and which can conveniently be prograln-

rned for autornatic solution. The rnethod, generally attributed to

Gauss (4, p. 428), (7, p. Z8), is cornrnonly called t'Gauss reductionrr.

The technique is that of starting with a set of equations, as in (55),

and solving it in five operations.
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"I r*r * '!z*z

"zl-I * ^zz*z
aa

"r3*3 * " '

^23*3 + " '

+

+

+

+

a_xInn
a^xzr| n

axnnn

=b1

=lr 'z

:

=! n
(55)a.rI*I * ^nz*z{ "rr3*3 + "' +

Step one: Deterrnin" "ij of greatest absolute rnagnitude. If i+ l,

exchange ith row with first row. If j + I, exchange jth colurnn with

first colurnn. This is necessary to prevent division by zero in Step

Two in case alI = 0, and is also beneficial in reducing corrrputation

error by ensuring division by the largest possible nurnber.

Step two: Divide new row one elernents by new all.

Step three: Multiply rnodified row one by 
"ZL 

and difference with

corresponding elernents of row two. Do likewise with a' and row

three, an, and row four, etc.

Step four: the new set of equations will look like (56), where prirnes

indicate the result of the prescribed operations.

*t+ri Z*Zt "ie*g+... *al,,xr, = bi

o + aizxz* ^'zl*l + ... * "lrr*, = bi

aa

a.a

la

0 +ar^x^+a'^x^+...tla a tt5 5
1a'xnnn =bt n

(56)
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Ignore row and colurnn one and repeat steps one, two, and three on

the rernaining array. Continue operations until set (55) is a unit

diagonal like (57).

*t { "'iZ*Z+ u';3*3 *... +.ir*r, - bi'

o + xr+a')rx?+... f "lrr-r, = b';

0 + 0 + 0 +... + x = b" (57)nn

Step five: With the unit diagonal rnatrix (S7), first use *r, = bl]

to solve for xrr_, in the previous row; i. e.

*.r-l * "ii-l,n*r. = bii-t

*rr-l = br-r - ("rr-r, rr)ol]

Using x and x ., solve for x Continue until all xs are deter-n n-I- n-Z

rnined. W'hen perforrning this operation, the fact that the colurnns

rnay have been switched n-l tirnes during step one rnust be accounted

for. This is accornplished by rnaintaining a record of which colurnns

were switched for which adjusted rnatrix and, after solving for the

current x., switching it back to its original position before deter-
1

rnining Ii _t. The result will be the colurnn rnatrix of x in its

original order.

The foregoing Gauss reduction is perforrned by the
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prograrn as outlined. The outlirr"d aij coefficients are cornputed by

the subroutine ACOE, the original bs are corrrputed by BCOE, and

Gauss reduction is perforrned by Gauss. See Appendices C, D, E.

Subroutine ACOE. This subroutine, shown in detail in

Appendix C, cornputes the a-coefficients for use in the Gauss reduc-

tion subroutine, GAUSS. A11 data, except the rnatrix size specifica-

tion, MATRIX, is irnplicitly transferred frorn MAIN to ACOE through

COMMON. These data are R, NORDER, and THETAZ. The result-

ing values of the &,,ts, called AY(I, J), are transferred back to
U

MAIN by way of COMMON. The equations used to perforrn the cal-

culations result frorn the observation that a vector-loop about a link

polygon provides two sets of equations. The only difference in the

two equations is that one uses cos0 products whereas the other uses

sinO productsi the only difference between any two terrns of a single

equation is the values of R and THETA. For exarnple, considering

equations (33) through (42) and (45) through (54), the coefficients of

(r, and o. are identical and follow a pattern predictable frorn the11

original vector loop equations (26) through (30), First, z, and zU

are ignored because they are frame vectors and cannot move. By

assigning a nurnber to each link, a table such as Table II can be

prepared wherein the link rnernbers and loop equations are related

through vector signs and subscripts. In the table, each row repre-

sents a ve ctor loop equation(without f rarne ve ctor s ) and each colurnn
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represents a link. The table nurnbers are the signs and subscripts

of the vectors as they appear in the loop equations.

Table II. Vector loops and rnechanisrn links related through vector
signs and subscripts. The table values are called NORDER
(I, J) in the prograrn.

(Note: for prograrnrning reasons, with a rarn drive, link no. I rnust

be the driver; for a crank drive, the drive link does not appear in the

table. ) The table nurnbers are introduced to the prograrn by the ar-

ray NORDER(M, N). The absolute values of NORDER becorne the

subscripts of R and THETA2, and the sign becornes the sign of the

a-coefficients. Notice that each row of the table, or NORDER(M, N),

is used to provide calculation of two rows of a-coefficients. These

control values are used in the basic equations!

a.. = r. cos0.
UkI(

1+r; j = rosin0o

Link No. I z 3 4 5 6 7 8 9 t0

I
-6 -3 4

uz I -7, -6 -3 I

"3 7 -18 9 lI,-lc

-4 13 1l L4 -LZ

5
-13 16 -14 t7 .I:
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which in the prograrn appear as:

AY(I, J) = SIGN*R(K)*COS(THETAz(K))

AY(I+1, J) = SIGN*R(K)*SIN(THETAZ(K))

where K = lNonoun(M, N) I

(sa1

(59)

( 60)

(6r )SIGN = NORDER(M, ttt)/ X

I=2M

J = 2N-1

If two signed nurnbers appear in a single location in the

table, they also appear in two successive positions in NORDER,

which results in two calculations each of (58) and (59) and like

values being surnmed.

An exarnple would clarify. Consider row L, of Table II;

it represents the vector loop equation (28). To obtain the coefficients

of the corresponding equations (37) and (38), a set of values of

NORDER are prepared.

NORDER(3, J) - -I8, 0;7,0;0,0; 0,0; 9,0; -Il, -10;

0,0; 0,0; 0,0; 0,0.

The prograrn reads the first value of NORDER, which is NORDER

(3, l) = -I8. Using (60) and (6t1, the equations (58) and (59) becorne:

AY(6, 1) = -R( 18) '3 COS(THETA2( 18))

AY(7, I) = -R(18) x SIN(THETA2(18))

The variables R(18) and THETA 2(18) are read frorn COMMON
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and the calculations are cornpleted. Since NORDERI3,ZI = 0, AX5,2 )

and AYl7,Z) are stored unaltered. The process is continued until

ten values each of AY(5, J) and AY(7, J) have been cornputed, six of

which are identically zero because six sets of NORDER were zeto.

In this way the entire set of a-coefficients is cornputed

and then stored for use in subroutine GAUSS.

Subroutine BCOE. This subroutine, presented in detail

in Appendix D, computes the b-values required to solve for X in the

rnatrix product AtX = B, represented by set (55). Unlike the a-

coefficients, which are the same whether solving for angular rates

or angular accelerations or whether the drive link is a crank or a

rarn, the b-values are different for each case. Consequently, four

different sets of equations are required. Figure 13 presents the

prograrn schernatic.

The proper set of equations is selected according to the

control argurlents MoDE and IPTYPE. The nurnber of values corn-

puted is controlled by MATRIX. The argurrrent DRMR is the value

of the drive link rate, whether it is unit length per unit tirne for a

rarn, or radians per unit tirne for a crank. A11 other data appear as

arrays and are irnplicitly transfenred through COMMON. The arrays

are: AY, frorn ACOE; OMEGAZ, angular rates used to cornpute b-

values for o ; R; THETA?; and SIGN, equal to zero or *1, which is

used to give the b-values the proper sign.
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SI,'BROUTINE BCOE

S1= SIN(THETA2(1))
C1 = CoS (TI{ETA2( 1))

Compute Brs for A*w=B
with crank drive

with crank drive

Compute Brs for A*a=B and velocity
vector residues. p, without drive term

IPTYPE >1

Compute ram-drive terms for Brs and

residues and add to appropriate terms

Compute crank-drive terms for Brs and
residues aud add to appropriate terms

Figure 13. Schematic flow diagram for subroutine BCOE.
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The

rarn drive are

equations defining

(see (35), (36)):

the b-values for Artor = B with

bi = *frsino,

bi+1 = t ircoso,

BEE(I) = -SIGN(I)*DRMR*SI

BEE(I+I ) = -SIGN(I)*DRMR*CI

sl = srN(THETA2(1))

CI = COS(THETA2(I))

where

or

Theee equations require that the angle of the driver always be sub-

scripted (l). This rrreans the driver angle rnust be the first one in

the input data. The SIGN(I) terrn carries the sign of driver as it

appears in the original loop equation. If the drive link is not in the

ith loop equation, SIGN(I) = 0.

The equations defining the b-values for A*or = B with

crank drive are (see( I t ), ( I 2)):

bi = * rrS)cos0,

bi+I = * "IQsinO1

PROD = SIGN(I)*R( I )*DRMR

BEE(I ) = -PROD*CI

BEE(I+I ) = -PROD'FSI

the subscript of the drive link data rnust be (1). TheAs before,
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terrn SIGN(I) has the previous definition.

The rnajority of b-values for the A8o = B rnatrix are

zeroi they have a non-zero value only when the drive link is in that

particular vector loop, The b-values for A*o = B, however, are

rarely zero because, although only two or so have a drive link terrn,

everyone has n orrega-squared products (where n = no. of vectors

in that vector loop). This may be observed in equations (45) through (54).

For this reason, inthe prograrnthe ornega-squaredterrns are surnrned

andthen, if appropriate, the drive-linkterrns are added, The basic equa-

tions are: b = !", sino. o 
2

L L K KJJ

bi+I= ) 'n'ototdi

It can be seen that the coefficients of the ornega-squared terrns are

a-coefficients. In the progrann this fact is used and the resulting

equations are:

PRODI = AY(I+I, J),r914"cA2(J)

BEE(I) = BEE(I) + PnOolsOMEGAz(J)

PRODZ = AY(I, J)*OMEGA2(J)

BEE(I+I ) = BEE(I+I ) - PROD2*OMEGA2(J)

After surnrning these terrns, the drive-link terrns are added. For a

rarn-drive the drive-link terrns are (see (49), (a8)):
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bi -bi*2ircosOrr,.r,

bi+l= o'*'* 2f 

'sino'<'r'
Or, in the prograrn language:

PRODI = SIGN(I)*PR1VBR'rCt

PRODZ = SIGN(I)*ORMR,TSI

BEE(I) = BEE(I)-2. g*PRODli,'914r"A2( 1)

BEE(I+1) = BEE(I+L)-2. 0*PRODa*OMEGAz( 1)

The rarn-drive terrn is the farniliar coriolus terrn. The subscript of

R, THETA2, and OMEGA2 rnust be (l). The R and THETAZ subscript

of (I) is effected by placing the drive-1ink data in the first field of the

input data; the OMEGA subscript of (1) is effected by assigning the

nurnber I to the rarn-drive-link, as in Table II. Note, however,

that for a crank-drive, the angular rate is prescribed and, cons€-

quently, the drive-link is assigned no nurnber and does not appear in

the table.

For a crank-drive, the driver terrn to be added to the

b-values results frorn the equations (see (15), (15)):

bi = bi t "r.or0IO2

bi+t = bi+t i rrsin0rQz
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or: PRODZ = SIGN(I){<CI,rDRMR,rR( I )

PRODI = SIGN(I)*SI*DRMR{'R( 1 )

BEE(I) = BEE(I)+ P3OPI'TDRMR

BEE(I+.I) = BEE(I+1)- PRODZ*DRMR

After calculation, the b-values are returned to prograrn

MAIN by way of COMMON for use with subroutine GAUSS.

An additional feature of this subroutine is that during

calculations to obtain b-values for [*6 = B, sorne of the results are

used to calculate the residual, p , in

\-
L""" "oi'i = P(i)

r
Ii"i'oi"' = P('i)

In addition, the following calculations are rnade.

)l ,..o.trrjl = total y-path

\) | r. sin0.o. | = total x-Path
L' 1 1 J'

The ratio of p to total path tirnes 100 gives the percentage of resid-

uaI error. In the prograrn

Pi = BUFFER(I)

total path = TOTPTH(I)

#xI00=BUFFER(I)=BUFI.ER(I)/ToTPTH(I);r1oo.o
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The final value of BUFFER is the percentage residual and is printed

out in Program MAIN. These values can be used to deterrnine effec-

tive closure of velocity vectors and accuracy of calculations.

subroutine GAUSS. This subroutine, presented in detail

in AppendixE, perforrns the Gauss reduction on the rnatrix product

AX=B, as generalized by set 55, using previously calculated a-

coefficients and b-values frorn ACOE and BCOE, respectively. The

argument MATRIX controls the size of the rnatrix solved. The ar-

rays AY(I, J) and BEE(r) are irnplicitly transferred through coMMoN.

(Note: this subroutine is not restricted to linkage analysis; it is use-

able on any linear, square rnatrix). The prograrn schernatic is

shown in Figure I4. The prograrrl syrnbols and steps agree well with

those used in presentation of the theory of Gauss reductioni they re-

quire no further explanation. The phraserradjusted rnatrixtr used in

the program schernatic, Figure I4, rnay, however, require defining.

rt is best explained by exarnple. set (55) represents the original

rnatrix; then set (55) rnanipulated so the rnaxirnum la.. I is in the.U,

first row and colurnn is the first adjusted rnatrix. on this rnatrix

perforrn steps 2) and 3) of the Gauss reduction, drop row and col-

urrrn one and perforrn step I). The result is the second adjusted

rnatrix (sirnilar to set (56) with row and. colurnn one and a,), beirtg

maximurn 1"., I ). If the original matrix has n rows or colurnns,
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SUBROUTINE GAUSS

Determine max I AY (I, J) I

Exchange column J with first
column. Note column

Exchance row I with first rcw

AY(I,r)=0 Yes
v

x
TRIX,

lNo

lOivi+ 2nd element of first rcw by

IAY (I, J). Multiply quotient by

I first element of 2nd row and dif-
lf"rerr"" with 2nd element of 2nd

l-*. Exhaust column 2. Divide
j 3rd element of first row by

iaY tf. ll. Exhaust column 3.

,Repeat rutil all columns, in-
lcluding BEE column, have been
I adjusted.

Starting with
MATRIX), S,

in reverse or<

ing Xrs in rel
column swapl

x (MATRTX,
rlve for Xrs

ler, exchang-
'erse order of
ring.

Nomatrix a unit \- Yer\--
diagonal ? /

AY (MI
MATRIX) = Q

No

Drop first row and column

Figure 14. Schematic flow diagram for subroutine GAUSS
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there will be n adjusted rnatrices, the first having n x n terrns and

the nth having one terrn.

In the Gauss reduction, the first row of the rnatrix is

divided by the first elernent of that row, ,lii, Under certain condi-

tions, such as at a linkage singularity, the rernaining coefficients of

the adjusted rnatrix are zero, including al. . This warns of a singular

rnatrix. The reasonforindeterrninacyinthe systern may be due to a

rnathernatical singularity or a result of an error in the input data.

To assist in analyzing the nature of the problern, instructions are

included to write out the AY -array, BEE -?.rrd;yt and COLSWP.

If division by zero is not encountered, the subroutine cornputes

the cornplete x-array, which rnay be either angular rate or accele-

ration, and transfers the data and control back to prograrn MAIN.

The Angle Computation Subroutine

The angle cornputation subroutine, called ANGLE, is

presented in detail in AppendixF. Its purpose is to calculate new

approxirnate link-vector directions frorn acceleration data and to

refine these angular approxirnations using the angular velocities

calculated frorn the approxirnations.

The argurnent MATRIX controls the size of the NORDER

array to be used in rnaking the calculations. If argurnent CNTROL= 1,

angle incrernents are calculated using equation (17), repeated here
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Equation (I7) presurnes o = constant over tirne incrernent DELTEE;

consequently, this rnode is used only for the initial approxirnations.

If CNTROL = Z, refined approxirnations are rnade using the average

between new and old values of or; this equation is (I9), repeated here

for convenience:

for convenience:
Z

eat= oOT + r,r,At *00

e = (co+",)$L + oo

Since sorne values of NORDER

some angle approxirnations are repeated.

ing a few calculations is outweighed by the

logic and less stored data.

(tz1

(re)

are repeated (see Table II),

The tirne -cost of repeat-

convenience of sirnpler

Equation (19) requires that values obtained frorn (t7) are used in

ACOE - BCOE - GAUSS to obtain sr. The data arrays NORDER, X,

THETA, OMEGA, AND THETAZ are irnplicitly transferred by way

of COMMON.

Angle values are returned to MAIN by way of COMMON.

T ranslational Kinernatics Subroutine

The last subroutine to be discussed computes the translation-

al kinernatic data and is called KINE. The prograrn appears in detail in

Appendix G; the program schernatic is shown in Figure I5.
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SUBROUTINE KINE

)o
NMSTEP

\<r
READ: NMPTHS, NMTRMS (I), NCOUP

\-/
_l'o

READ: RCOUP (I), DETTA (I)

READ: ISIGN(I), ICQWNC(I), IOMCOR (I)

All paths complete

Compute relative translational
position, velocity and acc.

Compute coupler point Kinematics and
add to previous vector step

Path complete

NMSTEP-NCOUP

PRINT: NMSTEP, IPOINT, X, Y, X, y, X, y

INITIAUZE

:NMSTEP

Figure 15. Schematic flow diagram for subroutine KINE
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Fundarnentally the prograrn is rnerely an algorithrn based

upon equations (3), (4l-, and (20) throug]n (231. These eguations pro-

vide the translational position, velocity, and acceleration of one end.

of a vector relative to the other end. The translational kinernatics of

one point, then, can be described relative to another point by adding

like kinernatic cornponents along a vector path frorn the reference

point to the point in question. If the cornputed data is to be used. in

equations of dynarnics, the reference point rnust not have rnotion rela-

tive to absolute space. This is achieved by placing the reference point

for the linkage at a frame pin. Velocity and acceleration rnagnitudes

are unaffected by the reference point as long as it is fixed. Position

data, however, is affected. For consistency, it is suggested that the

frarne pin of the drive link be used as reference for all linkages.

Data frorn prograrn MAIN is transferred through the sub-

routiners argument (i. e,, NMSTEP, ALL) and by way of COMMON.

The data read in is defined as follows:

l) NMPTHS -- controldata: instructions as to how rnany
distinct vector paths will be traversed.

Zl NMTRMS -- control data: instructions as to how lnany

vectors there are in each path,

3) NCOUP -- control data: instructions as to how rnany

coupler points are to be defined kinernatically. (A
coupler point is any point other than the origin or terrni -
nus of avector; in linkage.parlan.ce, a coupter point is
any point,on a rnoving rnernber which is not at a joint. )
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4l RCOUP -- corrrputational data: the distance, incon-
sistence units, frorn the last point on a vector

to the coupler point. RCOUP(N) will be associated

with path N; note, however, that if there is one coup-

ler point it will be associated with path nurnber one,

and so forth.

5) DELTA -- colnputational data: the angle, in degrees,

which, when added to the direction of the last vector
step, gives the direction of the coupler point. Order-
ing rnust be consistent with RCOUP.

6) ISIGN -- corrrputational data: rnust be +1. It provides

polarity to the traversed vector along the vector path.

Used with ICQWNC and IOMCOR.

ICQWNC -- control data: This array provides the

subscripts of the vectors traversed along a path.

8) IOMCOR -- control data: the array correlating the

vectors, on a vector path, with the appropriate

OMEGA subscripts. If the vector is a frarne vector,
the IOMCOR value is zero.

Caution: For reasons of prograln sirnplicity, no provisions are rnade

for a path including the drive-link; consequently, such a path cannot

be used.

Output of subroutine KINE is:

NMSTEP -- defined in MAIN

IPOINT -- the subscript of the vector for which trans-
lational data will be provided. If positive, the data

refers to the vector head; if negative, it refers to the tail.

7)

1)

z)
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3) X -- (not the sarrre as in GAUSS) the right-positive
horizontal distance frorn the reference point, or
beginning of vector path.

4l Y -- the cartesian cornpliment of X; positive up.

5) XDOT -- the horizontal velocity of IpOINT; positive
right.

6) YDOT -- the vertical velocity of IpOINT; positive up.

7) XDBLDT -- the horizontal acceleration of IpOINT;
positive right.

8) YDBLDT -- the vertical acceleration of IpOINT;
po sitive up.

rf ALL = 1, the iterns listed witl be read out for each vector step. If

ALL = 0, only the data for the last point will be output. rf Ncoup > o,

kinernatic data for the last point will be followed by data for the coup-

ler point, until NCOUP is exhausted.
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VALIDATING TEST CASES

In this section, the cornputer results of the analysis of

three linkages will be presented. The first linkage test case is that

of the eleven-bar (ten rnoving-bar) systern schernatically represented

in I'igure Il and which was rrruch discussed in the section "Kinernatic

Evaluation of cornplex Linkages.'r The analysis of this linkage will

be used to validate the analytic techniques, as well as dernonstrate

the capability of the FoRTRAN prograrrrs and. their rnethods of use.

The last two test cases are shown in Figures 8 and 9. These two

cases, discussed in detail in the subsection rtMathernatical Singu-

laritiesrrwill be used to dernonstrate prograrn response to a linkage

configuration having either no solution or two; i. e. , a singular state.

Eleven-bar Linkage Test Case

This linkage is cornparable in cornplexity to the industrial

problern cited in the introduction. It also represents the rnost corn-

plex linkage which rnay be analyzed by the established prograrns, be-

cause of storage lirnitations. Consequently, it is a significant test

cas e.

A scaled vector polygon of the test linkage is shown by the

solid-line diagrarn in Figure 16. This polygon, or sornething sirnilar,

is required in the analysis to provide initial-position data. After



y,
 u

ai
tt

N

/N '.o N
(D

N o
N

6

U
9

o9 o 
;J

.
T

E
o r; <

o 33
l,

O
o

9.
 ,o o

!o 3i
:

*9 O
o

a

@

le
" 

I 
"

-N
i -;

{i
-,

 
1-

--
Y

 I

W

I N o

5 I c o

:N
 

t 
I 

I 
lw

ith
ir=

-lu
ni

t/a
ec

q H
.

0a { o I f'J o o R I d p H P
. F p 0a o o o c+ 4 p. H
. p ga B p |-
t



7Z

scaling lengths and angles, a new exaggerated polygon such as in Fig-

ure lI should be drawn. The new polygon {acilitates the writing of

accurate vector loop equations for angular analyses, and sirnplifies

the selection of a vector path for translational analyses.

Required Data Cards. Reference to the appendices and the

previous section shows that the required MAIN prograrn input data is:

Card I -- MATRIX, IPTYPE, MXSTEP, NUMCYC, MAXR,

DELTEE, DRIVER, SIG, IFRAME, HYST,

TRAKIN, ALL

Cards ?,3 -- (R(I), I = I, MAXR)

Cards 4,5 -- (THETA(I), I=1, MAXR)

Cards 6 to t0 -- ((NORDER(I,J), J = t, MATRIX), I = I,

MATRTX)

Figure 1I shows a possibility of five vector loops.

Grueblerrs equation, (24), proves the systern has one degree of free-

dorn. substitution into Paults equation, (251, provides the answer of

five vector loops, which agrees with observation. That there are

five vector loops lneans MATRTX = 10. The rarn drive requires

that IPTYPE : 1. Eighteen vectors means MAXR = 18. If the loop

equations are written as (26) through (30),a table such as Table II

can be rnade which shows that SIG = 0, 0, l, l, 0, 0, 0, 0, 0, 0. The

schernatic in Figure ll shows the frarne vectors to be zrar.d ,5i
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therefore, IFRAME = ?, 5, Figure I5 shows the rarn contracts with a

rate of I unit/ second; therefore, DRIVER = -1.0. The rernaining data

for card l, MXSTEP, NUMCYC, DELTEE, HYST, TRAKIN, and ALL,

are arbitrary. MxsrEP is selected as 9 and NUMCYC is set to 4.

DELTEE is chosen as 2.0 (two seconds per interval). since an esti-

rnate of repeatability is desired, HYST is rnade equal to l. The trans-

lational position, velocity, accelerations of certain points is desired

so TRAKIN = 1. To rninirnize calculations, the translational kinenqat-

ics of every interrnediate step should be printed; consequently, ALL

is set to I. These data are entered on the first input data card as

shown in Tab1e III, Part I. Positions and decirnalization is deter-

rnined by prograrn MAIN in Appendix B.

The next data of concern are the R's, the vector lengths,

and the THETAIs, the vector argurnent in degrees and rneasured posi-

tive counterclockwise frorn the horizontal. These data are deter-

rnined frorn Figure 15 and are entered on cards 2 through 5, also

shown in Table III, Part I.

The rernaining data required by prograrn MAIN are the

NORDER values -- that is, the vector subscripts in the velocity

vector loops. These are taken frorn Table II and entered on cards

6 through 10, as shown in Table III, Part I.

Since translational kinernatics were desired and TRAKIN

is set to I, subroutine KINE requires additional input data to de-

scribe the vector paths desired.

Card I -- NMPTHS, (NMTRMS(I), I = I, NMPTHS), NCOUP

Card 2 -- (ISIGN(J), J=I, NMTRMS)
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Card 3 -- (ICQWNC(J), J = I, NMTRMS)

Card 4 -- (IOMCOR(J), J = I, NMTRMS)

The total nurnber of cards varies, as with prograrrr MAIN,

according to what is desired. In this test case, a path is selected

which will inlcude every pin but the forward end of the rarn (this

pints position is given separately in MAIN). Consequently,

NMPTHS = I and there is only one value of NMTRMS, which is t 5.

No coupler point kinernatics is desired so NCOUP is left blank (tfris

also rneans no cards are provided which give RCOUP or DELTA).

The vector path is described by rsrGN and rcQ\uNc, cards z and, 3.

The path selected is, starting at the frarne pin of the rarn, z2 * z4*

'rg*'Lo*'!r1'16*'rT -'r5 -'r4- "r3 -'9''7 - 26 -'3*'5.
ISIGN(I), therefore, becornes I,1,Ir 1,I,l,Ir -lr -1, -1, -1, -1, -I,-I, l,

and ICQWNC(Dis2,4,19, 10, I1,I5, 17,r5,14,13,9,7,6,3,5. To be

able to rnake the correct calculations, the vector steps rnust be cor-

related to the angular velocity terrns. This is done in card 4. The

values to enter are established by correlating card 3 to Table II;

IOMCOR(I)becornes 944, 6, 6, 6,9, I0, Z, 5, 5, Z,2,3,0 (zeros are

entered for frarne vectors). The resulting data cards are shown in

Table III, Part I.

Results of cornputer Analysis. The preceding data cards

were addendedto the cornputer program decks described in Appendices

B through G. The ensernble was submitted to the oregon state
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',r';,itle III. Eleven-bar linkage data.

Part i. Input data key, input d:;ta, output data key

PIOGRA!,| XAtil tilPUr OATA CAROS

I llATRtIrtPtYPErliISIEPrllUllGYCrllAIRrDELfEErDtlYERrStGrtFRAltErHYSIrTRAKIllrALL
2r! Rll, IHROUGH llt, ll{ Uf{ttS
4r! IHE?A2lll THROUGH lltt lll DEGREES
6 IHROUGH 10 I{ORDERllrlt THROUGH llr20l

SUEROUTI'IE XTT{E TTPUT DATA CARDS
I llilPlHSr t{l.lTBl.ls(t{}tPfHSl r IICOUP
2 ISl6il(t' THROUGH lI{iiTRl,lSl ll I
, lcouflcl l, THRoUGH (t{}{?RMs l l L
r lollcoRll t THROTGH (llfilTRltslt I t

to I 9 tlt 2r0 -tr0OOlrOOOOOO 25llr
26ot0 6o70 l9ol0 l6e0! lr80 )tlO !ol0 1r!0 4ot0 2o80

' lrfO 6160 !160 1o90 20140 lto40 6o 14 2t6?
9!000 90o00 ll{ot0 llSo?7 !lr!0 6to!0 64.20 217r70 1tto20 105o70

l4lr70 126t6? l42ot0 t2c2O !7r!0 l!r10 104.2? 97.?1
0 0-6 0-, 0 r 0 0 0 O 0 0
t 0-6-?-l 0 0 0 t 0 0 0 0 0 0 0
0 o 7 0 0 0-t! 0 9 0-r0-tt 0 0 o 0 0 0 0 0
0 0 0 0 0 0 0 0lr 0lt 0t4 0-12 0 o 0 0 0
0 0 0 0 0 0 o 0-l! 0lc 0-14 0 0 0l? o-tr 0
ll,
t I I I r t t-r-l-l-l-t-1-l I
2 al!t0ll1617lrrclt 9 ? 6 r,0 r + 6 6 5 910 7 ) r 2 2 r 0

:

OU?PU? OATA

l:1:e:3 IHE^BB lll,tTfif,ts8Bxtlglr|l5?r 2ilDr 3RDr rrH 
^PPRoUr 

rn DEGREES

9 BUFFI II 
' 

THROUCH I IOI IVELOCI?Y PERCEIIT RESIDUALI
IO BUFFIIIT YHROUGH IlOI IACCELERATIOf{ PERCEII? RESTOUALI
iI ?HROSGIi 2, ililSTEPr IPOTIIIT Ir,Yr IDOTr YDOTr XDELDII YDBLDT

26 llltStEPr R(llr THETAz(tl
2?r2t TlrE?A2lt, THROUGH llSl til DSCiEES
29 EUFFIll, IHROUGH ll0l ltUFFl . ollEGAl ll{ DEGREES/SEC
!o ALPHAItt THROUGH l10l lll 0E6REES/sECrsEc

Part Z, Output data, position one

9toO0 9O.OO ll+r40 ll5.?? !to30 62o70 64.20 2l?o?l lrt'20 !0!o70
11lr?0 126o6? lO2o50 1!2o2O l?o!10 !Cel0 104r27 97r71

-oC0E-0! o!?E-05-o8lE-0t-ol7E-06 o74E-05-r3tE-0, ol!E-05-rltE-O5 rO0E-99.laE-0t
o00E-99-el2E-0!-o52E-06 o00E-99-rlaE-05 ol2E-01 r20E-0t c22E-O).00E-99 ol4E-05

I a o00 6o70 o00 o00 r00 r00
I f -6o97 2lol5 -2o)6 -1123 o?8 -olE
f lt 'lo?) 29t99 -3101 -lo!0 r90 'o25I l0 -Erll 26161 '2o52 -1o15 o77 -r4l
I tf -9o21 27 t52 -2.95 'l9l o7'l -oil
I 16 o12 43119 o7) -2ot4 -o57 -o49
I 1? -1o08 49114 l.l! 'Ztl) -o99 -o60
t -tt -l2r0t tlo9! -1.99 'o7) ro4 -o72
I -14 -lto6) tOc92 -2109 -ot9 r54 -ot3
1 -13 -9t21 27 til -2ol) 'o9! r74 -r5l
I -9 -to73 2)o7! -2 o48 -1t27 ott -o 20
I -? -6o9? 21o14 -2t56 'lc?! .7ll -ol8
I -6 -9112 16144 '2cit -lol9 o7t -.15
I -, -1e!! -r9! -o00 -o00 r00 o0O
I t o00 -o0l -o00 -o00 o00 o00

1 26rt0 9?o99
9?.99 89o99 llir99 115.76 !!r29 62.49 64.19 217o69 llEol9 103.69

Itl169 126o62 112r49 t2ol9 !?rtl !8139 104e26 97170
!o!4 -o9? 8o69 l0ol! -lclt -11 o36 -r.68 -5c7? -tc6t -l0oll

-lol9 -o66 -lo!l -2e24 2o!4 !o79 1o?t !o77 tol6 3o60
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106069 90o00
126.t6 t2e.?l
l0?rtl 90r00
12!o!0 l19o29
107.62 90r00
l2!ott tl9o67
t0?r6! 90o00
12?t79 ll9r53

r26E-0! ollE-0!
- r l3E-01-r 278-0!

2 2 r00
2 I -llo0l
2 ft -12o22
2 l0 -12o ll
2 ll -12r09
2 !6 1109
2 l7 -o02
2 -l) -l5tt7
2 -lr -l?o0?
2 -1, -12o89
2 -9 -to!8
2 -7 -ll o00
2 -6 -1316!
2 -, -lrll
2)cO2

2 24o60
107o62 09o99
L29t79 119o63

lo08 -1.61
-rll -r 16

ol7 -o02
.11 -o05
o14 -106
.r, -o 12

Table III. (continued)

Part 3. Output data, position two

l2trl? tt1o60 !1030 )9o2i 60o99 216tl2 l)7c22 90r5!
l+1.52 29.16 43.86 4tt25 l0t.rZ tt!r5t
l29tG) l!!r!? ?LtlO 60o08 61o?E 213o16 ltto66 t7o50
It?o96 2)t97 40rC9 40.19 100.21 lllo5l
129o47 Llto?2 !1o30 )9t9t 61.6, 2l?c)7 llllo06 t7.t3
138r35 26.ra 41e22 1O'o72 100.58 ll5r26
129ot6 lltol9 ?LclO )9.9, 61.65 2lloil l!to01 t?r?9
l!0o!l 26!r0 tlol9 10.+9 100.12 1l!o27

ttSE-0? o 008-04- o E4E-02- o 46E-0 t' o 24E-Q2- o10E-02-., I E-03 o 408-0!
o!2E-06-ol3E-0t o2?E-0! ol0E-Oi-ol4E-03-o28E-06 .l7E-0t o26E-05

6o70 r00 r00
lCo37 -lrl0 -1oO2
20o9l -1o83 -1r57
21t7t -1c72 -1o59
24r 89 -t o3C -l r 50

.00 o00

l6oC4 -.02 -3o09 -ol4 106
42rtt -o0l -3o09 -t22 .O4
29 o41 -1 o 39 -1 o52
28o60 -1o39 -lril
21oC7 -l o!8 ll.t0
22 o77 -1 o!8 -L c49
1tr28 -lol0 -1o12
Ito69 -1o6t -1o34
-1r0tr -o00 r00

-o ll -o00 r00
107r62
l29o+5 lrr.r, tlo29 )9o94 61o64 ZLto)l l54o0l
138o31 26otO 4lrl9 t0rt9 100.r, lllt27

6o36 7ol0 oll -6o19 -o20 -lo2) -ol0
-o77 -oE6 1109 lr39 1.56 1.13 o0o

Part 4, Output data, position nine

t2t -ol5
o25 -o20
t?9 'oL2
.?7 -o03
ct) -o02
ot4 -.01
o00 -o00
r00 -r00

67 o79

-!.e t
1.26

15r.2, 90o00
6to06 t19.2t

l!4o09 90r00
6!o!l 1lto48

l!tr!1 90o00
6lot? llto2t

lltrt2 90o00
6tt2) llto tt

oC0E-02-rllE 00
-. r8E-0 t-. ttE-o t

92o00
I 4 -llol!
I lt -lto 26
9 t0 -l)t77
9 ll -l!o!4
9 t6 Zclt
,t7 c9t
I -l) -l8o8t
9 -l+ -19o91
9 -lt -ttrl!
9 -9 -tOo!t
9 -? -l5rtl
9 -6 -2Oo)O
9 -, -lolC
9 , -r0l

9 l0ot0
lr+.44 t9.99
6?o2? llSo tl
)o7! -Eroi
2olO -1o90

174r56 195r92 tlol0
149o25 ,8.84 -l2rC!
L7lo?t 195 e87 !1 r30
l48o4i ,7o84 -l3otO
l74o13 19r.8? 31o30
148 o 21 ,7 .54 -13r60
l74o 10 195 oE7 3t o 30
148 r 1t t7.lt -13r66

. I 5E:01'. t5E-0 t- o43E-02
r19E-05-o l9E-0t .498-05

r00 r00
ot9 -o67
otE -o79
tt2 -1 r05
olJ -1r 12

-l o 16 -r2l -2o97

17.6, 22lol5 l6tr9f 2to06
102o13 l77ot6
16.61 22to66 l6trf6 27o)O

101o65 l?7rCl
16.27 22!t4l 163o9l 27.r1

101.41 l,??rlll
16o16 22to9! l6trt3 27.2)

101.33 l77oBl
. !0E-02-. 99E-03-o 478-01' o)2E'Ot
o00E-99-ol3E-0r-. l9E-0!l . l7E-0!

o00
o09
rl0
oOZ

_.00
-o40
-rt8
rl2
o17

-o00
-o l8

. o09
ot7

-o00
-r0O

16. l, 22?o2tl 163o79 27.2,
l0lo30 l7?o60

-o60 -2o94 -?cgl -loto
-2.r7 -2rll -2o16 -1o61

6r70
2o9I
2t12
t e7O
lr95

lr66
9 r46
7rE8
\o92
toTC
2o17
o8!

-loll
-o lt

o0O r0l

L) o9t
-l9r 2t
l$o9l

-l9o 79
14o l7

-19 o 96
llo16

-20 o0t
o 37E-01
r 5EE-06

.00
oO0
o0l
o0l
.04

-o92
-r09

o74
ol7
.04

-o0l
o00
cOt
o00
.00

la. t,
-20 e06
-6o1!
-tr16

o13 -2o90
o62 -o90
o60 -o89
olli -lrI2
.19 -t o3!
rl9 -167

o00 o00
o00 .00

l5trt4
174.08 l9t.E6 ?Lt2i
llEo09 t7o40 -13o69

-. ll 2ct9 -2oE6_l o 14 -o3l _?.24



77
Table IIL (continued)

Part 5, Output data, position I7

t0?rC0 90r00 129r70 l3!o6!
ll!o09 ll8r99 l!?161 2)t)l
l0?.6t 90r00 129rt9 l!3 r!6
l2to72 ll9o!5 ltlo?t 26.21
l0?.a, 90.00 129o46 l!)o9l
L2to79 lt9o62 l!tr!l 26o29
107.6t 90.00 t29rt6 l!!.!4
l2r.aO ll9o6! t!Er32 26o30

- o ltE-04 o00E-99-o65E-04-r 20E-04
r00E-99-o2?E-0! rllE-05 rliE:oi
l? 2 r00 6o?0 r00
l? I -1lo0l lto!? lo!0
l? la -12o22 20r9! I o83
l? l0 -l2r l1 2?t?l Lo52
l7 ll -l2ot9 24rC9 lolE

!l r30
40r5!
!1r30
Olo12
31r30
tlo 18
!1o30
llo 19

o 92E-03
o l8E-05

r00
lr12
I t)7
I o)9
1o i0
! r09
9tO9
lo)2
1o 3l
tr50
I r49
1o 12
I r34
-o00
-oO0

31 r29
41r 19
-r 14
1r 09

2l2rEl
lllrl?
2lt t1t
ll5.r0
2lr.rl
1.1! r 28
2Lr.r2
115 r 27

o l8E-03
o4tE-06

59r9t 61.6E
39r?0 100oO2
79 097 61.67
40.42 100.46
t9.9' 61.65
40149 100 r 52
,1.9' 61.6t
+0 . 49 I 00. !t,

olTE-Ob t42E-O9
., l8E-06-o 578-06

r00 o00
.rt -r02
r41 -o0!
tt4 -106
clt -r 12

rO6
oO4

o2l -ol!l
c2) -o20
tlt -r l2
ot7 -o0!
tt) -o02
tt4 -r01
rO0 -o0O
rO0 -r00

)9.95 61.65
10.49 100.53
6o5t o2O
I r39 Lt55

119r!! t7.09

tt3o93 47.72

l5trOl 87.79

1t4o02 C7.79

o 568-04- o 90E-04
.8tE-06.C9E-06

13So0t 87.79

.10 !.88
r8O 1o28

115.90 loto66

117.82 105.4,

158.16 105o6?

l!0o19 105o69

r 68E-0!- o 16E-01
r32E-06.458-05

litr19 l0!o69

9t63 10otl
3ol3 to59

l? 16 lo09 !6rEt oO2
l? l7 -o02 12oC7 .01
l7 -15 -l)o?7 29144 le!9
l7 -14 -17o0? 2Er60 lr!9
l7 -l! -l2rt9 2418? 1 o!!
1? -9 -6r 18 22t77 I o!8
l7 -7 -llo00 l0o2t 1o!t0
l7 -6 -l!o6t 13169 L.6!
t7 -, -to !t -1 c04 o0O

.00l7 3 og2 -rll
l7 24o80 107162

107.62 89099 129146. lrt.r,
l2lt79 119o63 l38r31 26.30
-4o08 le61 -6136 -7ot0
-.1+ -o 16 -o71 -oE6.

-o l{
- t22

Part 6. Output data, position IB

9Eo)7 9Or00 ll5r 19
139o6? l2t.t2 1t0r20
9t.17 90r00 111.61

lllr4l 126c27 ll2r12
9t r04 90o00 I l4r 46

t4lr67 l26r19 142c45
9to0l 90o00 ll4o42

ttlo69 126o62 l42o{9
-.t68-02-. l!E-02 r2tE-02

o?lE-06-r 6!E-06- o53E-06
It 2 o00 6o70
It 4 -619! . 2l ol5
ta 'lt -7r!6 2tt9)
It l0 stoll 26o6)
It ll -9o21 27 o)2
l8 16 cl,Z t3o 19
It 17 -l o08 t9r 14
It -1! -12o04 ?lo9?
It -ta -1306! 10092
ft -1, -9o21 27 o5l
l8' -9 -1o7i 25o7?
It -7 -6r9? 2l r 14
la -6 -9o42 l6oitt
It ', -lot3 'c9)
It ! o0O -r01

It 26o80 98o00
98r00 t9o99 tl4o40

l4l169 126.62 lt2o49
-)o)9 c99 -tr68
-l o 19 -e66 -l o 80

It6.t0 3lo 30
29.84 5)t)4

It6.0r 31o30
3 l.a5 17:29

ll5o84 tlr30',2.16 17c46
!lt. ?9 3l o t0
,2.19 )7.49

o80E-04 ol0E-01
o llE-0t-.28E-01

o00 r00
2.)6 lt29
?cO5 lr30
2o52 1 o 13
2oi) t93
-o7J 2rE4

-lol3 2o75
1.99 o73
2o09 o60
2o95 o9?
2o48 lo27
2.16 lo?l
2o6t lo l9
r00 -r00
oO0 -o00

115 o7? 31o29
?2.19 5?.49

-l0ol! 4o92
-2o24 !r84

21r. t I
1l5t?7

I o25
lolS

61.t6 2l!ol0
102.3t 98r74
64.3! 2L7 o92

10r.92 9?o98
61.23 2l?o66

104.21 97o?8
64.21 2l?r70

104.26 97 t7t
r 36E-03-o2lE-03
o20E-05 o83E-06

.00
-r 18
-o25
'r 40
'e 5t
-c49
-o60_.72
-o83
-o Jl
-r20
-r lE
-o 15

r00
oO0

61o20 217o69
104.26 97.?l

5o68 5o79
1.32 lo77

62o66
,6.16
62.6'
,8.15
62.13
58tt7
62c51
58.?9

.26E-O3
o 6tE-06

o00
.78
o90
o15
.?4

-r67
-r99

r44
e99
o74
.E3
r7E
c79
o0O
r00

62o !0
58o39
11o3!
t.1E
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University IBM 1410 digital cornputer. The cornputer required about

five rninutes for loading the routines and an additionaL 25 rninutes to

perforrn the calculations and punch the output data cards (tirne could

be reduced by tape output or on-line printing). The cornputer rental

charge is $50 per hour, rnaking the cost of kinernatically evaluating

this extrernely cornplex linkage only $25, or about one engineering

rnan-hour. The tirne and cost are irnpressively srnall and are a sig-

nificant irnprovernent over the usual expense and tirne associated with

non-corrrputer rnethods of linkage analysis.

Because MXSTEPwas set at 9 and HYST at l, the cornputer

perforrned l8 sets of calculations, nine each way. This rnoved the

linkagers rnathernatical rnodel through its entire "range of operationil

and back to its original position. Although a design analyst working

with this linkage rnight be interested in the data frorn every step,

the prograrn capabilities can be effectively dernonstrated by display-

ing only the first, second, ninth, seventeenth, and eighteenth steps.

Positions one and nine are the extrerrles, and positions I7 and 18 are

the return positions of two and one, respectively.

Data for these positions appear in Table III, Parts 2

through 6, and are presented exactly as punched by the cornputer.

The key for deterrnining what each field represents is displayed in

Table III, Part 1. An even better key would be the prograrn itself.

Lines three and four of step one and lines nine and ten of
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the other steps give the arnount, in percent of total path, that the

velocity and acceleration vector loops failed to close. These values,

called residues (p ) provide an estirnate of the error in deterrnining

angular rates and accelerations. Even-values are p (*) or p (* ) and

odd-values ar. p(v) or p (y ). The largest velocity residue is found

in the x-velocity cornponents of loop one, step nine, and is only

-0. I I percent. Generally, the velocity residues are srnaller than

+ 0. 0I percent. very few of the acceleration residues are greater

than * 0. 00001 percent. The reason for the acceleration residues

being srnaller is that angles used in angular acceleration cornputation

have enjoyed one rnore iteration than those used to calculate angular

velocity. Additionally, there are a greater nurnber of terrns used to

calculate acceleration vector loops which would tend to dilute the ef-

fect of a particular terrn being in error. It is also interesting to note

that, whereas step nine residues are larger than residues of step one,

step 18 residues are generally an order of rnagnitude srnaller than for

step nine. This would irnply that residues are rrlore affected by the

values of angles, rates, etc., of a particular position than they are

by curnulative errors stepwise.

It is pertinent to subsequent discussion that a cornputer out-

put peculiarity be noted. The cornputer carries eight significant f.ig-

ures during cornputation, but truncates the results when the values

are printed out. The arnount of truncation depends on the value and.
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the field specification of the program, Most output fietds in the pro-

grarns specify only two decirnal places. This causes all lesser sig-

nificant figures to be dropped. For exarnple, consider the four nurn-

bers that rnight be carried in core storage as 98.090000, 98.099999,

98. 100000, and 98. L09999, If the prograrn called for these nurnbers

to be printed or punched, they would appear as 98.09, 98.09, 98. 10

and 98. 10, respectively. Quite obviously, there is actually rnore

difference between the first and second and the third and fourth nurn-

bers than between the second and third, although the output would be-

lie the fact' consequently, any two nurnbers (except the residues)

agreeing within *0.01 should be considered to be in cornplete agree-

rnent.

Considering the foregoing cornrnents, data frorn steps one

and l8 can be cornpared to provide the rnost convincing validation of

the analytic techniques and the FORTRAN angular prograrns which

have been developed in this paper -- except for the residues, there

is cornplete agreernent between the two sets of data, although they

are separated by l7 steps. The rnagnitude of travel over these 17

steps can be better appreciated by referring to Figure I6. In this

diagrarn, the solid vectors represent steps one and Ig, andthe dashed

vectors rePresent step nine. The rnathernatical rnodel rnovedfrornthe

extendedposition, to the folded, back to the extended.

The data used for drawing the two vector arrays of
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Figure I6 were obtained frorn subroutine KINE translational data for

steps one and nine. The translationalvector pathover this linkage was

carefully selected to begin and terrninate (itern rnarked 5) at the frarne

pin of the rarn; in addition, the path was allowed to cross over itself

at two points, 4 and -7, and lI and -I3. (It will be recalled that

these nurnbers are the vector subscripts of the traversed ve.:tors.

The rninus sign rrreans the step terrninated at the vector tail, whereas,

the lack of sign rrreans terrnination at the head" Refer, also, to

ISIGN and ICQIvVNC). As a result, if the translational kinernatics

are to be valid, the pairs 4 and -7, and Il and -13, rnust have identi-

cal values. The itern rnarked 5 rnust have all zero values since it

represents the origin. Steps one and 18 show this to be true, but

steps 2, 9, and l7 indicate a slight variation between position values

for pairs 4 and -Z and 1l and -13; they also showthat the position

value for itern 5 is not zero as it should be. However, that these

positional variations are in reality quite srnall and are curnulative

over the vector path, can be seen frorn studying the y-position data

of step nine, the data rnost in variance. First, the crossover pair

11 and -13 are separated on the vector path byvery little and, as a

result, have values with little difference. Pairs 4 and -7 are sep-

arated by nearly the entire path and are different by alrnost as rnuch

as the error in itern 5 which does represent the entire path. These

facts indir,ate the error is curnulative over the path. Next, the
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srnallness of the error is shown by the error in the y-position data of

step nine being only 0,4 percent of the total path. That the error is

not curnulative frorn linkage step to step is proven by the data of steps

l, Z,17, and 18; the errors are identical for steps one and 18 andfor

steps two and 17. Apparently, the error is a function only of the an-

gles. This agrees to a large extent with the variation observed in the

velocity and acceleration residues previously discussed. One strange

fact with no obvious explanation is that whereas the y-position error

for step nine is about 0.4 percent, the x-position error is only 0.04

percent, one order of magnitude srnaller. Sirnilar differences appear

in the other steps. The only difference in calculation is that the cosine

functions are used to deterrnine x and sine functions are used to de-

terrnine y. This, also, agrees with the velocity residues which show

about one order of rnagnitude difference between surrrs using cosine

functions and surns using sine functions. For exarnple, consider line

nine, of step nine, which displays the velocity vector loop residues;

the odd values ernploy cosine functions whereas the even values rely

on sine functions, The correlation is striking and suggests that the

cornputer built-in subroutines for deterrnining sines and cosines are

sufficiently different in structure that the sine generator has rnore

inherent error than the cosine generator.
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The Mathernatical Singularity Test Cases

The two test case linkages to be discussed in this sub-

section are shown pictorially in Figures 8 and 9, representing the

Type I and Typu II singularities, respectively.

Type I Singularity. I'or the Typ" I singularity, the linkage

is defined by the position vectors z, (the driver), z, (the floater),

z, (the follower), and zn (the frarne). The lengths are 1. 0, Z. O, l. 0,

and 2.0, respectively. The initial angles are l7Oo, 0o, -IOo (oppo-

site sense to that shown in Figure 8) and 180o, respectively. Quite

obviously, if a step is calculated at 01 = 1800, the progran-r, being

appropriately coded, will detect an atternpt to divide by zero, and,

after printing out the existing AY-array and then upon restoring the

original AY-array and printing it, wiil terrninate further calculations.

In a cornplex linkage analysis, however, the probability is very srnall

that the calculations would exactly (to eight significant figures)fall on

the singular position. This suggests that a practical dernonstration

would have the singular position fall exactly between two calculated

positions. Consequently, arbitrarily setting the crank rate at 5o/ se"-

ond counterclockwise, the tirne interval is rnade 0.8 seconds. This

will place the singular position between the 178o and 18Zo positions

of the crank. To cornplete the dernonstration, the prograrn will be



instructed to continue to

to the original position.

tions using the foregoing

l85o o., the crank,

Table IV presents

criteria. The key
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and then return, if it can,

the results of the calcula-

to reading the data is:

Line I

Line Z

Line 3

Line 4

Line 5

Line 6

Line 7

-- 0I'oz'o3'Q4

-- p(i), p (ri)

-- p(i ), p (i)

-- step nurnber, ,1, 0l

-- ol, oz, 03, o4

-' uz' '3
oz, o3

The data shows no abrupt rise of any values for step four

which is just across the singularity, nor even for the next step, rrurrr-

ber 5 (step 6 is the sarne position as step 5, but with the crank re-

versed), but on the reverse pathanornalies develop. First, angular

data for each step are significantly different frorn the values calcu-

lated for the cornparable position during counterclockwise rnovernent

of the crank; i. e., hysteresis has developed. Next, the x-velocity

residues are beginning to be appreciably large, that is, two to three

percent as cornpared to the maxilrrurrr of 0. I percent for the consider-

ably rnore cornplex eleven-bar systern. Finally, the sirnple systern

failed to return to its original state. It can be deduced that a rnore

complex system would have even rrrore obvious anornalies which
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Table IV" Typ. I singularity output data.

Colrilr. n I

170o00 o00 -10100 tEgrOO l

r!8E-06 o!?E-O)
o37E-0! r66E-06

t I o00 169o99 i

169r99 o00 -9o99 l?9o99
-r00 !oO0
-r00 r00

1?to00 -r00 -6r00 lgO.0O
.009-99 ol0g-63
r62E-06 rl3E-05

2 loo0 l7tt99
1?3r99 -r00 -!r99 t79r99

-r00 5o00
-r00 .00

178o00 -o00 -1r99 180.00
o5?E:0! c?9E-02
rlSE-03.13E-05

3 I o00 177 t99
177 o99 -r00 -1o99 l?9.99

-rO0 5rO0
-rO0 o00

I 82 o00 -r 00 2 rO0 l80oO0
.92 E-04-r 7-6 E-01
o74E-06 r65E-06

I lr00 161199
lElo99 r00 lr99 179o99

r00 1t99
-r0l oO2

1E6o0O -.00 6o00 IBO.OO
r 5EE-03-o 538-01
o5EE-06 r00E-99

! I o00 18! r99
185o99 .00 io99 l?9r99

.00 4r 99
-o00 r00

SgE'."1_
186o00 r00 5&9 180100

-rl9E-0t ol?E-01
: -r!6E-06 r69E-06

6 lo00 lEie99
i tol.gg ooo !r99 ll9o99

o00 -!r00
r00 -rO0

lE2o00 r00 t r98 180o00
-t22E-O? rlOE 00
-o2!E-05 oISE-O!

7 I o00 lEl o99
18lo99 o00 lo98 l?9o99

o0l -1r02
o06 -o t3

l78rO0 o04 -2 o08 l80oO0_rlgE_02_r3lE 0l
-ol2E_0l.0oE-99

I I rO0 l?7o 99
177o99 -.O2 -1o99 179o99

-r09 -4o 80
r4E -o96

174o00 o0! -6o l0 l8Or0O
-o23E-01-o218 01
_o2tE_0! o65E_06

9 I rO0 173 o99
l7tc99 -.07 -1o84 179.99

-o04 -4o91
oO7 -r l{

170o00 -r09 -9o81 l8OrO0
c?7E-O2 ol2E 00
.00E-99 r64E-06

l0 I rO0 169o99
t69o99 -o07 -9o84 179.99

o04 -!r09
-r04 o09
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should warn the analyst that a singularity had been traversed (or that

there were errors in the input data).

Type II Singularity, The Type II singularity, depicted in

Figure 9, is the result of the linkage being rnoved to a state such

that it has becorne a structure. This type of singularity is easily

detected since the singular state is generally preceded by a sudden

rise in angular rate and acceleration. For this test case the values

1.0, 1.048, 0.684, and 1.0 are usedfor the vector rnoduli, "1, ,2,

,3, and rn, respectively, and 110. ooo, -19.82o, -58.60o, and

lgo.0oo are used for the initial values of 0 l, oz, 03, and 0n respect-

iveIy. The rnoduli are the sarne as in Figure 9. and have already

been shown to create a singularity at 0, = 120o. The crank velocity

was set to 50lsecond counterclockwise, the tirne interval was rnad.e

0.8 seconds, the nurnber of steps was selected as five, the hysteresis

mode was chosen, and the nurnber of iterations desired for conver-

gence was set at 3.

The results of this linkage analysis are presented in Table

V. The key for reading the table is the sarne as for the Type I data,

except the iteration produces three lines of angles at the beginning.

They quite clearly show the approach to, and the passing over of, a

singularity. Beginning with the step prior to passing over the singu-

larity, angular velocity and acceleration increase sharply. The data
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Ta.L,le \r' Type II Singularity output

Colurrin i Colurnn Z

10 I r00
lO9o99 -5o46
-tolt -6o6E
-r 11 -o 1.0

data.

ll0r00 -19e87
.00E-99 r l6E-05
.188-05-020E-0,

I I rO0
109.99 -19r86
-lo!0 8o96
-o86 1o19

1 l4o 00 -?1.3)
I ltr 00 -21 o 46
114o00 -21r48

o59E-02 r48E-02
r25E-05 rE5E-06

2 1100
I 13 r 99 -2L.49'
-2o51 10o45
-l o 92 2o82

I l8 e00 -24tt4
ll8oOO -24o71
I 18 r 00 -25 tA4

c25E OO r41E O0
r l?E-05-o l6E-05

3 l.O0
I I 7r 99 -25o22
-6r 7E l6 r 81

-14c2? 2Lo64

l22oOO .tit20
122o00 -2!o54
l22tOO -30o14

IZOE 02 o50E 02
.71E-05 r l3E-05

4 1o00
l2lr99 -15o02
92t27 -43t07

-6Lo?5 92t85

l26o0O -8r84
l26rO0 -2t06
126o00 -lr7l

-t24E-O2 o98E-03
r63E-06 o00E-99

t I o00
125o99 -l o 70

I r02 6t46
-o08 -r03

126r00 -lr?0
126o00 -1. r70
126o00 -lo?0

o00E-99-o49E-05
ol2E_01 oO0E_99

. 6 1100) l25.gg -1. To
-l r02 -6r46
-r08 -.03

122r00 -2c55
l22oOA -2t55
l22o0O -2c55

r l0E-05-r!4E-05
.009-99 r00E-99

7 1oO0
121o99 -2o55
-l o09 -6r 50
-oO9 -e05

I l8 r 00 -9t46
1 l8 o00 -3c46
I lE o 0O -3o46

r00E-99-r l2E-05
r57E-06-rl3E-05

8 1100
I l7r 99 -?o46
-lr 15 -6o55
-.09 -106

1 14r 00 -4t42
I 14r 00 -4c42
114000 -4t42

r00g-99-.50E-0,
o55E-06-o l6E-0,

9 1o00
I 13 r 99 -4t4?
-lo2) -6161
-r l0 -.08

110o00 -5c46llOoOO -5o45
ll0r00 -5r46

-ollE-0{-e488-05
r n3E-06-r 198-0,

-58 o 60

109r99
-58 o 59

-51 r04
-50 o 86
-50 r 83

ll3r99
-50 o 83

-41 o 56
-40 o 65
-40 o 19

11?o99
-39 c92

-L9 c54
-37 t99
-26 o28

l2lr99
-50 o42

-55 tl7
-64 o 79
-65r07

125 o99
-65 oO6

180.00

179.99

1E0.00
180r00
180.00

I ?9.99

l8 0.00
l8 0 .00
180o00

L79 t99

180.00
180 r00
180.00

179 o99

180.00
100.00
180.00

179 r99

-6! r 07
-65 o0?
-65r07

l?i o99
-61r07

-7Oo26
-74 t?6
-7O o26

121r99
-70 o26

-75r48
-75 r 48
-75 t48

117o99
-?5.48

-80 r 75
-80r75
-80 o ?5

t13o99
-80o75

-86 r 07
-86 o08
-86 o 08

I 09o 99
-86 r 07

180r00
l8 0. o0
I 80.00

179.99

l80o0O
l8 0.00
180r00

l79. gg

l8 0.00
180.00
180 o00

1 79.99

180o00
180.00
180oO0

l?9o99

180.00
180.00
I 80.00

179r99
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for the first step beyond the singularity shows velocity residues as

high as 50 percent. Angular velocities increase in rnagnitude but

change sign. Angular accelerations increase fourfold over their pre-

viously high values. Beyond this point, angular velocities and accele-

rations drop to very low values. When the crank returns to its origi-

nal position, the other data show no sirnilarity to the original values.

It is rnuch as if the linkage had snapped upon encountering the singu-

larity, which it probably would have, had it been an actual, rather

than a rnathernatical, rnodel. The analyst should encounter no diffi-

culty in detecting a singularity of this sort.
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CONCLUDING REMARKS

The expressed purpose of this paper was to deverop analytic

techniques and cornputer prograrns for the evaluation of plane rnotion

rnechanisrns, Inasrnuch as a rrrechanisrn has been defined as a con-

strained kinernatic chain, any evaluation of it rnust also be kinernatic.

In addition, the terrn rnechanisrn has, in this paper, been used to de-

fine the principal class of kinernatic chains known as linkages. Fur-

ther, in avoidance of pedantic discussion of rare applications, the

developments were restricted to single degree of freedorn linkages

with turning joints and either a crank or rarrr drive. The stated pur-

Pose, ternpered by these practical considerations, has been futfilled

by the preceding sections and has been validated by the kinernatic

analysis of the eleven-bar linkage and the singularity test cases.

The digital computer prograrns presented in this paper can

be used directly by any analyst having access to an rBM 1410 digital

cornputer. The general language used in prograrnrning also makes it

quite easyto convertthe prograrnto awidevarietyof other scientific digit-

al cornputers. Verylikely, the only rnodifications would be to the input/

output instructions. Since digital cornputers are becorning increasing-

ly available, virtually every linkage analyst could gain access to a

cornputer which would accept the linkage analysis cornputer prograrns.

The prograrns and associated rnathernatical theory,
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however, should not be accepted as an ultirnate in linkage analysis but

rather as a sound basis for additional development. The prograrn

could be rnodified to accept a variable velocity driver. With greater

storage available (such as riagnetictapeunits, larger core storage,

etc. ) the prograrns could be altered to handle rnore cornplex linkages

or linkages with rnore than one degree of freedorn. Instructions could

be added which would cause the cornputer to rnodify the linkage georne-

try and then re-evaluate, and, in this wErl, obtain a spectrum of link-

age designs.

Linkage analysis, albeit irnportant, is but one phase of

rnechanical design. Having determined the rnotion and geornetric char-

acteristics of the design, the next step would be to analyze the dynarn-

ics, static loading, rnernber stress, space budgeting, bearing loading,

and so forth. These analyses all would ernploy data obtained frorn the

linkage analysis programs, but would, hourever, require the introduc-

tion of a third dirnension in order to describe volurne, rnass, rno-

rnents of inertia, etc.

with these developrnents, the design analyst wourd be re-

lieved of an even greater burden of routine calculations allowing hirn

to work rnore as an engineer and less as a technician. The advance

in the developrnent of a cornplete prograrn would be the conversion of

the analystts trjudgernenttt to cornputer logic. with this, the cornputer

would arralyze the Linkage in precise detail, rnake a decision as to
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whether the design were optirnurn, Ernd if not, rnake a logical change,

and re-evaluate. The system would then be approaching the true

goal -- autornatic design.
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Appendix A. Prograrn CLOSURE

f0flt3 EIEO FORIRA]ir.tttrICLOS
Dlt'lEtlstOt{ Rl20tr fHE?Al2Of r IIORDERI!r20tr Blt0tI IiAIEUPlt,

I r llul{S ( l0 I
5 FORT,|AT t2t3t
6 FORi{A? . I l0F8 02 I
? FOR'{AT (20t3t

,6 FORl,lAl I l0Fto! I
.' FORHAT ('T'I

100 FORilAT l2llrlFto2l
I READ (lr!l llA?RlIr IIAIR

READ (l16l lR(llr I . lr I{AXRI
READ (l16t TIHEIA(ttr I r tr trtAxRt
ilAf l r ilAIRlx/2
DO l0 I - It HATI
READ llr?l NUllr IIIORDER(lrJlr J r lr llUlll
tlullSlll .llUtl

t0 cot{?lr{uE
DO l, t r lr I{AIR

l, THETAIIf r THEIAlltll?c29/lj
OO 20 l.'1r ltlATRlI

20 Elll . Or0
OO f0 I . 2r l|ATRlIr 2
L.l-1
F' l/2
l{Ultt r llUltlS(Kt
DO ,t J . lt ,{Ul'l

30 I! rIABS IIIORDER(KrJt t
Sl6ll r i{ORDERIKTJI/ill
B(Lt ' 6(Lt + stGrlrRlttlllrSlll (THETA(r,ltlt
Bllt . 6(ll + StGtl.Rll{lrICOS lTHEIAllillt,

,5 COilrlilUE
40 COI{TtrUE

ilRlYE (!r!61 lE(llr t r !r llA?RIxl
REAO tlrlrt ilaAxEup(tt, I. lr t{AIll
DO lO, I t 2t HAfRlIr 2
J. ll2
ill .IABS (I{ATEUP(Jt t
Slcll . IATEUP(Jrl]11
I r Rll{!r}COS ITHETAI}t111r5151
C r Rll{t)rSlll ITHETAI,'ll, lrSlGN
BOT.-18(lt - A,
TOPr-lBl I-1 t -C,
AI{GLE.0oO
IF l8Ofl6Er56r52

,2 tF (fOPl76o71o76
5t AI{6LE . 0o 0

GO ?O 72
,6 tF lfOPr60r64r58
,0 ltlcLE . 1oF708

GO tO 62
60 AIIGLE r -l'o!708
62 RAO r TOP

GO ?O 78
64 AI{GLE . 0J0

RAO r 0o0
GO rO 76

66 tF l?oPr?tr?0r74
70 AI{6LE r !o 1.4159
72 RAD r 8OT

GO TO 7E
74 ANGLE r 3114159
76 AtlGLE r All6LE + AIANIfOP/BOII

tF (ABS( COSlAll6LEt l- 0.707tE0rt0'El
00 RAO . rOP/SIil(AN6LEl

GO rO 79
81 RAD - EOI/COS(AI{GLEI
79 tF (SlGlllC2tC2tTE
E2 AI{GLE r AI{GLE + 3ollli9
78 AIiGERR r AI{GLE - THETA(l{ll
9, RERR r RAD - Rllltl

ANGERR.ANGERR*!? o298 I
A|{6LE . AI{GLE*r?.29E5
IRJTE I!TIOOI I r IIlr RERR, RADr AI{GERRT AITGLE

lo, coilTtt{uE
GOTOT
EI{D



94
Appendix B. Prograrn MAiN

llOilti EIEO FORTRAI|orrr!rPCHrrllAlll
DlilEt{slOr{ AYll0rt0l r 6EEl l0l r f,l l0l r IUFFll 101 r I l20lr ?HEfAllOl r

I i{ORoERllr20lr olrlE6Alt0lr ALPHA(1O,, tHETA2l2olrSlG ll0l
2 t lFRAXElSlr ?HEAPP|20I

Colililor,l AYr BEEr Ir BUFFIT Rr THETAT I{ORD€Rr OllEGAr ALPHAT ?HE?42
I r StG

5 FORilAI llt!r2F10o4rl0F2o0rl7Ir 5llr 3Flr0l
l5 FORI'IAT 1 20I il
l, FORIIAT I I 0F8o2 I
6, FOR,/iAT I l0EB o2 I
9? FORIIAT l3Irl3 )2XI2FE.2l
9E FORIIAT I lOFEr4t
I READ llrt! llATRlXr lPtYPEr |,|ISTEPr llUllCYCr l{AxRr DELIEET ORIYERt
I Sl6 rlFRAllEr HYSTr TRAKIt{r ALL
READ llrlrt (R(llr l. lr llAxRl
READ (lrlrl lIHEIAlll; I r tr ItlAIRt
t{Afl. ilA?RlX/2
tlAT6 . XA?RtXr2
DO l8 t r 1r HAfl

l8 READ lltt6l IiIORDER(lrJlr J r lr ilAT6)
lll,lSYEP . 0
ZERO . lo0
tF IIPTYPE - l,2l12lrl9

r9 DRIVER . DRIVER/r7.29tE
21 DO l7 tr !r HAIR

THETA I tfr IllETAl ll l)7 c29)l
17 THETA2lttr THETAIIt
20 I?ERAT . 0
30 DO 

'3 
I . Ir l,lAxR

3' IHEAPP( t l. THEIA2( ll+r7.29C'
llRl?E (2rl!l lTHEAPPlllr I r lr ltlAXRl

32 CALL ACOE ( I.IATR I X I
CALL ECOE (IATRlXr DRIVERrClrSlr IPIYPET ll
CALL GAUSS ll,lATRlXrZEROl
lF (ZEROt38r38r40

3E CALL ACOE (XAIRIII
IRITE l3o gSlllAY(lrJtrJr lr ilATRlX'lrlrlrHATRtIl
60 TO r30

40 ITERAI r tfERAT + I
It lF lt{lttsTEPl50r5Ort5
45 CALL ANGLE ltlATRtXr 2o0r DELTEE,

lF (NUr{CYC - ITERAT,S0t)Otlo
,0 0O 60 Lil . lr llATRlI
60 OIIEGA(L141 r IlLltl

CALL ACOE (I{ATRIT'
CALL BCOE (ilATRlXr DRlvERrClrSl, lPfYPer 2l
URI'TE l2.6rt lBUFFllllr I r lr l,lATRlIl

66 CALL 6AUSS ll.lATRlxrZEROl
CALL ACOE (I,IATRIXI
l.l . -l
0O 68 t . lr IATRIX
EEEllt . 0.0
6UFFI(ll I 0o0
il r -il
S.-l{
lPil ,I+lrl
DO 6t J . lr l,lAlRlX
PROD!. AYllrJlrX(Jl
PROD2 . S|AY( lPllrJlrOilEGAlJtrOil€GAl J,
BEEII|' BEE|I' + PROD1 + PRODz

6t BUFFIlll. EUFFIllt + ABSIPRODI, + AES(PROD2l
PROD, . 2r0rDRtVERIOIEGA( I I
PROD4 r Rl 11*9PIYgPTDRIVER
DO ?, I r 2r ilAfRIXr 2
tF (IPTYPE - ll72t72t7?

?2 PROD1 r PROD3rClrSlGlll
PROD2' PRODr*SllSlG(1,
60 TO ?4

73 PROOI .-PROD4*SI*StGl l,
PROD2 . PROD4*C1*SlGl I I

?4 EUFFI(I-tt . lSEEal-1' + PRoDlt/(BUFFIll-l' + ABslPRoDtltllo0o0
?58UFF1(I t r IBEE(l t +PRODzt/(BUFF1lt t +A8SlPROD2llrl0oo0

IRITE l216!l lEUFFllllr I r lr IIATRIII

(continued cn next page)
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Appendix B, Prograrn MAIN (continued)

DO 80 I . lr litAXR
T6ETA(11 r tHfTA2ttt

80 THETAzlll r IHETA2lllli?o29tE
Nt'lStEP.M{S?EP+I
lF lTRAKlNtE2rS?r81

El CALL KINE lllttlSlEPr ALLI
82 YRITE lirp?l l{ilSTEPr Rlllr THETA2lll

l,RlTE 12r15) ITHEIA2I llr t r lr ltlAIRl
OO 9, l.l, lttAlRtX
ALPHAII I -Xll lr)1.29)E

9, EUFFll!t r OIIEGAlllr57o29JE
IRITE l2rl3l (BUFFl(llr I r lr IAfRtIl
IRIIE l2rt!l IALPHA(ltr I r lr ilATRlXl
OO200l.l;5
lilJ r IFRAMElll
lF l}{Jl200r200r20l

201 ?HEIA2 ltlJt r THEIAlflJl
200 COilItNUE

lF IIIXSTEP - lilxSTEP, l00rl2ErltE
100 tF IIPTYPE - ll1l0rllOrl2O
ll0 R(ll . Rlll + 0RIVER*OELTEE

GO TO r25
120 THEIAIll r THEIAIl, + DRIVERIDELTEE

THETA2lll r THETAIII
l2t CALL ANGLE ll'lATRlXr I o0r DELTEEI

GO TO 20
l2E lF lHYSIll30rl30rl29
129 DRTVER r -DRIVER

tlIXSTEP r 2rilxSTEP
HYSI . O

DO 127 I . It I'IAXR

127 THETA2{ll . THETA(Il
GO tO 20

130 GO T.O I
EI{D

Appendix C. Subroutine ACOE

ITIOIIII EXEO FORTRANTTTI3TPCHIIACOE
SUBROUTIT{E ACOE IMATRIXI
DtttlENStON AYll0rl0tr DUl,lll20lr BUFFlll0tr Rl20lr DUll2l20lr

I NORDERl5r20lr DUI{3l20tr IHEIA2l20,
COiltt(Ottl AYr DUl,llr BUFFIT Rr DUl,l2r ilOROERt DUX!r TXETA2
MAT2 . I'IATR lx*z
litATl-trlATRlI-1
DO 100 I r lr l.lATl.r 2
K.(l + lrl2
OO 100 J t 2t l4ATZt 2
JJ - Jl2
IF ltiloRDERlKr J-1t t20rl0r20

l0 AYllrJJl r 0.0
AY(l+1r JJI . 0o0
GO lO 99

20 Itl rIABS lI|ORDERlfr J-!ll
SIGNI . I{OROERIXT J-f l/}ll
PRODI . StGillrRlillt
AY(lrJJt r PRODI*COS (TXETA2ll,ll ,l
AY(1,+1r JJ' . PRODlrStll IIHETAz ll{ll I
IF MORDER (X,rJ I t 30r99r30

30 it2 rIABS (llORDERlKrJt I
SIGN2 . NORDERIKTJt/il2
PROD2 . SlGtt2*R I il2 t
AY(IrJJl r AY(lrJJr+ PRODzTCOS lTHETA2lX2l,
AYll+lr JJt .AYlt+lr JJI + PROo2rSl't lTHETA2ll{2tl

99 TRAI{S . tRArlS
100 cot{TtiluE

RETURN
END
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Appendix D. Subroutine BCOE

l40l{t3 EIEO FORIRAilT r I r3 rPCl{r rBCOE
SUEROUfItIE ECOE IIIIATRIXT DRIVERTCITSIr IPTYPET TIODET
Dll,lENSlOtl AYll0rl0lr BEEll0tr OilEGA2tl0t r BUFFERll0tr Rt20lr

I DUIItZ0,r tDUiltt00trDu[2t20tr IHETA2(20tr SlGitt0l
2 t TOTPTH( 10,
collf.loll AYr BEEr oxE6A2r BUFFERT Rr DUtr[r tDUHrDUtrtirTXE!A2rSt6icl . coslTHEIAatrt,
Sl r Sltll?H€fA2lrl I
l,tA? . ilATR lI - I
0O lO l. lr ilATRtX
IOtPtHltl r 0o0
SUFFERIII r 0r0

10 BEE|lt r 0o0
tF llrcDE - 1120r20190

20 lF IIPTYPE - l)!0r!0160
,0 DO t0 I . lr |tATr 2

lF lSlCt{(lll40rJ0o40
c0 EEEl ll r-SlGtll I trDRtvERrSl

BEEIt+lt r SIGtt(ltrDRtVER]CI
50 coil?l,tuE

GO TO 200
60 DO t0 I . lr tlAlr 2

lF lSlCr{lllt70rt0r70
?0 PROD . Slcill tlrR(1|*DRIVER

BEEI t I r-PRODTCI
EEEl l+1, .-PRODTSI

E0 cor{Ttt{uE
GO TO 200

90 DO 1r0 t r lr ltlAIr 2
DO t3O J . 1, tlATRtX
lFlAYl l+1 rJl I l00rl10rl00

lo0 PRODT r AYtt+trJtrOilEGA2lJr
oEElt, - EEEtlt + PRODllOtrtEcA2tJt
EUFFERII+I' . EUFFERIT+II + PROD1
foTp?Htt+lt r ToTpTH(t+tt + Ags(pRODlt

ll0 tF(AYl I rJl I 120r129r120
120 PROD2 : AYltrJlrOIEGA2(Jl

8EE(t+lt . BEEII+tt - PROD2TOilEGAZ|J,
BUFFERIIt . BUFFER(ll + PROD2
IoTPTH(lf r TOTPTHItt + ABS(PRoD2t

129 TRAIIS r rRAilS
lr0 coilttiluE

lF ( TPTYP€ -l I l{0rtrtOr170
1e0 DO 16O I r 1r llATr 2

lF (StG,{l I t ll50rl6Orlt0
150 PRODI r SlOl{llrrDRtVERrCl

PROD2 . StGl{l I trDRtVERrSl
BEE(1, . BEE(lt - 2o0rPRODlrOilEGAz(1,
EEE| l+ll . BEEIt+lt - Z.oIPROO2iOXEGA2all
BUFFERIII r BUFFERIT, + PROD2
B9FFER(l+ll r BUFFERII+1t - PnoDl
fOtP?Hllt r ?oIPTHttl + ABS|PROOZI
TOIPtHI l+1, . toTPTH( l+1 I + A0SlPROoI I

160 COiTntUE
OO l6t t r to ttlAfRll

16, BUFFERIII r BUFFERlll/TOTPIHlltrtOO.0
GO rO 200

170 DO 190 I r lr l4Arr 2
tF lSIGltl I I tlE0r l90rlr0

It0 PRODz . St6Nl tticlrDRrVERiRtl,
PROoI . SIG'tl I trslrDRlYER}Rtt I
8EE(T' . BEE(I' + PRODITORTVEN
BEEII+1, . BEEII+lt - PRoD2TDRIVER
EUFFER(II . BUFFERIII + PRODz
BUFFERII+1, . BUFFERII+ll + PRODI
IoIPtHttl r ?O?PTHttt + ABS|PROO2I
IOIPTH( l+1, . TOTPTHI t+1, + AOS(PROD1 I

t90 coITtr{uE
DO l9t I . lr ,ttATRlX

t9, SUFFERttt r SUFFERtn/rOTp?H(llrl00.0
2OO REIURI{

Exo
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Appendix E. Subroutine GAUSS

tlOtltt EIEO FORTRAiIT or rrrPCHr TGAUSS
SUBROUTIilE GAUSS (II{A?RIX IZERO}
0lilEIlSIO,l AYll0rl0t' BEEll0tr I(l0l r COLSIP(l0l
COIIHON AYr 6EEr Ir COLSIPq FORi,tAT I 1X, l2E 10.4 ,

104 FORI,IAI l7H ACOEF( rl2rlHrrt2r 9H) tS ZEROI
l{}l r l{AIRII - 1
DO 200 JAY . lr illl
AIIAX . ABS IAYIJAYT JAYII
COLSIPIJAYI r 0r0
DO t0 KCOL r JAYr I{ATRIX
DO t0 (ROI r JAYI i,lATRtX
IF lAl,lAI - ABS IAY(KROIT X,COLI I llOr49r49

l0 Al,lAX . ABS IAY(KROII (GOLtt
COLSIPIJAY, . KCOL
M$OI r KROI

49 IRAIIS . rRAilS
llCL ' COLSIPIJAYI

,O CONTtilUE
lF llilCLl9Or90r60

60 DO 70 fAY r JAYr liATRlx
BUF r AY(KAYr JAYI
AY(KAYr JAYI r AY(KAYrlttCll
AYIKAYT l,lCLl . BUF

70 coNrtfluE
DO 00 KAY r JAYr HAfRIX
BUF r AYIJAYT XAYI
AYIJAYT KAYI r AY(ltlROIr(AYl
AYII'IROTT KAYI r 8UF

8O CONTIXUE
BUF !'BeElJAYt
BEEIJAYt r 8EE(HROIt
EEEIiIROII . BUF

90 llNtJAY+1
tF lAYt JAYTJAY I I l00rt03rlO0

l0t XRITE l3rlO4t JAYr JAY
ZERO . 0r0
60 TO 

'20lO0 DO ll0 tCOL r lll{r lilATRlX
IO' AYIJAY.ICOLI . AYIJAYT ICoLI/AYIJAYT JAYI

DO 110 lROr . ililr ilATRII I

110 AY(lROro tCOLt r AY(tROIr ICOLT - AY(IROrtr JAyrlAytJAyr tCOLt
EEEIJAY, ' BEE(JAYI/AYIJAYT JAYt
PO 200 IROI r tlilr iIATRIX

200 BEEIIROII) r EEElIROI, - AYiIROIT JAYTTBEEIJAYT
lF (AYlI'4ATRIXrl,lATRtXl I Z2O t2lOtZ2O

210 IRITE ( 3rl04t [iATRtXr ilATRIX
ZERO . 0.0
Go To 320

220 X(irATRtXl r BEE(TATRIX,/AY(llA?RIXr ilATRtIt
DO 300 tt . lr Ml.l

l{ r i{ATRIX - II
xlNl ' BEElill
ll .N+1
DO 250 llJJ r l{r IIIAIRII

250 XlN, . xlltl - AY(l{r tlJJ ,rX(HJJ I
tF ICOLSIP(l{t 1300r300r260

250 ilCL . COLSIIP(I{,
BUF. Xl}{l
X(flt. Xlli{clt
I(ilCLt r 8UF

3oo 69111;*"
GO TO 32'

320 TRAIIS r TRAI{S
DO 315 I'1r I4ATRIX

!15 tRtTE (3r4) tAY(trJtr J r tr |{ATRtXt' ieettlr COLSrpltt
325 RETURN

END
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Appendix F. Subroutine ANGLE

i{Ota33 EXEO FORTRA||rrrr!rPCHrrAltGLE
SUBROUTIIIE A,{GLE (ilATRtIr Cl{?iOLr DetfEC,
DIMENSIO,{ DUHI(ll0l, I(l0t I BUFFltt0r, DUtt2l20tr IHEIAt20lr

I IIOROER(!r20lr OllEGAll0tr DUil!(l0lr THETA2(20t
COMIO!| DUlttlr lr BUFFIT DUt{2r ?HETAT NOIDERT Ot4EGAr DUXrr IHE?A2
Itll r ltlAIRll/2
ll2 r l{ATRlIr2 - I

l0 K r 0
DO 25 J . tr l,l2r 2
X.K+l
lF ICiITROL - 1.0111r11r1,

It PROD r OI{EGAIttTOELIEE + ItKt}DEL'EE}DELTEE/2.0
GO IO I'

le PROD r lOi{EGA(Kl + X(rlrIDEL?EEI2.o
l, DO 2, t . lr ill

lF (iORDERI lrJl l19r2arrO
It I|OEX .IAAS IilORDER(lrJtl

IHE?A2llllDEX, r PRoD + IHETAI lttDEIt
lF (IIORDER t l.J+l | 120 o24t20

20 lt{DEI .IABS ( I{ORDER I I rJ+l I t
THEIA2 I II{OEXI r PROD + THETAI IIIOEIT
TRAI{S r TRAI{S
coilI$luE
R,ETURil
E'ID

Appendix G. Subroutine KINE

fOllt3 EIEOFORTRAIITTTT!rPCHrrXlNE
SUBRoUTIIIE KlllE lilnSTEPr ALLI
DITEilSIOll DUr{rIIt0t r R(20'r IHETAT20trtDUI2II00t r O|{EGAIt0tr

I ALPHA(tOlr BUFF(l0trlSlGltll00tr tCOritCtlOOtr tOaCORtlOOf,
2 lllt{IRHS 124, r RCOUP I 10, r DELIA I t0l
COllLOlil Dul'llr ALPHAT BUFFr Rr THETAT IDUtrl2r OtrtEGA

1l FORt{Ar l26I3t
t, FoRttAT I I 0F8 .2 t
,, FORilAT I2T4'6FE.2 t

lF (rilli{SYEP - Ill0rl0r20
to READ ttrllt r{}rPTHsr tlt}tTRtlS(nr I r tr llipTHSlr t{coUp

lF INCOUPI llrl4r t2
12 READ llrlll |RCOUP|tlr I r lr ilCOUPt

READ (lrl!l (DELTAlltr t r lr NCOUPI
lalI.l

ll{ r NIttTRllS(lt
DO 19 t . lr llltlPTHS
READ (trlllllStGr{(Jlr J r tXr tllt
READ (lrlll llCOII{ClJlr J. I}lr t}ll
REAO (1tllt llOI{COR(Jrr J r tllr Illl
lF (llt{PfHS - ltllrlgrlT

17 lll r tit + [ilTRl{Sltt
ll{ r tll + ,{HIRllSl t+11

l9 Cotlrtrlue
20Krl

L r ll}{TRti3lll

21
2'
t0

(continued on next pagc)
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Appendix G. Subroutine KINE (continued)

DO rO I r lr llllP?HS
I r 0r0
Yr0o0
IDO? r 0r0
YDOI r 0o0
IOBLDT r 0o0
YOOLDT r 0o0
DO!0Jrf,rL
11 r lCOIllClJl
ll r lOllCORlJl
SGX . lSlGlllJl
A . SGilrR([lICOS IIHEtA(tll I
I r SG,{IRlIlrSt,{ lTHETAlllll
tF lt{l2l o2lt22

2l THEDOI r 0r0
Ol,lEDO? r 0o0
GO TO 2'

22 ?HEOOT r OilEGAllll
OXEDOI r ALPHA I l{ I

2, C - -BTIHEDOI
0 . ATTHEOOI
E.-DIIH€DO? -ErOl4EDOl
F.C*IHEDOT +AIOI{EDOI
X.X+A
Y r Y.+ I
IDO?.XOOT+C
YDOT.YDO?+D
XDBLDTiXDBLDT+E
YDBLDT.YDBLOT+F
tF lALL,30r!0r2!

2t lPOlt{T . lSI6lltJlrI
IRIIE l2rt3, tlXSfEPrlPOlilfr Io Yr XDOTr YDOfr XDBLDTT YDBLDI

30 COttT tilUe
lF (ALLI!6r36r37

,6 lPOt,lI . lSlGltlLlril
IRITE (2r!!l I{XSTEPrlPOtt{Tr Xr Yr XDOTr YDOTo IDBLDTo YDBLDT

,7 lF ll - l{COUPI?Ltllt92
3l AllG . THETAlilt + DEITA(lll)7t29)O

l . RCOUPI I IICOS lAt{6t
B . RCOUPI t lrstl{ tA,tGt
c . -ETTHEDOT
P r ATTHEDOT
E.-DTTHEDOI -BTOilEDOI
Ft CTTHEDOT +ATO}IEOOT
I.X+A
YrY+6
IOOTTXDOI+C
YDOT.YDOT+D
X08L0I.XOBLOT+E
YDBLDI.YDBLOT+F
XRITE l2t!3t ltllSTEPr tr Ir Yr IDOTr YDOIr IDELDTT YDBLDT

,2 tF lt{ilPTHS - ll40r40r3!
ISKiX+ilHIRilStll

L r L + t0{TRr.lSll+ll
40 COttTtilUE

RE?URX
E'TD




