
An Abstract of the Thesis of

Sulaiman A. Al-Bassam for the degree of Doctor of Philosophy in

Computer Science presented on Lanuary 4. 1990.

Title: Balanced Codes

Abstract approved:

Bella Bose

Balanced codes, in which each codeword contains equally many l's and 0's, are useful

in such applications as in optical transmission and optical recording. When balanced codes

are used, the same number of l's and 0's pass through the channel after the transmission of

every word, so the channel is in a dc-null state. Optical channels require this property

because they employ AC-coupled devices. Line codes, in which codewords may not be

balanced, are also used as dc-free codes in such channels.

In this thesis we present the research that leads to the following results:

1- Balanced codes These have higher information rate than existing codes yet

maintain similar encoding and decoding complexities.

2- Error-correcting balanced codes In many cases, these give higher information

rates and more efficient encoding and decoding algorithms than the best-known

equivalent codes.



3- DC-Free coset codes A new technique to design dc-free coset codes was

developed. These codes have better properties than existing ones.

4- Generalization of balanced codes -- Balanced codes are generalized in three ways

among which the first is the most significant:

a) Balanced codes with low dc level These codes are designed based on the

combined techniques used in (1) and (3) above. A lower dc-level and higher

transitions density is achieved at the cost of one extra check bit. These codes are

much more attractive, to optical transmission, than the bare-bone balanced codes.

b) Non-Binary Balanced Codes Balanced codes over a non-binary alphabet.

c) Semi-Balanced Codes -- Codes in which the number of l's and 0's in every

code word differs by at most a certain value.

5- t-EC/AUED coset codes These are t error correcting/all unidirectional error

detecting codes. Again the technique in (3) above is used to design t-EC/AUED

coset codes. These codes obtain higher information rate than the best-known

equivalent codes and yet maintain the same encoding/decoding complexity.



Balanced Codes

by

Sulaiman Al-Bassam

A Thesis

submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed January 4, 1990

Commencement June 1990



Approved:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of Grad School

Date thesis is presented January 4, 1990

Typed by Sulaiman Al-Bassam for Sulaiman Al-Bassam



Acknowledgements

Most, if not all, of the ideas presented in this thesis were inspired in one way or another

by my advisor Professor Bella Bose. I am truly grateful to him for that and for his

guidance and support for many years. I would like to thank Dr. Andrew Klein, Dr. Ted

Lewis, Dr. Toshi Minoura, and Dr. Walter Rudd for serving on my committee and for their

instructive comments. I would like to thank Dr. Toshi Minoura for his special friendship.

I am also grateful to UPM (University of Petroleum and Minerals) for supporting my

studies and OSU (Oregon State University) for providing me with excellent education.

Special thanks and appreciation goes to my friend (and officemate) Bob Rowley for

many exciting and fruitful discussions during the years. Last, but not least, to my family

for their unlimited support and encouragement. In particular, to my brothers Mohammed

and Adnan for their continuous help.



Table of Contents

Chapter 1 Introduction 1

1.1 Overall Communication System 1

1.2 Balanced Codes 3

1.3 Previous Work and Research Results 5

Chapter 2 Balanced Codes 12

2.1 Preliminaries and Design Principles 12

2.2 Balanced Codes -- Serial Decoding 15

2.2.1 Conditions of Correct Coding 16

2.2.2 Code Optimality 20

2.2.3 Code Design 22

2.3 Balanced Codes Parallel Decoding 25

2.3.1 Code Design 25

2.3.2 Code Optimality 31

Chapter 3 Error-Correcting Balanced Codes 37

3.1 Previous Work and Construction I 40

3.2 The 1-EC/B codes - Construction II 43

3.2.1 Arbitrary 1-EC/I3 Codes (over Abelian Groups) 44
3.2.2 The 1-EC/B codes over GF(q), Zq_i, and Z2m_1 51

3.3 The 2-EC/B codes 52

3.4 The 3 and 4-EC/B codes 56

3.5 t-EC/B Codes -- Parallel Decoding 57

Chapter 4 DC-Free Coset Codes 6 0

4.1 Basic Principles 61

4.2 Transition Code (Ct) 63

4.3 Transition DC-Free Code (Ct,w) 66



Chapter 5 Extensions of Balanced Codes 72

5.1 Balanced Codes with Low DC Levels 72

5.2 Balanced Codes over a Non-Binary Alphabet 76

5.2.1 Serial DCci(n,k) codes 78

5.2.2 Parallel DCci(n,k) codes 80

5.2.3 On the Number of Check Digits 81

5.3 DCm(n,k) Codes 82

5.3.1 Serial DCm(n,k) Codes 82

5.3.2 Parallel DCm(n,k) Codes 86

Chapter 6 Asymmetric/Unidirectional Error Correcting and
Detecting Codes 90

6.1 Previous Codes 90

6.2 The t-AEC/d-AED Codes 92

6.2.1 Systematic t-AEC/d-AED Codes 93

6.2.2 Non-Systematic t-AEC/d-AED Codes 98

6.3 The t-AEC/AAED Codes 99

6.3.1 The t-AEC/AAED Systematic Codes 100

6.3.2 The t-AEC/AAED Coset Codes 102

6.4 The t-EC/d-UED Codes 109

6.5 Design of Tail Sequences 110

6.5.1 Design of A-sequences 110

6.5.2 Design of U-sequences 116

6.5.3 Design of D-sequences 117

Chapter 7 Conclusion 118

7.1 Summary 118

7.2 Future Research 119

Bibliography 121



List of Figures

Figure

1.1 The overall communication system. 1

1.2 The Binary Symmetric and Asymmetric Channels 2

2.1 Serial DC(34,30) code parameters 23

2.2 Serial DC(32,28) code parameters 24

2.3 Check symbols in the serial DC(32,28) code 24

2.4 Check symbols in the parallel DC(20,16) code. 28

3.1 Encoding of a DC(10,4,4) code, i.e. a 1-EC/B code with k=4 and r=6. 46

4.1 Conceptual encoding diagram of the Ct,w code. 67

4.2 Different Ct,w dc-free coset codes. 70

5.1 Check symbols in the serial DC3(6,4) code. 80

5.2 Check symbols in the serial DC2(22,20) code. 83

5.3 Serial DC2(22,20) code parameters 85

5.4 Check symbols in the serial DC2(22,20) code. 85

5.5 Check symbols distribution in the parallel DC2(14,10) code 87

5.6 Check symbols in the parallel DC2(14,12) code. 88



List of Tables

Table

2.1 Some improved serial DC(k+r,k) codes. 13

2.2 Some improved parallel DC(k+r,k) codes 14

3.1 Parameters of some DC(n,k,4) (i.e. 1-EC/B) codes 38

3.2 Parameters of some DC(n,k,6) (i.e. 2-EC/B) codes 39

3.3 Parameters of some DC(n,k,8) (i.e. 3-EC/B) codes 39

3.4 Parameters of some DC(n,k,10) (i.e. 4-EC/B) codes. 39

3.5 The number of information bits (k) in the new 1-EC/B codes, the true

maximum (k*), and the approximation of the maximum 49

3.6 List of [0,1-1] pairs used to find the value of k in 3.5. 50

3.7 The maximum number of information bits in the 1-EC/B codes based on

groups, GF(q) or Zq_i, and Z2m_1, when r check bits are used 51

3.8 The number of information bits (k) in the parallel 1-EC/B codes (and

their [G,H] pairs) and the maximum (kp) 59

4.1 Comparison of the ct codes and the codes given in [Sat 88] 66

4.2 Comparison of the Ct,w codes and the codes given in [Den 88]. 69

5.1 Minimum number of single maps (d) in some serial DCm(k+r,k) codes 86

5.2 Check symbols in the parallel DC2(14,12) code. 88

6.1 Values of d of some t-AEC/d-AED codes for 0 < t < 4. 97

6.2 Length of some new and old t-AEC/AAED coset codes, for 1 < t < 4. 106

6.3 Construction parameters of some 1-AEC/AAED coset codes. 107

6.4 Construction parameters of some 2-AEC/AAED coset codes. 107

6.5 Construction parameters of some 3-AEC/AAED coset codes. 108

6.6 Construction parameters of some 4-AEC/AAED coset codes. 108



6.7 Values of d of some new (and old [Lin 88]) t-EC/d-UED codes, for

1 t < 4 110

6.8 Sizes of the new Ae[r,t] sequences.. 114

6.9 Sizes of the new A[r,t] sequences. 115



Balanced Codes

Chapter 1

Introduction

1.1 Overall Communication System

Error control coding is a powerful tool in obtaining efficient and reliable transmission

of data over noisy channels. A simple model of a communication system in which error

control coding is applied is shown in Figure 1.1. A source generates a message U that is to

be transmitted to a user over a noisy binary channel.

source
U

encoder
X

channel

noise

X'
decoder -4

Figure 1.1 The overall communication system.

user

Each information word is encoded into some codeword X. This word X is sent

through the channel. Because of channel noise, the received word X' may be different

from X. The number of different coordinates in which X and X' differ is called the

number of errors made during transmission. The decoder must decide from X' the correct

message U (or equivalently X). The "channel" in Figure 1.1 can also be some storage

device in which data is recorded for later retrieval. Data may suffer different kinds of

errors in memory systems.



2

The efficiency and reliability of the communication and storage systems depend heavily

on the behavior of the channel and the encoding/decoding procedures. A widely used

channel is the binary symmetric channel in which 1>0 and a 0>1 errors occur with equal

probability p (as shown in Figure 1.2). In the asymmetric channel the probability of a

0-1 error is c and the probability of a 1-->0 error is p with p » c (as shown in Figure

1.2). In the ideal asymmetric channel (also called a z-channel) e = 0.

1 -p 1 e

1 -p

Figure 1.2 The Binary Symmetric and Asymmetric Channels.

Most conventional communications and storage channels suffer from symmetric errors.

The bulk of coding theory deals with designing efficient codes for such channels. Many

researchers developed efficient codes that correct and/or detect symmetric errors [Pet 72].

Some channels display only asymmetric errors such as in optical disk in which a 0 can

be changed to a 1 but a written 1 can never be changed to a 0. The optical communication

channels are considered to be asymmetric channels in which a 1*0 error occurs with much

higher probability than a 0>1 error [Mor 83, Tak 76, Uye 88]. Also, the observed errors

in other recently developed semiconductor and optical memory systems are of asymmetric

type [Pra 80b]. Efficient asymmetric error correcting and asymmetric error detecting codes



3

that are suitable for these applications were rapidly developed [Ber 61, Bor 82, Bos 90,

Con 79, Fre 62, Lin 88, Var 73, Web 88, Pra 80b].

1.2 Balanced Codes

Regardless of the behavior of the transmission or storage channel (i.e. symmetric or

asymmetric), the channel may employ some other constraints. For example, in magnetic

recording, it is required that there are not many 1 to 0 or 0 to 1 transitions in the encoded

stream since magnetic devices are relatively slow in switching. Optical communication

channels which behaves as an asymmetric channels require codes that are balanced, in

which each codeword contains equally many l's and 0's. Balanced codes are also useful

in other applications such as:

1) Unidirectional and Asymmetric error detection [Ber 61, Fre 62, Pra 80a].

2) Used in the design of t-EC/AUED (t error correcting/ all unidirectional error

detecting) codes [Bos 82b, Kun 88, Kun 90, Sai 88].

3) Fault masking in bus lines of VLSI systems [Mat 88].

4) State assignment in fault-tolerant sequential circuits [[Toh 71].

5) Maintaining data integrity in write-once memories [Lei 84, Knu 86].

6) Fiber optical communication [Den 88, Fer 84, Mor 83, Kaw 88, Tak 76, Wid 83,

Yos 84].

7) Used in cryptographical systems [Ben 86].

In the following we discuss in more details the application regarding optical

communication. The introduction of optical communication systems and optical disks



4

marked a significant advance in the field of information transfer and recording. Optical

communication systems has provided the means of transferring vast quantities of data at

very high speeds through their light-weight fibers which are electrically isolated and

completely immune to inductive interference. As the employment of fiber optics expands,

it is clear that there are some limiting factors, not in the actual transmission process, but in

the required performance of the associated electronic circuitry.

A fiber optical communication system consists of three parts; (1) an optical transmitter,

(2) a fiber optical communication channel, and (3) an optical receiver. Basically, the

transmitter emits a light which is sent through the channel where it is sensed by the optical

sensor on the receiver end.

The advantages of fiber optics of providing high-speed transmission can be costly.

This is because the electronic circuitry has a poor response when switching at extremely

high speeds, and accordingly requires the whole transmission process to be AC-coupled.

This dictates the need for special codes to be used in fiber optical systems that provide no

dc components in the coded stream. DC components occur by the accumulation of a

similar signal (0 or 1). In a sense, if 0 and 1 are assigned negative and positive charges, a

dc-free transmission occurs when the accumulated charge (disparity) at the end of the

transmission is 0.

Because the optical channels generally act just as a transmission media, there are no

coding schemes associated with them. It is up to the communications engineer to choose a

code that is suitable for a specific application. The choice of a code can have an effect on

the operation of the whole system. Clock-timing regeneration, data phase synchronization,

and error-monitoring capabilities depend on the codes employed in the link. These codes

should also have a short run length (the maximum number of consecutive 0's or 1's in the

encoded stream) which creates many 1>0 and 0>1 transitions. Transitions are essential



5

for the receiver clock synchronization and detection processes. The optical communication

codes must have encoders and decoders that are simple, as is essential for high-speed

communication.

1.3 Previous Work and Research Results

Before reviewing the work on balanced codes, we list some standard notations that are

widely used in the literature. We also introduce some new definitions.

Standard Notations:

k : number of information bits.

r : number of check bits.

n : the length of the code (n = k+r).

W(X) : the number of 1's in a binary vector X, also known as the Hamming weight .

N(X,Y) : the number of 1>0 crossovers from X to Y.

D(X,Y) : the Hamming distance between X and Y, i.e. .D(X,Y) = N(X,Y)+N(Y,X).

X0) : denotes X with its first j bits complemented, i.e. (xl, ..., xj, xj+i, xj+2, )

t-EC/B : a balanced code with distance 2t+2, i.e. a t-Error Correcting Balanced Code.

DC(n,k,2t+2) : a t-EC/B of length n and 2k codewords.

DC(n,k) : short for DC(n,k,2) code, a balanced code of length n and 2k codewords.

(The two notations t-EC/B and DC(n,k,2t+2) are used interchangably).

Definition 1.1 A code C of length n is balanced if for all X E C, W(X) = Fn/21 (or

Example 1.1 The set of binary vectors ( 1100, 1001, 1010, 1100, 0101, 0011) is a

code of length 4. This code is balanced since each code word has weight 2.
0



6

The information rate of a code is the ratio of the number of code words by all possible

binary vectors. In the previous example the information rate is 6. Before reviewing the

work in balanced codes, we show how balanced codes are related to unordered codes.

Balanced Codes - A Class of Unordered Codes

A binary code C is called an unordered code when no codeword is "contained" in

another; that is, the positions of the its in one codeword will never be a subset of the

positions of the its in a different codeword. In other words, C is called unordered if and

only if
N(X,Y) 1 for all X,Y E C and X#Y

Balanced codes also have the property that no codeword is "contained" in another and

so they are a class of unordered codes. To form the maximal unordered code of length n,

Sperner's lemma [Spe 28] says that we can do no better than to construct the set of all

balanced words of length n.

Balanced Codes - Systematic and Non-Systematic

A code is called systematic if the codewords start with the information bits unmodified.

On the other hand in a non-systematic code, the information bits are modified in at least one

codeword. A non-systematic balanced code of length n can be simply formed from the set

of all binary vectors of length n and weight n/2 which has ( ) words. This code, say

C, has maximal information rate but has no simple encoding and decoding methods (mostly

table look ups). Using Stirling's approximation x! 2nx (x/e)x, we get I C I = (nI;2)

-NI--
2 2n. The number of redundant bits (r) in C is n - log 1 CI ..-- n ( n 1/2 log
nn

(2/n) 1/2 log (n) ), and 1/2 log (2/n) 0.326, so



7

r 1/2 log n + 0.326 (1-1)

On the other extreme, a systematic balanced code of k information bits needs at least k

check bits. This is true since the information symbols in a systematic code are not altered

and therefore the check symbol of the all zero information word must have k ones, thus

r > k (1-2)

Such a code can be constructed by choosing the check symbol to be the complement of

the information symbol. The information rate of this code (i.e. number of information bits

by code length) is only 0.5 but the encoder and decoder will be very simple and fast.

Balanced Codes - Efficient Designs

The objective of coding theory is to find efficient codes that are suitable for different

applications. The efficiency of a code is measured by its information rate and its

encoding/decoding speed and complexity. There is always a trade-off in these two factors;

it is most puzzling to find codes that are "good" in both properties. When codes are

compared, one says code Ci is better than C2 if Ci is better than C2 in both properties or

better in one and similar in the other.

Our primary interest is to design efficient balanced codes; i.e., balanced codes with

high information rates with simple and fast encoder/decoder circuitry. In the search for

efficient balanced codes, Knuth in 1986 gave two methods to construct such codes [Knu

86]; one method employs serial decoding while the other method uses parallel decoding.

The main results given there are

1. Serial decoding: k = 2r information bits and r check bits (i.e. r 5_ log k).

2. Parallel decoding: k = 2r r 1 information bits and r check bits (i.e. r log n).



8

In both methods, serial and parallel decoding, some appropriate number of information

bits of the information word are complemented, starting from the first bit, and then a check

is assigned to this modified information word to make the entire word balanced. In

sequential decoding the check represents the weight of the original information word. The

decoding of the received word is done by complementing one, two, three, etc., bits till the

weight of the information word is equal to the value represented by the check. On the other

hand, in the parallel decoding method the check directly indicates the number of

information bits complemented and hence at the decoder side the original information word

can be obtained by complementing these bits in one step. Clearly, the parallel decoding

scheme is faster than the serial one. The serial scheme was extended from k = 2r to

k = 2r-1-1 - r 2 information bits (using r check bits) in [Bos 87].

In Chapter 2 we present construction of the serial and parallel balanced codes with the

following parameters:

1. Serial decoding: k 2r+1 _ 2.

2. Parallel decoding: k = 2r.

Moreover, these codes are shown to be optimal up to the complementation method

described originally in [Knu 86]. In a sense, when Knuth's method is used to construct

balanced codes, one can do no better than the codes designed here.

Balanced Codes - with Error Correction

Single and double-error correcting balanced codes (1-EC/B and 2-EC/B) have been

designed by [Bos 82a] and [Kun 88], respectively. Design of 3 and 4-error correcting

balanced codes, 3-EC/B and 4-EC/B, were given independently in [Sai 88] and [Kun 90]

and [Sai 88], respectively. Other t-EC/B codes with constraint on the run length and the



9

disparityt are designed in [Etz 90, Til 89]. All these codes are also non-systematic and, in

general, have no easy encoding and/or decoding procedures.

In Chapter 3, new classes of t-EC/B codes are given, for 1 t 4. These codes are

based on the same complementation principle, i.e. a few bits of the information symbol are

complemented and an appropriate check symbol is appended to form the final codeword.

These codes are in many cases superior to the existing code in both the information rate and

in encoding/decoding simplicity.

Non-Balanced DC-Free Codes

Deng and Herro in 1988, used coset codes to design error-correcting dc-free codes

[Den 88]. The coset codes are derived by partitioning linear block codes and have about

the same encoding and decoding complexity as linear block codes. Although these coset

codes are not balanced, they still maintain low disparity and short run length. The idea is

based on having two representations for every information symbol, one with high disparity

(i.e. with weight n/2) and another with low disparity (i.e. with weight n/2). A

disparity register at the encoder circuit decides wether the next information symbol should

be encoded to a high or low disparity codeword in order to neutralize the running

accumulated disparity.

In Chapter 4 we design new dc-free coset codes that have similar properties as the

codes in [Den 88] but the new codes contain much higher transitions density and have

smaller run length.

t The run length is the maximum number of consecutive l's (or 0's) in any code word and the disparity is
the difference between the number of l's and 0's in a code word.



10

Extensions to Balanced Codes

In Chapter 5 we give three generalization of balanced codes. The first, and the most

important, is the design of error-correcting balanced codes that have low dc level and many

transitions. In an ordinary balanced codeword of length n, there will be at least one (1 to 0

or 0 to 1) transition and the maximum disparity and run length will both be at most n/2.

We shall see that using an extra check bit, one can design balanced codes with n/2

transitions, maximum disparity of n/4, and run length of n/4. These codes are more

attractive for optical communication than ordinary balanced codes. Secondly, non-binary

balanced codes are designed; in these codes the alphabet is assumed to be {0, 1, ..., q-1 }.

When q = 2, these degenerate to the ordinary balanced codes. Finally, we design semi-

balanced codes in the sense that the number of l's and 0's in every codeword differ by at

most m, say; i.e., the weight of any codeword will be between [(n -m)/21 and F(n +m)/21.

Balanced Codes - As t-EC/AUED Codes

It will be shown that every error-correcting balanced code can be also viewed as a t-

EC/AUED ( t error correcting / all unidirectional error detecting) code. The design of

efficient t-EC/13 codes will also yield efficient t-EC/AUED codes. The t-EC/AUED codes

have wide applications in VLSI circuits and have been studied extensively in [Bos 82a, Bos

82b, Bru 89, Kun 88, Kun 90, Mon, Nik 86, Pra 80a, Sai 88, Tao 88].

In Chapter 6, the technique described in Chapter 4 is used to design efficient t-

EC/AUED coset codes. These codes considerably improve the best known t-EC/AUED

coset codes [Bru 89]. Also, in some cases, the new systematic t-AEC/AAED codes give

higher information rate than the best-known systematic t-AEC/AAED codes.

In Chapter 6 we also develop the theory and design of codes that correct t asymmetric



11

errors and simultaneously detect d (d>t) asymmetric errors (t-AEC/d-AED codes). There

seems to be no direct relation between these codes and balanced codes; the motivation of

the design has come from realizing that the existing codes for the complete asymmetric

channel can either correct or detect asymmetric errors but not both [Ber 61, Bor 82, Con

79, Fre 62, Var 73, Web 88]. The new codes have high information rate and an encoding/

decoding complexity comparable to the existing error correcting codes. Finally, in Chapter

6 we show that in some cases we can improve the t-EC/d-UED (t symmetric error

correcting and d (d>t) unidirectional error detecting) codes given in [Lin 88].

In the last chapter we give a brief summary and pose some unsolved questions for

future research.



12

Chapter 2

Balanced Codes

2.1 Preliminaries and Design Principles

Recall that every codeword in a balanced code C of length n has equally many l's and

0's, i.e. W(X) = In /21 for all X C. Knuth in [Knu 86] has proposed a simple and

efficient construction of balanced codes. These codes have high information rate as well as

simple and fast encoding and decoding algorithms. In his construction, the encoding and

decoding require only a complementation of some bits of the information word, starting

from the beginning. Suppose that the binary information symbol X of length k is

represented as xi xk. The balanced codeword will consist of X with the first j bits

complemented (j may be 0) and a check symbol of length r. The encoding is depicted in the

following diagram.

X1 X2 xk

information symbol

12 -1(1 xj+1 xk Y1 Y2 Yr

balanced codeword

Serial and parallel decoding schemes were given in [Knu 86]. In serial decoding, the

check symbol determines the original weight of the information word, so the decoder

complements one bit at a time until it recovers the original information word. On the other

hand, in parallel decoding the check symbol determines the number of the complemented

bits, so the decoder simultaneously complements that many bits to recover the original

information word. Clearly, parallel decoding schemes are faster than the serial ones.



13

Recall that DC(n,k) denotes a balanced code of length n and 2k codewords. In the

serial (and parallel) DC(k+r,k) codes designed in [Knu 86] the number of information bits

were k = 2r (and 2r - r 1, respectively). One of the questions left in [Knu 86] was

whether there exist a better serial DC(k+r,k) and whether there exists a parallel DC(k+r,k)

code with k = 2r. The serial DC(k+r,k) codes have been subsequently improved to k =

2r+1 r 2 in [Bos 87].

In this chapter, we construct a serial DC(k+r,k) code with k = 2r+1 0.84T. - 2 and a

parallel DC(k+r,k) code with k = 2r (or 2r 1) for r even (or odd). These codes have the

same encoding and decoding complexities as those of [Knu 86]. We also show that these

are the best codes that can designed using the method of "complementation" described here

and in [Knu 86].

Table 2.1 lists the new serial DC(k+r,k) codes compared to those in [Bos 87] and Table

2.2 compares the parallel DC(k+r,k) codes to those in [Knu 86], for some values of r.

r k
[Bos 87] proposed

3 11 12
4 26 28
5 57 60
6 120 124

7 247 251
8 502 507
9 1013 1019
10 2036 2043

Table 2.1 Some improved serial DC(k+r,k) codes.



14

r k
[Knu 86] proposed

4 11 16
5 26 31
6 57 64
7 120 127

8 247 256
9 502 511
10 1013 1024

Table 2.2 Some improved parallel DC(k+r,k) codes.

Recall that if X is a binary vector of length k, represented as (xi x2 , ..., xk), then X(.0

is defined to be X with its first j bits complemented, i.e. X0) = ( xi, .. , xj, xj+i, , xi).

Let 6j(X) = W(XC)) = W( xi, ... , xj, xj÷i, ... , xi). For example, if X = 1100 0000

then 65(00111000) = W(00111000) = 3. Let W(X) = w; then the function cs(X) satisfies

the following properties:

GO = W

Ok r---- k vi

cri = aj_i ± 1 for 0 <j k;

and in particular, for any i,j,

aje [6i-lj-il,csi+lj-il].
where x E [a,b] means a 5 x 5 b and x E (a,b) denotes a< x< b.

Since the function cs represents a "random walk" from 60 = w to k = k w, one can

obtain a word of any weight i in the range between w and k w (inclusive) from X by

complementing some first j bits of X for some 0 _. j < k. For example, let X = 01010000

and thus W(X) = 2. We can obtain words of weight 2, 3, 4, 5, and 6 by complementing

the first 0, 1, 6, 7, and 8 bits respectively. From the above discussions it is easy to verify

the following lemma.



15

Lemma 2.1 The random walk of any word X of length k and weight w will go

through weights w to k - w, inclusive. In other words, given X of weight w then there

exists a j such that 6j(X) = i for min(w,k-w) i max(w,k-w). In particular, there always

exists a j such that 6j(X) = Lk/2_1 (and Fk/21).

2.2 Balanced Codes -- Serial Decoding

In this section we design serial DC(k+r,k) codes with k = 2r+1 0.847. 2, improving

upon the codes given in [Bos 87]. In serial balanced codes, the check symbol determines

the original weight of the information word. The serial scheme is introduced in the

following example.

Example 2.1 Let k = 12 and r = 3 in an 8-out-of-15 code. Suppose the check 010

determines weight 4. Given an information word X, complement the first j bits of X until

oi(X) = W(X (J)) = 7. By Lemma 2.1, we see that it is always possible to get weight 7

starting from any word of weight 4. The final codeword will be X(j) 010 which is of

weight 8. For example if X = 0000 1111 0000 then after complementing 3 bits we get X(3)

= 1110 1111 0000 which is of weight 7; the final codeword will be 1110 1111 0000 010.

In decoding, the check symbol will indicate the original weight of the information part.

The original information symbol can be reconstructed by complementing X(j) until it

reaches that specific weight. For instance, when 1110 1111 0000 010 is received, the

check symbol 010 indicates weight 4 and so the information part "1110 1111 0000" is

complemented until it reaches weight 4.

We will soon see that a check symbol can balance 1 or 2 weights (but not more). It is

necessary to ensure that such encoding and decoding will always be correct for all the

information words. We first develop the necessary and sufficient conditions for a these



16

maps to be one-to-one, i.e. to have correct encoding and decoding. Given these

conditions, we derive the maximum number of information bits achievable in such code.

The code can be designed simply by listing the different check symbols and the weights

they balance. Of course, every weight between 0 and k must be balanced by at least one

check symbol.

2.2.1 Conditions of Correct Coding

Suppose that the set (0,1}k of information symbols is partitioned into k+1 classes So,

S1, ..., Sk where Si = {u I W(u) = i }. The check symbols are assigned on the basis of the

weights of the information symbol, i.e. all information symbols with equal weights will

have the same check. Moreover, as we shall see, a check symbol "ch" can be a check for at

most two different classes Si and Sj. Once the check ch is appended to an information

symbol u, successively complement the first 0, 1, 2, ... bits of "u ch" until the entire word

is balanced. The decoding process is also simple. When the codeword is received, the

check ch will indicate the original weight(s) and so the information part is complemented

until one of these weights is obtained.

The encoding and decoding process is captured in the notation:

H :: Sri L.) Sv2 V l) Svg --) Sv where HE (0,1)r is a check symbol.

This notation means that every word of weight vi, v2, , or vq, (i.e. every word in

Sv1 L.) Sv2 U U Svq), is complemented one bit at a time until its weight becomes v, and

then the check symbol H is appended to it to get the complete codeword. The code is

balanced if v = [(k +r)/21 W(H). The decoder, on the other hand, extracts the check

symbol and complements the rest of the codeword one bit at a time until one of the weights

v1, v2, , or vq is obtained. The map must be one-to-one to get correct coding.



17

Example 2.2 Let k = 12 and r = 3. If we let 000 determine the weights 0 and 12,

then both weights must be changed to 8 to get a balanced code, i.e. 000 :: So L.) S12 -4 S8.

So the word 0000 0000 0000 will be encoded to 1111 1111 0000 000, and the word 1111

1111 1111 will encode to 0000 1111 1111 000. Both codewords will be decoded

correctly because one bit is complemented at a time until weight 0 or 12 is reached.

We would like to find the criteria that assure correct coding, i.e. that the map is one-to-

one. The case when q = 1 the single map, say H Sa Sv, is obtained. The following

Theorem states the necessary and sufficient conditions for the single map to be 1-1.

Theorem 2.2 [Knu 86]: The (single) map H Sa --+ Sv is 1-1 iff min(a,k-a) v

max(a,k-a).
C3

Notice that min(a,k-a) S v max(a,k-a) is equivalent to either a min(v,k-v) or a

max(v,k-v).

Example 2.3 When k = 12 and r = 3, the map 110 :: S4 S6 is 1-1 since

min(4,12-4) S 6 5 max(4,12-4).

In the case when q = 2, referred to as a double map, we have H Sa V Sb ---> Sy.

Assume, without loss of generality, that b > a. Observe that if the random walkt of some

word V, of weight v, reaches weights a and b, then the map will result in ambiguous

coding. The reason is that the words of weight a and b, say A and B, will both encode to

V.

t The random walk (defined in [Knu 86]) is the set of points (i,W(X1)) for 0 i 5 k where Xi is X with the
first i bits complemented



18

Example 2.4 Consider the map 010 :: S4 v S9 S7, when k = 12 and r = 3. The

random walk of V = 1110 0000 1111, of weight 7, reaches weights 4 and 9, producing the

words A = V(3) = 0000 0000 1111 and B = V(8) = 0001 1111 1111. So both A and B will

encode to the same word V in the map 010 :: S4 V S9 -> S7.

Lemma 2.3 If H Sa v Sb -3 Sv (where b > a), then b max(v,k-v) and a 5

min(v,k-v) are necessary conditions for correct encoding and decoding.

Proof: First we show that b > k/2 and a < k/2. If b > a k/2, then the random walk

of V = 0 k -v lv will reach weights a and b. Similarly, when k/2 > a, the random walk

of V = lv 0 k -v will reach weights a and b. By Theorem 2.2, b > k/2 implies b

max(v,k-v) and a < k/2 implies a 5 min(v,k-v).

Let the path V > A ---> B > V' be the random walk of some word V of weight v

changing to a word A of weight a, to a word B of weight b, and finally to a word V' of

weight k-v. We will denote such a path by the quadruple (v,a,b,k-v), and similarly, we

denote the path V ---> B > A * V' by (v,b,a,k-v). In example 2.4, V can have the path

(7,4,9,5). Let mbits(v,a,b,k-v) be the minimum number of bits needed to construct such a

path. At least I v-a I bits need to be complemented to get from weight v to weight a, I b-a I

bits to get from weight a to b, and I b-(k-v) I bits from weight b to k-v. So

mbits(v,a,b,k-v) v-a + I b-a + I b-(k-v) . By Lemma 2.3, a 5 v and b k-v, so

mbits(v,a,b,k-v) 2(b-a) + 2v k, and similarly

mbits(v,b,a,k-v) > 2(b-a) + 2(k-v) k.

The path (v,a,b,k-v) is not possible when mbits(v,a,b,k-v) > k. So the path

(v,a,b,k-v) is possible only if b-a k-v. Similarly the path (v,b,a,k-v) is possible only if

b-a v. This is stated in the following Lemma.



19

Lemma 2.4 The path (v,a,b,k-v) is possible iff b-a 5 k-v, and the path (v,b,a,k-v)

is possible iff b-a v. In particular, one of the paths (v,a,b,k-v) or (v,b,a,k-v) is possible

iff (b-a) S max(v,k-v).

Proof: We will first show that the path (v,a,b,k-v) is possible iff b-a 5_ k-v. Suppose

the path (v,a,b,k-v) is possible. If b-a > k-v, then mbits(v,a,b,k-v) 2(b-a) + 2v k > k,

i.e. the path (v,a,b,k-v) is not possible, a contradiction, so b-a k-v.

On the other hand, suppose that b-a k-v. Then the random walk of V = 1v-a plc -v la

will construct the path (v,a,b,k-v) as follows:

1v-a o k-v
l a

o k-a 0v -a 1b-a 0(k-v) (b-a) 1 a o v-a 1k-v 0 a

The proof for (v,b,a,k-v) is similar. Combining the two parts, it follows that the path

(v,a,b,k-v) or (v,b,a,k-v) is possible iff (b-a) 5_ max(v,k-v).

In example 2.4, b-a 5 max(v,k-v), i.e. 9-4 5 max(7,12-7), and therefore the path

(v,a,b,k-v), i.e. (7,4,9,5), is possible. Now we state the main Theorem.

Theorem 2.5 Let H Sa v Sb ---> Sv (where b > a). Then the map is 1-1 iff b-a >

max(v,k-v).

Proof: Suppose that b-a > max(v,k-v). If the map is not 1-1, then there exist two

distinct words of weight a and b, say A and B, that will encode to the same word V.

Suppose A(i) = V and B(i) = V (Recall that X(S) is X with the first s bits complemented).

Since V(i) = A and V(i) = B, the path (v,a,b,k-v) (or (v,b,a,k-v)) is possible if i < j (or i >

j), . This contradicts Lemma 2.3, since b-a > max(v,k-v). So the map must be 1-1.

Conversely, suppose the map is 1-1. If b-a 5_ max(v,k-v), then by Lemma 2.4 we

have a path (v,a,b,k-v) or (v,b,a,k-v); so both A and B encode to V, contradicting the



20

assumption that the map is 1-1. Therefore b-a > max(v,k-v).
CI

In example 2.3, the map 000 :: S0 u S12 S8 is 1-1 since 12-0 > max(8,12-8).

Theorem 2.5 also implies that q 2, since max(v,k-v) k/2. For instance, when q =

3, say H Sa u Sb u Sc --> Sv, there exist no integers 0 a<b<ck such that b-a

k/2, c-b ka, and c-a k/2.

The problem now reduces to finding the best combination of single maps satisfying

Theorem 2.2 and double maps satisfying Theorem 2.5. There are 2r different maps

corresponding to the 2r check symbols. When d check symbols are used for single maps

and 2r d check symbols are used for double maps, the number of different weights that

can be recognized is 2 (2r d) + d = 2r+1 d, so k = 2r+1 d 1.

2.2.2 Code Optimality

To maximize k = 2r+1 d 1, d must be minimized. In the construction given in [Bos

87], d was r+1; in this section we show that d = 0.8 - 1.

Suppose that at least d ( d r+1) single maps are needed to construct the optimal code.

Let the single maps be

Hi :: Sal 4 Svp

H2 :: Sa2 Sv2,

Hd :: Sad --> Svd

and the double maps be

Hd+1 Sad+1 U Sbd÷i > Svd+17

Hd+2 Sad+2 U Sbd÷2 _4 Svd+2,



21

H2r Sa2r V Sb2r -3 Sv2r

where the set { al, , a2r , bd +1, bar } = {0, k} and {Hi, ..., H2r} = {0,1 }r.

By Lemma 2.3, ai < k/2 and bi > k/2 for d+1 i 5 2r. The condition min(ai,k-ai) vi

max(abk-ai) for 1 i d and the condition bi-ai > max(vi,k-vi) (or bi-ai max(vi,k-vi)

+ 1), for d+1 i 5 2r must be satisfied. There are (1) maps with vi = F(k +r)/21 i.

Without loss of generality, we choose the d single maps to be Hi :: Svi > Svi for 1 i

d, where vi = (k-d-1)/2 + i = 2r d - 1 + i, i.e. W(Hi) = 1(r+d+1)/21 i. The double maps

must satisfy
2r 2r
E bi - ai E max(vi,k-vi) + 1, or

i=d+1 i=d+1

2r 2r
E bi ai max(vi,k-vi) + 1 E max(vi,k-vi) + 1

i=d+1 i=1 i=1
(2-1)

But,
2r 2r 2r
E bi ai = E bi E ai = {(k+d+1)/2 +...+ k} - {0 + -+ (k-d-1)/2} = 2r (2r d).

i=d+1 i=d+1 i=d+1

2r
And, E max(vi,k-vi) + 1 = 2r (k/2+1) + T(r) = 2r (2r - (d-1)/2) + T(r), where

i=1

T(r) = r/2 (ra) + odd(k)/2 Gra) r even,
r+ 1

T(r) = (r+1)/4 (0.4.1)/2
)

r odd.

Finally, E max(vi,k-vi) + 1 = d 2r - (d2-2d+odd(d))/4.
i =1

After substituting in (2-1) and simplifying, we get

(d2-2d-odd(d))/4 (d-1) 2r-1 + T(r) S 0 (2-2)

We attempt to get an approximation to d. First, notice that the term (d2-2d-odd(d))/4 is

negligible compared to the exponential term (d-1) 2r-1. Dropping this term we get:

d 1 + T(r) / 2r4 (2-3)



22

Furthermore, using Stirling's formula, x! 42icx (x/e)x, to approximate T(r), we get

T(r) = 2r + odd(k) 41/nr 2r r even, and

T(r) = (r+1)/2ic 2r r odd.

Approximating T(r) by 1-W,ic 2r in (2-3), we get

d 1 + 0.8 -fi (2-4)

The approximated values in (2-4) are the same as the real ones, for r 35, except when

r = 14 where the approximated value is smaller by 1. This is negligible compared to 214+1

when used in approximating k, as in

k 2r+1 0.8 2 (2-5)

k
The information rate of this DC(k+r,k) code which is k--41. rapidly approaches unity as r

increases.

2.2.3 Code Design

In order to understand the construction we introduce another way of obtaining the

minimum number of single maps (d). Let the number of different check symbols with

weight i be gi = 0 for 0 i r. For any integer d 1, let i' = Lr/2J L(d-odd(r))/2J and

i" = Lr/2J + L(d-even(r))/2J. Also, let the vector h be defined as follows:

hi = i for 0 i + r(d-2)/21

= i i" for i" L(d-2)/2J i 5 r.

The level hi is a measure of how far the checks are from the center; the closer the check

to the center, i.e. to k/2, the smaller is hi and the smaller is max(vi,k-vi). The checks

further away from the center will have a larger max(vi,k-vi) and will be more restrictive in



23

the map assignment. Finally, let the vector x be defined as xi = 1 if i' i 5 i", and 0

otherwise. The minimum number of single maps needed is the least d such that

(g-x).h S 0 (2-6)

The least d satisfying (2-6) is equivalent to the least d satisfying (2-2). Actually, T(r)

of equation (2-2) is (g-x).h when d = 1.

Example 2.5 Let r = 4 and d = 1 to construct a DC(34,30) balanced code. In Figure

2.1, we can see that (g-x).h = 12 > 0, so it is not possible to construct a DC(34,30) code.

it it,

i gi xi hi (gi-xi) hi

0 1 0 2 2
1 4 0 1 4
2 6 1 0 0
3 4 0 1 4
4 1 0 2 2

Figure 2.1 Serial DC(34,30) code parameters.

However, by (2-3), d > 1 + 12 / 23 (or by (2-4) d 1 + 0.8 471), we get d = 3.

When d = 3, then (g-x).h = -3 0, as in Figure 2.2. So d = 3 satisfies (2-6), and hence k

can be up to 32-3-1 = 28, so a DC(32,28) code can be constructed. Notice that, if d = 2

then (g-x).h = 7 > 0 which does not satisfy (2-6), hence 3 is the optimal value of d.

Figure 2.3 lists the (single and double) maps for the DC(32,28) code.



24

i'

i gi xi hi (gi-xi) hi

0 1 0 1 1

1 4 1 0 0
2 6 1 -1 -5
3 4 1 0 0
4 1 0 1 1

Figure 2.2 Serial DC(32,28) code parameters.

H b a v max(v,k-v) b-a

0111 --- 13 13 15 - --

0011 --- 14 14 14 - --

0001 --- 15 15 15 - --

0101 16 1 14 14 15

0000 17 0 16 16 17
0110 18 3 14 14 15
1111 19 2 12 16 17
0010 20 4 15 15 16

0100 21 5 15 15 16
1000 22 6 15 15 16
1001 23 7 14 14 16
1010 24 8 14 14 16

1100 25 9 14 14 16
1011 26 10 13 15 16
1101 27 11 13 15 16
1110 28 12 13 15 16

Figure 2.3 Check symbols in the serial DC(32,28) code.

It can be readily verified that the single maps, corresponding to when xi is 1 in Figure

2.2, satisfy Theorem 2.2, and the double maps satisfy Theorem 2.5. Notice that one check

symbol from level -1 (i.e. of weight 2) was used in combination with one check symbol

from level 1 (i.e. of weight 0 or 4), as in

and

0101 16 1 14 14 15

0000 17 0 16 16 17

0110 18 3 14 14 15

1111 19 2 12 16 17



25

So, all the check symbols at level 1 (i.e. needing b-a 17) are consumed. The

remaining check symbols all have level 0 or -1, i.e. need b-a > 15 or b-a 16, but b-a = 16

= 2r can always be chosen from there on, i.e. 20-4, 21-5, , 28-12. Notice that,

2r 2r
(g-x).h = max(vi,k-vi) + 1 - I bi ai = -3.

i=d+1 i=d+1

In general, j check symbols of level -i can be used in combination with i check symbols

of level j. So, after assigning the single maps, the symbols from the highest level are

matched with the symbols from the lowest level until the largest level symbols are all

consumed. The process is repeated with the symbols on the next lower level, and so on.

When level 0 is reached, the combination b-a = 2r is used for the rest of the double maps.

Note that if (g-x).h > 0 then the above process is not possible.

2.3 Balanced Codes -- Parallel Decoding

In this section, parallel DC(k+r,k) codes with k = 2r (or 2r - 1) for r even (or odd) are

designed. These codes improve the original construction with k = 2r - r 1 given in [Knu

86]. In parallel decoding, the check symbol directly indicates the number of complemented

information bits. The original information word can be obtained by complementing that

many bits in one step. Parallel decoding is faster than serial decoding, but is usually

require one extra check bit.

These codes are constructed in sub-section 2.3.1. In sub-section 2.3.2 it is shown that

these codes are indeed optimal.

2.3.1 Code Design

The parallel DC(k+r,k) codes are described in the following algorithm.



26

Design Algorithm: Let A = {0,1}r be the set of all 2r check symbols and m =

Gra). Partition A into subsets D1, D2, ..., Dm_i as follows:

Di = a maximal subset of A - [Di 1j < i} such that if X,Y E Di then W(X) # W(Y) for 1 i

< m.

So D1 will contain r+1 elements, each with distinct weight 0 i S r, D2 will contain

elements one of each possible weight from A - Di, and D3 will contain elements one of

each possible weight from A - (D1uD2), and so on. It can be easily verified that Di has

elements of weights in {Fr/21 LDj/2J, Lr/2J + LDj/2.1].1' The words in Di are assigned an

integer di where

d1 = 0

di+i = di + [Di/2i + rDi+1/21 for 1 ..5.. j < m.

Example 2.6 For r = 3 and r = 4 the possible subsets (Di's) and their corresponding

number assignments (di's) are shown below.

r = 3:

D1 = ( 000 , 001 , 011 , 111 ) d1 = 0

D2 = ( 010 , 101 } d2 = 3

D3 = ( 100 , 110 } d3 = 5

r = 4:

Di = { 0000 , 0001 , 0011 , 0111 , 1111 } di = 0

D2 = { 0010 , 0101 , 1011 } d2 = 4

D3 = { 0100 , 0110 , 1101 } d3 = 7

D4 = (1000 , 1001 , 1110 ) d4 = 10

D5 = (1010 } d5 = 12

t When it is not ambiguous, we use Di to represent the size of Di.



27

D6 = 1100 } d6 = 13

To encode a given information word of length k 2r (or 2r 1) for r even (or odd),

complement the first di bits of the information word and try to assign a suitable check word

Y E Di, for 1 i S m, such that the weight of the codeword is (k+r)/2, i.e. adi(X) + W(Y)

= (k+r)/2. Thus the encoding process is sequential. Note that (k+r)/2 is always an integer

because k and r are both even or both odd.

The decoding algorithm is straight-forward. Suppose that the check symbol of the

received word belongs to the subset Di. Then complement the first di bits of the received

word to get the original information word. The decoding can be done in parallel, i.e. the

first di bits can all be complemented simultaneously. Note that a table of the check symbols

and their diss can be used to directly find di for any check symbol. This completes the

design algorithm.

Example 2.6 (continue) For r = 3 the max number of information bits k = 2r - 1 =

7; we can construct a DC(10,7) code. Let 1000000 be the given information word. The

modified words after complementing the first di = 0, d2 = 3, and d3 = 5 bits will be

1000000, 0110000, and 0111100 respectively. Now the word obtained after

complementing 5 bits can be assigned the check 100 E D3. The codeword will be

0111100 100 and now it is balanced.

Suppose the decoder receives this word. Since the check 100 E D3 the decoder will

complement the first d3 = 5 bits to get the original information word.

When r = 4, the number of information bits k = 2r = 16; i.e. producing a DC(20,16)

code. Suppose X = 0000000000000011 = 014 12 is the information word. Note that, for

i = 1 or 2, there exists no Y E Di such that adi(X) + W(Y) = (16+4)/2 = 10. However, by

complementing the first d3 = 7 bits of X and assigning 0100 E D3 as the check, X can be



28

balanced. Thus the complete codeword is 1111111000000011 0100. To get the original

word, at the decoder side, the first d3 = 7 bits are complemented since the check 0100 E

D3.

The check symbols assignment for r = 4 is depicted in Figure 2.4. The figure also

shows how the random walk of the word 014 12 starting from weight 2 and ending in

weight 14. Notice how the random walk intersects the check symbol 0100.

k = 16

14

12

10

8

6

0

CY'J (X)

* 0000
* 0001
* -0011
* 0111
* 1111

1

4 I

.

* 0010 * 0100 * 1000
* 0101 --* ono ---*-looi *--*-ioio----
* 1011 * 1101 * 1110 1100

i

2
i

0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 j
d1 d2 d3 d4 d5 d6

Figure 2.4 Check symbols in the parallel DC(20,16) code.

The correctness of the algorithm is stated in the following theorem.

Theorem 2.6 For k = 2r (or 2r - 1) for r even (or odd), the design algorithm given

above gives a balanced code.
II

The proof will be given at the end of this section. In the proof, it will be shown that for

any information symbol X E {0,1)k there exist Y e Di such that adi(X) + W(Y) = (k+r)/2.

Assume that k = 2r (or k = 2r 1) for r even (or odd) in the rest of this section and consider



29

the following lemmas.

Lemma 2.7 If X E (0,1 ) k and (k-r)/2 W(X) 5_ (k+r)/2 then there exists a Y E DI

such that 6d1(X) W(Y) = (k+r)/2.

Proof: This is clear because D1 has check symbols with weights in [0,r]. So, if

W(X) = (k r)/2 + i where 0 i 5_ r, choose the check YE Di with weight r i. Then

60(X) + W(Y) = (k+r)/2, i.e. the codeword XY is balanced.

Thus the set of information words with weights (k-r)/2, (k-r)/2 + 1, (k-r)/2 + 2, ... ,

(k+r)/2 need not be complemented at all.

Lemma 2.8 Let X E (0,1PC such that W(X) < (k-r)/2. Then there exists an integer s

5_ dm such that 65(X) =

Proof: From lemma 2.1 it follows that there exists an s E [0,k] such that Gs(X) =

Fk/21. Thus we need only to prove that s 5 dm. From the code design it can be verified

that k dm = Lr /2i + 1. If s > dm then we get a contradiction as follows. From the property

of the function a we have

6k(X) E [ 65(X) (k-s) , 65(X) (k-s) ], so

6k(X) E (Fk/21- (k-dm) , Fk/21 + (k-dm) ), then

6k(X) E (rkal Lr /2i -1, ric/21+ Lr/2J + 1).

So 6k(X) < Fk/21 + 15/2_1 + 1, i.e. 6k(X) (k+r)/2, but 6k(X) > (k+r)/2 since W(X) <

(k-r)/2, a contradiction. Therefore, s S dm.

Lemma 2.9 Let X e { 0,1 } k with weight W(X) < (k-r)/2. Let s be the smallest

integer such that us(X) = [k/21 and di < s 5 di+i for some 1 5_ j < m. Then there exists a Y

E Di with Gdi(X) + W(Y) = (k+r)/2 where i = j or j+1.



30

Proof: The proof will be split into two cases. It will be shown that if s ... di + LDj/2J

then Y Di and if s > di + LDj/2J then Y E Di+1

Case 1: s di + LDj/2J

From the property of a, adi(X) E [Gs(X) - (s-di), 6s(X) + (s-dj)]. But us(X) =

1k/21 and adj(X) < rk /21 by the minimality of s so adi(X) E [Nal LEY2i,

rk/21] .

In order to balance X, Di must have check symbols with weights in (15/21 Lrai +

LDj/2J]. We can balance X since Di has elements of weights in [rr/21 - LDj/2J,

Lr/2J + LDj /2J].

Case 2: dj + LDj/2] < s dj+1

From the design algorithm we have di+i = dj + LDj/2J + rpj+1121, so s > di +

LDj/2J implies s > dj+1 rDi+ini. Recall ad(j +i)(X) E [as(X) (dj+i-s), as(X) +

(dj+i-s)] so oad(j+i)(X) E (rka1 -rDi+1/21, rk/21 + ilpi+1/21).

In order to balance X, Dj +i must have check symbols with weights in (Lr/2_1 -

FDi+1/21, Lr/2J + rpj+1/21). We can balance X since Di4.1 has elements of weights

in [ir/21 LDj+1/2J, Lr/2J + LDj+1/2J], and when r is even (odd) then the size of

Dj+1 is odd (even).
El

Lemma 2.10 Let X E (0,1 11( such that W(X) > (k+r)/2. Then there exists an integer

s dm such that as(X) = Lk/2J.

Proof: Similar to the proof of lemma 2.8.

Lemma 2.11 Let X E ( 0,1 Pc with weight W(X) > (k+r)/2. Let s be the smallest

integer such that as(X) = Lk/2J and dj < s difi for some 1 5 j < m. Then there exist Y E

Di with odi(X) + W(Y) = (k+r)/2 where i = j or j+1.



31

Proof: Similar to the proof of lemma 2.9.

Proof (of Theorem 2.6): The proof now is straight-forward. Let X E {0,1} k with

weight W(X). If (k-r)/2 S W(X) (k+r)/2 then X can be balanced by lemma 2.7. If W(X)

< (k-r)/2 (or W(X) > (k+r)/2) then X can be balanced by lemma 2.9 (or lemma 2.11).

2.3.2 Code Optimality

In this section, the optimality of the code (up to the described complementation method)

is considered. The first theorem will state that r Flog(k) /21 for any k. This implies that

the parallel construction when r is even is optimal. The second theorem asserts that r > log

k when k = 2r and r is odd; this makes the construction for odd r optimal, too. Thus, the

balanced codes presented here achieve the highest information rate and yet maintain the

same encoding and decoding complexity as [Knu 86].

Theorem 2.12 If k be the number of information bits, then at least k check symbols

are needed to obtain any constant weight code using the parallel decoding scheme

described.

Proof: Let S = 0k -i, of lk-i I 1 S i k }. Claim: at most two random walks in S

(or simply two words in S) intersect any particular check point; i.e. a check symbol can be

assigned to at most two words in S. Once this claim is shown then it is clear that one needs

at least IS I/2 = 2k/2 = k check symbols, i.e. r Flog(k)/21, when parallel decoding is used.

Let ck be a check symbol complementing s bits. If ck is assigned to two information

words X,Y E S to get a constant weight code, then as(X) + W(ck) = a5(Y) + W(ck) and

hence as(X) = as(Y). So it is sufficient to prove that at most two words X and Y in S

intersect any point (s,w) i.e. satisfying us(X) = as(Y) = w.



32

Observe that at(li Ok-i) = It-il and at(Oj 11(4) = k - It-il for 1 S i k. So as( li 01(4) = w

implies s-i = w or -s+i = w, i.e. i = s-w or i = s+w. Similarly, as(Oj 11(4) = w implies j =

(s-w) + k or j = (s+w) k. Moreover, if (s-w) E [1,k] then (s-w) + k > k and, conversely,

if (s-w) + k E [1,k] then (s-w) < 1. So it is not possible that both at(1(s-w) Ok- (s -w)) and

at(0(s-w)+k 1(s-w)) intersect (s,w). Similarly, it is not possible that both Gt(1(s +w) Ok-(s+w))

and at(0(s+w)-k 12k-(s+w)) intersect (s,w). Therefore, at most two random walks will

intersect any point (s,w).

Theorem 2.13 If k = 2r information bits and r is odd then at least k+1 check

symbols are needed to obtain any constant weight code using the parallel decoding scheme

described.

The proof of Theorem 2.13 is harder than that of Theorem 2.12 so before we give the

proof we state one corollary to Theorem 2.12 and one lemma.

Corollary 2.14 Let k be the number of information bits with k check symbols

forming a constant-weight code using the parallel decoding scheme described.

Then every word in S = Ok-i, Oi 11(4 I 1 < i < k } intersects exactly one check

point.

Proof: Every word in S must intersect at least one check point since a constant-

weight code is assumed. From the proof of Theorem 2.12 we know that a check symbol

can balance at most two words out of the 2k words in S. So every word in S must

intersect exactly one check symbol.

As an example, the random walks of every word in S = 0164, pi 1164 I 1 < i < 16 )

intersects exactly one check point.



33

Before stating the lemma, some more insight in the check point allocation is needed.

Suppose the desired constant-weight code is c-out-of-(k+r). If c < k/2 then it is not

possible to encode the word Ok/2 lk/2 since oi(Oka lk/2) k/2 for all j. Similarly, if c >

k/2+r then it is not possible to encode the word lk/2 014 since aj(lka Oka) k/2 for all j.

Therefore, k/2 S c 5 k/2+r.

Moreover, in a c-out-of-n code the check points must lie between the c-r and c lines

inclusive. So in any constant-weight code the check points must lie in between k/2-r and

k/2 +r. All check points lie inside the Space, as defined below; and an information word

intersects a check point only inside this Space.

Definitions:

Let X E {0,1}k be an information symbol, a = k/2 - r, and b = k/2 + r, then

Space={(x,y)10x_kanda5_yb}
L(X) = I (j, ai(X) ) 1 0 j k , (j, ai(X) ) e Space }

ur(i) = (x,y) 1 y x+(b-i) , y < - x +(b +i) , (x,y) E Space }

1r(i) = { (x,y) I y x+(a-i) , y -x+(a+i) , (x,y) E Space }

ut(i) = ur(i) u 1r(i+k) u lr(i -k)

lt(i) = u ur(i+k) u ur(i-k)

Let M be ut(i) lt(i) , or L(X), then define

I M I = 1 (x,y) I (x,y) E M , (x,y) is a check point } I ; i.e.,

the number of check symbols inside M.

Lemma 2.15 Let k 8 be the number of information bits. Let k check symbols form

a constant-weight code using the parallel decoding scheme described. Then I ut(i) I =

I lt(j) I for 0 5_ i,j < k.t

t Actually, it can be shown that I ut(i) I = I lt(i) I = 2r + 1 for 0 i 5_ k.



34

Proof: First, we will show that I ut(i) I = I ut(j) I and I lt(i) I = I lt(j) I for all i,j.

Then I ut(i) I = I ut(j) I will follow from the fact that ut(0) = lt(k) (or ut(k) = lt(0)).

The proof for I lt(i) I = I lt(j) I is similar to that of I ut(i) I = I ut(j) I, so we will only

prove I ut(i) I = I ut(j) I. To prove that I ut(i) I = I ut(j) I it is sufficient to show that

I ut(i) I = I ut(i+1) I for 0 i < k. Consider the region R = ut(i) u ut(i+1).

{
1i+b+1 0k-i-b-1

Then R = ut(i) u L( wi ) where wi =
0i-a+1 ik-i+a-1

if 0 i < a
if a i < k

and ut(i) n L( wi ) = 0 so IRI=1 ut(i) I + I L( wi ) I. But I L( wi ) I = 1 since wi S

(Corollary 2.14). Therefore,

IRI=lut(i)1+ 1 (2-7)

0k -b +i 1b-i
Similarly, R = ut(i+1) u L( w2) where w2 =

ii-b Ok -i +b

if 0 ... i < b
if b i<k

and ut(i+ 1) n L( w2 ) = 0 so IRI=1 ut(i+1) I + IL( w2 ) I. Again I L( w2 )1= 1 since w2

E S, hence

IRI=lut(i+1)1+ 1 (2-8)

From (2-7) and (2-8) it can be readily implied that I ut(i) I = I ut(i +l) I.
0

Proof: (of Theorem 2.13) When r = 1 and k = 21 it can be easily shown that at

least k + 1 = 3 check symbols are needed. Assume that k = 2r where r > 1 and r is odd.

We will prove by contradiction that k (= 2r) check symbols can not form a constant-weight

code. Suppose it is possible, then by lemma 2.15 I ut(i) I = I lt(i) I; in particular,
k-1 k-1
E I ut(i) I = E I lt(i) I.
J=0 J=0



35

k-1 k-1 k-i
Only the term E I ut(i) I is analyzed because E I lt(i) I is similar. In I ut(i) I the

i=o i=o i=0

number of check points inside each ut, excluding ut(k), are summed. A check point can be

counted more than once in the sum because it may be a member of more than one ut, e.g.

if ch E ut(i +1) n ut(i+2 ) n ut(i+j), then ch is counted j times in the sum.

We attempt to count the same sum differently, now over the set of check points rather

than over the ut's. First, define no_ut( ch) as follows

no_ut( ch) = I { ut(i) I chE ut(i) , i # k } I, and similarly

no_lt( ch) = I f lt(i) I the lt(i) , i # k } I

It can be seen that summing over the check points is the same as summing over the

ut's. Therefore,

k-1
E no_ut(ch) = E I ut(i) I

v ch i=0

To find no_ut( ch), consider a check point of the form ch = (x, k/2+i ) then

ch E ut(j) for x - (r-i) j x + (r-i)

where addition (subtraction) is mod kt. So,

no_ut((x, k/2+i)) = 2r + 1 - 2i and similarly

no_lt((x, k/2+i)) = 2r + 1 + 2i

Note that no_ut(ch) (and no_lt(ch) ) does not depend on the first component, x of ch.

Recall that in a c-out-of-n code the check points lie between c-r and c lines, inclusive. In

fact, there will be (ri) check points of the form (x, c-i ) for 0 i r. And no_ut(x,c-i) =

(2r + 1) 2(c k/2 - i), therefore

t Note that ut(k) is not counted in no_ut( ch).



r r rX no_ut(ch) = E (.r 0) no_ut(x,c-i) = E [ (2r + 1) 2 (c k/2 i) ]
1V ch i=o i=0

and similarly
r

X no_lt(ch) = E (.r) [ (2r + 1) 2 (c - k/2 i) ].
. i

V ch 1=0

k-1 k-1
But X no_ut(ch) = 1 no_lt(ch ) since 1 I ut(i) I = E I lt(i) I. Therefore,

V ch V ch i=0 i=0

E (. r) (c - ka i) = 0
i=0

36

(2-9)

The only solution to Equation (2-9) is c = (k+r)/2. However, c # (k+r)/2 since k is

even, r is odd, and c is integer. Therefore, when r is odd, we get a contradiction of the

assumption that 2r check symbols are sufficient to construct a constant-weight code of 2r

information bits. So, in this case, at least 2r + 1 = k + 1 check symbols are needed to

construct any constant-weight code.
0



37

Chapter 3

Error-Correcting Balanced Codes

Balanced codes have an equal number of 1's and 0's in each codeword. Balanced

codes with error correcting capability are highly desirable for optical communication and

recording of data on magnetic and optical disks [Den 88, Etz 90, Fer 84, Lei 84, Tak 76,

Til 89, Wid 83]. The t-error correcting balanced (t-EC/B) codes can be also viewed as t-

EC/AUED (t-error correcting/All unidirectional error detecting) codes. The t-EC/AUED

codes are studied in detail in Chapter 6.

This chapter presents t-error correcting balanced codes with efficient encoding and

decoding algorithms, for 1 t 4. These codes, in many cases, have information rates

better than that of the equivalent codes given in the literature and, at the same time, have

easier encoding and decoding algorithms. The new codes are designed based on the

method described in Chapter 2 and on some algebraic structures, namely groups and fields.

As in the case for the balanced codes (designed in Chapter 2) the new t-EC/B codes will

also have easy encoding and decoding algorithms.

Two construction methods are given here , Construction I gives lower information rate

but has slightly simpler encoding/decoding algorithms. In both constructions the first few

bits of the information symbol are complemented and then an appropriate check symbol is

appended to get the final codeword. In many cases the information symbol is not

complemented at all, so these codes may be called "partially separable codes". In these

codes the check bits are separated from the information bits; and the information bits can be



38

easily extracted from the information part by complementing 0 or more bits. In a separable

(or systematic) code the information symbols are not modified at all.

In spite of partial separability and ease of encoding and decoding of the proposed

codes, they give, in many cases, higher information rate than the equivalent non-systematic

codes given in [Bos 82b, Kun 88, Kun 90, Sai 88]. In some cases the information rates of

the new codes matches the ones in the literature; however the new codes are still considered

to be better since they have easier and faster encoding and decoding algorithms.

As mentioned earlier, the terms t-EC/B and DC(n,k,2t+2) will be used interchangably.

A summary of the parameters of some new DC(n,k,2t+2) codes (compared to ones given

in the literature) are given in the following tables.

n Maximum number of information bits (k)

Construction I Construction II [Bos 82b]

15 7 8 7
22 13 14 13
29 18 20 19

40 28 30 30
59 46 48 47
81 66 69 68

116 101 103 103
165 148 151 151
234 217 219 219

Table 3.1 Parameters of some DC(n,k,4) (i.e. 1-EC/B) codes.



39

n Maximum number of information bits (k)

Construction I Construction II [Kun 88]
21 6 8 6
29 13 14 14
36 18 20 19

48 28 30 29
66 45 47 46
90 66 69 68
121 97 99 99
175 148 151 151
244 217 219 219

Table 3.2 Parameters of some DC(n,k,6) (i.e. 2-EC/B) codes.

n Maximum number of information bits (k)

Construction I Construction II [Kun 90, Sai 88]
27 6 8 6
39 14 16 15
45 20 21 21

70 41 43 42
124 89 91 90
147 111 113 113

236 196 199 198

Table 3.3 Parameters of some DC(n,k,8) (i.e. 3-EC/B) codes.

n Maximum number of information bits (k)

Construction I Construction II [Sai 88]

39 6 8 6
45 14 16 15
53 20 21 21

86 41 43 42
128 72 75 74
144 89 91 90
258 194 197 196

Table 3.4 Parameters of some DC(n,k,10) (i.e. 4-EC/B) codes.



40

3.1 Previous Work and Construction I

Single and double-error correcting balanced codes (1-EC/B and 2-EC/B) have been

designed in [Bos 82b] and [Kun 88], respectively. Designs of 3 and 4-error correcting

balanced codes (3 and 4-EC/B) were given independently by [Sai 88] and [Kun 90], and

[Sai 88], respectively. All these codes assume that the information symbols are already

balanced and hence they are non-systematic. Encoding and decoding of these codes may

involve huge table ups. Others have designed t-EC/B codes with constraints on the run

lengths (the maximum number of consecutive 0's or l's) and the accumulated charge (the

difference between the number of l's and 0's) [Etz 90, Til 89]. These codes are also non-

systematic and, in general, have no easy encoding and/or decoding procedures.

Before describing the construction methods given in [Bos 82b, Kun 88, Kun 90, Sai

88], some notations and definitions are given; also construction I is given at the end of this

section.

Recall that k is the number of information bits, U E 10,11k is an information symbol, r

is the number of check bits, and ch E (0,1)r is a check symbol. Also recall that X(i) is a

binary vector X with its first j bits complemented.

Notations and Definitions:

t-EC/B : t-Error Correcting Balanced Code, i.e. a balanced code with distance 2t+2.

DC(n,k,2t+2) : a t-EC/B code of length n and 2k codewords .

G : an Abelian (i.e. commutative) group of N elements.

GF(q) : a Galoist Field of size q where q = pm for prime p.

s : the smallest integer such that (ss/2) q.

t It is interesting to note that Galois, a French mathematician, died in a sword quarrel in 1872 when he was
only 23 years old.



41

U : be the set of all Ls/2i-out-of-s (or [s/21- out -of -s) vectors.

tir : is any 1 -1 function defined as v : GF(q) -3 U, i.e. if v(a) = v(b) then a = b.

Let X be a binary vector of length n' represented as X = x1x2...xn, and F be a field of

size q > n'; then define
f1(X) = E

xi =1

f2(X) = H
xi =1

f3(x) = I
xi =1

a i , for 1

a i for 1

1 for 1
ai

The summation in f1(X) and the product in f2(X) and f3(X) are performed over the field F.

We choose aq = 0 so that the 0 element will not appear in the product of f2(X) and f3(X).

For convenience, define

Fi(X) = v(fi(X)) for 1 i 3.

So Fi(X) will be a binary vector of length s and weight s/2.

The codes given in [Bos 82b, Kun 88, Kun 90, Sai 88] can now be described as

follows:

Theorem 3.1 Let C' be an n'/2-out-of-n' code, then for 1 t 3,

C = X' Fi(X') Ft(X') I X' E C') is a t-EC/B code of length n' + t s and size I C' I.

When t = 1, any group G can be used instead of a field since f1(X) involves only

addition [Bos 82b]. On the other extreme, when t = 3 a field of characteristic 2, i.e.

GF(2m), must be used.

As mentioned earlier these codes are non-systematic since a constant-weight code C' is

assumed and the information part (X') contains information as well as check bits.

Example 3.1 The design of 1, 2, and 3-EC/B codes with 6 information bits is as

follows: The 26 information symbols can be represented by an n'/2-out-of-n' code where



42

n' = 8 which has 70 balanced words.

Now to get 1-EC/B code we choose the smallest group of order N where N > n'. Let

G = Z8 and let s = 5 since a 2-out-of-5 code has more than 8 codewords. So the 1-EC/B

code will have length 8 + 5 = 13. For the 2-EC/B codes, the smallest field with q elements

where q > n' = 8 is GF(32) of 9 elements. These 9 elements can be represented by a 2-out-

of-5 code, i.e. s = 5. The code length will be 8 + 5 + 5 = 18. For the 3-EC/B codes, the

smallest GF(2m) field with 2m > n' = 8 is GF(24) of 16 elements. These 16 elements can

be represented by a 3-out-of-6 code, i.e. s = 6, so the total code length will be 8 + 6 + 6 +

6 = 20.

The t -EC /B Codes -- Construction I

Recall that in Chapter 2 we designed DC(k+r,k) codes with k = 2r+1 _ 0.8 _ 2.

Here in Construction I, a given information symbol of length k is first converted to a

balanced code using the method described in Chapter 2. Then t check symbols are

appended, as done earlier, to get a t-EC/B code. The encoding of construction I can be

depicted in the following diagram:

X1 . Xk -->

information
symbol

x xj xj+1 xk

balanced word

Y1 Yr -->

xl.. Xj Xj+1 xk yi Yr chi ... chs

balanced code word

More formally, let k be the number of information bits in the desired t-EC/B code.

Design a balanced code C' of length k + r such that k 2r +1- 0.84-17- 2, i.e. r (log k) -

1, and let

C = f X' Fi(X') Ft(X') I X' E C' }



43

Now C is t-EC/B code of length k + r + is with k information bits. In many cases, the

t-EC/B codes designed using this method have slightly lower information rates tharr those

given in [Bos 82b, Kun 88, Kun 90, Sai 88]. However, these codes are partially separable

and have a much easier encoding and decoding algorithms.

Example 3.2 Suppose that a 1-EC/B code of 7 information bits is desired to be

constructed. With 3 check bits we can design a DC(7+3,7) (balanced) code since

7 5_ 23+1 0.80 2. We choose the group G = Z10 (the additive cyclic group of size

10). The elements of this group can be represented by a 2-out-of-5 balanced code. So

with extra 5 check bits, a 1-EC/B code of length 15 is obtained as shown in the first entry

in Table 3.1.
ED

3.2 The 1-EC/13 codes - Construction H

Recall that the 1-EC/B codes given in [Bos 82b] or in Section 3.2 involve two steps:

converting the information symbol to a balanced word and appending a constant-weight

check symbol. In the new 1-EC/B codes (Construction II) these two steps are combined,

yielding a higher information rate. The encoding in Construction II is as follows:

x1 x2 X k

information symbol

xi x2 .... xj xj+1 .... xk

balanced codeword

yi y2 Yr

These 1-EC/B codes will be used in the next sections as inner codes for t-EC/B codes,

for 2 t S 4. The design of 2-EC/B and 3-EC/B codes require 1-EC/B codes that are

designed based on a Field and the 4-EC/B codes require a 1-EC/B inner code based on a

binary Field. However, an arbitrary 1-EC/B code can be designed based on any Abelian

group.

Notice that since the 1-EC/B codes are partially separable (in the sense that only some



44

bits of the information symbol are complemented) the new 2, 3, and 4-EC/B codes will

also be partially separable since they contain this 1-EC/B as an inner code.

3.2.1 Arbitrary 1-EC/B Codes (over Abelian Groups)

Suppose we wish to design a 1-EC/B code of k information bits and r check bits. Let

G = {gi, g2, ..., giT} be a group of N elements where N ?.. k + r. Let H c G of size r

containing gk+i, --, gk+r, i.e. H = igk+1, gk+2, ..., gk+r) Let 0 denote the additive

identity and -g denote the additive inverse of g. Let X = U ch where, in bit representation,

U = ulu2...uk, ch = cic2...cr, and X = xlx2...xn, i.e. xi = ui for 15ic and xi = ci_k for k

< i < n. Now, define the following functions:

f(U) = E gi
ui=1

f'(ch) = I gk+ i
ci =1

(3-1)

(3-2)

Recall that fi(X) = E gi for 1 5. i 5 n, and so fi(X) = fl (U ch) = f(U) + r(ch).
xi=i

Note that f and fi depend on the ordering of the elements in the group G. In particular,

r(ch) depends on the subset H of G. The function r(ch), and hence H, will have a central

importance in the design and we refer to G and the subset H as the pair [G,H].

Theorem 3.2 [Bos 82b]: If C is a w-out-of-n code and fi(X) = fl(Y) for every X, Y

e C, then C has a minimum Hamming distance of 4.
0

The 1-EC/B code designed here will satisfy fi(X) = 0 for any X E C and will therefore

be 1-EC/B code by the above theorem.

Definition: Given k, r, and [G,H] where IGI = N k + r and IHI = r, we say a set

CH = {chi, ch2, ..., chN} of check symbols is a "compound check symbol" if W(chi) =

W(chj) and fi(chi) r(chj), for 1 5 i < j .5 N. We also define the Hamming weight of a



45

compound check symbol CH to be W(CH) = W(chi) since all the elements in CH have the

same weight: Notice that for any g E G there exists a ch E CH with f'(ch) = g.

This CH is used to balance one (or two) weight(s) as done in the serial codes in

Chapter 2; moreover, the balanced codeword X will also be constructed to satisfy f1(X) = 0

as follows. After the information symbol U is converted into the desired weight by

complementing j bits (i.e. getting UO)), we choose ch E CH with r(ch) = -f (U0)). The

codeword X = U(1) ch will be balanced and will satisfy f1(X) = 0 since fl (U0) ch)

f (U0)) + f"(ch) = f (U0)) + (-f (U(i))) = 0. In decoding, when the weight of some

codeword is off by one from the middle the erroneous bit can be easily corrected using the

property that f1(X) = 0.

Example 3.3 To construct a 1-EC/B code with k = 4 and r = 6, let G = Z10 and H =

(0, 1, 2, 3, 4, 7 }. So the weights of the 4 information bits will be 5, 6, 8, and 9; and the

weights of the check bits will be 0,1, 2,

points can be constructed.

3, 4, and 7. The following 4 compound check

000101 011001 100101 011110
000011 010101 100011 110101
101000 001101 010011 101101
100100 001011 111000 011101
010100 000111 110100 011011

001100 101100 110010 010111
001010 011100 101010 001111
000110 011010 100110 111010
010001 010110 110001 110110
001001 001110 101001 101110

CHi CH2 CH3 CH4

Notice that, in any CHs = {chsp...,chsio}, 1 s 4, we have W(chi) = W(chis) and

('(chi) = i-1, for 1 j 10. For instance, ch71 E CH1 has weight 2 and f"(ch71) =

f"(001010) = 2 + 4 = i - 1. Also, for any g E G there exists chi E CHs with f"( chi) = g.



46

These compound check symbols can be used to balance all weights between 0 and 4

because the checks CHi, CH2, CH3, and CH4 will balance information symbols of

weights 3, 2, (0 and 4), and 1, respectively. The information words of weight 1, 2, and 3

will not be complemented at all and words of weight 0 and 4 will be complemented until

they become weight 2. The encoding of all the 16 information symbols is illustrated in the

Figure 3.1.

info.
symbol (U)

i
(in Cu)

complemented

info. symbol (U()) f(U(D)
ch E CHi with
f'(ch) = -M(1))

final
codeword

(5689) (012347)
0000 3 1100 1 101001 1100 101001
0001 4 0001 9 110101 0001 110101
0010 4 0010 8 101101 0010 101101
0011 2 0011 7 001011 0011 001011
0100 4 0100 6 011011 0100 011011
0101 2 0101 5 101100 0101 101100
0110 2 0110 4 011100 0110 011100
0111 1 0111 3 000110 0111 000110
1000 4 1000 5 010111 1000 010111
1001 2 1001 4 011100 1001 011100
1010 2 1010 3 011010 1010 011010
1011 1 1011 2 010001 1011 010001
1100 2 1100 1 001110 1100 001110
1101 1 1101 0 000101 1101 000101
1110 1 1110 9 000011 1110 000011
1111 3 0011 7 111000 0011 111000

Figure 3.1 Encoding of a DC(10,4,4) code, i.e. a 1-EC/B code with k = 4 and r = 6.

Let CHS CHi, CH2, ... } be the set of all compound check symbols. In Example

3.3, CHS has 4 compound check symbols one of weight 2, two of weight 3, and one of

weight 4.

The construction of CHS will be explained after describing the encoding and decoding

procedures. In the following encoding procedure, it is assumed that CHS has enough

compound check symbols to balance all weights between 0 and k and, at the same time, the



47

compound checks with the weight(s) they balance satisfy Theorem 2.5.

Encoding Procedure for 1-EC/B codes:

Let U be an information symbol and suppose that CH is used to balance words of

weight W(U).
1(2+r1

1- Complement the first j bits of U until W(U(i))
1

) W(CH).

2- Let ch E CH with r(ch) = -f(UC.1)).

3- The encoded information symbol will be X = OD ch.

For any information symbol U we have W(U0) ch) = Fic-2-r-1 and fi(U0) ch) = 0; so it

follows from Theorem 3.2 that C is a 1-EC/13 code. The decoding procedure is also

straight forward.

Decoding Procedure for 1-EC/B codes:

Let X = U ch be the received codeword and ch E CH. Suppose that CH is used to

balance weight(s) i (and j); now consider the following cases:

1- W(X) = rn/21 : if fi(X) = 0 then assume no errors and the information symbol will

be u(s) where s is the least integer such that W(U0)) = i (or j). If fi(X) *, 0 then

detect multiple errors.

2- W(X) = Fn/21 + 1: correct a single 0>1 error at the i-th bit where gi = fi(X).

3- W(X) = in/21- 1: correct a single 1>0 error at the i-th bit where gi = - fi(X).

4- W(X) < rn/21 1 (or W(X) > Fn/21+ 1) : detect multiple errors.

We now turn our attention to the CHS set. Given k, r, and [G,H] where IGI = N k +

r and IHI = r, we would like to maximize the size of CHS (i.e. the number of compound



48

check symbols). Let CHS be the set of compound check symbols of weight w and let

VW = [ ch I W(ch) = w and r(ch) = g }

The set {chi, ch2, ..., chN } where chi E Vgi forms a compound check symbol of

weight w. Every compound check symbol in CHSW must have N unique elements from

each set VW g e G.w

Thus, I CHSw 15 min I Vim, I (over g E G).

But E I Vt, I = (wr ) and Vgw n Vhw = (I) for vh, so there exists at least one Vgw
g E G

such that I Vgw I L(wr)/ NJ. Thus, 1CHSw I L(0/ NJ, and so 1 CHS 1 ...

r

L(wr
w --4

)/NJ. The maximum occurs wheny,

I CHS I = i
w

L ( ir ) / Ni (3-3)
--4)

Any compound check symbol can balance at most 2 weights, thus

k2 I L (,r,v) /NJ. ButN?..k+randLii----i-0.5,
w-4

rk
r

2 E [ ,) / (k+r) 0.5 } = 2 [ k+r - 0.5(r+1)], so
w4

2r+1
k + r + 1 < k_---1--1., or (k+r)2 < 2H-1 from which the following two relations can be

obtained.

2 log n - 1 (3-4)

k < 2(r+1)/2 r (3-5)

Relation (3-5) gives an approximation of the maximum number of information bits that

can be obtained using r check bits in this method. The true maximum (k*), in which all

compound check symbols satisfy Theorem 2.5, was found using a computer program.



49

The values of the true maximum k* and the approximation of the maximum given in (3-5)

are listed in Table 3.5 for some values of r. As seen from the table, 2(r +1)/2 r is a close

approximation of k*.

r obtained

values (k)

true max

k*

approx. max
2(r+1)/2 _ r

6 4* 4 5
7 8* 8 9
8 14* 14 14
9 20 22 23

10 30 33 35
11 48 51 53
12 69 76 78
13 103 115 115

14 151 166 167
15 219 239 241
16 316 348 346

Table 3.5 The number of information bits (k) in the new 1-EC/B codes, the true

maximum (k*), and the approximation of the maximum.

Given r check bits, the maximum number of information bits (k*) can be constructed

only when condition (3-3), which depends on the choice of [G,H], is satisfied. Given a

group G, the choice of H is crucial for condition (3-3) since it determines how the [0,1 } r

check symbols distribute among the Vg sets (for 0 ..xf r and g E G). Several groups

were studied and the Zn group, with an appropriate subset H, was found to give the

maximum number of compound check symbols. Table 3.5 lists the obtained values of k in

the new 1-EC/B codes. The pairs [G,H] used to get these values of k are given in Table

3.6. These pairs were obtained by trial-and-error and have no general rule.

For r = 6, 7, and 8, optimal (k = k*) 1-EC/B codes with k = 4, 8, and 14 were found,

as seen in Table 3.5. For r 9, k is slightly smaller than k*. For instance, k* = 22 for r =

9 but only k = 20 was obtained using [G,H] = [Z29, 1,2,3,4,9,13,14,17,19)].



50

The codes may be further improved by a suitable selection of some other [G,H]

combinations. It is conjectured here that, for most values of r, there exist a pair [G,H] that

indeed achieve k*.

r k [G,H]

6 4 [ Z10, (1,2,3,4,5,8) ]
7 8 [ Z15, [1,2,3,4,5,6,11) ]
8 14 [ Zn, [1,2,3,4,5,9,14,19) ]
9 20 [ Z29, [1,2,3,4,9,13,14,17,19) ]

10 30 [ Z41, 0,2,4,8,9,14,15,17,26,351
11 48 [ 49, [1,2,3,5,17,32,33,40,47,52,58) ]
12 69 [ Z83, 1,2,3,5,8,14,25,35,45,50,60,68 )
13 103 [ Z115, (1,2,3,5,8,14,25,35,45,49,64,73,101) ]

14 151 [ Z166, [1,2,3,5,8,14,25,36,45,55,85,108,123,159)
15 219 [ Z235, (1,2,3,5,8,14,25,35,45,53,54,69,85,132,168)
16 316 [ Z332, 1,2,3,5,8,14,25,35,45,60,85,114,162,184,200,249) ]

Table 3.6 List of [G,H] pairs used to find the value of k in Table 3.5.

It is worth noting that in any (systematic or non-systematic) 1-EC/B code C of length n

= k + r, the condition I C15. n n/2n - 1) must hold [Pet 72], or

3
r >_ -2 log n + 0.83

3or, k n - 2 log n 0.83

(3-6)

(3-7)

There may not be any (systematic or non-systematic) 1-EC/B code with information

rate satisfying (3-7) with equality. The best known non-systematic 1-EC/B codes can be

found in [Bro 90]. In Table 3.5, r and k satisfy r < 2 log (k+r) which compares favorably

with the bound r 2 log (k+r) 1, obtained in (3-4), and the non-systematic bound r

32 log n + 0.83, given in (3-6).



51

3.2.2 The 1 -EC /B codes over GF(q), and Z2m_1

As mentioned earlier, the t-EC/B codes, for 2 5 t 4, use the 1-EC/B code as the inner

code. In addition, the 2-EC/l3 code design require that the 1-EC/B code be designed based

on some field or cyclic group Zci..1 where q is a power of prime. Similarly, 3 and 4-EC/B

codes require that the 1-EC/B code be designed based on a binary field GF(2m) or a cyclic

group Z2m..1. It was found that using Z2m_1 is always better than GF(2m); so only Z2m..1 is

considered for the construction of the 3 and 4-EC/B codes.

To distinguish between the different 1-EC/B codes, we refer to them as a GF(q) 1-

EC/I3 code, Zq_i 1-EC/B code, etc. The different 1-EC/B codes constructed with the

different algebraic structures are listed in Table 3.7. As shown in the table, some values

obtained are similar to those obtained by the groups. As was the case with the groups,

these values may be further improved by a better choice of group/subset or field/subset

combinations.

r arbitrary group GF(q) or 44 Z2m-1

6 4 4 Zio 1 Z7
7 8 8 Z15 8 Z15
8 14 14 Z22 8 Z15
9 20 20 Z30 16 Z31

10 30 30 GF(41) 21 Z31
11 48 47 GF(59) 43 Z63
12 69 69 GF(83) 51 Z63
13 103 99 GF(113) 91 Z127

14 151 151 Z166 113 Z127
15 219 219 GF(239) 199 Z255
16 316 315 GF(331) 239 Z255

Table 3.7 The maximum number of information bits in the 1-EC/B codes based on

groups, GF(q) or and Z2m_1, when r check bits are used.



52

3.3 The 2-ECM codes

Recall that the 2-EQB codes given in [Kun 88] are constructed by appending two

check symbols of length s and weight s/2 to every information vector. The information

symbols are assumed to be of constant-weight form. Here a method similar to that given in

[Kun 88] is used but the information vectors are first converted to a 1-EC/B code and then

a single constant-weight check symbol is appended to obtain the 2-EC/B code. This will

also yield a partially separable code since the inner 1-EQB code is partially separable. The

choice of this extra check will depend on the field (rather than the group) used to obtain the

1-EQB code.

Let GF(q) = { al, a2, ..., aq } and let 0 and 1 denote the additive and multiplicative

identities, respectively. Let the last element aq be 0. For any a e GF(q), let -a and 1/a

denote the additive and multiplicative inverses of a, respectively. Let H c GF(q)\0 of size r

containing ak+i, , ak+r, i.e.

q. Recall that, f1(X) --= X, ai,
xi=1

H = { aki-i, ak+2, / ak +r}, and let X E 03,1 }n' where n' <

f2(X) = ri a;, s is the smallest integer such that (ss/2)
xi=i

q, U is the set of all s/2-out-of-s vectors, i : GF(q) > U is a 1-1 function, and F2(X) =

V(f2(X))

Notice that, since q > n' and aq = 0, the 0 element is excluded from the computations in

f2. Now the 2-EQB codes can be constructed as follows.

Encoding Procedure for 2-EC/13 codes:

1- Let C' be a GF(q) 1-EC/B code, i.e. a 1-EC/B code designed based on some field,

of k information bits and length n'.

2- Let C = { X' F2(X') I X' E C' }



53

Theorem 3.3 The above code C is a 2-EC/B code of k information bits and length

n ' + s.

Proof: Every codeword in C has weight 1(n'+s)/21 since U can be chosen to contain

words of weight Is /21 (or Ls/2i) if n' is even (or odd). To show that C is 2EC we must

show that D(C) 2t + 2 = 6. Let X, Y E C be two codewords of the form X = Kchx and

X = Ylchy where X', Y' E C' and chx,chy E U. Because C' is a 1-EC/B code it follows

that D(X',Y') 4; so if D(X',Y') ?.. 6 then D(X,Y) 6. When D(X',Y') = 4 it suffices to

show that chx*chy and hence D(X,Y) _?_ 6. Suppose D(X',Y') = 4. Without loss of

generality, assume that X' and Y' differ only in the first four bits (and agree in all other

bits) as shown below:

b1 b2 b3 b4

X' = 1 1 0 0

Y' = 0 0 1 1

where b1, b2, b3, b4 e GF(q)\0. Since f1(X') = f1(Y') = 0, we have

b1 + b2 = b3 + b4 = 0-1.

Now if chx = chy , i.e. F2(X') = F2(Y'), then f2(X') = f2(Y'), so

b1 b2 = b3 b4 = G2

(3-8)

(3-9)

But, (3-8) and (3-9) imply that (z b1) (z b2) = (z b3) (z b4), so the quadratic

equation
z2 -61z+ 62= 0

has four distinct roots b1, b2, b3, and b4 over the GF(q). This is impossible; so if

D(X',Y') = 4 then chx#chy and hence D(X,Y) > 6.
0



54

Decoding Procedure for 2-EC/B codes:

Let Y = X ch be the received codeword where X is a word in a 1-EC/B code C' of

length n' and ch is a check symbol of length s and weight s/2. Let S 1 = f1(X) and S2 =

f2(X)/i3 where V((3) = ch, i.e. 13 =w-i(ch). Si and S2 are called syndromes. Consider the

following cases:

1- W(X) .1n721 and Si = 0 : Assume no errors. Let X = U ch' and suppose that ch'

E CH and CH is used to balance weight(s) wi (and w2). The information symbol

will be U(i) where s is the least integer with W(U()) = wi (or w2).

2- W(X) = 511/21 and S 0 : If S2 = 1 or W(ch) s/2 then detect multiple errors;

otherwise assume a single 0-31 error and a single 1-40 error in positions i and j,

respectively. Then,

S 1= ai aj and

S2 = / aj

Therefore, aj = Si / (S2 - 1) and ai = Si + Si / (S2 1), so the error positions are

identified.

3- W(X) = rn721 + 1 (or W(X) = Fn' /21 1) : If S1 = 0 then detect multiple errors;

otherwise assume a single 0-41 error (or 1>0 error, respectively). The error can

be corrected by complementing the ith bit where ai = f1 (X) (or ai = (X),

respectively), as done in the 1-EC/B decoding procedure.

4- W(X) = rn'/21 + 2 (or W(X) = In' /21 2) : If W(ch) s/2 then detect multiple

errors; otherwise assume two 0-41 (or two 1-40, respectively) errors in positions i

and j. Then

Si = + aj and S2 = ai aj

(or S 1 = ai aj and S2 = 1 / (ai aj), respectively).



55

The two error positions i and j can be found because ai and aj are the roots of

z2 S1 z + S2 = 0

(or z2 + S1 z + S2 = 0, respectively).

5- W(X) > In' /21 + 2 (or W(X) < Fif/21-2) : detect multiple errors.

The restriction of a field 1-EC/B code to design a 2-EC/B code may decrease the

information rate of the 2-EC/B codes. The field 1-EC/B code may have smaller

information rate than the group 1-EC/B code since any field 1-EC/13 code is also a group 1-

EC/B code but the converse is not necessarily true. A slight modification of 2-EC/B code

design can improve the situation. Recall that the format of 2-EC/B code is:

C = X' F2(X1) I X' E ) (3-10)

where C' is a field 1-EC/B code and any X = X'ch E C satisfies fi(X') = 0 and f2(X')
0

=1 where w((3) = ch, i.e. 0 = v-i(ch).

The following theorem which is similar to Theorem 3.2, will be useful for designing a

slightly improved 2-EC/B codes.

Theorem 3.4 If C is a w-out-of-n code and f2(X) = 1 for every X E C then C has a

minimum Hamming distance of 4.

Proof: Similar to the proof of Theorem 3.2.

Suppose that C' is a 1-EC/B code with f2(X') = 1 for every X' E C', then the

following is a 2-EC/B code.

C = X' F1(X') I X' E } (3-11)

Now, given a 1-EC/B code based on [Zq..1,11], as designed in Section 3.2, we can



56

design an equivalent 1-EC/B code that is based on [GF(q),H1] as follows. Recall that H

contains the weights of the check bits. Suppose that the k information weights are I c

GF(q)\{ Hu0} . Let cc be a primitive element of GF(q), H' = [ai I i E H), and I' = { ai I i

E I). Then the [GF(q),H1 1-EC/B code with I as the information weights is equivalent to

the [Zq..1,11] 1-EC/B code with I' as the information weights. This is true because the

product, in f2(X), of the GF(q) code is merely the summation of powers of a which

corresponds to the original summation, of fi(X), in the Zq_i code. Notice that the 0

element of the field does not belong to H' or I'.

The 2-EC/B codes can then be designed on either a GF(q) or a Zq_i 1-EC/B code. To

maximize the number of information bits we choose the 1-EC/B code that achieves higher

information rate. If GF(q) (or Zq_i) code was used, then the codes in (3-10) (codes in (3-

11), respectively) are obtained.

The encoding and decoding of the 2-EC/B codes in (3-11) are similar to that of the

original 2-EC/B codes in (3-10).

3.4 The 3 and 4-EC/B codes

A 3-EC/B code can be constructed using a GF(2m) 1-EC/B code. Two extra check

symbols of length s and weight s/2 are appended to this GF(2m) 1-EC/B code to get 3-

EC/B code.

We only give the encoding procedure and a theorem of its correctness. The proof of

the theorem and the decoding procedure are similar to [Kun 90, Sai 88] and are therefore

omitted.

3-EC/B Encoding Procedure:

1- Let C' be a 1-EC/B code of k information bits and length n' constructed using



57

GF(2m) as given in Section 3.2.

2- Then C = { X' F2(X') F3(X') I X' E C' } is a 3-EC/B code of k information bits

and length n' + 2s.

A 4-EC/B code can also be constructed based on a GF(2m) 1-EC/B code with 4 extra

constant-weight check symbols of length s. This can be achieved by using the following

functions [Sai 88]:

t1(X) = E ai3 and
xi=1

t2(X) = E
1

3-

x =1 ai

Then C = { X' F2(X') F3(X') T1(X') T2(X') I X' E C is a 4-EC/B code, where

T1(X) = V(ti(X)) and T2(X) = lgt2(X))

Similar to the 2-EC/B codes, a Z2m_1 1-EC/B code C' can be used to construct the 3

and 4-EC/B codes. Let C" be the equivalent GF(2m) 1-EC/B code (with f2(X) = 1)

obtained from Z2m_1 1-EC/B code (with f1(X) = 0). Then

C = { X" FAX") F3(X") I X" E C" } is a 3-EC/B code, and

C = { X" FAX") F3(X") T1(X ") T2(X") I X" E C" ) is a 4-EC/B code.

3.5 t-ECA3 Codes -- Parallel Decoding

So far all the designed codes were based on the serial balanced codes; that is because

they have higher information rate than the parallel ones. A parallel t-EC/B code can be

designed by simply choosing a parallel balanced code (0-EC/B) and then augmenting it by t

check symbols as done in Construction I and II. For relatively small values of k it is

possible to design parallel codes that are as good as the serial ones. In these cases, the

parallel code is preferred since it has a faster decoding algorithm.



58

Let kp be an upper bound on the number of information bits in any parallel 1-EC/B

code of length kp+r. To find kp suppose that the maximum number of compound check

symbols is ICHS I. Recall that Theorem 2.12 states that in parallel decoding at least k check

symbols are needed to obtain any constant weight code. So kp ICHS I, but ICHS I is

bounded in (3-3), as follows

r
I CHS I L(;)/Ni where IsT k + r, so kp I lAw)/ (k+r)]

w4 w4)

Using a similar derivation as (3-4) and (3-5), we get

kp 2112 - r (3-12)

Finding parallel 1-EC/B codes satisfying (3-12) (i.e. optimal) is equivalent to finding

serial codes satisfying (3-5). They both depend on the choice of the group and its subset of

size r. Let k be the maximum number of information bits that can be obtained in any

parallel 1-EC/B code of length p+ r. The following table lists some achievable DC(k+r,

k, 4) codes. Notice that for r = 6, 7, and 9, k = kp.



59

r obtained

values (k)

maximum
*

k
P

[G,H] pairs of the obtained values of k

6 4* 4 [zip, [0,1,2,3,4,7] ]
7 5* 5 [ z25, (0,1,2,4,7,8,10) ]
8 9 10 [z17, [0,1,2,3,4,7,10,14) ]
9 16* 16 [ Z25, [0,1,2,4,7,12,13,17,22) ]

10 21 25 [Z31, [0,1,2,3,4,7,13,19,20,24) ]
11 33 37 [ Z44, [0,1,2,4,7,12,13,20,24,28,38) ]
12 50 55 [Z64, (0,1,2,4,7,13,16,24,32,42,48,63] ]
13 75 81 [Z89, [0,1,2,4,7,13,19,24,34,44,54,75,83) ]

14 109 118 [ Z123, [0,1,2,4,7,13,19,24,34,44,61,69,87,96) ]
15 158 170 [Z173, (0,1,2,4,7,13,20,24,39,44,74,84,115,129,144) ]

Table 3.8 The number of information bits (k) in the parallel 1-EC/B codes (and their
*

[G,H] pairs) and the maximum (kp) .



60

Chapter 4

DC-Free Coset Codes

Linear block codes can be designed to have powerful error-correcting and error-

detecting capabilities and can be encoded and decoded efficiently. However, they usually

do not possess desirable dc properties. A code which is free of dc, or one that has constant

dc component regardless of data patterns, provides many advantages for fiber optic and

magnetic or optical recording. High-gain fiber optic transmitters can be improved if based

on the average signal power, especially at high speed. It is also desirable to have short run

length (the maximum number of l's (or 0's) between two neighboring 0's (or l's), and a

high transition density in every codeword, where a transition occur when a 1 (or a 0) is

followed by a 0 (or a 1). The high transition density reduces the run length and the

intersymbol interference, and is useful for the receiver clock synchronization and detection

processes. In many applications it is also desirable to have error correcting/detecting

capabilities with these constraints. High-speed and low-complexity encoders/decoders are

required for all applications, especially the ones operating on high-speed channels.

DC-Free line codes, having some (or all) the properties above, have been given in [Den

88, Fer 84, Mor 83, Kaw 88, Tak 76, Wid 83, Yos 84]. This chapter presents the design

of error correcting dc-free coset codes with short run length and high transition density.

The coset codes are derived by partitioning linear block codes. Thus, the new codes will

have encoding and decoding complexity similar to that of linear block codes.

In the following two sections it will be shown how the "transition coset code" improves



61

on the DnB1M code given in [Sat 88] and how the "transition dc-free coset code" improves

on the dc-free coset code given in [Den 88]. In the last section these codes are compared

with balanced codes and some modified balanced codes of smaller disparity is given.

4.1 Basic Principles

This section introduces the basic foundations needed to construct these codes.

Definitions: Let X, Y be two binary vectors of length n. Then define

RL(X): the run length of X which is the maximum consecutive l's (or 0's)

occurring in X.

DISi(X): the difference between the number of l's and the number of 0's in X up to

bit j, i.e. it is the disparity at bit j. Notice that DISn(X) = 2 W(X) n.

NT(X): the number of transitions in the word X. In a word X = xi x2 ... xn, there

is a transition between bits j and j+1 if xj ED xj+i = 1.

Notice that 0 5_ NT(X) 5_ n-1.

10 : denotes the vector 10101.., 01 denotes 01010..., and

1 : denotes the all 1 vector.

Example 4.1 Let X = 1001 1010 and Y = 0011 1011 then RL(X) 5_ 2, NT(X)

= 5, DIS3(X) = -1, and DIS5(X) = 1.
O

Lemma 4.1 Let X be a binary vector of length n with NT(X) transitions, then

a) [NT(X) /21 5 W(X) n [NT(X)/21,

b) W(X) n + LNT(X)/21 DISi(X) W(X) LNT(X)/2_1for 1 _. j 5_ n;

and in particular, 2 FNT(X)/21- n .. DISn(X) 5_ n 2 [NT(X) /21.

c) RL(X) 5_ n NT(X).

d) NT(X ED IQ) = NT(X 0 01) = (n-1) NT(X).



62

Proof: The proof is divided into four parts.

a) A binary symbol 1 (or 0) can produce at most two transitions as in 010 (or 101).

Since X has NT(X) transitions then there are at least INT(X) /21 l's (and

INT(X) /2] 0's). Therefore, INT(X)/21 W(X) 5 n rNT(X)/21.

b) Only l's with no preceding 0's can increase the max disparity. In X, there are

W(X) 1's in which at least LNT(X) /2.i are preceded by a 0 (since there are NT(X)

transitions). Therefore, the max disparity is W(X) - LNT(X)/2i. Similarly, only

0's with no preceding l's can decrease the minimum disparity. There are n - W(X)

0's in X in which at least LNT(X) /2.i are preceded by a 1. So the minimum

disparity is [ n-W(X) LNT(X)/2.1. Hence, W(X) n + LNT(X)/2_1. DISi(X)

W(X) LNT(X) /2] for 1 5..j S n. Since DISn(X) = 2 W(X) n and [NT(X) /21

W(X) n FNT(X)/21 (from part a) so 2 [NT(X) /21 - n DISn(X) n

2 INT(X) /21.

c) To show that RL(X) n NT(X), it is enough to show that NT(X) n RL(X).

The latter is clear since a word X with RL(X) consecutive l's (or 0's) contains at

most n - RL(X) transitions.

d) Before showing that NT(X 10) = NT(X U.) = (n-1) NT(X), notice that if

xj xj+1 = 1 (i.e. a transition) then )7j ED xj+1 = 0 (and xj ED xj +1 = 0), i.e.

no transition. Conversely, if xj xj4.1 = 0 then xj xj+1 = 1 (and xj xj+1

= 1). There are n-1 positions where a transition can occur. When X is XORed

with la (or Qll the positions with transitions will have no transitions and

conversely, the positions with no transitions will have a transition. Therefore,

NT(X 8 1(1) = NT(X 8 01) = (n-1) NT(X).



63

4.2 Transition Code (Ct)

The "code vector space partitioning" method was used in [Den 88] to construct a dc-

free coset codes with error-correcting capability. Similar techniques are used here to

construct coset codes with high number of transitions, short run length, and error-

correcting capability.

Let C' be an (n,k+1,d) code of length n and 2k+1 codewords with a k+1 x n generator

matrix G'. Assume that C' contains a codeword of weight In/21 (or Ln/2_I). Then G' can

be transformed to G such that 10 (or 01) is the first row of G. If the half-weight word is

not of the form 10 (or then the columns of G' can be permuted to obtain the 10 (or 0_1)

vector. Without loss of generality, assume that the first row of G, say Vt, is 10. Rename

rows 2 to k+1 in G to be gi to gk. Then G can be written in the form

10
g

G = g2

gk

The first row of G will be used as a transition control vector. The encoding and

decoding processes described below are variations of the ones given in [Den 88]. Let U be

an information vector of length k. Then <0,u>G or <1,u>G will have at least Ln/2_1

transitionst, since NT(<0,u>G) = (n-1) - NT( <l,u >G) by Lemma 1.1(d). Then U is

encoded as <at,u>G such that NT(<at,u>G) Lna,J, where at is the transition control bit.

Let V' be a received codeword. Decode V' with respect to G (recall that G has a

minimum Hamming distance d and k+1 information bits). If V' has more than t errors then

declare uncorrectable errors, otherwise let the corrected word be V. Let <at,U> = < at, ui,

t We use the notation <a,u> to represent a vector with "a" as its first component and u its second.



64

u2, u3, uk> be the k+1 information bits extracted from V. The decoded information

vector will be U.

The transition code, Ct, selects the 2k high transitions codewords, i.e. the ones with at

least Ln/2J transitions, among the 2k+1 possible codewords. Alternatively, the transition

code can select the low transitions codewords, i.e. ones with at most Ln/2_Itransitions. The

transition code is not systematic; however, the last k bits will either be the information bits

or will be the information bits with the even bits complemented.

Example 4.2 Let C' be the (8,7,2) even parity code with the generator matrix G'.

Since a word of weight 4 is present in C', G' can be rewritten as follows:

(10101010
01000001
00100001

G = 00010001
00001001
00000101
00000011)

The information vector 000000 will be encode as <1,000000>G = 10101010, and the

information vector 101000 will be encoded as <0,101000>G = 01010000. Suppose that

V' = 10101111 is the received word. Since W(V') is even, no errors are assumed and V'

is decoded to V = 1010111 = <at,U>. Since at = 1 and U = 010111, the decoded

information vector will be 010111 ®O1 = 000010.
0

The properties of the transition codes are stated in the following corollary.

Lemma 4.2 Let Ct be a transition code of length n. If X E Ct (i.e. NT(X) Ln/2J)

then

a- L(n+2)/4J 5_ W(X) 5_ n L(n+2)/4J.

b- If W(X) Ln,/2J then L(n +2)/4j 5_ DISi(X) S rn/21 for 1 5_ j n and

If W(X) Ln/2J then rn/21 5_ DISi(X) L(n+2)/4] for 1 5 j n;



65

and in particular, 2 L(n+2)/41 - r S DISn(X) S n - 2 L(n+2)/41

c- RL(X) In /21.

Proof: Direct substitution of NT(X) Ln/2i into Lemma 4.1 (a, b, and c) and using

the identity 11n/2121 = L(n+2)/4].

The simplest transition code, one with no error correcting/detecting capability, of rate
n-1

will be compared with previous codes of equivalent information rate that are mainly

used for optical transmission. First we give a brief background. In [Sat 88] a "DnB1M"

(Differential n Binary 1 Mark insertion) line code is suggested for high-speed optical

communication systems. This code is obtained by AMI (Alternate Mark Inversion) coding

for the first n-1 bits and then the complement of the last bit is appended at the end (which

will always produce a transition between the last two bits). More formally, DnB1M can be

defined as follows. Let U = ui un_i be the n-1 information vector and V = vi vn be the

n bit codeword (vo is an initial state) then define

vo = 0 (or 1),

- vi = vi_i ui, for 1 i n-1

vn ED 1.

This code has many advantages such as short run length, a transition in every

codeword, and a good balance of l's and 0's (marks and spaces) regardless of the 1 arrival

probability.

Let C* = (n,n-1,1) be a transition code obtained from C' = (n,n,l) code (with G' =

Inxn) C* achieves all the features of the DnB1M code plus two main advantages. The

transition density in each codeword increases from 1 to Ln /2i, and the narrow weight

distribution yields smaller DC variation and a rapid balance of l's and 0's. There are other

advantages of this code in jitter suppression and power spectrum. The next table



66

summarizes some of the improvement of the transition code.

Code
Rate

Max run
length

min # of
transitions

weight
range

Codes in [Sat 88]

Proposed codes

(n-1)/n

(n-1)/n

n

n

1

Lnal

1..(n-1)

n/4..3n/4

Table 4.1 Comparison of the Ct codes and the codes given in [Sat 88].

4.3 Transition DC-Free Code (Ct w)

Instead of using the transition control vector 10, one can use a weight control vector Vw

= 1, i.e. the all 1 vector. In this case, words of weights between 0 and Ln/2i or between

in/21 and n can be selected. This code is referred to as weight code, Cw. This code is

used to stabilize the dc level in a line code in [Den 88] and to design EC/AUED codes in

[Alb 89b, Bru 89].

In combining the two control vectors, the advantages of both the transition codes and

weight codes can be utilized. Such a code can be designed as follows. Let C' be an

(n,k+2,d) linear code with a generator matrix G'. Let C' contain the 1 wordt and a half-

weight word. Then G' can be written as

G=

/ 1 0
1

gi
g2

. gio

The intersection of the codes Ct and Cw can be obtained. The last k bits are used as

information and the first 2 are used for control to produce the transition and weight control

t The Go lay, BCH, and some shortened BCH codes have the 1 vector.



67

code, Ct,w. The transition control selects the codewords with high transition density and

then the weight control adjusts the disparity according to the current disparity, as depicted

in Figure 4.1.

Figure 4.1 Conceptual encoding diagram of the q w code.

Consider the following encoding algorithm:

1- Let U be the information vector to be sent at time t and At be the disparity at time t

2- Choose at such that NT(<at ,O,u>G) Ln/2 .i.

3- Choose aw such that W(<at,aw,u>G) Ln /2j if At 0, and

W(<at,aw,u>G) .?_. Ln/2i if At ... 0.

4- X is encoded as <at,aw,u> G.

In practice, at and aw can be computed simultaneously from the values NT(<0,0,X>G),

W(<0,0,X>G), and W(<1,0,X>G).

The decoding algorithm is as follows:

1- Let V' be the received codeword. Decode V' with respect to C' to V (recall that C

has a minimum Hamming distance d). If errors are detected (and not corrected)

declare the errors else let the corrected word be V.



68

2- Let <at,aw,u> be the k+2 information bits extracted from V. The decoded

information vector is U.

Example 4.3 Let C' be the (8,7,2) even parity code with generator matrix G' as

given in Example 4.2. Since words of weight 4 and 8 are present in C, G' can be written

as follows:

10101010\
' 11111111

00100001
G = 00010001

00001001
00000101

\00000011)

Assume that U = 100111 is to be sent at time t and the disparity is negative, i.e. At < 0.

First, since <0,0,100111>G = 00100111 has only 3 transitions, at must be 1 so

NT(<1,0,100111>G) = NT(10001101) = 4. And since At < 0, the next word must have

weight 4 or higher. But W(10001101) = 4 so aw = 0. Hence the codeword will be

<1,0,100111>G = 10001101.

Let V' = 01000100 be the received codeword. Because the weight is even, no errors

are assumed and V' is decoded to V = 0100010 = <at,aw,u >. From (4-2) in the decoding

algorithm, the decoded information vector will be U' = 00010 @ 0 10 1 01 = 00010 ED

a = 01000.
El

The maximum disparity can be obtained as follows. By Lemma 4.2, DISn(X) n 2
L(n+2)/41 Suppose that the disparity after transmitting the current word is maximum, i.e.

At = n 2 L(n+2)/41 The next word, say Y, should have a negative disparity so Fn/21

DISJ(Y) L(n +2)/4]. Therefore, the running disparity will not exceed n - 2 L(n+2)/4_1+

L(n+2)/4i = L(3n +1) /4i. Similarly the minimum disparity will not be less than -L(3n+1)/4i.

The run length of the line code will not be more than 2 [n/21 since RL(X) S Fn/21 for any



69

codeword in Ct,w. It is worth noting that the max (and min) disparity and max run length

are only upper bounds and may never be achieved. The reason is that a specific

concatenation of words achieve such bounds. These words may not be produced by Ct,w,

so it is quite possible that the disparity and run length are significantly smaller than the

upper bounds.

The proposed Ct,w line code, obtained from C' = (n,k+2,d), has the following

properties:

The number of codewords is 2k.

The same old code distance, i.e. D(Ct,w) = D(C') = d.

The running disparity will be between L(3n+1)/4J and L(3n+1)/4J.

The max run length in the line code is not more that 2 rn/21.

There are at least Ln/2J transitions in every word.

The codes given in [Den 88] achieve the first three properties. However, these codes

have more transitions and shorter run length as shown in the following Table.

Max
Disparity

run
length

min # of
transitions

Codes in [Den 88]

Proposed Codes

L(3n+1)/4]

L(3n+1)/41

3n/2t

2 rn/21

0

Ln/2J

Table 4.2 Comparison of the ct w codes and the codes given in [Den 88].

t In [Den 88], when n mod 4 = 0, the run length can be as much as 3n/4, e.g. when n = 8, the run length
can be 12 as follows: 1111 1100 0000 0000 0011 ... line output

0 4 4 0 -4 -4 ... running disparity.



70

Extensions to the Ct,w codes

The transition and weight controlled codes can be further improved by using two or

more, say p, transition control vectors and two or more, say q, weight control vectors. For

example, let C' = (8,7,2), with G' as in Figure 4.2 (a). If p = 2 and q = 2 then G' can be

rewritten as G in Figure 4.2 (b). In this case, when p = q = 2, the Ct,w code will have 3

information bits, 4 control bits, and a parity bit. The number of transitions will be at least

4, 2 in the first 4 bits and 2 in the second 4 bits. In fact, the line code produced here is the

same as using p = q = 1 with n' = Ln/2J. So the maximum disparity will be L(3n'+1)/4i and

the maximum run length will be 2 In' /21, where n' = Ln/2i. In general, if p = q and s =

In/(2p)1, then the disparity will be bounded by L3s/2_Iand the run length is bounded by 2s.

In [Den 88] the disparity is the also L3s/2i but the run length can be up to 3s if s is even.

Thus, these codes are still superior.

Figure 4.2 (c) shows the G matrix when p = 1 and q = 2. It turns out that no gain can

be obtained by this combination, i.e. will have the same disparity and run length as in p = q

= 1. The last example we consider is when p = 2 and q = 1 as shown in Figure 4.2 (d).

This code will have at least Lnai transitions and a maximum disparity of L(3n+1)/41 similar

to the case p = q =1. However, the run length will not exceed 2 in/41.

(10000001 \ (10100000 (10101010 \ (10100000\
01000001 ' 11110000 ' 11110000 00001010
00100001 00001010 00001111 11111111
00010001 00001111 00100001 00100001
00001001 00100001 00010001 00010001
00000101 00010001 00000101 00000101
00000011 / V0000011) V0000011/ V0000011/

a) G' of (8,7,2) b) p = 2, q = 2 c) p = 1, q = 2 d) p = 2, q = 1

Figure 4.2 Different Ct w dc-free coset codes.

We chose not to include a detailed analysis of these cases, however if the control



71

vectors exist, then the code can be easily designed. This leaves open the different ways of

using such codes and suggests that the fmal design is dependant on the specific application

and its requirement.



72

Chapter 5

Extensions of Balanced Codes

This chapter describes three ways of generalizing the balanced codes designed in the

previous chapters. The first, and the most important, is the design of balanced codes with

low dc level and high transitions. These codes are designed based on the combined

techniques used Chapters 2 and 4. One extra check bit is used to construct balanced codes

that have almost half the dc level of the original balanced code and have much higher

transitions density. These codes are much more attractive for optical transmission than the

bare-bone balanced codes. The second generalization is the design of balanced codes over

non-binary alphabet. When the alphabet size is q, containing { 0, 1, ...., q-1), the

balanced code will be referred to by DO1(n,k) code. When q is 2 , the ordinary balanced

code is obtained. The last generalization is the design of semi-balanced codes, or DCm

codes, in which the codewords have weights between1(n-m)/21 and F(n +m)/21. When m

is 0, the DCm codes degenerates to an ordinary balanced code.

5.1 Balanced Codes with Low DC Levels

Let C be a DC(n,k,2t+t) code; i.e. a t error correcting balanced code of length n and 2k

codewords. Since every codeword X in C will have In/21 l's and Ln/2i 0's in X, we get

-Lni2J DISi(X) in/21

NT(X) 1

RL(X) [n/21 (5-1)



73

Recall that DISJ(X) denotes the difference between the number of l's and the number

of 0's in X up to bit j, RL(X) is the run length of X which is the maximum consecutive l's

(or 0's) occurring in X, and NT(X) is the number of transitions in the word X.

The balanced codes designed in Chapters 2 and 3 satisfy the properties in (5-1) above.

In this section we show how to decrease the maximum running disparity and the run

length, and to increase the number of transitions in the balanced codes. The main idea is to

increase the number of transitions in every balanced word as done in the transition code

(Ct) in Chapter 4. This can be accomplished by using the identity NT(X ® m = NT(X

oi) = (n-1) NT(X) in Lemma 4.1 (d). Recall that the design of the balanced codes

involves complementation of the first j bits of the information symbol; and then an

appropriate check symbol is appended to get the final codeword. Suppose that an

information symbol X of length k is encoded to a balanced word Y where NT(Y) < Lk/2J

1. If the modified information symbol X' = X ED 10 is encoded to a balanced code Y', then

NT(Y') ._. Lk/2J - 1. This is stated in the following lemma.

Lemma 5.3 Let X be an information vector of length k and let X' = X ®10. Let the

balanced encoding of X (and X'), using the construction of balanced codes in Chapter 2,

be Y (and Y' respectively). Then

either NT(Y) ... Lk/2J 1 or NT(Y') Lk/21 1

Proof: First notice that NT(X0)) NT(X) 1. This is true since all the transitions

between bit 1 and j-1 and transitions between bit j+1 to k are preserved. The only

transition loss (or gain) occurs between bit j and j+1. So complementing the first j bits of

X can only decrease (or increase) the transitions by 1. So if NT(X) Lk/2J, then NT(Y) ._.

Lk/21 1. Suppose that NT(X) < Lk/2J. By Lemma 4.1 (d), NT(X') = NT(X ®10) = (k-

1) NT(X) ?_ Lk/2J; therefore, NT(Y') Lk/2] 1.
0



74

The code design now becomes clear. A DC(n,k,2t+2) can be changed to a DC(n,k-

1,2t+2) having words with at least Lk/2_I - 1 transitions. This can be accomplished by

converting the information symbols of length k - 1 to a transition code Ct (of length k).

Recall that all the words in the transition code have at least Lk/2J transitions (see Lemma

4.2). This transition code is then balanced using the ordinary methods of Chapter 2 (or 3).

As seen earlier, the complementation of few bits can only decrease the number of

transitions by 1. So, the resulting code will be balanced and all its words have at least Lk/2J

- 1 transitions. As a matter of fact, it can be shown that there will be Lk/2i + t 1

transitions in every word in the new DC(n,k-1,2t+2) code. But in general, k is much

larger than t, so we chose to neglect this term.

Given that all the words in this balanced code satisfy W(X) = in/21 and NT(X) Lk/2J

- 1, then from Lemma 4.1 (b) and (c) the following code properties can be obtained:

- fk/41- Lr/2] 5 DISi(X) < rk/41+ Fr/21

NT(X) Lk/2J - 1

RL(X) rk/41+ Fr/21 + 1 (5-2)

The maximum disparity of this code is reduced by almost one half that of (5-1), since k

is much larger than r. Also the number of transitions are increased dramatically and the

maximum run length is decreased by about one half. Of course, the information rate of this
.

balanced code is
k-
n

1
iwhereas it nk for the codes in (5-1).

Balanced Codes vs. Line Codes

This section gives a brief comparison between these new balanced codes and the Ct,w

codes designed in Section 4.3. The Ct,w codes have maximum disparity of L(3n+1)/4J with

information rate of n. The number of information bits depends on the error correcting



75

capability of such codes. Here, we consider the case when t = 1 to give a flavor of the

comparison.

Suppose that Ci is a DC(n,k-1,4) code with low disparity as designed above. Recall

that, using s check bits, k 2(s+1)/2 _ s in the 1-EC/l3 codes (see 3.5). Let the disparity

and information rate of C1 be D1 and Il, respectively. Then

2(s+1)/2
D 1-1011 + Fs/21 4

s + 1
2(s+1)/2

(5-3)

(5-4)

Let the other code C2 be a Ct,w code that corrects one error. Recall that these codes are

based on some linear codes. The best linear codes that correct one error are Hamming

codes which have r check bits and length 2r - 1. So, their information rate is 1
2r 1.

When 2 extra information bits are used to control the dc value the information rate will

reduce slightly. Let the disparity and information rate of C2 be D2 and 12, respectively.

Then

D2 S L(3n+1)/4,1 12r (5-5)

r + 2
1 2r 1

(5-6)

The argument of comparing is as follows: Given a certain disparity level, which code

have higher information rate? To get similar disparity in the two codes, i.e. equating D1 to

D2 in (5-3) and (5-5) and taking log on both sides, we obtain

s = 2 r + 2 log 3 1 (5-7)

When (5-7) is substituted in (5-4) to get the information rate we get

s + 1 2 r + 2 log 3 2 r + log 3 It can be readily seen2(s+0/2 2r+log 3 3 2r



76

that this information rate is higher than 12 in (5-6). It can be concluded that, for a certain

level of disparity, these balanced codes have higher information rate than the coset dc-free

coset codes.

Example 5.1 The DC(22,14,4) (in table 3.1) can be converted to a DC(22,13,4)

code with codewords all having at least 6 transitions (actually 7 in this case). The
13maximum accumulated charge will be 8 and the information rate will be H. On the other

hand, a single error correcting (shortened) Hamming code of length 11 and 27 codewords

can be designed. With this (11,7) code, 2 bits are to be used to control the dc level. The
7-2

idc level will not exceed L(3n +1) /4J = 8. The information rate of this code is IT which is

13less than If obtained above.

5.2 Balanced Codes over a Non-Binary Alphabet

It will be shown in this section how to extend the construction of balanced codes from a

binary {0,1) alphabet to a q-ary alphabet {0, 1, ..., q-1). We first define the weight of X
k

E {0, 1, ..., q-1 }k to be the sum of its digits; i.e. W(X) = I xi. Furthermore, assume that
i=1

xi = q - xi. The objective now is to encode every information of length k to a "balanced"

word X of length n such that W(X) = r(q-1)n/21.

Let DCcl(n,k) denote a code of length n and 2k codewords over the alphabet {0, 1, ..,

q-1}, where each codeword X E DCcl(n,k) satisfies W(X) = r(q-1)n/21. Suppose we wish

to design DCci(k+r,k) code. In this case there will be qr check symbols. The number of

check symbols of weight w, which can be found in [Cap 89], is

Lw/(q-1)1 (n) (n-l+w-q i)I (-1)1 i n_i
i

The maximum number of balanced words (of weight n(q-l)/2) will be



Ln/2J

I (-1)1 Ci) (nanili-cli) which can be approximated by --q1----' 6
i=o

7-Nr-t c12
1'

77

nn 6
But, any balanced code should satisfy qk 5_ therefore, the minimum

nn
q2 1'

number of check bits is

1r Ilogqk + 2 (5-8)

The codes constructed here use methods similar to that of Chapter 2; the constructed

codes have the following parameters.

2
1) Serial DC(1(k+r,k) with k qr + q7.3 r - q-3

(q- 1)2 q- 1 (q- 1 )2

2) Parallel DO1(k+r,k) with k -.... li-
g- 1

(5-9)

(5-10)

From (5-10) above, the following relation on r can be obtained: r -.=-: logq k + 1, as
1

compared to r -j-,- logq k + 2 in (5-8). The number of check digits is about twice as much

as required by a non-systematic code. Recall that this was also the case for binary balanced

codes. It is quite amazing that the parallel DCri(n,k) codes have higher information rate

than the serial ones when q > 3 and almost the same when q = 3. This may suggests that

there is a better construction of the serial codes.

Before going into the code design, we discuss the behavior of random walks in a non-

binary case. A random walk of a binary vector changes by ±1 in every bit

complementation; whereas a random walk of a word in {0, 1, ...., q-1}1( changes by at

most q-1 (or -(q-1)) in each digit complementation; i.e. W(X0)) - q < W(X0+1)) < w(x(i))

+ q. For example, suppose that q = 3 and k = 4, then the word X = 0210 of weight 3 will

have the following random walk.



78

W(X(0)) - W(X(1)) 3 W(X(2)) > W(X(3)) --, w(X(4))

W(0210) --> W(2210) --> W(2010) ---> W(2010) > W(2012)

3 -->5 ---> 3 0)5

The random walk function a will satisfy the following properties:

GO = W(X)

ak = (q-1) k - W(X)

aj E [ aj_i (q-1), 6i_i + (q-1) ] for 0 < j k

As in the binary case, the random walk starts from weight W(X) and ends at (q-1) k -

W(X). However, it may not go through all the weights in between since it can vary by q-1

at every digit complementation. In the serial case this is solved by using (q-1) check

symbols of consecutive weights, say i, i+1, ..., i+(q-1). This group of check symbols

now can balance information words of a certain weight, say w; or two weights wi and w2.

In the parallel case, the check symbols are placed in such a way that when a random walk

hits the middle line 1(q-1)k/21 it will indeed hit some check point even though it may

increase (or decrease) by a rate of q-1. The serial and parallel constructions are explained

in more details in the following sections.

5.2.1 Serial DCcl(n,k) codes

The information words of weights between F(q-1)n/21- (q-1)r and F(q-1)n/21 can be

directly balanced by appending check symbols of weights from (q-1)r to 0, respectively.

Now we have to balance weights 0 to F(q-1)n/21 - (q-1)r - 1 and the weights r(q-1)n/21 + 1

to (q-1)k. With the other check symbols, totaling qr (q-1)r - 1, every q-1 check symbols

of consecutive weights can be used to balance two weights as in the construction given in

Section 2.2. Let CH be a group of such check symbols; i.e. CH = ( chi, ch2, ..., chq-i )

where chi = j+i for some j and 1 5 i < q. It is relatively easily to show that CH can always



79

balance words of weight w, where 0 S w [(q- 1)n/21 - (q-1)r 1 or r(q-1)n/21 + 1 w

(q-1)k. Moreover, CH can balance two weights, wi and w2 where I w2 wi I

F(q- 1)n/21.

Now the problem reduces to form as much CH's as possible from the remaining qr

(q-1)r - 1 check symbols.

1 Clr 1In the best case, these check symbols will from into L (a -1 )r - 1 ] CH's.q-1

Therefore, the maximum number of different weights that can be balanced is

2 (qr (q-
1

)r
1_1+ (q-1)r + 1 5_ 2 qr + (q-3) r

q-3
q- q-1 q-1*

Since the number of different weights will be k (q-1) + 1, we get relation (5-9) which is

< 2 r g:3_

(q-1)2 qr + q-1 r 3(q_-1
k )2

Notice that when q = 2 this construction reduces to the one given in {Bos 87]; i.e.

k = 2r - r 2.

Example 5.2 When q = 3 and r = 2, from the above equation, or from (5-10), we

can get k = 4. There will be 9 different weights from 0 to 8 of the information symbols.

Since the code length is 6, the final balanced words should have weight 1(q-1)n/21 = 6.

The 9 check symbols { 00, 01, 02, 10, 11, 12, 20, 21, 22} can be used to balance all

possible weights (0 through 8) as follows. We use 22, 12, 02, 01, and 00 to balance

weights 2, 3, 4, 5, and 6, respectively. The other 4 check symbols { 10, 11, 20, 21 } can

form 2 compound checks CHI = (10, 11) and CH2 = (20, 21) which can be used to

balance weights 1 and 8, and weights 0 and 7, respectively. This is shown in the

following figure.



80

weight 0 1 2 3 4 5 6 7 8

checks (20,21) (10,11) 22 12 02 01 00 20,21 10,11

Figure 5.1 Check symbols in the serial DC3(6,4) code.

5.2.2 Parallel DCci(n,k) codes

As in Section 2.3, the construction starts by partitioning all the (qr) check symbols into

m subsets Di, for 1 i m. The extra condition that the size of any D must be at least q-1

must be satisfied. These subsets are assigned an integer value as follows.

d1 =0

di+1 =
LDj/2] rDj+1/21

L
q-1

for 1 j < m

Now, it can be shown that if a random walk of some word reaches weight r(q-1)1c121

after the complementation of s digits where di s < dj+i, then this word can be balanced

using a check symbol from Di or Difi (refer to Lemma 2-7 to 2-11).

m
Since Di = qr, then dj+1 5_ qr. This means that at most qr weights can be balanced

i=1

which implies that the maximum number of information digits satisfies k qr-1 as given inq-1

(5-10).

Example 5.3 To design a parallel DC3(6,4) code, consider the following. Since q =

3 and r = 2 we k = 4 by (5-10). As in example 5.1, there will be 9 different information

weights (0 to 8) that will be converted into weight 6 codewords. The two subsets D's with

their extend of complementation (d's) are given below.

Di = 00, 10, 02, 12, 22 ) d1 = 0

D2 = 01, 11, 21 ) d2 =

If an information symbol X has weight 2 5_ W(X) 5 6, then it can be balanced with 0



81

(=d1) complementation and appending an appropriate check symbol from D1. Information

vectors of weights 0, 1, 7, and 8 can always be balanced after complementing 2 (=d2)

digits and then appending an appropriate check symbol from D2. Notice that, the check

symbol 20 is not included in any D subset since it was not needed.

5.2.3 On the Number of Check Digits

In this section, we derive a lower bound on number of check digits required for the

parallel DCm(k+r,k) code. This lower bound is that r logq k + 1. This will indicate the

the previous construction is close to optimal. In what follows we sketch the proof of the

argument.

Let S1 be the set of information vector of the form (al, a2, ..., ak) where

al = a2 = ... ai = (q-1),

0 S ai+i < q-1, and

ai+2 = ai+3 = ... = ak = 0 where 0 i k.

And let S2 be the set of information vector of the form (al, a2, ..., ak) where

al = a2 = ... ai = 0,

0 ai4.1 < q-1, and

ai+2 = ai+3 = ... = ak = q-1 where 0 5_ i 5 k.

Notice that I Si I = I S2 I = (q-1) k + 1. The only common words between Si and S2

are the all zero and the all (q-1) words. Let S = S1 U S2; then 1 S I = 2 (q-1) k. We will

show that a check symbol can balance at most 2 words from S, i.e. at most two random

walks of S intersect any point in the space. This will imply that the number of check

symbols must be at least 1 S 1 / 2 = (q-1) k; or qr __, (q-1) k.

To show this, partition S into So, ...,Sq -i where if X e Si then X has weight = i mod



82

q. It can then be shown that if X and Y are in different partitions then W(X)) W(Y(i)).

Moreover, it can be shown that at most two words in the same subset, say X and Y, will

satisfy W(X0)) = W(Y()) for any j. Therefore, qr (q-1) k; so k 5_ qr/(q-1), or r ?_ logq k

(q-1) = logq k + logq (q-1) which implies that the parallel construction is almost optimal.

5.3 DCm(n,k) Codes

Let DCm(n,k) denote a code of length n with 2k codewords and each codeword satisfy

[(n -m) /21 5_ W(X) 5_ [(n +m)/21. A DC0(n,k) code is the ordinary balanced code. The

DCm(n,k) codes have the property that the weight of a codeword can be any of the m+1

weights around the center (n/2). Equivalently, every codeword has a maximum

accumulated charge (or a disparity) of no more than m. In this section, the construction

methods of serial and parallel DCm(n,k) codes in Chapter 2 are generalized to construct the

DCm(n,k) codes. With these methods, we construct the following:

Serial DCm(k+r,k) codes with k = (m+1) 2r+1 m 0.8 qi
2 m+1

Parallel DCm(k+r,k) code with k = (m+1) 2r (or k = (m+1) 2r 1 if r+m is odd).

These codes can be shown to be optimal when we use the method given in [Knu 86].

5.3.1 Serial DCm(n,k) Codes

The code construction will be similar to that of Section 2.2.3. Also, the notation of

Section 2.2.3 will be followed closely here. Before giving the code design, we first go

through one example.

Example 5.4 Suppose that k = 20, r = 2 and m = 2 forming a DC2(22,20) code, i.e.



83

a (10, 11, or 12) out-of-22 code. The check 00, for instance, can be appended to weights

10, 11, or 12. Also the check 00 can be used to balance two different weights, say a and

b. Again, these weights can be balanced to weights 10, 11, or 12. When they are balanced

to weight 10, we must have b-a > max(20-10,10) = 10. Similarly, when they are balanced

to weights 11 or 12 we must have b-a > (20-11,11) = 11 and b-a > (20-12,12),

respectively. So the check symbol 00 participates in 3 different weights and acts as if it is 3

different check symbols on levels, say 0, 1, and 2. Similarly, the checks 01 and 10 will be

on levels 1, 2, and 3, and 11 will be on levels 2, 3, and 4, as shown in Figure 5.2.

Level Weight check symbols gi

0 12 00 1

1 11 00, 01, 10 3
2 10 00, 01, 10, 11 4
3 9 01, 10, 11 3
4 8 11 1

Figure 5.2 Check symbols in the serial DC2(22,20) code.

When the check symbol and the weight of the codeword are used to determine the

original weight(s) of the information word, one can utilize (m+1) 2r check symbols. If d

check symbols are used for single maps and the rest, i.e. (m+1) 2r - d, are used for double

maps, then k = (m+1) 2r+1 d 1.

Define a vector g to have the number of check symbols on the different levels. This

vector can be computed as follows:

for 0 i r+m do gi = 0 }

for i = 0 to m do

for j = 0 to r do ( gifj = gi_i_j + (1) }

t Balance is used here to mean encoding a word to some weight between 1-(n-m)/21 and [(n+m)/21.



84

The vectors x and h are defined exactly as in section 2.2, with the replacement of (r+m)

instead of r. Again, the minimum number of single maps needed is the least d such that

(g-x).h 5_ 0 (5-11)

As equation (2-2) and (2-3) are equivalent (in Chapter 2), so is equation (5-11) with

(d2 - 2d - odd(d)) / 4 (d-1) (m+1) 2r-1 + T(r,m) S 0

where T(r,m) = (g-x).h when d = 1. An approximation for d is

d > 1 + T(r,m) / ((m+1) 2r-1)

and T(r,m) can be bounded as follows:

T(r,m-2) + m 2r T(r,m) T(r,m-2) + m 2r + 0.8 -4i 2r,

where T(r,0) = 0.8 -4i 2r and T(r,l) = T(r+1,0) = 0.8 47 2r.

Solving this recurrence relation, assuming that m is even for simplicity, we get

( 2m
(2

+2) 0.8 -\/) 2r-1 5_ T(r,m) 5_ (
m (2 +2)

+ (m+2) 0.8 Ali) 2r-1.

Approximating (m+2)/(m+1) by 1 and substituting in (5-13),

m
2 2+

0m+1.8 AR +1 5_ d 5. + 0.8 Afi+1

produces the following bound on k:

2r-F1 _ - 0.8 2 k < (m+1) 2r+1 _ m 0.8 -6
2 m+ 1

(5-12)

(5-13)

This last bound is derived from (5-13), which in turn is a linear approximation to the

second degree equation (5-12). When the quadratic term is very small compared to the lin-



85

ear term, i.e. when r and m are large, this approximation becomes more accurate. In

particular, when r > 1 and m r/2 or m = 0, the lower bound is less by at most 1 from the

real value, and is used to approximate k as in:

k (m+1) 2 r + 1 - 11 - 0 . 8 q T- - 2 (5-14)

Example 5.4 (continued) When r = 2 and m = 2, from Table 5.1 or by (5-14), we

get d = 3, forming a DC2(22,20) code. Indeed, d = 3 is the optimal value with (g-x).h =

-1 0, as shown in Figure 5.3.

i'

if'

i gi xi hi (gi-xi) hi

0 1 0 1 1

1 3 1 0 0
2 4 1 -1 -3
3 3 1 0 0
4 1 0 1 1

Figure 5.3 Serial DC2(22,20) code parameters.

H b a v max(v,k-v) b-a

01 --- 9 9 11 -
01 --- 10 10 10 -
01 --- 11 11 11 -

00 12 1 10 10 11
00 13 0 12 12 13
10 14 3 10 10 11
11 15 2 8 12 13

00 16 4 11 11 12
10 17 5 9 11 12
10 18 6 11 11 12
11 19 7 9 11 12
11 20 8 10 10 12

Figure 5.4 Check symbols in the serial DC2(22,20) code.

Figure 5.4 lists the maps achieving the DC2(22,20) code. It can be easily verified that

the conditions of Theorems 2.2 and 2.5 are satisfied for every map. As stated earlier, both



86

the check symbol and the weight of the codeword are used to determine the original

weight(s) of the information word. For instance, if a codeword of weight 12 is received

with check symbol 11, then the original weight is either 8 or 20.

r
m 0 1 2 3 4 5 6 7 8 9 10

1 2 3 3 4 4 5 6 6 7 7 8
2 3 3 3 4 4 5 5 6 6 7 7
3 3 3 4 4 4 5 5 6 6 7 7
4 3 3 4 4 5 5 5 6 6 7 7

5 3 3 4 4 5 5 5 6 6 7 7
6 3 4 4 4 5 5 5 6 6 7 7
7 4 4 4 4 5 5 6 6 6 7 7
8 4 4 4 4 5 5 6 6 7 7 7

9 4 4 4 5 5 5 6 6 7 7 7
10 4 4 5 5 5 5 6 6 7 7 7
11 4 4 5 5 5 5 6 6 7 7 8
12 4 4 5 5 5 5 6 6 7 7 8

Table 5.1 Minimum number of single maps (d) in some serial DCm(k+r,k) codes.

(Recall that k = (m+1) 2r +1- d - 1).

5.3.2 Parallel DCm(n,k) Codes

In a parallel balanced code, a check symbol can be associated with only one number,

whereas, in parallel DCm(n,k) code, the check symbol can determine m+1 numbers,

depending on the weight of the codeword. Again, one can utilize (m+1) 2r check symbols.

Extending the construction method used in Section 2.3, we can obtain the optimal infor-

mation bits of

k 5 (m+1) 2r odd(r+m) (5-15)



87

This is optimal since it was shown in Section 2.3 that at least i check symbols are

needed to obtain a code with i information bits for a parallel DC0(n,k) code. In the parallel

DCm(n,k) code, k S (m+1) 2r since there are (m+1) 2r check symbols. Moreover, it was

shown in Section 2.3 that k 5_ 2r - odd(r) for the DC0(n,k) code. This can be generalized to

k 5_ (m+1) 2r - odd(r+m) for DCm(n,k) codes. Before discussing the construction

method, consider the following example.

Example 5.5 Consider a parallel DC2(k+r,k) code with r = 2. From (5-15) we get k

= 12 information bits, yielding a DC2(14,12) code. The check symbol 00 can be appended

to weights 6, 7, or 8; 01 and 10 can be appended to weights 5, 6, or 7; and 11 can be

appended to weights 4, 5, or 6, as shown in Figure 5.5.

Level Weight check symbols gi

0 8 00 1

1 7 00, 01, 10 3
2 6 00, 01, 10, 11 4
3 5 01, 10, 11 3
4 4 11 1

Figure 5.5 Check symbols distribution in the parallel DC2(14,10) code.

Every check symbol, along with its level (or with the weight of the resulting

codeword), will determine the number of complemented bits, as shown in Figure 5.6 or

Table 5.2. For instance, the check 10, when appended to a weight 5 weight to obtain a

final codeword of weight 6, will determine the complementation of 8 bits for decoding. As

seen in Figure 5.6, 7 bits of the information word 12 014 are complemented and then the

check 10 is appended. The dotted line in the figure shows the random walk of 12 014.



88

12 w(Xj)

10.

8.00 .
00 01 10 -..-

6 -00 4,-01 -ig. --ii
11 01 0.10

4 11 .**

2

.. ....".
0 j

0 2 4 6 8 10 12

Figure 5.6 Check symbols in the parallel DC2(14,12) code.

H Weight(x)
complemented

bits (j)

00 6 0
00 7 0
00 8 0

01 5 4
01 6 4
01 7 4

10 5 7
10 6 7
10 7 7

11 4 0
11 5 0
11 6 9

Table 5.2 Check symbols in the parallel DC2(14,12) code.

The random walk of any information word must cross the k/2 line (depicted as a

dashed line in Figure 5.6). The random walk of 12 010 intersects the point (7,5), so the

information word is decoded into 0011 1110 0000 10, with final weight 6. The decoder,

on the other hand, will complement 7 bits, since that is the number of bits determined by



89

the check symbol 10 and final weight 6. It can be verified that every random walk will

intersect at least one check point in the space.

Let X = YH be the received codeword, where H is the check symbol. From H and

W(X) the number of the complemented bits, say j, can be found from Table 5.2. The

original information word will be Y with the first j bits complemented, i.e. Y().

There are gi check symbols that can be appended to weight 1(k+r+m)/21 i, for 0 i

r+m. Or, equivalently, there are gi symbols with level i. In the previous example there

were 1, 3, 4, 3, and 1 symbols with levels 0, 1, 2, 3, and 4, respectively. The

construction algorithm given in Section 2.3.1 can be generalized is as follows. First, let A

be the set of all (m+1) 2r points. And, let Di, for i 1, be the maximal subset of A

U O<j<i Dj such that if X and Y E Di, then level(X) level(Y). The number of the

different Di's will be gt.(r.fin)/2 j. All the points in Di are assigned an integer di (not to be

confused with d in serial decoding), where

d1 =0, and

dj+i = d j +
I D

i
1+1Di+1 I

for 0 < j < g(r +m)/2i
2

In Example 5.5, D1 = {00, 00, 00, 11, 11), D2 = {01, 01, 01), D3 = { 10, 10, 10),

and D4 = 1 1 ) ; and di = 0, d2 = 4, d3 = 7, and d4 = 9, as shown in Figure 5.6.

This construction method guarantees that every random walk will intersect at least one

check point; therefore, every information word can be encoded. The proof is a simple

generalization of of the one given in Section 2.3.2.



90

Chapter 6

Asymmetric/Unidirectional Error Correcting and
Detecting Codes

The technique given in Chapter 4 has lead to an efficient design of t-EC/AUED, t error

correcting and all unidirectional error detecting codes. The t-EC/AUED codes are

equivalent to the t-AEC/AAED (t asymmetric error correcting and all asymmetric error

detecting) codes. A balanced code that corrects t errors is also a t-EC/AUED (or a t-

AEC/AAED). However, a t-EC/AUED code is not necessarily balanced.

This chapter also introduces the theory and design of codes that correct t asymmetric

errors and simultaneously detect d (d>t) asymmetric errors (t-AEC/d-AED). Although

these codes are not directly related to balanced codes, they generalize to t-EC/AUED codes.

We chose to describe these codes before the t-EC/AUED codes. In the following some

background of the previous work on different kinds of codes is given.

6.1 Previous Codes

Codes that correct t and detect d symmetric errors (t-EC/d-ED) are well-studied in the

literature. These codes have a minimum Hamming distance of t+d+1. We have seen in

many recent applications the errors are only of asymmetric or unidirectional type [Mor 83,

Tak 76, Uye 88, Pra 80b, Mce 85]. Many error control codes that are suitable for these

applications have been developed. However, the existing codes for the complete

asymmetric channel can either correct or detect asymmetric errors, but not both [Ber 61,



91

Bor 82, Con 79, Fre 62, Var 73, Web 88]. This gave the motivation to introduce the

theory and design of codes that correct t asymmetric errors and simultaneously detect d

(d>t) asymmetric errors (t-AEC/d-AED). These codes have a much higher information rate

than symmetric error correcting/detecting codes and yet maintain the same encoding and

decoding complexity as existing error correcting codes. It is clear that when d n, these

codes become t-AEC/AAED codes.

The t-AEC/AAED (equivalently, t-EC/AUED) are studied extensively in the literature

[Bos 82a, Bos 82b, Kun 88, Kun 90, Mon, Nik 86, Pra 80a, Sai 88, Tao 88]. And

recently t-EC/AUED coset codes were given in [Bru 89]. We present systematic

t-AEC/AAED codes that are better in some cases than the best-known t-EC/AUED codes.

Also t-AEC/AAED coset codes that considerably improve the best-known coset codes [Bru

89], are presented here. These codes will then be compared with the t-error correcting

balanced codes given in Chapter 3.

The last section gives a note on how to improve the design of thet symmetric error

correcting and d (d>t) unidirectional error detecting (t-EC/d-UED) codes given in [Lin 88].

The construction of the above three classes of codes (t-AEC/d-AED, t-AEC/AAED, and

t-EC/AUED) starts by choosing an inner t symmetric error correcting (t-EC) code, and

then appending a tail check in such a way that the resulting code has the desired error

detecting capability. In all three cases the tail check will be a function of the weight of the

original codeword in the inner t-EC code. This will yield simple and fast encoding and

decoding algorithms. From here on, we assume that the asymmetric errors are of l--)0

type. Before describing the codes we give the following lemma.

Lemma 6.1 [Nik 86]: If D(X,Y) = d and W(Y) = W(X) + j then

N(X,Y) [(d j)/21 and N(Y,X) j + 1(d-j)/21.



92

Where Da(X,Y) is the asymmetric distance between X and Y, i.e. max{N(X,Y), N(Y,X)).

6.2 The t-AEC/d-AED Codes

The necessary and sufficient conditions for a code to be t-AEC/d-AED (t asymmetric

error correcting and d asymmetric error detecting) are stated in the following theorem.

Theorem 6.2 A code C is t-AEC/d-AED (where d>t) iff for distinct X and Y E C,

either

1- N(X,Y) ?_ t+1 and N(Y,X) t+1, or

2- Da(X,Y) ?_ d+1.

Proof: Assume the asymmetric errors are 1 > 0 type and let X and Y E C. To show

that condition 1 or 2 is necessary, assume that both of them are not satisfied, say N(X,Y)

t and Da(X,Y) d; then N(Y,X) d since N(X,Y) t. In this case, if N(X,Y) t) errors

occur in X yielding X' and N(Y,X) d) errors occur in Y yielding Y', then it is possible

that X' = Y' = Z; hence the decoder can not decide whether to correct or detect the errors in

Z.

Before proving the sufficient condition, let us define the following. For any X E C, let

Sk be the set of words obtained from X with t or less asymmetric errors and SR be the set

of words obtained from X with more than t but less than or equal to d asymmetric errors.

Then, for any distinct X and Y E C, we must show that

a) Sk SR = 0,

b) Sk n Sy = 0, and

c) Sk n SV- =0.

Condition (a), Sk = 0, is clear since the weight of any vector in Sk is less than



93

the weight of any vector in Sk. To prove (b) and (c), consider the two cases.

Case 1 If N(X,Y) t+1 (and N(Y,X) t+1), then for any U E Sk, V E Sir, and W E

Sik, N(U,W) 1 and N(U,W) 1, so Sk S'1 =0 and Sic = 0 .

Case 2 If N(X,Y) t then, by the second condition (Da(X,Y) d+1), we have N(Y,X)

?_ d+1. Again, Sk n Sy = 0 and Sk n Sy = 0, because if U E Sk, V e Sy, and

W E Sy, then N(V,U) (d+1) t 1 and N(W,U) (d+1) - d = 1.

To construct a t-AEC/d-AED code, we start with an inner t-EC code (say a BCH code)

and then append a tail check in such a way that the resulting code can also detect d

asymmetric errors. The tail check will be a function of the weight of the original codeword

in the inner ec code. This tail check is referred to as a D-tail sequence, or a D-sequence for

short. The D-sequence of length r, with parameters t and d, is defined as follows:

Let D[r,t,d] = (so, si, sm_i} be a D-sequence where each si is of length r, then for 1

i,j m, either

1) N(si,si+j) min(rj/21,t+1) or

2) N(si+j,si) (d+1) - max(j, j+4(2t+l-j)/21)

where i+j in siti is computed modulo m.

When a D[r,t,d] sequence is appended to a t-EC code, a t-AEC/d-AED code is

produced.

6.2.1 Systematic t-AEC/d-AED Codes

These codes can be constructed as follows:



94

Construction 6.1

1- Let C' be any (n',k,2t +1) systematic code, and

2- Let D[r,t,d] = { so, si, sm-i }, where r is as small as possible; then

3- C = {X swoo mod m IXE C') is a t-AEC/d-AED code of length n = n' + r.

Encoding: An information vector U of length k will first be encoded by C' to X of

length n', and the final codeword will be XY where Y = swoo modm

Decoding: Let V = XY and V' = X'Y' be the transmitted and received codewords,

respectively.

1- Let X" be the corrected word of X' using C'.

2- Let the corrected codeword be V" = X"Y" where Y" = sw(c) mod m.

3- If N(V",V') > t or N(V',V") > 0, then declare uncorrectable errors; otherwise,

4- The k information bits extracted from X" is the decoded information vector.

Theorem 6.3 The above construction method yields a t-AEC/d-AED code. Assume

that some codeword suffered e asymmetrict errors; then the decoding algorithm will correct

the errors if e t and will detect them if t < e d.

Proof: It is relatively easy to show that all codewords satisfy the conditions of

Theorem 6.2. To show the validity of the decoding algorithm, let V, V', and V" be the

send, received, and corrected codewords, respectively. Assume that V suffered e

asymmetric errors resulting in V'. Let the corrected number of asymmetric errors in V' be

e', resulting in V". If e' > t, then the errors are detected, so suppose that e' t. If e t,

then V = V" (since C' is a t-EC code) and the errors are corrected. What remains to be

t In fact, if it is guaranteed that no symmetric errors occur in the tail check, then the previous code can
correct any t or fewer symmetric errors and detect any d or fewer asymmetric errors.



95

shown is that when t < e S d, the errors are detected. But V and V" are codewords in the

t-AEC/d-AED code, so either N(V,V") t+1 and N(V",V) t+1 or Da(V",V) d+1.

Consider these two cases:

Case 1 N(V,V") > t+1 and N(V",V) t+1. Here N(V",V) t+1 implies N(V",V') 1,

and hence the errors are detected.

Case 2 Da(V",V) d+1. So either N(V,V") d+1 or N(V",V) d+1. The case

N(V",V) d+1 is handled the same as above. Now N(V,V") d+1 implies

N(V',V") 1, and hence the errors will be detected.
1=1

The design of efficient t-EC codes and D-sequences results in efficient t-AEC/d-AED

codes. In particular, when r is relatively small, the sequence D[r,t,t+r] = {1(r-1)-i 0i 1,

1(r -1) -i Oi 0 I 0 i S r-1} can be used to design efficient t-AEC/d-AED codes.

Theorem 6.4 Any t-EC code can be changed into a t-AEC/(t+r)-AED code by merely

adding an extra r check bits.

Proof: Simply append the D-sequence, D[r,t,t+r] = Oi 1, 1(r '1)4 Oi 0 I 0 i

r-1 } to the t-EC code.
1=1

Example 6.1 Let C' be the (15,11,3) Hamming single error correcting code. With

an extra 4 bits, a 1-AEC/5-AED code of length 19 with 11 information bits can be

constructed by appending the sequence

1111
1110
1101

D[4,1,5] =
1100
1001
1000
0001
0000



96

There are 16 different weights in C'. The tail check of any word of weight i will be si

mod 8, i.e. words of weight 0 and 8 will have the tail check so = 1111, words of weight 1

and 9 will have the tail check si = 1110, etc. Notice that a (26,11,7) BCH code of distance

7 that corrects 1 and detects 5 symmetric errors has 15 (rather than 8) check bits. In

addition, the 1-EC/d-UED codes given in [Lin 88] can detect up to 4 unidirectional errors

using an extra 4 check bits. Also note that the 1-EC/d-UED codes given in [Lin 88] are

designed by appending a tail check to a distance 2t+2 code, whereas here we use distance

2t+1 inner codes.
0

When r increases, one can obtain a detection capability higher than t+r. For example,

when r is 9, one can obtain a 1-AEC/27-AED code using a D[9,1,27] sequence. Table 6.1

lists some t-AEC/d-AED codes obtained by appending D-sequences, constructed in Section

6.5, to BCH (or shortened BCH) t error correcting codes. It should be noted that the

0-AEC/d-AED codes were originally obtained in [Bos 85].

The lower bound theorem, given in [Lin 88], on the number of check bits required for

any systematic t-EC/d-UED code is also valid for t-AEC/d-AED codes, even though the

latter codes are less restrictive than the former. The theorem given in [Lin 88] can be

modified slightly to read as follows.

Theorem 6.5 [Lin 88] In any systematic t-AEC/d-AED code of length n with k

information bits, the following condition must hold:

HA.

n-k log E k \ f k-d+t\
i ) k t+i )

i =o

Proof: Consider the following sets of k-tuple information words.

Let Bo = (X = ( xo, xi, ... xk_i ) I W(X) .. t }, and



97

Bi = {X = ( xo, xi, ... xk_i ) I W(X) t+i and xj = 1 for 0 5. j __ i-1), for 1 i 5. d-t.

Let B =1J:1:7, Bi. If X and Y are in B, then Da(X,Y) < d+1 since W(X) < d+1 and W(Y) <

d+1. Moreover, from the way these words are selected, either N(X,Y) < t+1 or N(Y,X) <

t+1. So every word in B requires a distinct check symbol; thus n-k > log I B I and

(
k) +

(t+1) (ktdi+t)IBI. i ( lc ) + it ( kt-i) i
i= o i = 1 i=o

0

r t =0 t =1 t =2 t =3 t=4
2 2 3 4 5 6
3 3 4 5 6 7
4 6 5 6 7 8
5 11 6 7 8 9

6 22 8 8 9 10
7 43 10 9 10 11
8 84 14 11 11 12
9 165 27 13 12 13

10 326 54 15 14 14
11 647 81 17 16 15
12 1288 142 22 18 17
13 263 43 20 19

14 526 86 22 21
15 789 129 24 23
16 1262 172 30 25
17 278 59 27

18 478 118 29
19 717 177 31
20 33
21 75

22 150

Table 6.1 Values of d of some t-AEC/d-AED codes for 0 ._ t 5 4.

Where r is the length of the D-sequence, i.e. the added redundancy to the t-EC code.

Berger has shown that a systematic code with k information bits that detects all



98

asymmetric errors must have at least Flog (k+1)1 check bits [Ber 61]. This bound

becomes a special case of the previous theorem, i.e. when t = 0 and cLk.

When t = 0 or t = 1 and d is relatively small, the number of redundant bits in

Construction 6.1 matches the lower bound, obtained in Theorem 6.5, or differs by 1 or 2

bits. The gap between the actual redundancy of Construction 6.1 and the theoretical lower

bound increases as t increases.

6.2.2 Non-Systematic t-AEC/d-AED Codes

A non-systematic t-AEC/d-AED code can be obtained by using a non-systematic t-EC

inner code (C') in Construction 6.1.

Another method of constructing a non-systematic t-AEC/d-AED code of length n is as

follows. Let Si be the maximal set of codewords of length n and weight i where N(X,Y)

t+1 for any X and Y in Si; i.e. Si is the maximal t-AEC/AAED set of length n and weight i.

Then the set S = U Si where i = Ln/2] mod (d+1), forms a t-AEC/d-AED code. This

construction is a generalization of the 0-AEC/d-AED code given in [Bor 82]. The

non-systematic 0-AEC/d-AED code given in [Bor 82] was shown to be optimal. In the

following we give an upper bound for the 1-AEC/AAED codes and then show that this

construction obtains about half this upper bound.

Theorem 6.6 Let C be any 1-AEC/d-AED code of length n; then
n n

I C I 5_ 2 L ( Ln/2 d)'
i =o

Proof: Let C be a 1-AEC/d-AED code of length n which gives the maximum number

of codewords. The total number of l's (or O's) in C will be at least 2 I C I. Without loss of

generality, assume that the total number of l's is more than the total number of 0's (if not,

then the complement 1-AEC/d-AED code C has more l's than 0's). For any X E C, let



99

Sx be the set of words obtained by a single 1--)0 error from X. Since C is capable of

correcting all single errors, for all distinct X and Y E C we will have Sx n Sy = 0.

Furthermore, for any X1 E Sx and Y1 E Sy, we will have either D(X1,Y1) d or

N(X1,Y1) 1 and N(Y1,X1) 1. Also, for any X1, X2 E Sx we have N(X1,X2) 1 and

N(X2,X1) ?. 1. Let S = U Sx for all X E C; hence ISI ICI. The words in S form a

0-AEC/(d-1)-AED, i.e. a (d-1)-asymmetric error detecting code. From the bound in [Bor

82], we have ISI ( Lann.ki.d).
i=o

But ISI 2 ICI, and therefore ICI n2 2 ( Lnani±i.d)
i.o

1-AEC/d-AED codes with the number of codewords close to the above bound can be

constructed as follows. To form Si in the above construction method, we use the group

theoretic method given in [Bos 82a]. In their method, an Abelian group of order n is used

to partition all the words of a certain weight, say i, into n partitions such that every partition

is a 1-AEC/AAED code. Moreover, the size of at least one partition, say Si, will be I Si I

(ni ); therefore

ISI ln ( n.(d+i))

i=0

6.3 The t-AEC/AAED Codes

The necessary and sufficient condition for a code to be t-AEC/AAED (t asymmetric

error correcting and all asymmetric error detecting) is stated in the following theorem.

Theorem 6.7 [Bos 82b, Pra 77, Pra 80a] A code C is t-AEC/AAED iff N(X,Y)

t+1 and N(Y,X) t+1 for any X, Y E C.

It should be noted that the above condition also holds for t-EC/AUED codes, t



100

symmetric error correcting and all unidirectional error detecting, as given in [Bos 82b, Pm

77, Pra 80a]; so the t-AEC/AAED and t-EC/AUED codes are equivalent.

6.3.1 The t-AEC/AAED Systematic Codes

The construction of the t-AEC/AAED codes is similar to that of the t-AEC/d-AED

codes. It starts by choosing a t-EC code and then appending a tail check, called an

A-sequence, in such a way that the resulting code is able to detect all asymmetric errors.

The tail check will be a function of the weight of the original codeword of the inner EC

code.

An A-sequence of length r and strength t is defined as follows [Bla 89]:

Afr,t1 = {so, Si, sm_i } where N(si,si+j) min(rj/21,t+1) for 0 j < m-i. An even

A-sequence can be defined as

Ae[r,t] = (so, si, sm_i where N(si,si+j) min(j,t +1) for 0 j < m-i. Again, the si's

are of length r.

Notice that an A-sequence is just a D-sequence with d = .0, i.e. A[r,t] = D[r,t,00]. The

codes can now be constructed as follows.

Construction 6.2

1- Let C' = (n',k,2t+1) systematic code with a W(X) b for any X E C.

2- Let A[r,t] = so, si, sm-1), where m b -a +l (and r is as small as possible);

3- Then, C = [X swpo_a IXE Cl is a t-AEC/AAED code of length n = n' + r.

Similarly, if C' = (n',k,2t +2) is an even weight code with a 5 W(X) 5 b for any X E

C' and Ae[r,t] = so, ..., sm_i }, where m (b-a)/2+1, then C = s(wm_ay2 I X E CI is

a t-AEC/AAED code of length n = n' + r.



101

Encoding: A vector U will be first encoded by C' to X, and the final codeword will

be XY where Y = sw(x)-a.

Decoding: Let V = XY and V = X'Y' be the transmitted and received codewords,

respectively, then

1- Let X" be the corrected word of X' using C.

2- Let the corrected codeword be V" = X"Y" where Y" = sw(x")-a.

3- If D(V",V') > t , then declare uncorrectable errors and stop; otherwise

4- The k information bits extracted from X" are the decoded information vector.

The redundancy of the code can be minimized when the check symbols in the

A-sequence are increased and when the weight distribution of the inner code is reduced. In

Section 6.5 we construct efficient Ae and A-sequences. In many cases the systematic codes

obtained using these sequences are better than those previously known [Bla 89].

The following theorem gives a lower bound on the number of redundant bits in any

systematic t-AEC/AAED code. This theorem is a slight extension to the one given in [Bos

82b].

Theorem 6.8 In any systematic t-AEC/AAED code with k information bits and r

check bits, the following condition must hold:

/ k i2tt1
2r E i) 2 E ) kt+i)

:1 ) - 2
=o i= o

Proof: Consider the following sets of k-tuple information words.

Bo = {X = ( ... ) I W(X) t or W(X) k-t), and

Bi = {X = ( xo, xi, ... xk_i ) I W(X) t+i and xj = 1 for 0 i-1), for 1 k-2t-1.

Then define B = Ucilc, B (00...000) (11...111). For any words X and Y in B, either



102

N(X,Y) < t+1 or N(Y,X) < t+1. So every word in B needs a distinct check symbol.

Moreover, if Y is the check symbol of a word X in B, then Y must have at least H-1 zeros

and at least t+1 ones. This is because the check of (00...000) must cover Y by at least t+1

ones; similarly, Y must cover the check of (11...111) by at least t+1 ones. So only words

of weights more than t+1 and less than r - (t+1) can be used as checks for the set B, i.e.

only 2r 2 ± I B I, so
=o

IBI= 2
i0

+
(t+1) (2tt++11)

=

From the above theorem, we see that the proposed codes are optimal or close to optimal

for small values of t.

6.3.2 The t-AEC/AAED Coset Codes

A non-systematic t-AEC/AAED code can be obtained by using a non-systematic t-EC

inner code (C') in Construction 6.2. Note that an inner code C' with a narrow weight

distribution needs a smaller size A-sequence. When linear codes are used as t-AEC/AAED

inner codes, the A-sequence must have size n+1 since linear codes always contain the all-

zero and the all-one vectors. Coset codes, which are partitions of linear codes, may have

narrow weight distribution and still have encoding and decoding complexity as linear

codes.

In this section we will use a codes similar to the Ct and Ct,w of Section 4.2 and 4.3 that

have narrow weight distribution. The corresponding code for Ct is referred to as Ch which

is obtained by any half-weight vector (as opposed to the 10 vector for the Ct code). The

Ch, code is constructed from a Ch code and the full-weight control vector (1). The Ch and

Ch,f codes are used as inner codes (C') to construct the t-AEC/AAED codes. The



103

following lemma is the basis of these codes. This lemma parallels Lemma 5.1.

Lemma 6.9 Let X, H, and F be binary vectors of length n where W(H) = in/2-1 and

W(F) = n; then

a) 1n/41 W(Y) L(3n+1)/4] for Y = X or X 0 H.

b) If Fn/41 5 W(X) 1_(3n+1)/4_1, then

[(n+2)/4] 5_ W(Y) Ln/21 for Y = X or X 0 F.

proof: Suppose that1n/41 W(X) L(3n +1) /4i does not hold, and assume that W(X)

> L(3n+1)/4]. In this case, when X is XORed with H, the number of l's that will be

changed to 0's is at least in/41 since W(X) > L(3n+1)14] (and at most Fn/21 since

W(H)=1n/21). So, if W(X) > L(3n+1)/4], then In/41 W(X0H) S L(3n +1)/4]. Also, if

W(X) < 1n/41, then 1-n/41 S W(X011) L(3n +1) /4i. For the second part, assume that

L(n+2)/4i S W(Y) 5_ Ln/2i does not hold. Then L(n +2)/4.j S W( Ln/2] will hold since

L(n+2)/4_1 Fn/41 and L(n+2)/4J = n L(3n+1)/4].

When W(H) = Ln/2i in the above lemma, then in/41is changed tol-(n-1)/41 as follows:

a- 1-(n-1)/41 W(Y) 5_ 43n+1)/4] for Y = X or X 0 H.

b- If i(n-1)/41 W(X) L(3n+1)/4], then

L(n+2)/4] W(Y) 5_ Ln/2J for Y = X or X ED F.

The Ch Codes

Let C' be an (n,k +l,d) linear code of length n, 2k+1 codewords, and minimum

Hamming distance d. The encoding and decoding of these codes are almost the same as the

Ch codes given in Section 4.2. The only difference is the here we use any half-weight

vector say H, that belongs to C' instead of the alternating 1's and 0's vector (10). In this

section, we adapt encoding and decoding methods of the Ch codes similar to that of [Bru



104

89] rather than the approach given for the Ct codes in Section 4.2 which uses method

similar to [Den 88].

Encoding: Let C' = (n,k+1,d) be any linear code and let H E C' where W(H) =

Fn/21 and the first bit of H is 1. Let U = ul u2 uk be the information vector. Then U is

encoded to X as follows:

1- Encode <0,U> to a word X in C'.

2- If W(X) < rn/41 or W(X) > L(3n +1)/4] then let X = X H.

From Lemma 6.9 (a) it is guaranteed that either in/41 W(X) L(3n+1)/4i or [n/41

W(X0H) L(3n+1)/4i.

Decoding: Let X' be the received word.

1- Decode X' to X using the code C'. If there t or more errors, then stop; otherwise

2- Let <ah,U> = ah, ul, u2, uk be the k+1 information bits extracted from X; then

3- U'= U 0 ah H will be the decoded information symbol.

This Ch = (n,k+1,d) code of length n and distance d, will have all its 2k codewords

with weights between [n/41 and L(3n+1)/4_1. The number of different weights is not more

than In/21 +1. Actually, the number of weights will be in/21+1 if n ---E 0 (mod 4) and in/21

otherwise.

If the 1 vector, F, is used instead of the half-weight vector, H, then words of weights

between 0 and Ln/2_1(or between rn/21 and n) can be selected. This idea is used in [Bru 89]

to obtain Ln/2J+1 different weights. The main drawback of their code is that the 1 vector

must be a codeword in C'. Note that in Ch, a half-weight vector is required to be in C', but

the chance of having a half-weight vector is much larger than of having the 1 vector.



105

The Ch,f Codes

When the 1 vector (F) is also in C', both vectors, H and F, can be used to narrow

down the weight distribution. In this case, two information bits are used to control the

weight as done in the Ct,w code design in Section 4.3. Again a different approach to the

encoding and decoding of these codes, is given.

Encoding: Let C' = (n,k+1,d) be any linear code. Let the all 1 vector F be in C' and

let H E C' where W(H) = in/21 and the first two bits of H are 1 and 0. Let U = ul u2

uk be the information vector. Then U is encoded to X as follows:

1- Encode <0,U> to a word X in C'.

2- If W(X) < in/41 or W(X) > L(3n+1)/4J then let X = X 0 H.

3- If W(X) in/41 then let X = X 0 F.

By Lemma 6.9, we can see that X will satisfy L(n +2)/4.i W(X) Ln/21

Decoding: Let X' be the received word.

1.- Decode X' to X using C'. If there are t or more errors, then stop; otherwise

2- Let <ah,af,U> = ah, af, ul, uk be the k+2 information bits extracted from X.

3- Then, U'= U (aheaf) H 0 af F = U 0 ah H af

will be the decoded information symbol.

A Ch,f = (n,k+2,d) code of length n and distance d will have all its 2k codewords with

weights between L(n +2)/4] and Ln/2J. There will be Ln/2J L(n+2)/4i + 1 = Ln /4i + 1

different weights in this code.

Design of the t-AEC/AAED Coset Codes

Now the t-AEC/AAED coset codes can be constructed by simply using a Ch or a Ch,f



106

inner code (C) in Construction 6.2. The encoding and decoding of these codes will have

the extra step, over a non-coset code, of the possible XORing with H and/or F vectors.

When one or two bits are used for weight control, these bits are transformed from

information to redundant bits. However, the gain is paid off by a significantly shorter

A-sequence needed for this narrower weight distribution. So, given the A-sequences, the

overall minimum code length can be found by trying different inner (coset and non-coset)

codes. Table 6.2 illustrates some improvements of the proposed coset codes over the

previous (coset or systematic) codes.

t = 1

k new old

9 17 19
12 22 24
15 25 27
20 31 33

21 32 34
24 35 37
43 56 58
67 82 84

70 85 87
73 88 90

t = 2

k new old

5 17 20
9 24 27
14 29 34
19 35 39

22 42 45
23 43 46
24 43 47
26 46 49

29 49 52
34 54 57
39 60 63
44 65 68

49 70 73
56 79 82

t = 3

k new old

7 27 32
14 35 41
22 47 54
29 56 61

31 59 64
32 60 65
33 61 66
36 63 69

43 71 76
55 87 92
62 94 99
69 101 106

76 108 113
83 115 120

t = 4

k new old

9 35 42
19 51 59
28 61 69
32 68 74

33 69 75
34 70 76
35 71 77
36 72 78

37 71 79
43 83 89
52 92 99
61 102 108

70 111 117
79 120 127

Table 6.2 Length of some new and old t-AEC/AAED coset codes, for 1 5 t 5_ 4.

Detailed Construction the t-AEC/AAED Coset Codes

Tables 6.3 to 6.6 give detailed construction parameters of the codes listed in Table 6.2.

The new t-AEC/AAED codes of length n and k information bits are constructed using inner



107

(n',k+m,d) codes where m is the number of control vectors; i.e. when m = 0, 1, or 2 the

inner code is a systematic, Ch, or Ch,f code, respectively. The 'wt. dist.' column indicates

the weight distribution of the inner code. The 'it wts' column gives the number of different

weights (or even weights when d is even). The `r' column indicates the length of the

smallest A-sequence (or Ae-sequence when d is even) with at least `4# wts' words. The Ae-

sequences and A-sequences developed in Section 6.5 and listed in Tables 6.8 and 6.9 are

used for this purpose. The new code length (n) will be n' + r.

k n (n',k+m,d) wt. dist. # wts r

9 17 (15,9+2,3) ( 4, 7) 4 2
12 22 (19,12+2,3) ( 5, 9) 5 3
15 25 (22,15+2,3) ( 6,11) 6 3
20 31 (26,20+1,3) ( 7,19) 13 5

21 32 (27,21+1,3) (7,20) 14 5
24 35 (31,24+2,3) ( 8,15) 8 4
43 56 (51,43+2,3) (13,25) 13 5
67 82 (76,67+2,3) (19,38) 20 6

70 85 (79,70+2,3) (20,39) 20 6
73 88 (83,73+2,4) (21,41) 10 5

Table 63 Construction parameters of some 1-AEC/AAED coset codes.

k n (n',k+m,d) wt. dist. # wts r

5 17 (15, 5+2,5) ( 4, 7) 4 2
9 24 (21,9+2,5) ( 5,10) 6 3
14 29 (27,14+2,6) ( 7,13) 3 2
19 35 (31,19+2,5) ( 8,15) 8 4

22 42 (35,22+1,5) ( 9,26) 18 7
23 43 (36,23+1,5) ( 9,27) 19 7
24 43 (38,24+2,5) (10,19) 10 5
26 46 (39,26+1,5) (10,29) 20 7

29 49 (43,29+2,5) (11,21) 11 6
34 54 (49,34+2,6) (12,24) 6 5
39 60 (53,39+2,5) (13,26) 14 7
76 100 (92,76+2,5) (23,46) 24 8

Table 6.4 Construction parameters of some 2-AEC/AAED coset codes.



108

k n (n',k+m,d) wt. dist. # wts r
7 27 (25, 7+2,8) ( 7,12) 3 2
14 35 (31,14+2,7) ( 8,15) 8 4
22 47 (43,22+2,8) (11,21) 5 4
29 56 (49,29+2,7) (12,24) 13 7

31 59 (50,31+1,7) (13,37) 25 9
32 60 (51,32+1,7) (13,38) 26 9
33 61 (53,33+1,8) (14,39) 13 8
36 63 (57,36+2,8) (15,28) 7 6

43 71 (63,43+2,7) (16,31) 16 8
55 87 (78,55+2,7) (20,39) 20 9
62 94 (85,62+2,7) (21,42) 22 9
69 101 (92,69+2,7) (23,46) 24 9

76 108 (99,76+2,7) (25,49) 25 9
83 115 (107,83+2,8) (27,53) 13 8

Table 6.5 Construction parameters of some 3-AEC/AAED coset codes.

k n (n',k+m,d) wt. dist. # wts r

9 35 (31,9+2,9) ( 8,15) 8 4
19 51 (45,19+2,9) (11,22) 12 6
28 61 (54,28+2,9) (14,27) 14 7
32 68 (57,32+1,9) (14,42) 29 11

33 69 (58,33+1,9) (15,43) 29 11
34 70 (59,34+1,9) (15,44) 30 11
35 71 (60,35+1,9) (15,45) 31 11
36 72 (61,36+1,9) (15,45) 31 11

37 71 (63,37+2,9) (16,31) 16 8
43 83 (73,43+2,9) (18,36) 19 10
52 92 (83,52+2,10) (21,41) 10 9
61 102 (91,61+2,9) (23,45) 23 11

70 111 (100,70+2,9) (25,50) 26 11
104 150 (138,104+2,9) (35,69) 35 12

Table 6.6 Construction parameters of some 4-AEC/AAED coset codes.



109

Example 6.2 Consider the first code in Table 6.3, i.e. the 1-AEC/AAED code of

length 17 and 9 information bits. First the (15,11,3) code is changed to a Ch,f (15,9+2,3)

code with 9 information bits and weight distribution between 4 and 7. This inner code has

4 different weights. From Table 6.9 the A-sequence of size 4 in the entry t = 1 and r = 2

can then be appended to the resulting weights to form a 1-AEC/AAED code of length 17

and 9 information bits.

6.4 The t-EC/d-UED Codes

The necessary and sufficient conditions for a code to be t-EC/d-UED (t error correcting

and d unidirectional error detecting) are stated in the following theorem.

Theorem 6.10 [Lin 88] A code C is t-EC/d-UED iff for any X and Y E C, one or

more of the following conditions holds.

1) N(X,Y) t+1 and N(Y,X) t+1, or

2) D(X,Y) t+d+1.

The code design of the t-EC/d-UED codes is similar to that of t-AEC/d-AED codes, but

U-sequences will be used instead of D-sequences. A U-sequence U[r,t,d] of length r is

defined as follows:

Let U[r,t,d] = so, si, sm_i I be a U-sequence; then for 1 5_ i,j m, either

1) N(si,si+j) min(rj/21,t+1) or

2) D(si,si+j) min(d-t-l+odd(j), (t+1+d)-j)

where i+j in siti is computed modulo m and where sits are of length r.

Some efficient U[r,t,d] sequences are constructed in Section 6.5. The new

t-AEC/d-AED codes which are constructed using these sequences improve the ones given



110

in [Lin 88] as summarized in Table 6.7. These codes become more superior as r and t

increase.

t = 1

r new old

8 13 12
9 26 26
10 53 34

11 80 70
12 141 130
13 262 262

14 525 314
15 788 630
16 1261 1162

t = 2

r new old

12 20 19
13 41 41
14 84 49

15 127 81
16 170 137
17 276 237

18 476 339
19 715 541
20 1084 914

t = 3

r new old

15 18 17
16 27 26
17 56 56

18 115 64
19 174 92
20 233 172

21 348 348
22 699 668
23 1340 1340

t = 4

r new old

20 34 33
21 71 71
22 146 71

23 221 87
24 296 103
25 371 155

26 446 229
27 521 353
28 710 527

Table 6.7 Values of d of some new (and old [Lin 88]) t-EC/d-UED codes, for 1 t 4.

(Where r is the added redundancy to a t-EC code).

6.5 Design of Tail Sequences

The design of the tail sequences is given in the following order: the A-sequences, the

U-sequences, and finally the D-sequences.

6.5.1 Design of A-sequences

These sequences are defined as follows:

A[r,t] = {so, Si, sm_i } where N(si,si+j) min((j/214+1) for 0 j < m-i, and

Ae[r,t] = {so, si, sm-1} where N(si,si+j) min(j,t+1) and 0 5_ j < m-i,

where the si's are of length r.

If Ae[r-1,t] = {so, si, sm-i} (of size m), then it can be easily shown that the

sequence { <s0,1>, <s0,0>, <si,l>, <si3O>, <sm4,1>, <sm_1,0>} is an A[r,t]

sequence (of size 2m). Hence, the relation I A[r,t] I 2 I Ae[r-1,t] I is obtained. We will



111

only consider the design of Ae[r,t] sequences. Consider the following two methods.

Method 1: Notice that if Ae[r-1,t] = (so, Si, sm-1) (of size m), then (<s0,1>,

<s0,0>, <s1,0>, <s2,0>, <sm..1,0>) is an Ae[r,t] sequence (of size m+1). Starting

with the base case Ae[l,t] = (1,0), the Ae[r,t] = { lr-i Oil 0 i r} (of size r+1) can be

produced.

The method can be improved by realizing that in some cases more than one word can be

added to Ae[r -1,t]. For instance, when I Ae[r -1,t] I 2t+2, i.e. m 2t+2, the following is

an Ae[r,t] sequence of length m+2:

<SO>, <S0,0>, <SO>, , <St,0>, , <SM4,1>, , <SM-2,1>, <SIM-1,1>, <S11[1-1,0>)

So when Ae[r-1,t] 2t+2, one can add at least two words, one at the top and another at

the bottom, as done in the previous sequence. As the size of Ae[r-1,t] increases, more

words can be added, as follows. Let B = {st +1, si, sm-t-2} and let b1, b2, bt+i,, b2t+1 be any 2t+1 consecutive words of B. By "splitting" bt+i, the following Ae-

sequence is produced.

{<b1,1 >, <b2,1>, <bt,1>, <bt+1,1>, <bt+i3O>, <bt+2,0>, <b2t,0>, <b2t-F1,0>)

In general, to construct Ae[r,t] from Ae[r-14], add one word at the top and another at

the bottom, and then transform every consecutive 2t+1 words in {st+i, Si, sm -t -2) to

2t+2 words in Ae[r,t]. The following relation can be obtained.

Ae[r-1,t] Ae[r-1,t] + L
( Ae[r-1,t] + 2t)

2t+ 1

Example 6.3 Let Ae[4,1] = {1111, 1110, 1100, 1001, 0011, 0010, 0000), which

has 7 elements. Then Ae[5,1] Ae[4,1] + (7+2)/3 = 10, which can be obtained by adding

a word at the top and a word at the bottom, and splitting 1001 in (1100, 1001, 0011) to

get {11001, 10011, 10010, 00110) as follows.



1111
1110
`1100

Ae[4,1] = 1001
0011
0010
0000

11111
11110
11100
11001

Ae[5'1] '1001110010
00110
00101
00001
00000

112

Method 2: This method is a modification to the one given in [Blu 89]. Let Asy[r',t]

= { al, a2, ..., ak } be an t-asymmetric error correcting code of length r', where W(ai)

W(aj) for i j. And let Ae[r",t] = ( Si, s2, ..., sm }. Then { <absi>,..<alism>,

<a2,sl >, ...<a2,sm>, ...., <ak,si>, ...<ak,sm> } is an Ae[r'+r",t] code of (kxm) words.

So in order to design Ae[r,t] one can choose the maximum over r' of Asy[r',t]

* Ae[r-re,t]. This can be improved by only appending Ae[r-f,t] to the middle Asy[r',t] - 4

words. Instead of getting 2 Ae[r-f,t] for the last two words we can obtain Ae[t +1 +r',t]

words by fixing r'-t-1 bits to be zeros. And similarly, for the first two words, we can

obtain Ae[t+1+f,t] instead of 2 Ae[r-r',t] words by fixing r'-t-1 bits to be ones. The size

of Ae[r,t] will be (Asy[r',t] - 4) * Ae[r-f,t] + 2 Ae[t-l+f,t]. So,

Ae[r,t] = the maximum over r' of (Asy[r',t]-4) * Ae[r-f,t] + 2 Ae[t +1 +r',t].

Example 6.4: Let C be the asymmetric distance 3 code of length 9 and 12 codewords

[Web 88]. An Ae[10,2] of length 24 can be produced by appending a 1 and 0 to every

codeword of C. However, we can produce 26 words as follows. Append 1 and a 0 to the

middle 8 words in C yielding 16 words. Without loss of generality, let the first two words

of C be 11111 1111 and 11111 1000; and the last two words be 0000 00111 and 0000

00000. Then,



113

111111 11111 11111 11111
111111 11110 11111 11110

we can get 11111 11100 andInstead of 11111 10001
11111 10000 11111 11000

11111 10000

000000 00001 00000 11111
000000 01110 00000 01110

instead of 00000 00001 we can get 00000 01100
00000 0100000000 00000 00000 00000

Getting a total of 16 + 5 + 5 = 26 words. Notice that an A[11,2] of length 48 can be

constructed by appending a 1 and a 0 to each word in this Ae[10,2].
El

The Ae[r,t] is always chosen to be the longer sequence obtained by the two methods.

Table 6.8 lists some Ae-sequences with an indication of the method used to produce them.



114

r Ae[r,1] Ae[r,2] Ae[r,3] Ae[r,4]

1 2 2 2 2
2 3 3 3 3
3 4 4 4 4
4 73 5 5 5

5 10 6 6 6
6 16* 103 7 7

7 242 12 8 8

8 38* 16* 133 9

9 722 202 151 10
10 1242 262 18' 163
11 2162 382 211 181
12 3482 622 263 201

13 6322 1102 301 23'
14 1982 402 261
15 3742 642 322
16 5582 922 362

17 7982 1362 402
18 2482 582
19 4722 822
20 9042 1122

21 . 1462
22 1862

Table 6.8 Sizes of the new Ae[r,t] sequences..

(1: method 1, 2: method 2, 3: from [Mon], and *: given below.)

The Ae[8,1] of size 38 can be obtained by adding 2 words to the 1 asymmetric error

correcting code of size 36. One word is added between the first word and the second, and

the other is added between the next to last and the last codewords. The Ae[6,1] and

Ae[8,2] sequences of size 16 are



115

111111 11111111
111110 11111110
111100 11111100
111001 11011010
110011 10110101
100111 01101011
001111 11100001
101010 11100000
010101 01110000
110000 00111000
011000 00011100
001100 00001110
000110 00000111
000011 00000011
000001 00000001
000000 00000000

Ae[6,1] Ae[8,2]

r A[r,1] A[r,2] A[r,3] A[r,4]

1 2 2 2 2
2 4 4 4 4
3 6 6 6 6
4 8 8 8 8

5 14 10 10 10
6 20 12 12 12
7 32 20 14 14
8 48 24 16 16

9 76 32 26 18
10 144 40 30 20
11 248 52 36 32
12 432 76 42 36

13 696 124 52 40
14 220 60 46
15 396 80 52
16 748 128 64

17 184 72
18 272 80
19 496 116
20 944 164

Table 6.9 Sizes of the new A[r,t] sequences.

obtained from Table 6.8 and the relation A[r,t] 2 Ae[r-1,t].



116

6.5.2 Design of U-sequences

Recall that in the U-sequence U[r,t,d] --= {so, si, sm-i }, where each si is of length

r, either

1) N(si,si+j) min(rj/21,t+1) or

2) D(si,si+j) min(d-t-l+odd(j), (t+1+d)-j)

where 1 i,j m and i+j in si+j is computed modulo m.

Let Z[r',t] = a2, aid be a t-AEC/AAED (or t-EC/AUED) code of length r', i.e.

N(X,Y) t+1 for all X, Y e Z[r',t]. And let Mr-1'M = {si, s2, sm }. Then

<a2,si>, ...<a2,sm>, <ak,si>, ... <ak,sm >} is a U[r,t,d]

sequence of (kxm) words. In this U[r,t,d] sequence, d = (Z[r',t]-1) * A[r -r',t] + (r-r') t

since the first two words with N(X,Y) t will be (Z[r',t] -1) * A[r -r',t] + 1 apart, and they

will have an extra distance of (r-r').

The maximum, over r', of d = (Z[r',t] - 1) * A[r -r',t] + (r-r') - t can be used to

construct a U[r,t,d] sequence. Table 6.7 summarizes the values of d of these sequences for

some values of r and t.

Example 6.5 Suppose we wish to construct a U[7,1,8] sequence. Let r' = 4; then

Z[r',t] = {1100, 0011} of size 2. Since r-r' = 3, we will use the A[3,1] = { 111, 110, 101,

100, 001, 000} of 6 elements. Then the following sequence is a U[7,1,8] of 12 elements.



117

1100 111
1100 110
1100 101
1100 100
1100 001

U[7,1,8] =
1100
0011

000
111

0011 110
0011 101
0011 100
0011 001
0011 000

6.5.3 Design of D-sequences

Recall that in the D-sequences D[r,t,d] = {so, sl, sm-i }, where each si is of length r,

either

1) N(si,si+j) min(rj/21,t+1) or

2) N(si+j,si) (d+1) - max(j, j+1(2t+1-j)/21)

where 1 i,j m and i+j in si+j is computed modulo m.

These sequences can be obtained as follows:

1- The sequence fl(r-1)-i pi 1, 1(r -1)-it 0i 0 I 0 i r-1} is a D[r,t,t+r], and

2- Any U[r,t,d] sequence is at least a D[r,t,d] sequence. In particular, the U[r,t,d]

sequences constructed in the last section are D[r,t,d+t] sequences.

Example 6.6 The U[7,1,8] of 12 elements in the previous example is a D[7,1,9]

sequence.
CI

Table 6.1 lists values of d of some D[r,t,d] sequences for different values of r and t.



Chapter 7

Conclusion

7.1 Summary

118

The main results of this work are the designs of balanced codes that can correct t errors

for 0 t S 4. When t = 0 (i.e. no error correction) the designed codes have higher

information rates than the equivalent codes and yet maintain the same encoding/decoding

complexity. The t-EC/B, for 1 5_ t 4 (in many cases) give higher information rate than the

existing codes; and (in all cases) have simpler and faster encoders and decoders.

DC-free line codes were presented in which codewords are not necessarily balanced.

The new codes have the same information rate and encoding/decoding complexities as

existing codes, but have other desirable properties such as high transition densities and

shorter run lengths than the equivalent codes given in [Den 88]. The techniques used to

design such codes has lead to an efficient design of t-EC/AUED coset codes. These codes

considerably improve upon the codes given recently in [Bra 89].

We have seen that a balanced code that corrects t errors (t-EC/B) can also be viewed as

a t-EC/AUED code. It is noticed that the t-EC/B codes designed in Chapter 3 give higher

information rate than the (coset) t-EC/AUED codes. In spite of their dc-null properties,

balanced codes obtain higher information rates for 1 t 3. It should be noted that also,

in some cases, the 4-EC/AUED coset codes may have higher information rates than the 4-

EC/B codes.



119

The balanced codes were generalized in three ways: (1) Design of balanced codes with

low dc level; these codes are designed based on the combined techniques of balanced codes

and dc-free coset codes. They use one extra check bit but have a significantly lower dc-

level and higher transitions density. These codes are much more attractive for optical

transmission than the bare bone balanced codes. (2) Design of balanced codes over a non-

binary alphabet.. And (3) Design of "semi-balanced" codes in which the number of 1's

and 0's in every code word differs by at most a certain value, say m.

7.2 Future Research

It was shown that the balanced codes given in Chapter 2 are optimal up to the

complementation method used. The designed codes have a redundancy of about log k, see

(2-5), and the number of check bits in a completely non-systematic code is at least 0.5

log k, see (1-1). Thus the codes can be further improved but new designs seem to be hard

to obtain. The other direction there is to find some other simple function (like

complementation which has efficient encoders and decoders) that may further reduce the

redundancy.

The problems become more interesting in the design of t-EC/B codes (for 1 t S 4)

given in Chapter 3. We have seen that the t-EC/B codes for 2 S t 4 are based on the 1-

EC/B codes. The 1-EC/B code becomes the central issue. In the design of such codes,

algebraic structures, namely Abelian groups, fields, or binary fields, were used. After

choosing a structure, the design becomes extremely sensitive to a choice of a subset H of r

elements from this structure. The subsets (H) used in the codes constructed in Chapter 3

were obtained mostly by trail- and -error or by heuristic methods. The question is: Given an

algebraic structure can we algorithmically find the best subset H that maximizes the

information rate of the code? The other question is which Abelian group of size n should

be chosen? It is only observed that Zn (the additive cyclic group of order n) gives the best



120

results. (This selection problem does not occur with fields since there is a unique field

structure of size pm for a prime p.

The dc-free line codes given in Chapter 4 are based primarily on increasing the number

of transitions in each codeword from 1 to n/2 using one extra check bit. When two or more

check bits are used, it is still not clear how to increase the transitions more than n/2.

Similarly, the balanced codes with k/2 - 1 transitions designed in Section 5.1 use an extra

check bit in order to reduce the disparity to almost half the original disparity. Again, using

2 or more extra check bits, can we further reduce the maximum disparity (or increase the

number of transitions)? For example, using 2 extra check bits, is it possible to reduce the

maximum disparity to 1/4 (or even 1/3) the original disparity?

Similar problems arise in Chapter 6. In the design of the t-EC/AUED coset codes, the

weight distribution of the underlying code of length n was the main factor. We have seen

that using an extra check bit, the weight distribution of a linear code can be reduced to n/2;

and using two check bits the weight distribution can be reduced to n/4. Of course, the

question is: Can we reduce the weight distribution even further by using 3 or more extra

check bits? For instance, can we reduce the weight distribution to n/8 (or even to n/6)

using 3 or more check bits?

The solution to such questions will have a dramatic effect on the codes designed in

Chapters 4 and 6. Most of these codes will have even higher information rate if such

solutions exist.

[Tao 88] D. Tao, et. al., "An Efficient Class of Unidirectional Error Detecting/
Correcting Codes," IEEE Trans. on Computers, vol. C-39, July 1988.

[Til 89] H. van Tilborg and M. Blaum, "On Error-Correcting Balanced Codes," IEEE

Trans. on Information Theory, vol. IT-35, Sept. 1989.



121

Bibliography

[Alb 89a] S. Al-Bassam and B. Bose, "Design of efficient balanced codes," Proceeding

of the 19th Int. Symp. on Fault Tolerant Computing, June 1989 (to appear in

IEEE Trans. on Computers).

[Alb 89b] S. Al-Bassam and B. Bose, "Asymmetric/Unidirectional Error Correcting and

Detecting Codes," in the 7th conference of Applied Algebra and Error
Correcting Codes, France, June 1989 (to appear in IEEE Trans. on
Computers).

[Alb 89c] S. Al-Bassam, B. Bose, and R. Rowley, "Transitions DC-Free Coset Codes,"

AAECC 7, Toulouse, France, June 1989 (submitted to the special issue of

Applied Mathematics on Error Control Codes).

[Alb 90a] S. Al-Bassam and B. Bose, "On Balanced Codes," to appear in Trans. on

Information Theory, vol. IT-36, March 1990.

[Alb 90b] S. Al-Bassam and B. Bose, "Design of Efficient Error-Correcting Balanced

Codes," submitted to FTCS 20, June 1990.

[Alo 88] N. Alon, et. al, "Balancing Sets of Vectors," IEEE Trans. on Information
Theory, vol. IT-34, Jan 1988.

[Ben 86] C. Ben-Zion, Two issues in Public Key Cryptography. Cambridge, Ma.: MIT

Press, 1986.

[Ber 61] J. M. Berger, "A note on Error Detection Codes for Asymmetric Channels,"

Information and Control, vol. 4, March 1961.

[Bla 89] M. Blaum and H. van Tilborg, "On t-Error Correcting/All Unidirectional Error

Detecting Codes," IEEE Trans. on Computers, vol. C-38, Nov. 1989.

[Bor 82] J. Borden, "Optimal Asymmetric Error Detecting Codes," Information and

Control 53, April 1982.



122

[Bos 82a] B. Bose and D. Pradhan, "Optimal Unidirectional Error Correcting/Detecting

Codes," IEEE Trans. on Computers, vol. C-31, June 1982.

[Bos 82b] B. Bose and T. R. N. Rao, "Theory of Unidirectional Error Detecting/
Correcting Codes," IEEE Trans. on Computers, vol. C-31, June 1982.

[Bos 85] B. Bose and D. Lin, "Systematic Unidirectional Error Detecting Codes," IEEE

Trans. on Computers, vol. C-34, Nov. 1985.

[Bos 87] B. Bose, "On Unordered Codes," Proceeding of the 17th Int. Symp. on Fault

Tolerant Computing, July 1987.

[Bos 90] B. Bose, "Asymmetric Error Correcting Codes," ISIT, Jan. 1990.

[Bro 90] A. Brouwer, et. al., "A New Table of Constant-Weight Codes," to appear
IEEE ISIT, Jan. 1990.

[Bru 89] J. Bruck and M. Blaum, "Some New EC/AUED Codes," FTCS-19, June
1989.

[Cal 89] A. Calderbank, M. Herro, and V. Telang, "A Multilevel Approach to the
Design of DC-Free Line Codes," Trans. on Information Theory, vol. IT-35,

May 1989.

[Cap 89] R. Capocelli, L. Gargano, and U. Vaccaro, "Efficient q-ary Immutable
Codes," in the 7th conference of Applied Algebra and Error Correcting Codes,

France, June 1989.

[Con 79] S. Constantin and T. Rao, "On the Theory of Binary Asymmetric Error
Correcting Codes," Information and Control, vol. 40, 1979.

[Den 88] R. H. Deng and M. A. Herro, "DC-Free Coset Codes," IEEE Trans.
Information Theory, vol. IT-34, NO. 4, July 1988.

[Etz 90] T. Etzion, "Constructions of error-correcting dc-free block codes," ISIT, Jan.

1990.



123

[Fer 84] H. C. Ferreira, "Lower Bounds on the Minimum Hamming Distance
Achievable with Run Length Constraint or DC Free Block Codes and the
Synthesis of a (16,8) dmin = 4," IEEE Trans. on Magn., vol. MAG-34, Sept.

1984.

[Fre 62] C. V. Freiman, "Optimal Error Detection Codes for Completely Asymmetric

Binary Channels," Information and Control, vol. 5, March 1962.

[Kaw 88] Satoki Kawanishi, et. al., "DmB1M Code and its Performance in a Very High-

Speed Optical Transmission System," IEEE Trans. Commun., vol. COM-36,

Aug. 1988.

[Knu 86] D. E. Knuth, "Efficient Balanced Codes," IEEE Trans. on Information
Theory, vol. IT-32 Jan. 1986.

[Kun 88] S. Kundu and S. Reddy, "On Systematic t-Error Correcting/All Unidirectional

Error Detecting Codes," IEEE ISIT, June 1988. (To appear in IEEE Trans. on

Computers.)

[Kun 90] S. Kundu, "Design of Non-Systematic 3syEC/AUED Codes of Asymptotically

Optimal Order," ISIT, Jan. 1990.

[Lei 84] E. L. Leiss, "Data Integrity in Digital Optical Disks," IEEE Trans. on
Computers, vol. C-33, Sept. 1984.

[Lin 88] D. Lin and B. Bose, "Theory and Design of t-Error Correcting/
d-Unidirectional error Detecting Codes," IEEE Trans. on Computers, vol. C-

37, April 1988.

[Mat 88] K. Matsuzawa and E. Fujiwara, "Masking Asymmetric Line Faults using
Semi-Distance Codes," NTT Electrical Communication Laboratories, Tokyo,

Japan, 1988.

[Mce 85] R. McEliece, "The Reliability of Computer Memories," Scientific America,

vol. 252, Jan. 1985.

[Mon] B. Montgomery and B. Kumar, "Systematic Random Error Correcting and All

Unidirectional Error Detecting Codes," to appear.



124

[Mor 83] D. Morris, Pulse Code Formats for Fiber Optical Data Communication. NY:

Marcel Decker, 1983.

[Nik 86] D. Nikolos, et. al., "Systematic t-Error Correcting/All Unidirectional Error
Detecting Codes," IEEE Trans. on Computers, vol. C-37, May 1986.

[Pet 72] W. Peterson and E. Weldon, Error Correcting Codes. Cambridge, Ma.: MIT

Press, 1972.

[Pra 77] D. Pradhan and S. Reddy, "Fault Tolerant Fail-safe Logic Network," in Proc.

IEEE COMPCON, March 1977.

[Pra 80a] D. K. Pradhan, "A New Class of Error Correcting/Detecting Codes for Fault

Tolerant Computer Applications," IEEE Trans. on Computers, vol. C-29, June

1980.

[Pra 80b] D. Pradhan and J. Stiffler, "Error-Correcting Codes and Self-Checking
Circuits," IEEE Computer, vol. 13, March 1980.

[Pra 86] D. K. Pradhan, Fault Tolerant Computing: Theory and Techniques.
Englewood cliffs, NJ: Prentice Hall, 1986.

[Rio 68] J. Riordan, Combinatorial Identities. New York: Wiley, 1968.

[Sai 88] Y. Saitoh, et. al., "A Method to Construct Constant-Weight t-Error Correcting

Codes," in the llth Sym. on Information Theory and its Applications, Beppu,

Japan, Dec. 1988.

[Spe 28] E. Spemer, "EM Satz fiber Untermengen einer endlichen Menge," Math.

Zeitschrift, vol. 27, 1928.

[Tak 76] Y. Takasaki, et. al., "Optical Pulse Formats for Fiber Optic Digital
Communications," IEEE Trans. on Communication, COM-24, April 1976.

[Tao 88] D. Tao, et. al., "An Efficient Class of Unidirectional Error Detecting/
Correcting Codes," IEEE Trans. on Computers, vol. C-39, July 1988.

[Til 89] H. van Tilborg and M. Blaum, "On Error-Correcting Balanced Codes," IEEE

Trans. on Information Theory, vol. IT-35, Sept. 1989.



125

[Toh 71] Y. Tohma, R. Sakai, and R. Ohyama, "Realization of Fail-Safe Sequential

Machines by Using k-out-of-n Code," IEEE Trans. on Computers, vol. C-20,

Nov. 1971.

[Uye 88] T. Uyematsu, et. al., "Effect of Asymmetric Error Correcting Codes in Photon

Communication Systems," IEEE ISIT, June 1988.

[Var 73] R. Varshamov, "A Class of Codes for Asymmetric Channels and a Problem

from the Additive Theory of Numbers," IRE Trans. on Information Theory,

vol. IT-19, Jan 1973.

[Web 88] J. Weber, et. al., "Bounds and Constructions for Binary Codes of Length less

than 24 and Asymmetric Distance less than 6," IEEE Trans. on Information

Theory, IT-34, Sept. 1988.

[Wid 83] A. X. Widmer and P. A. Franaszek, "A DC-Balanced, Partioned-Block,
8B/10B Transmission Code," IBM J. Res. Develop., vol. 27, Sept. 1983.

[Yos 84] N. Yoshikai, et. al., "mB1C Code and its Performance in an Optical
Communication System," IEEE Trans. Commun., vol. COM-32, Aug. 1984.




