AN ABSTRACT OF THE THESIS OF

Charles Eugene O'Kins for the M.S. in Mechanical Engineering
(Name) (Degree) (Major)

Date thesis is presented 29 //jlﬁ/fn' / g'/Qo//
A

Title THE DEVELOPMENT OF ANALYTIC TECHNIQUES AND

FORTRAN PROGRAMS FOR THE EVALUATION OF PLANE

MOTION MECHANISMS

Redacted for Privacy

(Major professor)

Abstract approved

A mechanism is a constrained kinematic chain composed of
gears, links, cams, or the like. Mechanisms are the building blocks
of all machines, and, as such, their evaluation is of considerable
importance to the mechanical designer. Because the mathematical
analyses of systems with four or more moving members has been
prohibit'ively complex, the principal method of mechanism evaluation
has been graphical. With the development and widespread distribution
of high-speed digital computer systems, however, mathematical
methods for complex-linkage evaluation have become practicable.
Because of the somewhat universal nature of the digital :computer
language called FORTRAN, it is possible for an analyst to develop
a system of analysis which not only he, but any other person as well,

may use.

In this paper are developed analytic techniques and computer
programs which evaluate the principal class of mechanisms --
plane motion linkages with a single degree of freedom, employing
turning joints, and having either an angular or translational input
motion. The fundamental premise is that a link may be represented
by a complex vector, and a linkage may be represented by a set of
these vectors in the form of closed polygons. The position vectors,
which are known and are considered to be functions of time, sum to
zero about a closed path. There exist, in a single degree of freedom
linkage, one-half as many independent closed paths as n-links free to
rotate (i.e,, links which are neither the crank nor the frame), There-
fore, one-half-n independent vector sums may be written, By sepa-
rating the sums into their real and imaginary parts, n independent
equations result. The first and second time~-derivatives ot the n-set
provides two n-sets of linear algebraic equations. These two sets
are solved, by the computer, for the n-unknown angular rates and
the n-unknown angular accelerations. With these values of angular
kinematic quantities, the computer estimates the angular rotations
over a particular time interval. Through use of a simple iterative
process, these estimated angular values are improved. If the angular
transition is not large, convergence is rapid. After calculation of
angular rates and accelerations in this new position, the process is

repeated, as before, untilthe desired range of operation of the linkage

has been traversed.

Having determined the linkage's angular kinematic values
for a particular position (or instant of time), the computer uses the
values to calculate the translational kinematic data of any specified
point on the linkage. The translational values are placed in an abso-
lute reference by using the drive-member frame pin as the datum and
summing the translational vector components to the desired point.

The mathematical system of equations and logic are vali-
dated by the successful evaluation of an eleven-bar, ram-drive linkage
system.

It is acknowledged that these methods and the associated
computer programs, although a significant improvement over widely
practiced linkage evaluation methods, are but the first step in the use
of the digital computer in mechanical design. Work must also be done
to develop computer methods to assist the mechanical designers with
dynamic evaluation, stress analysis, bearing loading, space budgeting,

force analysis, and so forth. -

THE DEVELOPMENT OF ANALYTIC TECHNIQUES AND
FORTRAN PROGRAMS FOR THE EVALUATION OF
PLANE MOTION MECHANISMS
by

CHARLES EUGENE O'KINS

A THESIS
submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of
the requirements for the
degree of '

MASTER OF SCIENCE

June 1965

APPROVED:

Redacted for Privacy

Associate Professor of Mechanical Engineering

In Charge of Major

Redacted for Privacy

Head of Mechanical and Ind\é/trial Engineering Department

Redacted for Privacy

Dean of Graduate School

Date thesis is presented: 29 ‘5///44 %’ J/ ?]&Z/
7

Typed by Carol Baker

TABLE OF CONTENTS

Page
INTRODUCTION 1
LINKAGE SYMBOLISM AND DEGREES OF
FREEDOM 4
DEVELOPMENT OF ANALYTIC TECHNIQUES 9
Complex Vectors Representing Linkages 9
Angular Kinematics of Four-bar Crank Linkages 13
Mathematical Singularities 18
T ranslational Kinematics of Four~bar Crank
Linkage 22

KINEMATIC EVALUATION OF COMPLEX LINKAGES 26

Drawing the Vector Polygon 26
Vector Loops and Degrees of Freedom 27
Writing Equations of Angular Kinematics 30
Determining Translational Kinematics 34

THE COMPUTER PROGRAM TO PERFORM

KINEMATIC EVALUATION 36
The Closure Program 39

The Basic Program 42

The Matrix Evaluation Subroutines 50
Subroutine ACOE 53

Subroutine BCOE 56

Subroutine GAUSS 62

The Angle Computation Subroutine 64

T ranslational Kinematics Subroutine : 65
VALIDATING TEST CASES 70
Eleven-bar Linkage Test Case 70
Required Data Cards 72

Results of Computer Analysis 74

The Mathematical Singularity Test Cases 83

TABLE OF CONTENTS (con't)

Type I Singularity
Type II Singularity

CONCLUDING REMARKS

BIBLIOGRAPHY
APPENDICES

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.

Program CLOSURE
Program MAIN
Subroutine ACOE
Subroutine BCOE
Subroutine GAUSS
Subroutine ANGLE
Subroutine KINE

Page
83
86
89
92
93

93
94
95
96
97
98
98

Figure

2.

10.

11.

12.
13.
14.
15.

16.

LIST OF FIGURES

Links showing degrees of freedom
Systematic reduction of degrees of freedom
A linkage showing polygon loops

(a). A link and its vector representation

(b). A linkage and its vector polygon representation
Complex vector in x-y plane
Vectors serially added

A four-bar linkage and its vector equivalent showing
a vector loop L

Type I singularity
Type II singularity
Four-bar crank linkage with coupler points D and E

The vector polygon representing a single degree of
freedom, eleven-bar linkage with a ram drive

Schematic flow diagram for program MAIN
Schematic flow diagram for subroutine BCOE
Schematic flow diagram for subroutine GAUSS
Schematic flow digaram for subroutine KINE

Eleven-bar linkage vector diagram

Page

10
10

11

12

14
19
20

24

28
43
57
63
66

71

LIST OF TABLES
Table Page

I. Vector loop table to show loop independence 30

II. Vector loops and mechanism links related through
signs and subscripts. The table values are called

NORDER(I, J) in the program 54

III. Eleven-bar linkage data 75
Part 1. Input data key, input data, output data key 75

Part 2. Output data, position one 75

Part 3. Output data, position two 76

Part 4. Output data, position nine 76

Part 5. Output data, position 17 77

Part 6. Output data, position 18 77

IV.. Type I singularity output data 85

V. Type Il singularity output data 87

THE DEVELOPMENT OF ANALYTIC TECHNIQUES AND FORTRAN
PROGRAMS FOR THE EVALUATION OF
PLANE MOTION MECHANISMS

INTRODUCTION .

A mechanism is a constrained kinematic chain in which one
link is stationary or considered so during motion analysis. A kine-
matic chain is any connected group of elements, such as gears, links,
or cams, whose parts have motion(3, p. 3). These mechanisms are the
building blocks of any and all machines. Because of this, mechanism
analysis is of primary concern to the mechanical designer.

Mechanism analysis has two fundamental forms: graphics
and mathematics. Graphics is by far the most widely used, particu-
larly for mechanisms of more than four moving members. For exam-
ple, in Faires' text Kinematics, he says, ''Mathematical analyses of
linkages with fow or more [movable] links are usually rather com-
plex and have been traditionally avoided'(3, p. 114). Even manufactur-
ing firms which have specialized in products requiring complex link-
ages perform most of their design and evaluation on a drafting board.

Graphical solutions to linkage design problems, although
quite common and frequently effective, have several limitations.
First, the designer must be well versed in the specialized techniques,
a requirement necessitating a great deal of experience. Secondly,

graphical methods have obvious accuracy limitations. Finally,

performing the graphical evaluation of a complex linkage is usually
quite time consuming, resulting in considerable expense and competi-
tively dangerous delays. The effect of these limitations is that de-
signers tend to avoid the complex design and, instead, select a sim-
pler design which may only crudely approximate the desired perform-
ance.

Examples of this are pandemic. A particular, but typical,
case was presented to the Oregon State University's Engineering Ex-
periment Station. An Oregon firm was engaged in the manufacture of
a product of international distribution. Several other firms manufac-
tured a similar product and all employed the same fundamental link-
age design basic to the product. The simple linkage, although tradi-
tional, had several undesirable operating features. This linkage de-
sign was retained, apparently, because any improved linkage would
also have been more complex. The Oregon firm1 decided to develop
a greatly improved, but more complex, linkage design. After con-
siderable time and expense, the company could see quite clearly that
the traditional graphical methods of design and evaluation were insuf-
ficient. They formally asked the Experiment Station if a mathematical
technique of complex-linkage evaluation could be devel oped which

could also be programmed for computer analysis.

Company name and product withheld upon request.

As an answer to this specific inquiry, and to contribute to
the more general need of linkage designers, this paper has been
prepared. In subsequent sections, fundamental linkage theory will
be discussed. This theory will be limited to that which will lead to
the development of a mathematical technique of linkage evaluation
using well-known vector properties. After the development of the
mathematics, digital computer programs, written in FORTRAN for
the IBM 1410 system, will be presented and explained. The program
presented will be for use with linkages having turning joints, a single
degree of freedom, up to ten moving members, and either a crank
or ram/ piston drive link. It is believed that this is no strict limita-
tioﬁ and will encompass the vast majority of linkage designs. The
program pr‘esentation will be supplemented with the computer solu-
tion of several significant test cases, the most important beipg a
ten-moving-bar system with a ram input. Finally, suggestions will
be made as to how the mathematics and computer programs could be
expanded to cover a wider range of problems surrounding linkage

design.

LINKAGE SYMBOLISM AND DEGREES OF FREEDOM

Mechanically speaking, a link is a device by which motion
is physically transmitted from a source to an object and is symbolic-
ally represented by a bar or line. For most mechanisms, the link is
actually a rigid bar, but, even when it is not, the symbolism is usually
adequate. A system of interconnected links is called a linkage. Com-
mon to all linkages is a driver which is the source of motion. Some
linkages have more than one driver, but this is not common and, fre-
quently, is a result of two linkage systems being brought together.
Mathematically at least, the system can be separated into two distinct
systems with one driver for each. For instance, consider a fork-lift
truck lifting linkage: it has a vertical drive and a fork tilt drive, but
the two are (usually) independent and can be considered separately,
The number of drivers required is equal to the system's degrees of
freedom.

The degrees of freedom describe the number of independ-
ent motions a body may have. A rigid bar in space has six -~ three
translational and three rotational. Restricting the body's motion to a
plane reduces the degrees of freedom to three -- two translational
and one rotational. An unconstrained, plane motion, rigid link then
has three degrees of freedom. Connecting two such rigid links by a

turning joint leaves one of the links with its three degrees unaffected

but reduces the other's degrees of freedom to one, as shown in

Figure 1(b).

y T (x50 %5) y
0
2
(xl,yl)
x 3
(a). A system with six (b). A system with four
degrees of freedom: degrees of freedom:
e 4 4 e " ’ ’ e ’ e .
X0 ¥ 9 %50 ¥y By Xp vy Y Y,

Figure 1. Links showing degrees
of freedom.
By adding two more rigid links to the system of Figure 1l(b) it be-
comes a four bar system with six degrees of freedom -- two trans-

lational and four angular. See Figure 2(a).

(a). Six degrees of (b).. Three degrees (c) One degree
freedom: x, vy, 91, freedom: ¢, of freedom:
ez’ 93, 94‘ 92, 63' 91'
Figure 2. Systematic reduction of

degrees of freedom.

6

For the system to be a linkage, one bar, by definition, must be com-
pletely constrained, i.e. one bar is made the frame. With this act,
three degrees of freedom are lost, reducing the total from six to
three. See Figure 2(b). Next, closing the system by pinning the free
end of the link chain to the frame, reduces the degrees of freedom,
as before, by two, leaving a systemn total of one degree. The result
is the traditional four-bar linkage. This method of link-by-link study
of freedom and constraint will provide an answer but, for more com-
plex systems, is quite laborious and subject to human error. It is
presented here only to provide understanding of the concept of degrees
of freedom.

Authors on mechanism use a variety of methods and for-
mulas to determine a system's degrees of freedom. One such is

Gruebler's equation as modified by Bottema (1, p. 162):

X = 3(N'1) '.§\ qi. pi

where X = degrees of freedom
N = number of links
q, = multiplicity of constraint
p, = number of pins with a 9, multiplicity of

constraint

The multiplicity of constraint 9, although not defined further by

Bottema, appears to be, for turning joints at least,

q, = 2(M-1)

The term M is the multiplicity of connection of a particular pin; e. g.
a pin connecting three bars has a multiplicity of three. Gruebler's

equation is modified to:

X = 3(N-1) - }' 2(M. - 1)p.
1 1

An alternate method suggested by Paul (6, p. 196) is
based on a topological analysis of the linkage system and does not
require the determination of the number of pins or multiplicity.
Instead, the analyst determines, in addition to the moveable links
(N - 1), the number of independent loops which can be made in a
linkage system. A loop, in this sense, is the circumscription of a
polygon formed by a group of serially connected links. For inde-~
pendence, the loop must not be capable of being formed by combining

two other loops. In Figure 3, for example, only two independent loops

Figure 3. A linkage showing polygon loops.

are possible, I and II, I and III, or II and III. The combination

I, II, and III can not be used .because any two can form the third.

Paul's equation for the degrees of freedom is:

X= (N- 1)'-2L

where L is the number of independent loops.

Later in this report, Paul's equation will be modified and
used to determine the number of possible independent loops in a com-
plex linkage once Gruebler's equation has determined the degrees of

freedom.

DEVELOPMENT OF ANALYTIC TECHNIQUES

The subsequent mathematical development will be a
utilization of the concept of defining links by complex vectors as
first put forth by Block in 1940 (3, p. 249) who suggested its use in
four-bar synthesis. To date, his method has been mostly restricted
to its original usage. In this paper, however, it will be developed
for kinematic evaluation -- first for the simple case of the four-bar
linkage where the validity will be obvious, and then for the complex

case.

Complex Vectors Representing Linkages

A mechanical link is an object whose kinematically im-
portant dimensions are its distance (or distances) between joints and
angular direction (or directions). A vector has only magnitude and
direction, as does the distance between two pins on a link. A link
then is quite conveniently represented by a vector; a linkage is con-
veniently represented by a collection of vectors. See Figure 4.

The magnitude of the vector can appropriately have a one-
to-one correspondence to the distance between the link pins. A vec-
tor has a distinct direction, but, its direction magnitude (argument)
is arbitrary. Its sense (whiclh way the arrowhead points) is a matter

of convenience, as is the reference line from which the angle is

10

Figure 4. (a). A link and its vector representation.

(b). A linkage and its vector polygon
representation.
measured. The one restriction is that all vectors representing links
within a single system must have the same reference. Traditionally,
the '""horizontal" is made the angular datum and angles are measured
counterclockwise from the right. That would place the vector AB,
in Figure 4 (a), somewhere in the first quadrant.

The linkage type of interest in this report is the one oper-
ating in a single plane; vectors restricted to a single plane can be
mathematically described by complex vector notation. Mathematical-
ly, the complex vector is defined as (1) the sum of two orthogonal
components, one real and one imaginary, or (2) as the product of a
real magnitude and the Naperian base e exponentiated by the imagin-

ary unit i and the vector direction,

x +1iy (1)

N
H

z = re1e (2)

11
Where x and y are the usual cartesian coordinates, i is the imagi-
nary element, r is the vector magnitude, and © is the vector direc-

tion, in radians.

-

X

Figure 5. Complex vector in x-y plane.

Referring to Figure 5 and using standard definitions:

rcosb (3)

X

y rsin@ (4)

Then, from (1), (2), (3), and (4)

reie (5)

z = rcos® +irsin®
Given a closed string of vectors as in Figure 6, it is easy to see that:

z) = X + iyl

Zz = (xz - xl) + I(YZ - YI)

z, = (x3 - xz) + 1(y3 - yz)

and z, = X, +1y3

12

Figure 6. Vectors serially added.

If z, were added to 2y, 24 to z,, and (~) z

> to z., the closed

4 3

path would have been traversed and the sum would be:

Ezi = zl+z2+z3+(-)z4

Xy + iyl + (x2 - xl) + i(y2 - yl)

+ (x3 - XZ) + 1(y3-y2) - Xy =iy,

1l
o

)

By inductive reasoning it can be seen that vector additionover any closed
path, regardless of the number of elements, sums to zero. Next,
consider the situation in which the complex vectors z, are functiqns
of time, and for all time respresent the mechanism, such that,

ZZi(t) = 0 (6)

i
Except under certain special conditions to be discussed later, the

13

derivatives of Z, with respect to time, exist. These must also sum

(n)

d
I RR "
1

to zero.

Equations (6) and (7) are the basis of the analytic tech-
niques and computer programs to be developed. Their rigorous proof
is of only didactical importance. In this paper it will be assumed
they are true and will be validated by successful application to linkage
analysis,

For a more detailed introduction to complex vectors see

references (2, p. 1) and (7, p. 527).

Angular Kinematics of Four-bar Crank Linkages

The linkége of Figure 7(a) is the traditional four-bar
system. It is the fundamental form for a single degree of freedom
linkage. It can be shown that simpler or more complex systems are
merely modifications of this basic form. For this reason, its some-
what obvious properties will be developed first. Following this will
be the application of the same properties to a more complex system.
Figure 7(b) shows the four-bar vector equivalent and the vector loop
L. The vector loop L is mathematically the sum of elements of the

closed system it traverses; i. e.

14

{
T7777777777:77777777/777777

(a)

Figure 7. A four-bar linkage and its vector
equivalent showing a vector loop L.

iel '192 i94
= + - - =
from (2), L rle rze r3e r4e 0

from (5), L (c:ose1 + isinel) + r (cosb_ + isinez)

2 2

|

- r3(cose + 1s1n03) - r47(cos94 + 1s1n94) = 0 (8)

3
Differentiating equation (8) with respect to time and

equating like coefficients (for convenience in writing let Si = sine,1

and Ci = cosei) gives:

doe de do
dL) 1) 2) 3
il rl(--S1 + 1C1)a-+ rz(-S2 + 1C2) T -1'3(-53+1C3)—-——-dlc
r (-S, +iC)& = 0
474 Tty Tae T
Then
+ - - = S
T)Sjwy T rpSpwy - TaSawg - TS0, = 0 (9)
and
rlclwl + rzczwz - r3C3w3 - r4c4w4 =0 (10)

15

de.

where the Et-l have been represented by w, - Since the driver's

angular velocity, £, is equal to W) and , is zero, equations (9) and

4

(10) can be written as:

rzszm2 - r3S3¢,\g3 = - rlslﬂ (11)
- = - Q 1
rzczwz r3C3m3 rlcl (12)

It is presumed that the vector magnitudes (which in this example are
constant) and original directions are known; therefore,equations (11)
and (12) provide two equations to solve for the two unknown angular
rates, W, and Wse

By similar differentiation of (11) and (12), two more equa-

tions can be written:

2 2, |
r2(82a2 + Czwz) - r3(S3a3 + C3w3)— -rl(SlA+ CIQZ) (13?

2 2 2
- - - = - - 1
r(Cya, =8, 0,)-1,(Cia, -8 w,) =-1)(C/A - §,97) (14)
where dmi
¢ T4

In these equations, ., and w, are presumed known from (11) and (12),

2 3

and A, the angular acceleration of the driver, is set equal to zero

(i. e. ¢ = constant). Equations (13) and (14) then may be rewritten as:

2 2 2
- = - Q-
rZSZCJ.2 r3S3a3 rlC1 r2C2w2+r3C3w3 (15)
r.C,a,-r.C.a =rSQZ+rSm2-rSw2 (16)
2272 37373 171 2 272 37373

16
From (15) and (16), the unknown angular accelerations a., and a

2 3

can be computed.

The links having angular velocity and acceleration, not all
of which are zero, will move in time to new relative positions. Deter-
mining these new positions is the next step in the evaluation; for this
purpose, extrapolated approximations will be made. The approximat-
ing assumption is that, over reasonably small increments of time,
angular acceleration may be considered constant.

By definition,

de
at

n
€

and
du
dt

then w t
S‘ de = S\'adt

assuming

"
o

a = constant = ao

W = ao(t-to)+wo

) t t
§ de = g wdt = S\[ao(t-to)-l- ‘*’o] dt
t
0

Solving for ©

% to

and letting t - to = At, then

- + wOAt+ 60 (17)

17
To gain insight as to the amount of initial error introduced by assum-
ing constant angular acceleration over At, a comparison can be made
to the value of 0 obtained by assuming a changes linearly with time.
Let a be the angular acceleration at the end of the interval At and
let ag be the initial. Then, by taking the average of the two, rewrite
(17) as

(a+ ao) At2

0 = > > + woAt+90

(18)

The difference between (18) and (17) is:

2

_ At
6, = (a -ag)=

Setting the time increment at 0.5 seconds produces:

- L
ee —16((1 -O'O)

Setting At to 0.1 second produces:

1

¢ = Zoo le-ag)

0

Quite obviously, even large differences between successive values of
angular acceleration will have little effect if the time increment is
made small enough. Even this error, however, is overcome to a
large extent if, after calculating new angular rates, the new rates
are used to obtain better approximations of angles. The equation

suggested for iterative convergence after the initial approximation is:

L (19)

0 = (w-!-wo)z 0

18

Note that if the angular acceleration is linear, then

_ Lt
w = (a +°‘O)—é—+“°0
then
_ At At
0 [(a+ao)2+2w0]2 +90

producing equation (18) again. This means that, in the limit,
equation (19) wovuldAyield the same result as would be obtained
if new values of a were known and equation (18) were used.
Since, however, new correct values of a can not be
computed without knowing correct values of w, there is no
convenient alternative to using (19), after using (17) for the first
approximation.

When iteration has brought about the desired convergence
of the angular values, new values of and a can be computed. It
would seem that the linkage cycling process could be repeated indefi-
nitely, however, under certain conditions mathematical singularities

appear.

Mathematical Singularities

Singularities in linkage analysis occur when a link is in a
kinematic state which allows it, mathematically, to have zero or two
possibilities for the next step; i.e., the time derivatives of E‘z are

/

not continuous. As an example of two possibilities for the next

19

state, consider the Type I singularity in Figure 8, The driver d

and the link 12 ‘have the same magnitude and direction. Motion

AQ 493
21 /7 4 BB g4

' (=tl————f s ——4——
‘ 77777777 RIT 777777 1 'Y 7777%71777?77777*/_@7
f

A93 [
(a2). A four-bar linkage in (b). A four-bar linkage in
a non-singular state, a singular state where

there may be two possi-
bilities for the next posi-

, tions of some links.
Figure 8. Type I singularity.

of the driver uniquely defines the motion of the followers

11 and 12. When d has progressed to ed = 1800, 63 also is 180°,

and all links are aligned. At this point, an incremental counterclock-

wise change in 0 , can, with equal likelihood, cause ©_ to become

d 3

smaller or larger; i.e £, may remain horizontal and £_. continue

1 2

to rotate counterclockwise, or £, may rotate, driving £, clockwise.

1 2

In the equation of motion, this condition appears as a division by zero.

Summing position vectors:

z1+z2-z3 -z4 = 0
rlcl-{-rZCZ-r3C3-r4C4 = 0
r,S, +4r.S.~-r.S_.-r.S, = 0

20

Writing the velocity equations:

-rSw =-rSQ

ToSpup = T3Sswg 1°1
- = - Q
750w, m 73050, €
. 1€ (5,C; - C,S))
. 0 (] =
3 T, (SZC3 -C233)
Noting that, in Figure 8(b):
(o}
e, = 180, C, = -1, 8 = 0
o]
6, = o,cz_l,sz-o
- 180° = -1 =
93 80, c3 , Sy 0
then!
rlQ (0)
(™) = ~
3 r3 0

This condition will occur whenever any two connected binary links
become aligned, (a condition sometimes called dead center) and where
neither is a driver.

For a singularity resulting from zero possibilities for the

next position, consider the type II singularity in Figure 9.

r1=:r4 =1
- _ o
2 1. 048 91_120
- B o
3 0. 6840 92—-30
0,=6, =90 0,=150°
o
6,=-17.55 TIIIT T e4=180°
6,=180°
(a). A four-bar mechanism (b). A four-bar mechanismina sin-
in a non-singular state. gular state where thereareno .

possibilities for the next posi-
tion of any link.
Figure 9. Type Il singularity,’

21
In Figure 9(a), the linkage is obviously in a non-singular
state, but in Figure 9(b), links 2 and 3 are aligned and have the

angles noted in the figure. The sines and cosines are

C1 = -0.5 , S1 = 0.866
C2 = 0.866, S2 = -0.5
C3 = -0.866, S3 = 0.5
The equation for W, is the same as the previous case; i. e.
i rlﬂ (SZCI - CZSI)
“s T Tr, (§,C, - C,8,)

then

19 (-0.5)(-0.5) - (0.866)(0.866)
3 (-0,5)-0.866) - (0.866)(0.5)

W3~ ¢

The denominator is zero and wg is undefined. For the
driver to turn more counterclockwise, the combined length of z,
and Zs must increase.

It is interesting to note that the Type I singularity is the
limiting case of the Type II singularity.

The conditions of singularity are sometimes overcome in
practice by ensuring sufficient linkage inertia, avoiding starting in
dead-center positions, or avoiding the drive position causing it., For
kinematic analysis, however, the members have no inertia and partic-

ular care must be taken to detect singularities, This is accomplished

by checking continuously for division by -zero.~ Unfortunately, on

22
the computer, the incremental step may seldom exactly coincide
with a division by zero condition, but sudden rises in angular velocity
or acceleration also indicate a singularity. This condition will exist
if the denominator approaches zero more rapidly than the numerator,
as in the linkage of Figure 9. Finally, checking linkage directions for
possible binary linkage alignment conditions will also detect singular
conditions. Singular conditions indicate the necessity of adding inertia
to the system(e. g., a flywheel) to ensure smooth operation or of

placing limits on the operating positions.

Translational Kinematics of Four-bar Crank Linkage

Once the time histories of angular position, velocity, and
acceleration are known, the determination of translational position,
velocity, and acceleration is a relatively simple matter. Repeating
equations (3) and (4)

rcosO (3)

¥
i

y rsin® 3 (4)

and differentiating both with respect to time twice(hqlding r constant)
provides translational velocity and acceleration equations:

X = =-rsinfw

y = rcosbw

-r(sinfa 4+ co sewz)

e
n

r(cosBa - sinGwz)

<1
I

23

After proper substitution, the translational equations become

x = rcos@ (3)
y = rsin® (4)
X = -y (20)
v = Xw (21)
X = -ya -y (22)
¥ = xa + Xw (23)

Since vectors may be added by adding corresponding com-
ponents, equations (3), (4), (20), (21), (22), and (23) may be used
repeatedly to find the translational position, velocity, and accelera-
tion of any point on the linkage or of any point referenced to any par-
ticular llink.

The first step is to establish a translational reference
origin., For convenience and consistency, the frame pin of the driver
crank may be chosen. Referring to Figure 10, for example, point
(or pin) A is made the origin. If, for example, the translation posi-
tion, velocity, and acceleration of coupler points D and E are
desired, the angular position, velocity, and acceleration of the links
are computed first. A vector path is then selected from the origin,
pin A, to points D and E. A convenient path to point E is 2y Zq
and z_; for point D, perhaps Z)s Zy and Zh is best. For clarifica-

E

tion, the kinematic equations defining point D will be presented., It

24
is important to note that the position, velocity, and acceleration of
each pin with respect to the previous pin along the path will be deter-
mined; then the ''relative'' values will be added to give the position,
velocity, and acceleration of the point D with respect to the point A,

the origin.

Figure 10. Four-bar crank linkage with coupler
points D and E.

*s/a = T1C
(B/ A read as ''of B with respect to A")

Yp/a = %15

X/ a = YB/AY

YB/A = *B/AY

Xg/A = “VB/ A®1” YB/ A%
YB/ A = B/ A% * *B/ A%
*cl B 272

Yc/ B 2°2

*c/B = Yo/ B2

"'c/B

*c/ls T Yc/B%2 " Y/ B®2

Ye/B = *c/B%2 * *c/ B¥2
*p/c = p°p

Yp/ ¢ ® *p°p

bl ¢ = bl c¥2

Yp/ ¢ = *p/ c*2

Xl c = Yp/c®2 " Y/ c¥2
Yp/c = *p/c®2* *p/c¥2
*p/a = *B/Aat*c/B**D/C

Yp/a = YB/atVYc/B* YD/ C
Xp/a T *s/Aat*c/Bt *D/C

etc.

26

KINEMATIC EVALUATION OF COMPLEX LINKAGES

Since the development in the previous section relied on no
peculiarity of a four-bar system, the mathematical relations can be
readily extended to linkages with any number of members and with
either a crank or ram driver. The degrees of freedom are also non-
restrictive, but, as stated, the development will be for the more
common single degree of freedom system.

In this section, as an example of a complex linkage, an
eleven-bar plane motion linkage with a single degree of freedom
and a ram drive will be presented and then analyzed, using the
equations previously developed. This particular configuration has
been chosen because, first, it represents a linkage of unusual com-
plexity and yet for which the developed techniques apply, and second,
it represents a problem comparable to that of the manufacturer's

mentioned in the introduction.

Drawing the Vector Polygon

The first step in an analysis of a complex linkage is
drawing the vector polygon representing the system. It is unneces-~
sary to be precise in the vector magnitudes anddirection; in fact,
it is frequently desirable to exaggerate in order to obtain a clear

schematic (it is presumed, of course, that a drawing or a set of

27
data exist which do give acceptably precise values). The vector
polygon for the eleven-bar example is shown in Figure 11.

The distance between any two pins on a link is represented
by a simple vector; the vector subscript and sense is arbitrary. If
a bar has n-pins, n-1 vectors are drawn; if n> 2, shading is in-

cluded to show rigidity between vectors.

Vector Loops and Degrees of Freedom

A vector loop is a closed path formed by serial vectors.
All such loops must be independent; that is, no loop can be formed
by combining two other loops. FEach loop provides two equations,
one for the imaginary components and one for the real. From
elefnenta.ry algebra it is known that to solve a set of linear equations
there must be as many independent equations as there are unknowns.
Referring to the linkage of Figure 11, it is seen that two sets of ten
unknowns exist, w; and a.. Each set, then, requires five vector
loops to provide the necessary ten equations. These loops are
shown as dashed contours marked Ll, LZ’ L3, L4, and LS'

For some linkage arrangements it is not at all simple to
determine the possible number of vector loops. A méthematical

method, eliminating guesswork, would be to first compute the

degrees of freedom using the modified Gruebler equation (page 7):

10.

11'

12..

13.

Known:

@t,, TG =
@to, BJ.: (=
fl = constant
wg = Wy = 0
ag=a,=0
Yo = %7

0.6 = 0,7
“g4 T “g
“47 %8

Figure 11.

Unknown:
1 w) 1 al
2. was 0,3
3. Wyr @y
4, Wgs @
5. w8’ a8
6 wigr 210
EECPIRIY
8wy oy
9. w5 95
10- w g0 @y

The vector polygon representing a
single degree of freedom, eleven-bar
linkage with a ram drive.

28

29

X = 3(N-1) - E‘Z(Mi - l)pi ‘ (24)

Then substituting this value of X, the degrees of freedom, into Paul's
equation (page 8) for degrees of freedom and solving for L, the num-

ber of independent loops becomes:
1
L= 5 (N-1-X) (25)

Heretofore, a ram drive was considered a single link of variable
length; however, to use Paul's equation, a ram must be thought of
as two rigid links with slider contact (having multiplicity of two).
The eleven.-bar example becomes a twelve-bar system. Solving

Gruebler's equation:

N =12
P, = 14
py=1
X = 3(12-1) - 2(2-1)14) - 2(3-1)1) =1

Using X =1 in Paul's equation establishes the number of possible

independent loops in the system of Figure 11.

L =(1/2X12-1-1) =5
The answer of five independent loops indicates that, as
might be expected, a set of equations does exist which will allow

solving for the unknowns. These loop equations are:

L1 =z -i-z2 +z4 -z
L2 = -z7 -26 -z3 + z
L3 = -218+z7 +z9 -z
L4= z11+zl3+zl4-z
Ly = -2j3+2)*27-2

30

(26)
(27)
(28)
(29)

(30)

A convenient way to determine if all equations are independent is to

set up a chart, as in Table I, and check to see if any row is a combi-

nation of any other rows. The table method is nearly always reliable.

Table I. Vector loop table to show loop independence.

L 1 (234|567 (8|9|10|11(12{13|14(15(16(17(18
I.;1 X |-x{x |x |-x

LZ x -x x [-x| -x|x

L3 X x|-x|-x -X
L4 x|-x{x |x

L5 -x |-x |-x |x |x

The table will also indicate if all vectors have been used, and will

provide a quick check on the loop equations.

Writing Equations of Angular Kinematics

To obtain the angular equations of motion, loop equations

31
(26) through (30) are differentiated with respect to time. The re-
sulting equations, (33) through (42), provide ten equations with ten
unknown w terms, the angular velocities. Vectors on the same link
are assigned the same angular velocity term and the coefficients
are grouped accordingly. The basic form of the differential equa-

tions is:

}:& = Eknown products (31)

-Ey = -Eknown products (32)

The y-component equations have been multiplied by -1 to facilitate
the writing of a computer algorithm to be explained in a later section.
The ordering of terms is the same as in Table I.

-r.S +4r S w, -r,S 0 (33)

373%3 T T4P4% T TgPeYe

-r3C3w3+r4C4w4-r6C6w6 =0 (34)

)80 = T3Suy - (S 41 S du, + 180w = 1) C) (35)

) Crwy = 13C3uy =(r C ot Colug +15Couwg =-1) 5, (36)

T7Sqwgt TgSqug = (T 510t 71511 ey 0T 15 894 =0 (37
T7Cq06 T TgCqug ~(r)0C ot 711 Cr1 o0 T 159 g9 =0 (38)
11511910 T T12512%12 * 135139 * 1145140142 0 (39)
11001907 T12C1 29127 T13C 39g t T 4O quy g = O (40)
“T1351 39 "T14514%14 155154151 T 165160101 T1751 70177 0 (41)
“13C13098 714 C14%1 4 11501 51 5+ 71 C16%107 T 1 7 G 71 77 0 (42)

32
These equations show that all products containing unknowns

sum to zero, with the exception of the equations containing the drive
link, In this example, the drive link is a ram which has both a vari-

able magnitude and a variable direction. For such a link,

X3 = TqCq " TaSq¥q

Ya = Tq%q + TqCa¥a

In these equations, only Wy is unknown. Grouping is according to
equations (31) and (32).
To obtain the set of equations which will provide angular

acceleration, equations (33) through (42) are differentiated. Similar

to (31) and (32), (43) and (44) are used to establish grouping.

§§ anown products (43)

zy E‘known products (44)

Equations (45) through (54) are equations (33) through (42)
differentiated. For these equations, angular rates,w , are assumed

known from (33) through (42).

2 2 2
rySgaz+r,Sa, -rSia =r,Cuy -1 ,Clu,+r Colug (45)

2 2 2
r3Cqa3471,Cpa -1 Cpa =180 4 1,50, -1 5w, (46)

rSlo, - r.S.a,-(r

171917 T393%3 65 * T757)a ¢ + TS50

8 8 8
2

. 2 2 | 2
-27 810 -1, €l 413 Caug Hr (Ctrp Cooy -1 Coug

1

rlclo.1 - r3C3c13 -(r6C6+r7C7)a6+r8C8a8 =

2 2
(r686+r757)c,o6 +r S.w

-21.Cw 8e%s

2 2
R R B B T S

37373

S S S._a

.50 (+1gSqag (108, 0+ 15 Ja 9771851808 =

2

C g4

{ C, +r

10C10t 11 %) F

T18

2 2
-r7C7¢,o6 -r9C9w8 +

C. +r C

r7C a, +4r C . a -(r10 10

7% TT9 9% 1111%107718%18%4 -

2

5184

2 2 2
T Sqwg +TSqug (1) 68, o+ 18 ey -Tig

9°9%g "'T10

S S a. +r S. a =

T11511%107 1 2512%27713513% t114514% 14
2 2 2 2
T8 190t 12%12%12 T 131348 TT14C14%14

C C..a +r, C, a

r 12%127713%13% 8T " 1414

14 -

2
Y14

11€11%107"12
2 2 2
T11511%107 T2 2012t T135139% * T1u51e

S S

“T13”13%8 7 F14

2 2 2 2 2
713138 171414914 5 G515 16 S0 T7 G717
T1393%8 1494 % 14 1595 % 15T 16 S6 101 17517 17 T

2 2 2 2 2
G393 "H494%14 05959157 T16516%101 T17C17%17

14%147715515% 1577165164 1071751717 ©

33

(47)

(48)

(49)

(50)

(52)

(53)

(54)

Note the coriolis acceleration term in (47) and (48) which contained

the driver vector.

34
With angular rate and acceleration being provided by
equations (33) through (42) and (45) through (54), respectively, new

angular positions may be calculated for a time lapse of At by using:

A-t2

0— 3 t wydt + O (17)

O = o 0 0
With these approximated angles for the new position, approximate
values of (s may be calculated using (33) through (42). .These new
values of (y are used in (19) to provide a better approximation of

the angles.

At
0 = (w+w0)-2— + 8, (19)

After sufficient iteration to effect desired convergence, final new
values of angular rate and acceleration are computed. The proce-
dure is repeated until the desired range of operation has been

evaluated.

Determining Translational Kinematics

To find the translational position, velocity, or accelera-

tion of any point, the equations presented for the four-bar system

are used.
x = rcos@ (3)
y = rsin® (4)
X = -yw (20)

35

y = X (21)
X = -ya - yw (22)
Yy = Xa + Xw (23)

These equations apply for a point on a single link. As before, the
translational origin is placed at the frame pin of the drive link. To
determine the relative position, velocity, and acceleration of a
point, say p;, ona particular link, say lj, a vector path is
chosen from the origin to that point. Each equation, (3) and (4),
and (20) through (23), is applied to each vector step and the corre~

sponding components summed.

36

THE COMPUTER PROGRAM TO PERFORM KINEMATIC

EVALUATION

In the previous section, kinematic equations for an eleven-

bar linkage were developed as an example of the method of evalua-

ting a complex linkage. To obtain specific kinematic values in this

example it would have been necessary to:

1)
2)
3)

4)

5)
6)

7)

8)

9)

perform around 50 arithmetic operations to obtain

the coefficients for the rate matrix,

solve a 10-by-10 set of linear algebraic equations

for angular rates,

perform around 80 arithmetic operations to compute

better angles (except for initial position),
repeat steps 1), 2), and 3) n times for convergence,

perform around 120 arithmetic operations to obtain

the coefficients for the acceleration matrix,

solve a 10-by-10 set of linear algebraic equations

for angular accelerations,

perform about 10 arithmetic operations for each link
step in the vector path leading to the point whose

translational kinematics was desired,

perform about 140 arithmetic operations to estimate

angles for next position,

repeat steps 1) through 8) as many times as necessary

to traverse the desired range.

37
It is also necessary to remember that each basic operation of 1)
through 8) and each position of the linkage is entirely dependent
on previous calculations. Obviously, carrying insufficient significant
figures, making any arithmetic error, or having an error in the link
lengths, original angles, or driver input value would, in all probabil-
ity, invalidate the results. Steps 2) and 6) alone, for, say ten
driver positions requiring three iterations each for convergence
would require the error-free solution of a 10-by~10 set of linear
equations thirty-eight times. Consideration of human error and
slowness, even with an electric calculator, indicates that the only
reasonable way to perform the calculations is with a high-speed
digital computer.

The fundamental advantage in using a digital computer to
perform these calculations is the changing of the task from thenearly
impossible (for a highly complex linkage) to the relatively simple.
Next, once a general program has been prepared, even an inex-
perienced person could perform the analysis with relative ease,
even with little understanding of the theory or mathematics. Ac-
curacy, too, would be enhanced, since most computers can carry
anywhere from one to about 20 significant figures and perform end-
less computations without error. The cost of making the analysis
becomes virtually insignificant, also, because for example, com-

puters capable of performing 200 to 500 man-years of work in one

38
hour rent for around $500 per hour. Additionally, this time can be
purchased on an hourly basis without the necessity of computer rental
for longer periods of time. The final advantage of significance is
that a design can be evaluated immediately for each design change,
eliminating the competitively dangerous long delay usually associated
with a highly complex linkage design evaluation.

The complete and working programs for performing kine-
matic analysis of any single degree of freedom, plane-motion linkage
with turning joints and with either a crank or ram constant input are
presented in the appendices. These programs are coded in the
FORTRAN language specified for the IBM 1410 computer (5, p. 7).
This language is, with only minor exceptions, the same as the
FORTRAN II language which is of virtually universal use on modern,
high speed computers.

The programs are presented as working tools for the
design analyst. The input data required for operation has, for the
most part, been kept simple and as closely related to the funda-
mental vector-sum equations as was possible. Subsequer;t sections
will present an explanation of the program section's input, output,
mathematics, and logic.

The programs, although general in nature, do, of course,
have a scope of applicability; i. e., they apply only over a certain

class of problems. In order for a linkage to be evaluated by these

39
programs, the following conditions must hold:
1) All connections must be turning joints (excluding
the sliding contact of the ram's piston and cylinder).
2) The number of moving links must not exceed ten.

3) The driving link must be either a crank or ram/ piston

device.

4) Angular rate of driver must be constant for crank
driver; length change rate of driver must be constant
for ram/ piston.

The foregoing conditions can be broadened, if necessary,

by certain programming modifications. If, however, a set of linear
equations significantly greater than ten is to be solved for the un-

known variables, a computer of greater speed and capacity than the

IBM 1410 may have to be used.

The Closure Program

Fundamental to the mathematical technique previously
developed for linkage analysis is that the sum of the position vec-

tors about the linkage vector-polygon is zero; i.e.:
5
J

z, = r (cosf +isind)) (5)
J J J

1l
o

(6)

where

40
and rj is the distance (in any desired units) between adjacent pins
on a link and 6, is the angle, in radians, from a right-directed
horizontal line to the vector, measured counterclockwise,
Equation (6) is mathematically exact, but r‘j and ej are measured

quantities and, as such, are inexact; the result is:

Ez, -
BN

where ¢ would not normally be zero if the r's and 0's were
scaled from a drawing.

The CLOSURE program in Appendix A calculates ¢ for
each closed vector path specified and computes the change, if any,
in length and direction of a particular vector in the loop required to
make ¢ = 0. By doing this the program accomplishes two things:
it detects gross errors in the measurement of the vector magnitude
and angles before using them to calculate the kinematic data, and it
provides a means of adjusting for unavoidable measurement error.
Since the data will normally be from a flexible design, having one
link absorb the error appears justified.

The program, in Appendix A, should be referred to for
exact information concerning data format specifications.

The following are the input and output variable definitions,

in order of appearance.

Input:

Output:

1)
2)

3)

4)

1)

2)
3
4)
5)
6)

7)

41

MATRIX, MAXR, R, THETA -- see definitions in

next subsection under program input.

NUM -- control data: the number of position vectors

in the jth loop equation.

NORDER -- control data: the sign and subscript of
each position vector in the jth loop equation. Not

the same as NORDER for program MAIN.

MAKEUP -- control data: the signed subscript of
the position vector in the jth loop equation which is

to be adjusted so that ¢ = O,

L,I -- subscripting.

B(L) -- the error sum of the vector products, called

€ in the text, for the 2J-1 component equation.
MI -- absolute values of NORDER(J, K).

RERR -- difference between the computed vector
magnitude and R(MI). (See item 13 in next sub-

section under program input,)
RAD -- the adjusted R(MI),

ANGERR -- difference between the computed angle
and THET A(MI).

ANGLE -- the adjusted THETA(MI).

42

The Basic Program

The purpose of the basic program, called MAIN, is to
perform the mathematical operations necessary for complete kine~
matic evaluation of any linkage, if it is of the kind prescribed. The
program attains this end through arithmetic and logical operations
and the use of five subroutines -- ACOE, BCOE, GAUSS, ANGLE,
and KINE. These subroutines are based upon previously developed
mathematics. The logical flow of program MAIN is shown in Figure
12, the flow schematic., For obvious reasons, minor operations are
not included.

Program MAIN reads control and computational data.
Current values of angles are written out. Subroutine ACOE is
called and computes the A-coefficients of the angular rate matrix,
such as (33) through (42). Subroutine BCOE is called and, using
MODE 1, computes the sum of known products for the velocity vec-
tor matrix. Subroutine GAUSS uses the output of ACOE and BCOE
to compute angular rates from the rate matrix. If the rate matrix
is singular (as indicated by division by zero), the adjusted A-
coefficient array (see section on GAUSS) is written out and GAUSS
is exited. This triggers the program to restore the original A-
coefficient array by recalling ACOE; the original array is written

out and all further calculations on these linkage data are terminated.

Start

(Read Input)

——»(Write: THE APP)«-L-{ CALL ANGLE
!

Compute new l
driver values

Reinitialize

| calLacce |

| calLBcoE |

At final position? Check Hysteresis

| calLgauss |

r ; '
\ Wnte‘output)-‘_.
No | CALLKINE |
Yes
More data
Yes TRAKIN > 0

' No
| cALL AcoE

4

C WRITE: A-array)

Compute and write
Yes acceleration vector

First position residues

——

I CALL GAUSS

| CALLACOE |=—

[CALL BCOE HWrite: velocity vector residues)

Figure 12, Schematic flow diagram for program MAIN

43

44

If, however, the rate matrix is non-singular, the control proceeds
(except for the first step) to subroutine ANGLE which computes
better approximations of the angles. If the prescribed iterations
have not been accomplished, control shifts back to the angle write-
out statement prior to ACOE and the entire sequence is repeated.
Upon completing the required iterations, the program proceeds to
the calculation of angular accelerations. ACOE is called again and
using the most recent angular approximations establishes the A-
coefficient array to be used in the acceleration matrix such as
(45) through (54). BCOE, in MODE 2, is called to compute the
known product sums for the acceleration matrix and the velocity
vector residues (see paragraph describing BCOE), Upon exiting
BCOE, the program writes out the velocity vector residues and
calls GAUSS to compute the angular accelerations. After determin-
ing the angular accelerations, the acceleration vector residues are
computed.

The calculation of these residues is the only significant
computation not performed by a subroutine. The fundamental

algorithms used are:

100 = x

p(x) = BIEAE

and
100>y

P(;’) = W

45
The program statements accomplishing these calculations are found
between statements 66 and 75 in program MAIN. Following the
calculations, the residues are written out.

At this point, if translational kinematics are desired, sub-
routine KINE reads inthe control cards, makes the calculations, and
writes out the results. The computations being complete, the angular po-
sition, rate, andaccelerationare written out. A decision is made as
to whether the last desired position has been reached. If not, con-
trol cycles to the beginning and the procedure (except for the read-
ing in of data) is repeated. If the end position has been reached, a
decision is made as to whether it is desired to reverse the drive link
and compute back to the original position. The last instruction cy-
cles the program back to read the next data set; if there is none, the
program exits.

The data card format and other program details can be

found in Appendix B. The input/ output data definitions for program

MAIN only, are:

Input, in order of appearance:

1) MATRIX -- control data: a number equal to the set
size of the unknown angular rates or angular accele-
rations; also, it is equal to twice the number of z-loop

equations; maximum of 10,

2)

3)

4)

5)

6)

7)

8)

46
IPTYPE -- control data: if set equal to 1, equations
for ram drive are selected; if set equal to 2, equations

for crank drive are selected.

MXSTEP -- control data: the number of discrete posi-
tions desired for the drive link, including the original

position; if HYST > 0, twice this number are computed.

NUMCYC -- control data: the number of times, except
for the original position, that ACOE-BCOE-GAUSS-
ANGLE will be cycled through for convergence of the

angles.

MAXR -- control data: the number of r-values (or 6-

values) to be read into storage; maximum of 20.

DELTEE -- computational data: the value, in time
units, of one time step; used to compute new crank

angle or ram length.

DRIVER -- computational data: the rate value of the
drive member; for IPTYPE = 1, it is the ram length-
ening or shortening rate, in units consistent with r-

values and DELTEE; for IPTYPE = 2, it is the crank
angular rate, positive CCW and in degrees/ DELTEE
units. DRIVER times DELTEE is used as the change

in the drive member.

SIG. -- computational data: A subscripted variable
(equal to 0, or *l) providing the sign of the drive

link as it appears in Zz = 0,

9) IFRAME -- control data: a subscripted, unsigned

variable providing the subscripts of the frame vectors

(fixed links).

10)

11)

12)

13)

14)

15)

47

HYST -- control data: if set to 0, program termi-
nates after last step; if set to 1, program reverses
polarity of DRIVER and computes last position back to
original position. Used to determine computational

hysteresis.

TRAKIN -- control data: if O, subroutine KINE is
bypassed; if 1, KINE is called.

ALL -- control data: if set to 1, and KINE is called,
the translational kinematics of every vector step is
printed out. If set to 0, just the data of the last vec-
tor on the path is printed by KINE. See subroutine
KINE explanation.

R -- computational data: a subscripted, unsigned
variable containing the values of the vector magni-~
tudes. Order of appearance is order of subscripting.
The first value must be for the drive link, Units

must be consistent with DRIVER, if IPTYPE = 1.

THETA -- computational data: a subscripted, un-
signed variable containing the values of the vector
directions, positive CCW from the right horizontal.
Order must be consistent with r-values. Units are

degrees.

NORDER -- control data: a double subscripted vari-
able containing the signed subscript of the vectors as
they appear in the loop equation. From card-to-card,
corresponding fields must refer to vectors on same
link (See Table II). On the same card, fields 1 and 2
are for link number 1, 3 and 4 are for link number 2,

etc., and must contain subscripts of vectors on same

48
link.

If there are no paired vectors in the loop equation,
the second field of the pair is left blank or set to zero.
If there is no vector from a particular link in the loop
equation, both fields are left blank or set to zero. No
equation may have three or more vectors from the

same link. (See section on ACOE).

Output, in order of appearance:

1) THEAPP -- the current approximations of angular

position, in degrees..

2) "ACOEF (I,1) IS ZEROQ'" -- the statement printed by
GAUSS if a division by zero is detected, I is the ap-

propriate subscript.

3) AY -- the adjusted A-coefficient array printed out by
GAUSS if division by zero is attempted.

4) BEE -- the adjusted B-value array printed with AY.

5) COLSWP -- the array which indicates the column
pivoting performed in order to maximize the initial

elements of the adjusted matrices. Printed with AY.

6) AY -- the restored A-coefficient array written by
MAIN if division by zero is attempted by GAUSS.

7) BUFF1 -- a data buffer containing velocity vector
residues computed in BCOE and written out by MAIN.

8) BUFF1 -- the same buffer as 7) but now containing

acceleration vector residues computed and written out

by MAIN.

49

9) (Subroutine KINE) -- translational kinematics. See

KINE description.

10) NMSTEP -- the numerical value specifying which dis-
crete position of the driver is currently being calcu-

lated.

11) R(1), THETA2(1l) -- the magnitude and direction of the

drive vector.

12) THETAZ2 -- the final value of angles, in degrees, for
current NMSTEP. Order of output gives subscript.

13) BUFF1 -- the final values of angular rates, in degrees
per unit time, for current NMSTEP. Order of output

gives subscript.

14) ALPHA -- the values of angular accelerations, in
degrees per time unit squared, for current NMSTEP,
Order of output gives subscript.

Program MAIN, as it appears in Appendix B, is restricted
to ten moving members including ram drive, or ten moving members
and crank drive. The total number of vectors describing the linkage
is 20, and the total frame vectors allowable is five. To broaden the
application to more complex single degree of freedom linkages it is
only necessary to modify the DIMENSION specifications of the pro-
gram and the subroutines. For example, if a 20 member system is
desired, the DIMENSION statements might be rewritten as AY(20, 20),
BEE(20), X(20), BUFFI(20), R(40), etc. Note, however, that as

programmed for the IBM 1410, the program, subroutines, and built

50
in functions use virtually the entire core; to expand to a 20 member
system would require tape storage or the use of a larger capacity

computer.

The Matrix Evaluation Subroutines

The matrix evaluation subroutines, ACOE, BCOE, and
GAUSS, along withthe other subroutines, ANGLE and KINE, were given
distinct identities for several reasons: the saving of core storage,
ease of checkout, and the enhancement of understanding the total
operation by simple presentation of distinct pieces.

The three matrix evaluation subroutines provide the
means of calculating the angular rates and angular accelerations of
the mechanism links if the link lengths and directions are known, as
well as the drive motion. Basically, it is a programmed method of
solving n equations for n unknowns, such as (45) through (54).
There exist several established mathematical methods for doing this.
One in particular appears well suited to handle a large matrix with at
least some zero coefficients, and which can conveniently be program-
med for automatic solution. The method, generally attributed to
Gauss (4, p. 428), (7, p. 28), is commonly called "Gauss reduction',
The technique is that of starting with a set of equations, as in (55),

and solving it in five operations.

51

211%1 FApXp t 2 aXg t e v 2 X = by
ap1%) T A%, t3y3%Xg v e v 2, x = by
a_ 1% ta x,+ a_3¥3 $oeee + a x = bn (55)

Step one: Determine aij of greatest absolute magnitude. If i# 1,
exchange ith row with first row. If j # 1, exchange jth column with
first column. This is necessary to prevent division by zero in Step

Two in case a)y = 0, and is also beneficial in reducing computation

error by ensuring division by the largest possible number.

Step two: Divide new row one elements by new a5

Step three: Multiply modified row one by 25 and difference with

corresponding elements of row two. Do likewise with as; and row

three, a4l and row four, etc.

Step four: the new set of equations will look like (56), where primes
indicate the result of the prescribed operations.
1 1 1 —- 1
X + a) X, + a)3%3 + ... 4 X, = b1

1 t] - 1
0 + azzx2 + a23x3 + e 4+ aann = b2

(56)

(=)
+
m—
&
+
p’-
"
+
+
w’
ol
1
o

52
Ignore row and column one and repeat steps one, two, and three on
the remaining array. Continue operations until set (55) is a unit

diagonal like (57).

3] 1" 1 - 1"

x1+a12x2+a13x3+... +alnxn = b1

1" " _ 1

0 + x2 + a.z3x3 + eee + aann = b2
0 + 0 + O +ee. 4 x = b" (57)

n n

Step five: With the unit diagonal matrix (57), first use x = b;

to solve for X4 in the previous row; i. e.

x + all x - 11
n=-l,n n n-1

—_ 1 1 11
x =b B (an-l,n)bn

Using x and x » solve for x Continue until all xs are deter-

n-1 n-2°
mined. When performing this operation, the fact that the columns -
may have been switched n-1 times during step one must be accounted
for. This is accomplished by maintaining a record of which columns
were switched for which adjusted matrix and, after solving for the
current X switching it back to its original position before deter-

mining x, .. The result will be the column matrix of x in its

1-=1

original order.

The foregoing Gauss reduction is performed by the

53

program as outlined. The outlined aij coefficients are computed by
the subroutine ACOE, the original bs are computed by BCOE, and

Gauss reduction is performed by Gauss. See Appendices C, D, E.

Subroutine ACOE. This subroutine, shown in detail in

Appendix C, computes the a-coefficients for use in the Gauss reduc-
tion subroutine, GAUSS., All data, except the matrix size specifica=
tion, MATRIX, is implicitly transferred from MAIN to ACOE through
COMMON., These data are R, NORDER, and THETA2. The result'-
ing values of the aij's, called AY(I, J), are transferred back to
MAIN by way of COMMON, The equations used to perform the cal-
culations result from the observation that a vector-loop about a link
polygon provides two sets of equations. The only difference in the
two equations is that one uses cosf products whereas the other uses
sin® ‘products; the only difference between any two terms of a single
equation is the values of R and THETA. For example, considering
equations (33) through (42) and (45) through (54), the coefficients of
w, and a, are identical and follow a pattern predictable from the
original vector loop equations (26) through (30). First, z, and z,
are ignored because they are frame vectors and cannot move. By
assigning a number to each link, a table such as Table II can be

prepared wherein the link members and loop equations are related

through vector signs and subscripts. In the table, each row repre-

sents a vector loop equation(without frame vectors)and each column

54
represents a link. The table numbers are the signs and subscripts
of the vectors as they appear in the loop equations.

Table II. Vector loops and mechanism links related through vector

signs and subscripts. The table values are called NORDER
(I, J) in the program.

Link No. 1 2 3 4 5 6 7 8 9 10
- - 4

Ll 6 3

L2 1 -7, -6| -3 8

L3 7 -18 9 }11,-10

L4 13 11 14 |-12

L5 -13 16 -14 17 -15

(Note: for programming reasons, with a ram drive, link no. 1 must
be the driver; for a crank drive, the drive link does not appear in the
table.) The table numbers are introduced to the program by the ar-
ray NORDER(M, N). The absolute values of NORDER become the
subscripts of R and THETAZ2, and the sign becomes the sign of the
a-coefficients. Notice that eachrow of the table, or NORDER(M, N),
is used to provide calculation of two rows of a-coefficients. These

control values are used in the basic equations:
a,. =r cos0

ij - "k"°%k

a'1+1;j = rksmek

which in the program appear as:

AY(I, J) = SIGN*R(K)*COS(THETA2(K)) (58)

AY(I+1, J) = SIGN*R(K)*SIN(THET A2(K)) (59)
where K = [NORDER(M, N) | (60)

SIGN = NORDER(M, N)/ K (61)

I=2M

J = 2N-1

If two signed numbers appear in a single location in the
table, they also appear in two successive positions in NORDER,
which results in two calculations each of (58) and (59) and like
values being summed.

An example would clarify. Consider row L3 of Table II;

55

it represents the vector loop equation (28). To obtain the coefficients

of the corresponding equations (37) and (38), a set of values of
NORDER are prepared.
NORDER(3,J) = -18, 0;7,0; 0,0; 0,0; 9,0; -11, -10;
0,0; 0,0; 0,0; 0,0.
The program reads the first value of NORDER, which is NORDER

(3,1) = -18. Using (60) and (61), the equations (58) and (59) become:

AY(6,1) = -R(18) * COS(THETAZ2(18))
AY(7,1) = -R(18) * SIN(THETA2(18))

The variables R(18) and THETA 2(18) are read from COMMON

56
and the calculations are completed. Since NORDER(3,2) = 0, AY(6,2)

and AY(7,2) are stored unaltered. The process is continued until

ten values each of AY(6,J) and AY(7,J) have been computed, six of

which are identically zero because six sets of NORDER were zero.
In this way the entire set of a-coefficients is computed

and then stored for use in subroutine GAUSS.

Subroutine BCOE. This subroutine, presented in detail
in Appendix b, computes the b-values required to solve for X in the
matrix product A*X = B, represented by set (55)., Unlike the a-
coefficients, which are the same whether solving for angular rates
or angular accelerations or whether the drive link is a crank or a
ram, the b-values are different for each case. Consequently, four
different sets of equations are required. Figure 13 presents the
program schematic,

The proper set of equations is selected according to the
control arguments MODE and IPTYPE. The number of values com-
puted is controlled by MATRIX. The argument DRIVER is the value
of the drive link rate, whether it is unit length per unit time for a
ram, or radians per unit time for a crank. All other data appear as
arrays and are implicitly transferred through COMMON. The arrays
are: AY, from ACOE; OMEGA2, angular rates used to compute b~
values for a ; R; THETAZ2; and SIGN, equal to zero or #1, which is

used to give the b-values the proper sign.

(SUBROUTINE BCOE)

/
S1= SIN (THETA 2 (1))
C1 = COS (THETA2(1))

Yes

No

Yes

No
Compute B's for A*w=B

with crank drive "QURN

' Compute B's for A*w=B

with crank drive

1

Compute B's for A*a=B and velocity
vector residues, p, without drive term

No

Compute ram=~drive terms for B's and
residues and add to appropriate terms

Compute crank-drive terms for B's and

residues and add to appropriate terms

Figure 13, Schematic flow diagram for subroutine BCOE,

57

58
The equations defining the b-values for A%y = B with

ram drive are (see (35), (36)):

= %7 si
bi rlsme1
bi+1 = irlcosel
or
BEE(I) = -SIGN(I)*DRIVER*S]1
BEE(I+1) = -SIGN(I)*DRIVER*C1
where

Sl = SIN(THETAZ2(1))

Cl = COS(THETA2(1))
These equations require that the angle of the driver always be sub-
scripted (1). This means the driver angle must be the first one in
the input data. The SIGN(I) term carries the sign of driver as it
appears in the original loop equation. If the drive link is not in the
ith loop equation, SIGN(I) = 0.

The equations defining the b-values for A%y = B with

crank drive are (see(11), (12)):

== 3
bi rlﬂ cose1
bi+l =% rlﬂsinel
or PROD = SIGN(I)*R(1)*DRIVER

BEE(I) = -PROD*C1
BEE(I+1) = -PROD#*S1

As before, the subscript of the drive link data must be (1). The

59

term SIGN(I) has the previous definition.

The majority of b-values for the A%y = B matrix are
zero; they have a non-zero value only when the drive link is in that
particular vector loop. The b-values for A*a = B, however, are
rarely zero because, although only two or so have a drive link term,
everyone has n omega-squared products (where n = no. of vectors
in that vector loop). This maybe observedin equations(45) through(54).
Forthisreason, inthe programthe omega-squaredterms are summed

andthen, if appropriate, the drive-linkterms are added. The basic equa-

tions are: '] 2
bi = Zrksmekwj

It can be seen that the coefficients of the omega-squared terms are
a-coefficients. In the program this fact is used and the resulting
equations are:

PROD1 = AY(I+l,J)*OMEGAZ2(J)

BEE(I) = BEE(I) + PRODI*OMEGAZ2(J)

PROD2 = AY(I, J)*OMEGA2(J)

BEE(I+1) = BEE(I+1) - PROD2*OMEGA2(J)
After summing these terms, the drive-link terms are added. For a

ram-drive the drive-link terms are (see (49), (48)):

60

= + 2p
bi bi 2r lcose 191

= + v i
bi+1 bi+1 Zrlsme 1°1

Or, in the program language:

PROD1 = SIGN(I)*DRIVER*CI
PROD2 = SIGN(I)*DRIVER*S1
BEE(I) = BEE(I)-2. 0*PRODI*OMEGAZ2(1)

BEE(I+1l) = BEE(I+1)-2. 0*PROD2*OMEGA2(1)

The ram-drive term is the familiar coriolus term. The subscript of
R, THETAZ2, and OMEGA2 must be (1). The R and THETAZ2 subscript
of (1) is effected by placing the drive-link data in the first field of the
input data; the OMEGA subscript of (1) is effected by assigning the
number 1 to the ram-drive-link, as in Table II. Note, however,
that for a crank-drive, the angular rate is prescribed and, conse-
quently, the drive-link is assigned no number and does not appear in
the table.

For a crank-drive, the driver term to be added to the
b-values results from the equations (see (15), (16)):

b, =b, £ r, cosb q?
i i 1 1

s5ind 92

b =bi+1 -f-r1 1

i+l

61

SIGN(I)*Cl*DRIVER*R(1)

or: PROD2

PROD! SIGN(1)*¥S1*DRIVER*R(1)

BEE(I) = BEE(I) + PRODI*DRIVER

BEE(I+l) = BEE(I+1) - PROD2*DRIVER

After calculation, the b-values are returned to program

MAIN by way of COMMON for use with subroutine GAUSS.

An additional feature of this subroutine is that during

calculations to obtain b-values for A*q = B, some of the results are

used to calculate the residual, p , in

Zricoseiwj = P(Y)
Zrimneiwj = P(}-{)
In addition, the following calculations are made.

Z[ricoseiwjl = total y~path

Elr.sine.w.l = total x-path
;o1 1)

The ratio of p to total path times 100 gives the percentage of resid-

ual error. In the program

BUFFER(I)

Py

TOTPTH(I)

total path

___p_ 1 = = P %10
fotal path x 100 = BUFFER(I) BUFFER(I)/ TOTPTH(I) 0.0

62
The final value of BUFFER is the percentage residual and is printed
out in program MAIN. These values can be used to determine effec-

tive closure of velocity vectors and accuracy of calculations.

Subroutine GAUSS. This subroutine, presented in detail

in Appendix E, performs the Gauss reduction on the matrix product
AX=B, as generalized by set 55, using previously calculated a’-
coefficients and b-values from ACOE and BCOE, respectively. The
argument MATRIX controls the size of the matrix solved. The ar-
rays AY(I, J) and BEE(I) are implicitly transferred through COMMON.
(Note: this subroutine is not restricted to linkage analysis; it is use-
able on any linear, square matrix). The program schematic is
shown in Figure 14. The program symbols and steps agree well with
those used in presentation of the theory of Gauss reduction; they re-
quire no further explanation. The phrase''adjusted matrix'' used in
the program schematic, Figure 14, may, however, require defining.
It is best explained by example. Set (55) represents the original
matrix; then set (55) manipulated so the maximum Iaijl isin the
first row and column is the first adjusted matrix. On this matrix
perform steps 2) and 3) of the Gauss reduction, drop row and col-
umn one and perform step 1). The result is the second adjusted
matrix (similar to set (56) with row and column one and a'z'2 being

). If the original matrix has n rows or columns,

maximum |a,,
1)

(SUBROUTINE GAUSS)

—"{ Determine max | AY (I, J) | I

Exchange column] with first
column, Note column

Exchange row I with first row

Y
= WRITE: AY-array j

No

“AY (1.]J). Exhaust column 3.
‘Repeat until all columns, in-

Divide 2nd element of first row by
AY (I, J). Multiply quotient by
first element of 2nd row and dif-
ference with 2nd element of 2nd
row, [Exhaust column 2. Divide
3rd element of first row by

cluding BEE column, have been
adjusted.

Is matrix a unit
diagonal ?

AY (MATRIX,
MATRIX) = O

—

Drop first row and column

63

Starting with X (MATRIX,
MATRIX), Solve for X's
in reverse order, exchang-
ing X's in reverse order of
column swapping,

Figure 14. Schematic flow diagram for subroutine GAUSS

64

there will be n adjusted matrices, the first having n x n terms and
the nth having one term.

In the Gauss reduction, the first row of the matrix is
divided by the first element of that row, a,'ii « Under certain condi-
tions, such as at a linkage singularity, the remaining coefficients of
the adjusted matrix are zero, including ai'i . This warns of a singular
matrix. The reasonforindeterminacyinthe system may be due to a
mathematical singularity or a result of an error in the input data.

To assist in analyzing the nature of the problem, instructions are
included to write out the AY-array, BEE-array, and COLSWP.

If division by zero is not encountered, the subroutine computes
the complete x'-'array, which may be either angular rate or accele-

ration, and transfers the data and control back to program MAIN.,

The Angle Computation Subroutine

The angle computation subroutine, called ANGLE, is
presented in detail in AppendixF . Its purpose is to calculate new
approximate link-vector directions from acceleration data and to
refine these angular approximations using the angular velocities
calculated from the approximations.

The argument MATRIX controls the size of the NORDER
array to be used in making the calculations. If argument CNTRQOL=1,

angle increments are calculated using equation (17), repeated here

65
for convenience:

0 = a. = 4+ w. At +0 (17)

0 0
Equation (17) presumes a = constant over time increment DELTEE;
consequently, this mode is used only for the initial approximations.
If CNTROL = 2, refined approximations are made using the average
between new and old values of w; this equation is (19), repeated here

for convenience:

6=(w+w0)‘%-t—+6 (19)

0

Equation (19) requires that values obtained from (17) are used in
ACOE - BCOE - GAUSS to obtain w. The data arrays NORDER, X,
THETA, OMEGA, AND THETAZ are implicitly transferred by way
of COMMON.

Since some values of NORDER are repeated (see Table II),
some angle approximations are repeated. The time-cost of repeat-
ing a few calculations is outweighed by the convenience of simpler

logic and less stored data.

Angle values are returned to MAIN by way of COMMON.,

Translational Kinematics Subroutine

The last subroutine to be discussed computes the translation-
alkinematic data andis called KINE. The program appears in detailin

Appendix G; the program schematicis shown in Figure 15.

66

SUBROUTINE KINE

=

(' READ: NMPTHS, NMTRMS (1), NCOUP)

CREAD: RCOUP (I), DELTA (I))
i:
(READ: ISIGN(I), ICQWNC(I), IOMCOR (I))

»= INITIALIZE -

No

Qcomplete

Compute relative translational y

position, velocity and acc,
Add to previous vector step.

@\INTz NMSTEP, NMPATH, X, ¥,%,7,X, *D
]
=0
>0

CPRINT: NMSTEP, IPOINT, X, Y, X, Y, X, ¥)
N o |

Compute coupler point Kinematics and
add to previous vector step

4

-

NMSTEP-NCOUP

<0

Q’RINT: NMSTEP, IPOINT, X, Y, X, Y, X, '\'f)

|

Figure 15, Schematic flow diagram for subroutine KINE

67

Fundamentally the program is merely an algorithm based
upon equations (3), (4), and (20) through (23). These equations pro-
vide the translational position, velocity, and acceleration of one end
of a vector relative to the other end. The translational kinematics of
one point, then, can be described relative to another point by adding
like kinematic components along a vector path from the reference
point to the point in question. If the computed data is to be used in
equations of dynamics, the reference point must not have motion rela-
tive to absolute space. This is achieved by placing the reference point
for the linkage at a frame pin. Velocity and acceleration magnitudes
are unaffected by the reference point as long as it is fixed. Position
data, however, is affected. For consistency, it is suggested that the
frame pin of the drive link be used as reference for all linkages.

Data from program MAIN is transferred through the sub-
routine's argument (i.e., NMSTEP, ALL) and by way of COMMON.

The data read in is defined as follows:

1) NMPTHS -- controldata: instructions as to how many
distinct vector paths will be traversed.
2) NMTRMS -- control data: instructions as to how many

vectors there are in each path.

3) NCOUP -- control data: instructions as to how many
coupler points are to be defined kinematically, (A
coupler pointis any pointother thanthe originor termi-
nus of avector; in linkageparlance, a coupler pointis

any point.on a moving member whichisnot at a joint.)

4)

5)

6)

7)

8)

68

RCOUP -- computational data: the distance, incon-
sistence units, from the last point on a vector

to the coupler point. RCOUP(N) will be associated
with path N; note, however, that if there is one coup-
ler point it will be associated with path number one,

and so forth.

DELTA -- computational data: the angle, in degrees,
which, when added to the direction of the last vector
step, gives the direction of the coupler point. Order-~

ing must be consistent with RCOUP.

ISIGN -- computational data: must be £1. It provides
polarity to the traversed vector along the vector path.

Used with ICQWNC and IOMCOR.

ICQWNC -- control data: This array provides the

subscripts of the vectors traversed along a path.

IOMCOR -~ control data: the array correlating the
vectors, on a vector path, with the appropriate
OMEGA subscripts. If the vector is a frame vector,

the JIOMCOR value is zero.

Caution: For reasons of program simplicity, no provisions are made

for a path including the drive-link; consequently, such a path cannot

be used.

Output of subroutine KINE is:

1)

2)

NMSTEP -- defined in MAIN

IPOINT -- the subscript of the vector for which trans-
lational data will be provided. If positive, the data

referstothevector head; if negative, it refersto the tail.

69

3) X -- (not the same as in GAUSS) the right-positive
horizontal distance from the reference point, or

beginning of vector path.
4) Y -- the cartesian compliment of X; positive up.

5) XDOT -- the horizontal velocity of IPOINT; positive
right.

6) YDOT -- the vertical velocity of IPOINT; positive up.

7) XDBLDT -- the horizontal acceleration of IPOINT;

positive right.

8) YDBLDT -- the vertical acceleration of IPOINT;

positive up.
If ALL = 1, the items listed will be read out for each vector step. If
ALL = 0, only the data for the last point will be output. If NCOUP> 0,
kinematic data for the last point will be followed by data for the coup-

ler point, until NCOUP is exhausted.

70

VALIDATING TEST CASES

In this section, the computer results of the analysis of
three linkages will be presented. The first linkage test case is that
of the eleven-;bar (ten moving"—bar) system schematically represented
in Figure 11 and which was much discussed in the section "Kinematic

Evaluation of Complex Linkages. "

The analysis of this linkage will
be used to validate the analytic techniques, as well as demonstrate
the capability of the FORTRAN programs and their methods of use.
The last two test cases are shown in Figures 8 and 9. These two
cases, discussed in detail in the subsection '"Mathematical Singu-

larities' will be used to demonstrate program response to a linkage

configuration having either no solution or two; i. e., a singular state.

Eleven-bar Linkage Test Case

This linkage is comparable in complexity to the industrial
problem cited in the introduction. It also represents the most com-
plex linkage which may be analyzed by the established programs, be-
cause of storage limitations. Consequently, it is a significant test
case.

A scaled vector polygon of the test linkage is shown by the
solid-line diagram in Figure 16. This polygon, or something similar,

is required in the analysis to provide initial-position data. After

X, units J

50
17
o
b~}
\ |
\ -
\ L)
\‘ —+40
\
‘?
|
]
£
a
Z l'go ‘é
+‘5 o 30
Q —t
| g g
ERY
| - o=
Sa
:N ° E:'
1 z s
o
N Kk
o ® M,
|0 m.
Solid vectors: positions 1, 18 I'§ -g ;g
Dashed vectors: position 9 &ﬂ(“ B 20
|
\
|
|
|
4
\
\
|
\
1
— “# =10
21 A~ _ ,
z \\ZIZ T “
13N ‘,
~
zZ.Z 1
z PR TRES
10 - _(// \ 1 217
z f’o’ %7 Zzﬁr
18—~ 6 . \I
I | *\5
-20 -10 0 5

Figure 16. Eleven-bar linkage vector diagram.

71

72

scaling lengths and angles, a new exaggerated polygon such as in Fig-
ure 11 should be drawn. The new polygon facilitates the writing of
accurate vector loop equations for angular analyses, and simplifies

the selection of a vector path for translational analyses.

Required Data Cards. Reference to the appendices and the

previous section shows that the required MAIN program input data is:

Card 1 -- MATRIX, IPTYPE, MXSTEP, NUMCYC, MAXR,
DELTEE, DRIVER, SIG, IFRAME, HYST,
TRAKIN, ALL

Cards 2,3 -- (R(I), I =1, MAXR)

Cards 4,5l- (THETA(I), I=1, MAXR)

Cards 6 to 10 -- ((NORDER(L J), J =1, MATRIX), I =1,

MATRIX)

Figure 11 shows a possibility of five vector loops.
Gruebler's equation, (24), proves the system has one degree of free-
dom. Substitution into Paul's equation, (25), provides the answer of
five vector loops, which agrees with observation. That there are
five vector loops means MATRIX = 10. The ram drive requires
that IPTYPE = 1. Eighteen vectors means MAXR = 18. If the loop
equations are written as (26) through (30),a table such as Table II
can be made which shows that S1G=0,0,1,1,0,0,0,0,0,0., The

schematic in Figure 11 shows the frame vectors to be z, and Zg3

73
therefore, IFRAME = 2, 5. Figure 16 shows the ram contracts with a
rate of 1 unit/ second; therefore, DRIVER =-1.0. The remaining data
for card 1, MXSTEP, NUMCYC, DELTEE, HYST, TRAKIN, and ALL,
are arbitrary. MXSTEP is selected as 9 and NUMCYC is set to 4.
DELTEE is chosen as 2. 0 (two seconds per interval). Since an esti-
mate of repeatability is desired, HYST is made equal to 1. The trans-
lational position, velocity, accelerations of certain points is desired
so TRAKIN = 1. To minimize calculations, the translational kinemat-
ics of every intermediate step should be printed; consequently, ALL
is set to 1. These data are entered on the first input data card as
shown in Table III, Part I. Positions and decimalization is deter-
mined by program MAIN in Appendix B.

The next data of concern are the R's, the vector lengths,
and the THETA's, the vector argument in degrees and measured posi-
tive counterclockwise from the horizontal. These data are deter-
mined from Figure 16 and are entered on cards 2 through 5, also
shown in Table III, Part I.

The remaining data required by program MAIN are the
NORDER values -~ that is, the vector subscripts in the velocity
vector loops. These are taken from Table II and entered on cards
6 through 10, as shown in Table III, Part 1.

Since translational kinematics were desired‘ and TRAKIN
is set to 1, subroutine KINE requires additional input data to de-
scribe the vector paths desired.

Card 1 -- NMPTHS, (NMTRMS(I),I = 1, NMPTHS), NCOUP

Card 2 -- (ISIGN(J), J=1, NMTRMS)

74

Card 3 -- (ICQWNC(J), J = 1, NMTRMS)
Card 4 -- (IOMCOR(J), J = 1, NMTRMS)

The total number of cards varies, as with program MAIN,
according to what is desired. In this test case, a path is selected
which will inlcude every pin but the forward end of the ram (this
pin's position is given separately in MAIN). Consequently,

NMPTHS =1 and there is only one value of NMTRMS, which is 15.
No coupler point kinematics is desired so NCOUP is left blank (this
also means no cards are provided which give RCOUP or DELTA).
The vector path is described by ISIGN and ICQWNC, cards 2 and 3.
The path selected is, starting at the frame pin of the ram, Zo + 24+
“18 P10t P11 F P16t P17 T P15 T Fla T P13 T %9 T gt 2t 23t 2
ISIGN(I), therefore, becomes 1,1,1,1,1,1,1, -1, -1, =1, =1, =1, =1,-1, 1,
and ICQWNC(D)is 2, 4,18,10,11,16,17,15,14,13,9,7,6,3,5. To be
able to make the correct calculations, the vector steps must be cor-
related to the angular velocity terms. This is done in card 4. The
values to enter are established by correlating card 3 to Table II;
IOMCOR(I)becomes 0,4,4, 6, 6, 6,9,10,7,5,5,2,2,3,0 (zeros are

entered for frame vectors). The resulting data cards are shown in

Table III, Partl.

Results of Computer Analysis. The preceding data cards

were addendedto the computer program decks described in Appendices

B through G. The ensemble was submitted to the Oregon State

'Wunle III. Eleven-bar linkage data.

Part 1. Input data key, input dita, output data key

PROGRAM MAIN INPUT DATA CARDS

75

1 HATRIX.lPTYPElMXSTEPDNUMCYCOMAXR.DEL?EE.DRIVER.S!G.lFRAHE.HYST'TRAKleALL

2+3 R{1) THROUGH (18) IN UNITS

4+% THETA2(1) THROUGH (18) IN DEGREES

6 THROUGH 10 NORDER(191) THROUGH (59209
SUBROUTINE KINE INPUT DATA CARDS

1 NMPTHSs NMTBMS(NMPTHS)» NCOUP

2 ISIGN(1) THROUGH (NMTRMS(1))

3 ICQWNC(1) THROUGH (NMTRMS(1))

& IOMCOR(1) THROUGH (NMTRMS{1))

10 1 9 418 2.0 ~1¢00011:000000

26,80 670 19.10 16,05 1e80 5420 5.10 1.30 4.80

~ 140 6460 5+60 1l.90 20440 18,40 6414 2483

98,00 90400 114,40 118,77 31.30 62.50 64,20 217,70 158.20
- 141470 126463 142,50 32,20 57.50 38,40 104,27 97.71
0-¢ 0-3 0 4 0 0 0 0 0 O '
0 -6 -7 -3 08 0 0 0 O
o 7 0 0 0 9 0-10-11 O
013 011 O 14

0

-1 0
0

0-13 0 16 0-14 0
1

3

3

0000

0 0
00
0o o
017

(- X-%- X-J
Wwoo
[-X-X-J

0
0
0

oo
oo
[~ X -]

1 -1
1 1 «1-=1~1 <1 =]~ ~
16 17 151613 9 T 6
6 910 7 5 5 2 2

ONM=MO00~ O

-
S P BOO
[-RV T

L
> Bee
s
O O
"
O =t e

OUTPUT DATA

10305 HEAPP } THROUGH (18t N 4
20Q060Z ‘HEAPP iil) THROSGH *g‘, 1S8Te 2NDs 3RDs 4TH APPROX)s IN DEGREES

9 BUFF1(1) THROUGH (10) (VELOCITY PERCENT RESIDUAL)

10 BUFF1(1) THROUGH (10) (ACCELERATION PERCENT RESIDUAL)}

11 THROUGH 25 NMSTEP» IPOINTs X» Ys XDOTe YDOTs XOBLDT» YDBLDT
26 NMSTEPs R(11s THETA2(1)

27928 THETA2(1) THROUGH (18) IN DEGREES

29 BUFF1(1) THROUGH (10) (BUFF1 = OMEGA) IN DEGREESISEC

30 ALPHA(1) THROUGH (10) IN DEGREES/SEC®#SEC

Part 2. Output data, position one

98,00 90,00 114,40 115,77 31.30 62,50 64,20 217,71 158,20
181,70 126463 142,50 32420 5750 58,40 104,27 97.71

o B80E~08 ¢3TE~05-¢BlE~05=¢17E-06 oT74E~05-435E~05 +18E~05-+18E-05 +00E~99

000E~99=¢412E=05=652E=06 +00E~99-¢14E~05 +12E-05 +20E=-05 +22E-05 .00E-99

1 2 «00 6070 «00 +00 +00 «00
1 4 -6497 21015 «2+56 ~1023 18 ~el18
1 16 “7435% 23495 -3,08 =1430 «90 ~e25
1 10 -8e011 26465 =-2+52 -1e15 o715 -4l
1 1 ~9e21 27452 2635 ~e93 o T4 -e51
1 16 042 43,19 «75 =284 ~e67 -elt9
1 17 ~1.,08 49414 1.13 24758 -e99 ~e60
1 15 =-12,04 31,93 =1.99 -e75 YY) ~e T2
1 =14 =13,6% 30492 -2.09 -e59 o 54 ~e83
1 -13 -9¢21 27451 ~-2e35 ‘~e93 T4 ~¢51
1 =9 -&4eT5 25473 -2+48 -1e27 83 -e20
1 =7 ~6e97 21lel4 -2+56 =123 78 =e18
1 -6 ~-9eb2 16444 ~2e63 -1e19 «73 -el5
1 -3 =1e53 ~e95 -+00 =00 +00 «00
1 5 «00 -e01 -+00 ~¢00 «00 «00

1 26480 97499
97499 89.99 114439 115.76 31429 6249 64,19 217,69 158,19
141,69 126462 182,49 32.19 57.49 58439 104,26 97.70
554 -e93 8469 10415 ~4433 ~11.,36 ~5.,68 ~573 =3.63
~1419 ~e66 -1481 -2.24 3.84 3,79 4,33 3.77 3.16

25111
2.80

105.70

105,70

+14E-05
«14E-05

105469

=-10+41
3,60

Table III. (continued)

60,99
103,32
61.78
100,21
61,63
100,58
61,65
100,52

216472
113,54
213.16
115,51
213,457
115426
213,51
115,27

187422
153.68
154,06
154,01

oB0E-0A-eB84E~02-¢46E~03~424E=-02-¢10E-02-¢31E~03
¢32E=06-013E-05 ¢27E-05 +10E-05-014E~05-¢28E~06 +17E-05

Part 3. Output data, position two
106469 90,00 128417 131,60 31430 59,29
1264%6 122,71 141,52 29.48 43,86 43,25
107,81 90400 129465 133,57 31430 60,08
123,50 119,29 137,96 25.97 40,89 40,19
107,62 90,00 12945 133,32 31.30 59,93
123483 119,67 138,36 26430 41,22 40,52
107,63 90,00 129+46 133,33 31.30 59495
123,79 119,63 138,31 26430 4le19 40,49
026E<03 (11E-03 +33E-03
~¢13E=05-927E~05
2 2 00 6470 00 «00 « 00
2 4 =11.01 18437 =150 1642 ¢35
2 18 -12,22 20,93 =1.83 =1457 obl
2 10 =~12,11 23473 ~1e52 ~1e59 034
2 11 ~12.89 24489 -1e38 =150 033
2 16 1409 36484 -e02 «3409 P L)
2 17 -e02 42,088 =01 =3409 ~e22
2 =15 ~-15.37 29444 -1039 =1452 23
2 =16 =17,07 28460 =139 =1451 25
2 -13 ~-12,89 24,87 -1438 =150 «33
2 =9 -~8458 22077 -1.38 =1449 37
2 -7 =11.00 18.28 «1¢50 -le42 ¢33
2 =6 =13,6% 13,69 =1+63 -1434 «34
2 -3 ~1e51 =1¢04 -+00 00 «00
2 5 002 ~ell =00 00 + 00
2 2480 107.62
107,62 89.99 129,45 133,33 31429 59,94
123,79 119,63 138,31 26430 41419 40449
4008 ~-1le61 636 Te40 olé =-65453
—ohé -e16 -e77 =86 1409 1439
Part 4. Output data, position nine
153,25 90,00 174,56 195,92 31.30 15,93
64,06 119,28 149,25 58,84 ~12,83 =19,24
154,09 90,00 174,23 195,87 31430 16,91
63451 118,48 148,45 57484 =13440 =19,79
154,34 90,00 174413 195,87 31430 14,57
63432 118.23 148,21 57¢56 «13460 ~19,98
154,42 90,00 174410 195,87 31430 14,46
63425 118,185 148,13 5Tedd <«=13,66 -20,04
o80E=02-011E 00 o15E-01-,85E~01~+43E~02 +37E~-01
=036E=05<¢84E=~08 419E-05-¢19E-085 +A9E-05 ,58E-06
9 2 00 6070 00 «00 +00
9 A& ~=15.43 2631 19 =067 «00
9 18 ~18,26 2042 .18 -e79 001
9 10 =~15¢77 3470 ¢32 ~-106 01
9 11 ~1%.14 4e95 oA5 -1e12 «04
$ 16 2013 ~1436 -e21 =297 ~032
9 17 93 4466 13 =2490 ~-e09
9 -15 -18,.88 9448 62 -+90 024
9 =14 =19,91 T7.88 60 -e89 017
9 ~13 ~1%.15 4092 oh5 -lel2 o 04
9 =9 =10.54 3.%8 39 -1e35 =01
9 =7 <=15¢44 2017 019 -e67 «00
9 =6 <=20.58 B85 «00 e 04 03
9 =3 =158 ~1le11 +«00 «00 «00
9 5 -e04 -el8 «00 «00 00
9 1080 154444
154,44 89,99 174,08 195,86 31,29 14,43
63423 118411 148,09 5740 =13,69 =20,06
5673 ~Bo04 -o 14 2049 =286 ~-6¢13
2010 ~2490 -1le14 -e31 2624 ~1,.56

«00
~-e02
~e05
-+08
~s12

006

« 04
“el15
-e20
~el2
=¢03
~e02
'.01
-+00
=e00

61,64
100,53
-e20
1.56

17,63
102,43
16,61
101,65
16,27
101,41
16,16
101,33

213451
115427
~1425%
1.13

224,45
177.86
223.,66
177,81
223441
177.81
223,433
177.81

154401

-el0
80

164,95
1644)6
163.91
163.83

76

90,53
87.50
87,83
87,79

«hBE~03
+26E-05

87,79

~5.,88
l1.28

28,06
2750
27,31
27.235

+30E-02~¢99E-03-44T7E~03~¢52E=-03
¢00E~99-613E~05~+19E~05 +17E-05

«00
209
10
002
~o00
-e40
“e38
012
017
-+ 00
~e18
09
37
=+00
=200

16,13
101.30
=60
-2'57

223,29
177,80
~2e94
=219

163,79

“3e¢34
=216

27.23

~5.80
=l.61

Table III.{ continued)

Part 5. Output data, position 17
107,80 90,00 129,70 133,63 31430
123609 118499 137,64 25,51 40453
107,68 90,00 129449 133,36 31,30
123472 119,55 138,23 26,21 4le12
107,63 90,00 129,46 133,34 31,30
123679 119,62 138,31 26429 61,18
107,63 90,00 129,46 133,34 31.30
123,80 119,63 138,32 26,30 41,19

=e16E~04 (00E-99~¢65E~04~,20E-04 +92€-03

000E~99=42T7E=05 (11E=05 ,13E-05 +18E~05
1?7 2 00 6070 «00 «00
17 4 =11,01 18,37 1.50 1042
17 18 ~12,22 20,93 183 187
17 10 ~12,11 23473 1652 1459
17T 11 =12.89 24,089 1438 1450
17 16 1409 36484 002 3.09
17 17 -e02 42,87 «01 3409
17 =18 ~18,37 2944 1439 1652
17 =14 -17,07 28,60 139 1le51
17 =13 =-12,89 24,87 1038 1450
17 -9 -8.58 2277 1.38 1s49
17 -7 -11,00 18,28 1.50 1e42
17 =6 =13.65 13469 1.63 1e34
17 -3 -1e51 ~1e404 «00 -+00
17 -] .02 ‘oll «00 -+00
17 264480 107.62
107,62 89,99 129,46 133,33 31,29
123479 119463 138,31 264,30 41419
-4408 1.61 ~6436 =T+40 -elé
—e bbb -e16 -s77 ~e86 1409
Part 6. Output data, position 18
98457 90,00 115,19 116.80 31.30
139,67 124,42 140,20 29.84 55454
98,17 90400 114,61 116.,04 31430
141,45 126427 142,12 31.85 57423
98,04 90,00 114,46 115,84 31430
181467 126659 142445 32.16 57e46
98,01 90400 114442 115,79 3130
181,69 126462 142,49 32,19 5749
«¢56E=02~913E-02 +28E~02 ,B0E-04 ,18E~-O1
0T1E~06=¢63E~06~¢53E~06 (11E-05-,28E-05
18 2 «00 6470 «00 «00
18 4 ~6098 . 21,15 2056 le23
18 18 =Te36 23495 3405 1430
18 10 ~8411 26465 2452 1418
18 11 -9s21 2752 24358 «93
18 16 o b2 43019 “oT5 2484
18 17 -1,08 49414 -1e13 2675
18 =153 ~12,04 31,93 1.99 oT5
18 ~14 -13,6% 30,92 2.09 60
18 -13 -9.21 27451 2035 *93
18 -9 -4e75 25473 2448 1627
18 =7 -6¢97 21014 2056 123
18 -6 -9.42 16464 2063 1619
18 =3 =«1,53 -e95 «00 -+00
18 5 «00 -e01 «00 -¢00
18 26480 98400
98,00 89:99 114440 115,77 31429
141469 126662 142,49 32.19 57¢49
~5453 93 -8468 ~«10.1% 4032
-1e19 -0 66 ~-1080 ~2e2h 3,84

59.98 61,68 212,85
39478 100,02 115.57
59,97 61,67 213,43
40,42 100,46 11%.30
59,95 61,65 213,51
40,49 100,52 115,28
59,95 61,65 213,52
40449 100,53 115,27
¢37E~04 +42E~03 +18E-03
¢18E~06-e5TE~08 +44E=-06
«00 +00
o35 -e02
o4l ~+05
34 ~+08
33 -s12
14 «06
-e22 004
023 ~el5
«25 =020
033 -e12
037 ~e03
035 902
34 ~+01
+ 00 - 00
«00 ~+00
59,95 61,65 213,51
40449 100453 115,27
6453 020 1¢25
14329 1455 1,13
62486 64,56 21%.40
56436 102,34 98.74
62,63 64,33 217.32
58415 103,92 97.98
62,53 64,23 217,66
58437 104,21 97.78
62451 64,21 217470
58+39 104,26 97473
026E~03 +36E~03-,21E-03
e63E~06 ¢420E-05 +83E~06
+00 «00
078 ~e18
+90 =025
75 =,80
' T =e51
-e67 “ol9
~s99 -e60
shi ~-e72
«53 -053
o 74 ~e51
«83 -e20
o78 -e18
°73 -el5
« 00 «00
« 00 «00
62450 64420 217469
58439 104,26 97.71
11,35 5.68 5¢73
3,78 4432 3.77

77

153.35 87,09
153.93 87,72
1564.01 87,79
156,02 87,79
+56E~04~4+90E~04
«88E-06 +89E-06
154,01 87,79
*10 5.88

«80 1.28
155.90 103,66
15782 105.45
156.16 105,67
158419 105,69

e68E-03~+56E~03
¢32E-06 +45E-05

158419 105469
3463 10641
3.15 3.%9

78

University IBM 1410 digital computer. The computer required about
five minutes for loading the routines and an additional 25 minutes to
perform the calculations and punch the output data cards (time could
be reduced by tape output or on-line printing). The computer rental
charge is $50 per hour, making the cost of kinematically evaluating
this extremely complex linkage only $25, or about one engineering
man-hour. The time and cost are impressively small and are a sig-
nificant improvement over the usual expense and time associated with
non-computer methods of linkage analysis.

Because MXSTEP was set at 9 and HYST at 1, the computer
performed 18 sets of calculations, nine each way. This moved the
linkage's mathematical model through its entire ''range of operation"
and back to its original position. Although a design analyst working
with this linkage might be interested in the data from every step,
the program capabilities can be effectively demonstrated by display-
ing only the first, second, ninth, seventeenth, and eighteenth steps.
Positions one aﬁd nine are the extremes, and positions 17 and 18 are
the return positions of two and one, respectively.

Data for these positions appear in Table III, Parts 2
through 6, and are presented exactly as punched by the computer.
The key for determining what each field represents is displayed in
Table III, Part 1. An even better key would be the program itself.

Lines three and four of step one and lines nine and ten of

79

the other steps give the amount, in percent of total path, that the
velocity and acceleration vector loops failed to close. These values,
called residues (p) provide an estimate of the error in determining
angular rates and accelerations. Even-values are p (x) or p (X) and
odd-values are p(y) or p(y). The largest velocity residue is found
in the x~-velocity components of loop one, step nine, and is only
-0.11 percent. Generally, the velocity residues are smaller than
£ 0.0l percent. Very few of the acceleration residues are greater
than *# 0. 00001 percent. The reason for the acceleration residues
being smaller is that angles used in angular acceleration computation
have enjoyed one more iteration than those used to calculate angular
velocity. Additionally, there are a greater number of terms used to
calculate acceleration vector loops which would tend to dilute the ef-
fect of a particular term being in error. Itis also interesting to note
that, whereas step nine residues are larger than residues of step one,
step 18 residues are generally an order of magnitude smaller than for
step nine. This would imply that residues are more affected by the
values of angles, rates, etc., of a particular position than they are
by cumulative errors stepwise.

It is pertinent to subsequent discussion that a computer out-
put peculiarity be noted. The computer carries eight significant fig-
ures during computation, but truncates the results when the values

are printed out. The amount of truncation depends on the value and

80
the field specification of the program. Most output fields in the pro-
grams specify only two decimal places. This causes all lesser sig-
nificant figures to be dropped. For example, consider the four num-
bers that might be carried in core storage as 98. 090000, 98. 099999,
98. 100000, and 98.109999. If the program called for these numbers
to be printed or punched, they would appear as 98. 09, 98.09, 98.10
and 98. 10, respectively. Quite obviously, there is actually more
difference between the first and second a;nd the third and fourth num-
bers than between the second and third, although the output would be-
lie the fact. Consequently, any two numbers (except the residues)
agreeing within #0. 01 should be considered to be in complete agree-
ment.

Considering the foregoing comments, data from steps one
and 18 can be compared to provide the most convincing validation of
the analytic techniques and the FORTRAN angular programs which
have been developed in this paper -- except for the residues, there
is complete agreement between the two sets of data, although they
are separated by 17 steps. The magnitude of travel over these 17
steps can be better appreciated by referring to Figure 16. In this
diagram, the solid vectors represent stepsone and 18, andthe dashed
vectors represent step nine. The mathematical model moved fromthe
extended position, to the folded, back to the extended.

The data used for drawing the two vector arrays of

81
Figure 16 were obtained from subroutine KINE translational data for
steps one and nine. The translationalvector pathover this linkage was
carefully selected to begin and terminate (item marked 5) at the frame
pin of the ram; in addition, the path was allowed to cross over itself
at two points, 4 and -7, and 11 and -13. (It will be recalled that
these numbers are the vector subscripts of the traversed ve.tors.
The minus sign means the step terminated at the vector tail, whereas,
the lack of sign means termination at the head. Refer, also, to
ISIGN and ICQWNC). As a result, if the translational kinematics
are to be valid, the pairs 4 and -7, and 11 and -13, must have identi-
cal values. The item marked 5 must have all zero values since it
represents the origin. Steps one and 18 show this to be true, but
steps 2, 9, and 17 indicate a slight variation between position values
for pairs 4 and -7, and 11 and -13; they also show that the position
value for item 5 is not zero as it should be. However, that these
positional variations are in reality quite small and are cumulative
over the vector path, can be seen from studying the y-position data
of step nine, the data most in variance. First, the crossover pair
11 and -13 are separated on the vector path by very little and, as a
result, have values with little difference. Pairs 4 and -7 are sep-
arated by nearly the entire path and are different by almost as much
as the error in item 5 which does represent the entire path. These

facts indicate the error is cumulative over the path. Next, the

82
smallness of the error is shown by the error in the y-position data of
step nine being only 0. 4 percent of the total path. That the error is
not cumulative from linkage step to step is proven by the data of steps
1, 2,17, and 18; the errors are identical for steps one and 18 and for
steps two and 17. Apparently, the error is a function only of the an=-
gles. This agrees to a large extent with the variation observed in the
velocity and acceleration residues previously discussed. One strange
fact with no obvious explanation is that whereas the y-position error
for step nine is about 0. 4 percent, the x-position error is only 0. 04
percent, one order of magnitude smaller. Similar differences appear
in the other steps. The only difference in calculation is that the cosine
functions are used to determine x and sine functions are used to de-
termine y. This, also, agrees with the velocity residues which show
about one order of magnitude difference between sums using cosine
functions and sums using sine functions. For example, consider line
nine, of step nine, which displays the velocity vector loop residues;
the odd values employ cosine functions whereas the even values rely
on sine functions. The correlation is striking and suggests that the
computer built-in subroutines for determining sines and cosines are
sufficiently different in structure that the sine generator has more

inherent error than the cosine generator,

83

The Mathematical Singularity Test Cases

The two test case linkages to be discussed in this sub-
section are shown pictorially in Figures 8 and 9, representing the

Type I and Type II singularities, respectively.

Type I Singularity. For the Type I singularity, the linkage

is defined by the position vectors z) (the driver), z, (the floater),

Z, (the follower), and z, (the frame). The lengths are 1.0, 2.0, 1.0,

° _10° (oppo-

and 2. 0, respectively. The initial angles are 170°, ©
site sense to that shown in Figure 8) and 180°, respectively. Quite
obviously, if a step is calculated at 01 = 1800, the program, being
appropriately coded, will detect an attempt to divide by zero, and,
after printing out the existing AY-array and then upon restoring the
original AY-array and printing it, will terminate further calculations.
In a complex linkage analysis, however, the probability is very small
that the calculations would exactly (to eight significant figures) fall on
the singular position. This suggests that a practical demonstration
would have the singular position fall exactly between two calculated
positions. Consequently, arbitrarily setting the crank rate at 5°/ sec-
ond counterclockwise, the time interval is made 0.8 seconds. This

will place the singular position between the 178° and 182° positions

of the crank. To complete the demonstration, the program will be

84
instructed to continue to 186° on the crank, and then return, if it can,
to the original position. Table IV presents the results of the calcula-

tions using the foregoing criteria. The key to reading the data is:

6,, 0

Line 1 ~- 01, 0 30 9y

2
Line 2 -~ p(y), p(x)
Line 3 -- p(¥), p(%)
Line 4 -- step number, rl, 91

60,, 6

Line 5 -~ 91, 0 3 9y

2
Line 6 -~ Wyr Wy
Line 7 -- a, Gg
The data shows no abrupt rise of any values for step four
which is just across the singularity, nor even for the next step, num-
ber 5 (step 6 is the same po_sition as step 5, but with the crank re-
versed), but on the reverse pathanomalies develop. First, angular
dat‘a for each step are significantly different from the values calcu-
lated for the comparable position during counterclockwise movement
of the crank; i. e., hysteresis has developed. Next, ‘the x-velocity
residues are beginning to be a_ppreciably large, that is, two to three
percent as compared to the maximum of 0.1 percent for the consider-
ably more complex eleven-bar system. Finally, the simple system

failed to return to its original state. It can be deduced that a more

complex system would have even more obvious anomalies which

Table IV. Type I singularity output data.

Column 1

170,00 00
«58E-06 ¢32E-05
¢3TE-05 «66E=-06

1 100
169499 «00
-+ 00 54,00
~+00 «00

174,00 -+ 00
+00E-99 ,10€-02
+62E~06 +13E-05

2 1,00
173499 -+00
-+00 5400
~+00 «00
178,00 -+00

¢5TE~05 439E-02
¢15E~05 413E-05

3 1.00
177499 -+00
-+00 5400
~¢00 «00
182,00 ~e00

¢92E~-04~476E~-01
e T4LE=06 o«65E~06

o 1.00
181,99 00
«00 4499
~e01 002
186,00 -¢00

¢58E=03~453E~01
+58E-06 +00E-99

] 1,00
185,99 «00
00 4499

~¢00 «00

-10,00

169499
«9499

-6.00

173499
~5499

~1499

177499
~1499

2400

181.99
1,99

6400

185,99
599

180,00

179+99

180,00

179.99

180.00

179.99

180,00

179.99

180.00

179.99

COlllmn 2

186400 +00
=e19E~03 417E-01

| ~e56E=06 265E=06

6 1,00
185,99 «00
00 -5,00
¢ 00 ~¢00
182400 «00

=¢22E~03 418E 00
~e23E-05 o13E-05%
7

1400

181,99 «00
01 5,02
06 -e13
178,00 «04

~e38E-02~431F 01
~e¢12E~05%5 (00€-99
. 8 1.00
17799 ~e02
-909 ~-4480

048 =096

174,00 «08
~e23E=-01=421F 01
«e21E=05% (65€-06

9 1.00
173,99 -s07
~e04 ~-4e91
07 -sl14

170,00 -009
«37E~02 +12E 00
«00E=99 L64E-06

10 100
169499 -e07
«04 -%4+09
-e064 «09

5499

185499
5099

1.98

181,99
1498

~2408

177499
=1495

-64¢10

173499
~5484

-9+81

169.99
~9¢84

85

180.00

179499

180,00

179.99

180,00

179499

180,00

17999

180.00

17999

86

should warn the analyst that a singularity had been traversed (or that

there were errors in the input data).

Type II Singularity. The Type II singularity, depicted in

Figure 9, is the result of the linkage being moved to a state such
that it has become a structure. This type of singularity is easily
detected since the singular state is generally preceded by a sudden

rise in angular rate and acceleration. For this test case the values

1.0, 1.048, 0.684, and 1.0 are used for the vector moduli, Ty To
. o O o]
T and r ,, respectively, and 110.007, -19.87 , -58.60, and
180. 00° are used for the initial values of 61, 92, 03, and 94 respect-

ively. The moduli are the same as in Figure 9 and have already
been shown to create a singularity at 91 = 120°. The crank velocity
was set to 5°/ second counterclockwise, the time interval was made
0.8 seconds, the number of steps was selected as five, the hysteresis
mode was chosen, and the number of iterations desired for conver-
gence was set at 3.

The results of this linkage analysis are presented in Table
V. The key for reading the table is the same as for the Type I data,
except the iteration produces three lings of angles at the beginning,
They quite clearly show the approach to, and the passing over of, a
singularity. Beginning with the step prior to passing over the singu-

larity, angular velocity and acceleration increase sharply. The data

Column |

Table V.

110,00 =-19.87
«00E~99 416E~-05
¢18E=05~=420E~05

1 100

109,99 -19.86

-1450 896
~e86 1019

114,00 =21.3%
114400 =21.46
114,00 =21,48

¢59E~02 +48E=-02
¢25E-05 +85E~06

2 100
113499 =~21¢49
~2¢54 10445
~1e92 2482
11800 =~24,414
118,00 =244,73
118,00 <25,04
e25€ 00 L41F 00
¢12E-05-416E~05
3 1.00
11799 -25422
-6¢78 16481
-14¢23 2le64
122400 -35,20
122,00 =-23.54
122,00 ~30,74

«20E 02 o450 02
¢T1E~05 413E~05

4 100
121499 =15.,02
32427 -43.,07
~61¢35 92485
126,00 -8.84
126400 -2¢06
126400 ~-le71

-e24E~02 +98E-03
#63E~06 ¢00E-99
5 1.00
125499 =170
1602 6e 86
~e08 -e03

-58460

109499
~58459

~51404
-50486
-50083

113499
-50,83

-4] 456
-40+65
-40,419

11799
~39,.,92

~-19e¢54
=-37e39
-26428

121699
~50e42

-55.17
~64¢79
-65.07

125099
-65406

Type II Singularity output data.

180.00

179.99

180,00
180,00
180.00

179.99

180,00
180,00
180,00

179499

180,00
180,00
180,00

179.99

180,00
180.00
180,00

17999

Column 2

126400 ~1e70
126,00 -1470
126400 ~1470
¢00E~-99=449E~05
¢12€E=-0% L00E-99
(] 1.00
125499 =170
-1402 ~6e46
—.08 ‘003
122,00 =2455
122400 =255
122,00 ~2¢55
¢10E~05-¢54E-05
+00E~99 ,00E-99
7 100
121499 =255
=1409 -6+ 50
~¢09 ~e05
118.00 ~3+46
118,00 -3e46
118,00 -3+46
+00E=-99=412E~05
¢STE~06=0e13E~05 -
8 1.00
117499 -3e46
=1le16 -6e¢55
-009 ‘006
114,00 ~bo b2
114,400 4042
114,400 ~be42
¢00E-99-450F-05
¢55E~06~916E~05
9 1.00
113499 -4e042
~1e25 -6661
-llo -008
110,00 -5¢46
110,00 ~5046
110600 ~5e46
~011E-04~(48E~05
¢53E-06-419E~05
10 1.00
109,99 ~5e46
~1e33 ~6¢68
-1l ~¢10

-65.07
-65007
-65407

125499
-65.07

-70426
~70426
-70626

121499
-70e26

=75¢48
~75448
~T75448

117499
-75448

~80,75

~80e75 |

‘80.75

113,99
~80475

~86407
-86+08
~86008

109,99
-86407

87

180,00
180,00
180,00

179.99

180.00
180,00
180400

179.99

180.00
180.00
180,00

179.99

180,00
180.00
180,00

179.99

180.00
180,00
180.00

179499

88
for the first step beyond the singularity shows velocity residues as
high as 50 percent. Angular velocities increase in magnitude but
change sign. Angular accelerations increase fourfold over their pre-
viously high values. Beyond this point, angular velocities and accele-
rations drop to very low values. When the crank returns to its origi-
nal position, the other data show no similarity to the original values.
It is much as if the linkage had snapped upon encountering the singu-
larity, which it probably would have, had it been an actual, rather
than a mathematical, model. The analyst should encounter no diffi-

culty in detecting a singularity of this sort.

89

CONCLUDING REMARKS

The expressed purpose of this paper was to develop analytic
techniques and computer programs for the evaluation of plane motion
mechanisms. Inasmuch as a mechanism has been defined as a con-
strained kinematic chain, any evaluation of it must also be kinematic.
In addition, the term mechanism has, in this paper, been used to de-
fine the principal class of kinematic chains known as linkages. Fur-
ther, in avoidance of pedantic discussion of rare applic;tions, the
developmepts were restricted to single degree of freedom linkages
with turning joints and either a crank or ram drive. The stated pur-
pose, tempered by these practical considerations, has been fulfilled
by the preceding sections and has been validated by the kinemaltic
analysis of the eleven-bar linkage and the singularity test cases.

The digital computer programs presented in this paper can
be used directly by any analyst having access to an IBM 1410 digital
computer. The general language used in programming also makes it
quite easyto convertthe programto a wide variety of other scientific digit-
al computers. Verylikely, the only modifications would be to the input/
output instructions. Since digital computers are becoming increasing-
ly available, virtually every linkage analyst could gain access to a
computer which would accept the linkage analysis computer programs.

The programs and associated mathematical theory,

90
however, should not be accepted as an ultimate in linkage analysis but
rather as a sound basis for additional development. The program
could be modified to accept a variable velocity driver. With greater
storage available (such as magnetic tape units, larger core storage,
etc.) the programs could be altered to handle more complex linkages
or linkages with more than one degree of freedom. Instructions could
be added which would cause the computer to modify the linkage geome-
try and then re-evaluate, and, in this way, obtain a spectrum of link-
age designs.

Linkage analysis, albeit important, is but one phase of
mechanical design. Having determined the motion and geometric char-
acteristics of the design, the next step would be to analyze the dynam-
ics, static loading, member stress, space budgeting, bearing loading,
and so forth. These analyses all would employ data obtained from the
linkage analysis programs, but would, however, require the introduc-
tion of a third dimension in order to describe volume, mass, mo-
ments of inertia, etc.

With these developments, the design analyst would be re-
lieved of an even greater burden of routine calculations allowing him
to work more as an engineer and less as a technician. The advance
in the development of a complete program would be the conversion of
the analyst's ''judgement' to computer logic. With this, the computer

would analyze the linkage in precise detail, make a decision as to

91
whether the design were optimum, and if not, make a logical change,
and re-evaluate. The system would then be approaching the true

goal -- automatic design.

92

BIBLIOGRAPHY

Bottema, O. On Gruebler's formula of mechanisms. Applied
Scientific Research A(21):162-4, 1950,

Churchill, R.V. Complex variables and applications. New York,
McGraw-Hill, 1960. 297 p.

Faires, V.M. Kinematics. New York, McGraw-Hill, 1959,
468 p.

Hildebrand, F.B. Introduction to numerical analysis., New York,
McGraw-Hill, 1956. 511 p.

International Business Machines Corporation. IBM 1410/ 7010
operating system (141 0-PR-155)-FORTRAN. (Form
C28-0328-1). Poughkeepsie, 1963. 49 p.

Paul, B. Unified criterion for degree of constraint of plane
kinematic chains. ASME Transactions - Journal of
Applied Mechanics 27E(1):196-200. 1960.

Wylie, C.R. Advanced engineering mathematics. New York,
McGraw-Hill, 1960. 696 p.

APPENDICES

Appendix A. Program CLOSURE

MONSS EXEQ FORTRAN» 99099 9CLOS
DIMENSION R{20)s THETA(20)s NORDER(5920)¢ Bl10)s MAKEUPLS)
1 » NUMS(10)

5 FORMAT (213)

6 FORMAT - (10F8.2)

T FORMAT (2013)

36
100

10
15
20

30

35
40

52
54

56
58

60
62

64

68
70
72

T4
76

80

81
79
82
78
95

108

FORMAT (10F843)

FORMAT (513)

FORMAT (214,4F8.2)

READ (195) MATRIXs MAXR

READ (196) (R(1)s I = 1» MAXR)
READ (1+6) (THETA(I}s I = 19 MAXR)
MAT1 = MATRIX/2

DO 10 1 = 1» MAT1

READ (1+7) NUMs (NORDER(IsJ)e J = 1» NUM)
NUMS(I) = NUM

CONTINUE

DO 15 I = 1s MAXR

THETA(I) = THETA(I)/5T7+2985
DO 20 I = 1s MATRIX

B(I) = 0.0

DO 40 I = 29 MATRIX» 2
L=1-=1

K= I/2

NUM = NUMS(K)

DO 35 J » 19 NUM

M1 =IABS (NORDER(KsJ))

SIGN = NORDER(K»J)/M1

B(L) = BIL) + SIGN®R(M1)®#SIN (THETA(M1))
B(I) = B(1) + SIGNRR(M1)#COS (THETA{M1})
CONTINUE

CONT INUE

WRITE (3+36) (B{I1s I = 19 MATRIX)
READ (1945) (MAKEUP(I)s I = 1» MAT1)
DO 105 1 = 2» MATRIXs 2

J = 172

M1 sIAB8S (MAKEUP(J))

SIGN = MAKEUP(J)/M1

A = RIMII®COS (THETA(M1))#SIGN

C = R(M1)*SIN (THETA(M1))#SIGN
BOTs=~(B8(1) ~ A}

TOP=~(B(1-1} ~C)

ANGLE = 0,0

IF (BOT168¢56+52

IF (TOP) 76954976

ANGLE = 060

GO T0 72

IF (TOP)60+64+58

ANGLE = 145708

GO 1O 62

ANGLE = -145708

RAD = TOP

GO TO 78

ANGLE = 040

RAD = 0.0

GO TO 78

IF (TOP)74»70+74

ANGLE = 3414159

RAD. = BOT

GO TO 78

ANGLE = 3414159

ANGLE = ANGLE + ATAN(TOP/B0OT)

1F (ABS(COS(ANGLE))~ 0+707180+80+81
RAD = TOP/SIN(ANGLE)

GO TO 79

RAD = BOT/COS(ANGLE}

IF (SIGN)82+82»78

ANGLE = ANGLE + 3414159

ANGERR = ANGLE - THETA(M}1)

RERR = RAD - R(M1)
ANGERR=ANGERR¥57.2985

ANGLE = ANGLE#57.298%

WRITE (3+100) I» M1y RERRy RADs ANGERRs ANGLE
CONTINUE

GO TO 1

END

93

Appendix B. Program MAIN

MONSS EXEQ FORTRANs 92393 +sPCHs sMAIN

1

1
5
16
13
65
97
98
1

1

18

19
21

17
20
30
33

32

38

40
[13
45

50
60

66

68

T2

73

T4
15

DIMENSION AY{10010)s BEE(10)s X110} BUFF1(10)» R(20)s THETA(20)»

NORDER(5+20) 9 OMEGA(10)s ALPHA(10)s THETA2(20)51G (10}
s IFRAME(S)s THEAPP(20)
COMMON AYs BEEs X» BUFFls Ry THETA» NORDERs OMEGAs ALPHAs THETA2
"s SIG
FORMAT (51392F1064910F240+17Xs S511s 3F1409
FORMAT (2013} ’
FORMAT (10F8.2)
FORMAT (10EB.2)
FORMAT {3Xs1392X92F842)
FORMAT (10F8.4)
READ (1+3) MATRIXs IPTYPEs MXSTEPs NUMCYCs» MAXR» DELTEEs» DRIVER»
S1G »IFRAMEs HYST TRAKIN» ALL
READ (1+1%8) (R{1)s I = 1» MAXR)
READ (1+15) (THETA(I)s I = 1» MAXR)
MAT1 = MATRIX/2
MATé = MATRIX#*2
DO 18 1 = 19 MAT]
READ (1916) (NORDER(IsJ)s J = 19 MATS)
NMSTEP = O
ZERO = 140
IF UIPTYPE = 1)21921519
DRIVER = DRIVER/57.2958
D0 17 I= 19 MAXR
THETA (1)= THETA(1)/57.29%8
THETA2(1)= THETAI(I)
ITERAT = 0
DO 33 I = 1 MAXR
THEAPP(I)= THETA2(1)#57,2985
WRITE (251%5) (THEAPP(I)s I = 1 MAXR)
CALL ACOE (MATRIX)
CALL BCOE (MATRIX» DRIVERsC1sS1s IPTYPEs 1)
CALL GAUSS (MATRIX+ZERO)
1F (ZERO)38938940
CALL ACOE (MATRIX)
WRITE (39 98)1(AY(I9J)eJx 19 MATRIX)sImlsMATRIX)
GO TO 130
ITERAT = ITERAT + 1
IF (NMSTEP)50+50+45
CALL ANGLE (MATRIXs 2409 DELTEE)
IF (NUMCYC ~ ITERAT)50+50+30
DO 60 LM = 1y MATRIX
OMEGA(LM) = X{LM)
CALL ACOE (MATRIX) .
CALL BCOE (MATRIXs DRIVERsC19S1ls IPTYPEs 29
WRITE (2+65) (BUFF1{I)» I = 1» MATRIX)
CALL GAUSS (MATRIX»ZERO})
CALL ACOE (MATRIX)
M= ~]1
DO 68 1 = 1y MATRIX
BEE{1l) = 040
BUFF1(1) = 040
M= ~-M
S = =M
IPM = 1 4+ M
DO 68 J = 1» MATRIX
PROD1 = AY(IsJ)#X(J)
PROD2 = S%#AY(IPM»J)ROMEGA{J)®OMEGA(J)
BEE(1) = BEE(I) + PROD1 + PROD2
BUFF1(I) = BUFF1(I) + ABS(PROD1) + ABS(PROD2)
PROD3 = 2,0%DRIVER®#OMEGA(]1)
PROD4 = R(1)*DRIVER#DRIVER
DO 75 1 = 29 MATRIXs 2
IF (IPTYPE = 1)72+72+73
PROD1 = PROD3*C1#SIG(I)
PROD2 = PROD3I®*S1%#S1G(1)
GO TO 74
PROD} ==~PROD4*S51%S1G(1!}
PROD2 = PROD&®C1#SIG(1)
BUFF1(1-1) = (BEE(1-1) + PROD1)/(BUFF1{1=1) + ABS(PROD1))#100,0
BUFF1(1) = (BEE(I) + PROD2)/{BUFF1(l) + ABS(PROD2))%#100.0
WRITE (2+65) (BUFF1(I)s I = 19 MATRIX)

(continued on next page)

94

Appendix B. Program MAIN (continued)

DO 80 1 = 1» MAXR
THETA(1) = THETA2(1)
80 THETA2{1) = THETA2(I)%*#57,2958
NMSTEP = NMSTEP + 1
IF {TRAKIN)B82+82+81
81 CALL KINE (NMSTEP» ALL)
82 WRITE (2+97) NMSTEP» R(1)s THETA2(1)
WRITE (2915) (THETA2(I)s I = 1s MAXR)
DO 95 I = 1y MATRIX
ALPHA(T) = X{1 1%#57.,2938
9% BUFF1(1) = OMEGA(1)%#57.2958
WRITE (291%) ({(BUFF1(I)s 1 = 1s MATRIX)
WRITE (2518) (ALPHA(I)s 1 = 1+ MATRIX)
DO 200 I = 1y 5
MJ = IFRAME(ID)
1IF (MJ)200+200,201
201 THETA2(MJ) = THETA(MJ)
200 CONTINUE
IF (NMSTEP - MXSTEP)100,128,128
100 IF (IPTYPE = 1111091109120
110 R(1) = R(1) + ORIVER*DELTEE
GO TO 125
120 THETA(1) = THETA(1) + DRIVER®DELTEE
" THETA2(1) = THETA{(1)
12% CALL ANGLE (MATRIXs 1.0 DELTEE)
GO YO 20
128 IF (HYST)130+130+129
129 DRIVER = -DRIVER
MXSTEP = 2#MXSTEP
HYST = 0
DO 127 I = 1» MAXR
127 THETA2U1) = THETA(I)
GO TO 20
130 G0 TO 1
END

Appendix C. Subroutine ACOE

MONSS EXEQ FORTRAN» +993sPCH»sACOE
SUBROUTINE ACOE (MATRIX)
DIMENSION AY(10510)s DUM1{20)e BUFF1(10}» R(20)s DUM2(20)s
1 NORDER(5920)s DUM3(20)s THETA2(20)
COMMON AYs DUM1» BUFF1s Rs DUM29+ NORDER» DUM3» THETA2
MAT2 = MATRIX%*2
MAT1=MATRIX-1
DO 100 I = 1s MAT1s 2
K =(1 + 1)/2
DO 100 J = 29 MAT2, 2
JJd = J/2
IF (NORDER(Ks J=11120+10+20
10 AY(IsJJ) = 060
AY(I+1s JJ) = 060
GO TO 99
20 M1 =IABS (NORDER(K» J-1)}
S1GN1 = NORDER(K» J=1})/M1
PROD1 = SIGNI®*R(M1)
AY(1sJJ) = PROD1*COS (THETA2(M1)}
AY(I+1ls JJ) = PROD1I#SIN (THETA2(M1}))
IF (NORDER{K»J))30+99+30
30 M2 =IABS (NORDER(K»J))
SIGN2 = NORDER(KsJ)/M2
PROD2 = SIGN2®#R(M2)
AY(T9JJ) = AY(IeJJ)+ PROD2#COS (THETA2(M2))
AY(T41s JJ) =AY(I41s JJ) + PROD2#SIN (THETA2(M2})
99 TRANS = TRANS
100 CONTINUE
RETURN
END

Appendix D. Subroutine BCOE

10

20
30

40
50
60
70

80
90

100

110
120

129
130

140
150

160
165
170
180

190

19%
200

MONSS EXEQ FORTRANs 99 939PCH» ¢BCOE
SUBROUTINE BCOE (MATRIXs DRIVERsC1+S1¢ IPTYPEs MODE)
DIMENSION AY(10+10)¢ BEE(10)s OMEGA2(10)+ BUFFER(10)» R(20}s

1 DUM1(20)s IDUM(100)+DUM2(20)s THETA2(201» SIGN(10)

» TOTPTH(10)
COMMON AY» BEE» OMEGA29+ BUFFER» Rs DUM1s IDUMsDUM2+sTHETA29SIGN
Cl = COS(THETA2(1))
S1 = SIN{THETA2(1))
MAT = MATRIX - 1
DO 10 1 = 19 MATRIX
TOTPTH{I) = 0.0
BUFFER{I) = 0.0
BEE(1) = 040
IF (MODE - 1120420990
IF (IPTYPE = 1193093060
DO 50 I = 19 MATs 2
IF (SIGN{1))40+50040
BEE{l) ==SIGN{I)*DRIVER#S]
BEE(I+1) » SIGN(I)#DRIVER#C1
CONTINUE
GO TO 200
DO 80 I = 19 MAT, 2
IF {SIGN{11)70+80+70
PROD = SIGN{1)#R(1)%DRIVER
BEE(1) =~PROD%*C1
BEE(I+1) =-PROD#S1
CONTINUE

GO TO 200
DO 130 I = 1» MATy 2
DO 130 J = 19 MATRIX
IFLAY(141+J))10092109100
PROD1 = AY(141+J)%OMEGA2(J)

BEE(I) = BEE(I) + PROD1*OMEGA2(J)
BUFFER(I+1) = BUFFER({I+1) + PROD1
TOTPTHUI4+1) = TOTPTH(1+1) + ABS(PROD1)
IFIAY(1+J))12001295120

PROD2 = AY(19sJ)#OMEGA2{(J)

BEE{1+1) = BEE(I+]1) - PROD2%#OMEGA2(J)
BUFFER{II) = BUFFER(I) + PROD2
TOTPTH(I) = TOTPTH(1) + ABS(PROD2)
TRANS = TRANS

CONTINVE

IF (IPTYPE -1)1405140+170

DO 160 I = 19 MATy 2

IF (SIGN(11)150+160,150

PROD1 = SIGN(1)*DRIVER#C]

PROD2 = SIGNUI)}#DRIVER#S}]

BEE(I) = BEE(1) =~ 2.0%PROD]I®OMEGA2(1)
BEE(I+1) = BEE(I+1) = 2,0%PROD2#OMEGA2(1)
BUFFER(I) = BUFFER(1) + PROD2
BUFFER(I+1) = BUFFER(I+1) - PROD}
TOTPTHIL) = TOTPTHII) + ABS{PROD2}
TOTPTH(1+1) = TOTPTH(I+1) + ABS{PROD1)
CONTINUE

DO 165 I = 19 MATRIX

BUFFER{1) = BUFFER(I}/TOTPTH(1)#100.,0
GO TO 200

DO 190 I = 1s MATy 2

IF (SIGN(1)1180+190,180

PROD2 = SIGN(T)®*C1#DRIVER#R(1)

PROD1 = SIGNI1)#S1#DRIVER#R(1)

BEE(1) = BEE(I) + PRODI#DRIVER
BEE(I+1) = BEE(I+1) -~ PROD2¥DRIVER
BUFFER(I) = BUFFER(1) + PROD2
BUFFER(I+1) = BUFFER(I+1) + PROD}1
TOTPTHI(I) = TOTPTH(1) + ABSI(PROD2)
TOTPTH(I+1) = TOTPTH(I+1) + ABS(PROD1)}
CONTINUVE

DO 195 I = 1+ MATRIX

BUFFER(1) = BUFFER(I)/TOTPTH(I)#100.0
RETURN

END

96

Appendix E. Subroutine GAUSS

MONSS EXEQ FORTRAN» 0993 9PCHo ¢GAUSS
SUBROUTINE GAUSS (MATRIXsZERO)
DIMENSION AY(10+10)s BEE(10)» X(10)» COLSWP(10)
COMMON AYs BEEs» X» COLSWP
4 FORMAT (1Xs 12E10.4)
104 FORMAT (TH ACOEF(s12+1Hse12s 9H) 15 ZERO)
MM s MATRIX - 1
DO 200 JUAY = 19 MM
AMAX = ABS (AY(JAYs JAY))
COLSWP(JAY] = 0.0
DO 50 KCOL = JAYe MATRIX
DO 50 KROW = JAYs MATRIX
IF (AMAX ~ ABS (AY(KROWe KCOL1))110+49r49
10 AMAX = ABS (AY(KROWs KCOL))}
COLSWP(JAY) = KCOL
MBOW = KROW
49 TRANS = TRANS
MCL = COLSWP(JAY)
50 CONTINUE
IF (MCL190990+60
- 60 DO 70 KAY = JAYs MATRIX
BUF = AY(KAYs JAY)
AY{KAYs JAY) = AY(KAYsMCL)
AY{KAYs MCL) = BUF
70 CONTINUE
DO 80 KAY = JAYs MATRIX
BUF = AY(JAYs KAY)
AY({JAYs KAY) = AY(MROWsKAY})
AY{MROWs KAY) = BUF
80 CONTINUE
BUF =" BEE(JAY)
BEE(JAY) = BEE(MROW)
BEE(MROW) = BUF
90 NN = JAY + 1
IF (AY(JAY»JAY))100+103+100
103 WRITE (3+104) JAYs JAY
ZERO = 040
GO TO 320
100 DO 110 ICOL = NN» MATRIX
105 AY(JAYSICOL) = AYUJAYs ICOLI/AY(JAY s JAY)
DO 110 IROW = NNs MATRIX |
110 AY(IROWs 1COL) = AY(IROWs ICOL) — AY(IROWs JAY)®AY{JAYs 1COL)
BEE{(JAY) = BEE(JAY)/AY(JAY» JAY)
PO 200 IROW = NN» MATRIX
200 BEE(TROW) = BEE(IROW) - AY(IROWs JAY)I#BEE(JAY)
IF (AY(MATRIXsMATRIX))22092109220
210 WRITE (3+104) MATRIXy MATRIX
ZERO = 0.0
GO TO 320
220 X{(MATRIX) = BEE(MATRIX)/AY(MATRIXs MATRIX)
DO 300 11 = 1y MM
N = MATRIX -~ Il
X{N} = BEE(N)
MaN+1
DO 250 MJJ = Ms MATRIX
250 X(N) = XI(N) ~ AY(N» MJUJ I#XIMJIJ)
IF (COLSWP(N))300+3005260
260 MCL = COLSWPIN)
BUF = X(N)
X{N} = X(MCL)
X(MCL) = BUF
300 CONTINUE
GO TO 325
320 TRANS = TRANS
DO 315 I = 1s MATRIX)
315 WRITE (3+4) (AY(I9J)s J w 19 MATRIX)» BEE(I1)s COLSWPLI)
325 RETURN ’
END

Appe

10

11

12
13

15

20

24
25
50

ndix F. Subroutine ANGLE

MONSS EXEQ FORTRAN» 0993 +PCHe 9ANGLE

SUBROUTINE ANGLE (MATRIXs CNTROLs DELTEE)

DIMENSION DUM11{1101s X(10)y BUFF1(10)s DUM2(20)s THETA(20}s
1 NORDER (592039 OMEGA(10)s DUM3(10)s THETA2(20)
COMMON DUM1s X» BUFF1l» DUM2s THETAs NORDERy OMEGAs DUM3s THETA2
M1l = MATRIX/2

M2 = MATRIX#2 -~]

K =0

DO 25 J = 19 M2y 2

K=K+1

IF (CNTROL = 140)11s11912

PROD = OMEGA(K)*DELTEE + X(K)®#DELTEE®DELTEE/240

GO TO0 13

PROD = (OMEGA(K) + X(K))I®DELTEE/2.0

DO 25 1 = 1y M1

IF (NORDER(19sJ))15,24915

INDEX =1ABS (NORDER(I¢J))

THETA2(INDEX) = PROD + THETA(INDEX)

IF (NORDER(1+J+1)3)20024+20

INDEX aIABS (NORDER(1»J+1)}

THETA2(INDEX) = PROD + THETA(INDEX)

TRANS = TRANS

CONTINUE

RETURN

END

Appendix G. Subroutine KINE

11
13
33
10
12

14

17

19
20

MONSS EXEQ FORTRANs+993sPCHs oKINE

SUBROUTINE KINE (NMSTEPs ALL)

DIMENSION DUM1(110)s R(20)» THETA(20)»I1DUM2(100)s OMEGA(10)s
1 ALPHA(10)s BUFF(10)9sISIGN(100)s ICQWNC(100)s JOMCOR(100)»

NMTRMS(24)s RCOUP(10)s DELTA(10)

COMMON DUM1s ALPHAs BUFFs Ry THETAs IDUM2s OMEGA
FORMAT (2613)

FORMAT (10F8.2)

FORMAT (214+6F84.2)

IF (NMSTEP -~ 1)10»104+20

READ (19011) NMPTHS» (NMTRMS(I)s I = 19 NMPTHS)s NCOUP
IF (NCOUP)14514912

READ {1+13) (RCOUP(I)s I = 1s NCOUP)

READ (1013) (DELTA(I}s 1 = 1s NCOUP)

IM =)

IN = NMTRMS(1)

DO 19 I = 1y NMPTHS

READ (1911)tISIGN(JYs J = IMs IN)

READ (19s11) (ICQWNC(J)» J = IMs IN)

READ (1511) (IOMCOR(J)s J = My IN)

IF (NMPTHS = 1)19+19417

IM = IM + NMTRMS(1)

IN = IN + NMTRMS(1+1)

CONT INUE

K's 1

L = NMTRMS(1)

(continued on next page)

98

Appendix G. Subroutine KINE (continued)

21

22
23

25
30
36

37
3l

32
35

40

DO 40 1 = 1y NMPTHS
X = 0.0

Y = 0,0

XDOT = 040

YDOT = 0.0

XDBLOT = 0.0
YOBLOT = 0.0

DO 30 J = Kol

M = ICQWNC(J)

N = [OMCOR(J)

SGN = ISIGN(J)

A= SGN#R (M) #COS (THETA(M))
8 = SGN#R(M)*SIN (THETA(M))
IF (N121921922
THEDOT = 0.0

OMEDOT = 0,0

GO TO 23

THEDOT = OMEGA(N)
OMEDOT = ALPHA(N)

C = -B*THEDOT

D = A®THEDOT

E = =D#THEDOT ~ BROMEDOT
F = C*THEDOT + A®OMEDOT
X =2 X 4+ A
Ys=sY+8B

XDOT = XDOT + C

YDOT = YDOT + D

XOBLDT = XDBLDT + E

YDBLDT = YDBLOT + F

IF (ALL)30930+25

IPOINT = ISIGN(J)*M

WRITE (2+33) NMSTEPSJPOINTe Xeo Ys XDOT» YDOTs XDBLDT» YDBLDT
CONTINUE

IF (ALL136936+37

IPOINT = ISIGNIL)®*M

WRITE (2+33) NMSTEP»IPOINTs X Ys XDOTs YDOTe XDBLOT» YDBLODT
IF (1 = NCOUP)31s31932

ANG = THETA(M) + DELTA(I1/57.295%8

A = RCOUPLII®#COS (ANG)

B = RCOUP(II*SIN (ANG)

C = ~B#THEDOT

D = A#THEDOT

E = ~D#THEDOT - B*OMEDOT
F = C®THEDOT + A®OMEDOT
X =X 4+ A

Y=Y+ 8

XDOT = XDOT + C

YDQT = YDOT + D

XDBLDT = XDBLOT + E
YDBLOT = YDBLDT + F
WRITE (2933) NMSTEPs Is X Ys XDOT» YDOTe XDBLDT» YDBLDT
IF (NMPTHS = 1)40+4043%
K = K + NMTRMS(1)

L = L + NMTRMS(I+1)
CONTINUE

RETURN

END

99

