

Cooperative Management of Trans-boundary Fish Stocks: Implications for Tropical Tuna Management in the Pacific Island Region

Kanae Tokunaga The University of Tokyo – Ocean Alliance

Acknowledgement

I acknowledge the funding support by the Nippon Foundation on the University of Tokyo's Ocean Alliance project titled "Science on Consensus Building Methods for Ocean Use."

Western and Central Pacific

Outline

• Motivation:

- Pacific island countries have rich fisheries resources
 - Benefit from the resources through the sales of fishing licenses to distant water fishing vessels
- Pacific island countries cooperate to manage their fisheries resources
- The cooperative management face challenges:
 - EEZs are surrounded by the international waters
 - (Climate change alters fish migration and stock distribution)
- Objective:
 - Understand gains from cooperative management in relation to fish migration
- Method:
 - Dynamic bioeconomic model that takes fish migration and existence of international waters into account

Pacific Tropical Tuna Fishery Overview

Harvest by Purse Seine Vessels (Metric Ton)

- Key players:
 - Coastal states: Western and Central Pacific Island States
 - Distant Water Fishing Nations: Japan,
 Korea, Taiwan, US, EU
- Target Species: Skipjack, Yellowfin, Albacore, Bigeye
- Gears: Purse seine, Longline, Pole and line
- Market: Canned tuna, Sashimi

Location of the Fishing(1970-2013)

5

Total Efforts in Fishing Days by Purse Seine Vessels

Total Catch of Skipjack by Purse Seine Vessels

Cooperation Through the Nauru Agreement

Shared stocks:

- Munro (1979): Nash cooperative game
- Levhari & Mirman (1980): Nash-Cournot duopolists

Migrating stocks:

- Golubtsov & McKelevy (2007)
 - Split-stream Harvesting
 - Application Ex: Mackerel (Hannesson (2013))
- Sanchirico & Wilen (1999); Costello & Polasky (2008); Smith et al. (2009) etc.
 - Patchy Environment
 - Application Example: MPAs

Patchy Environment

Split-stream Harvesting (Golubstov & McKelevy (2007))

$$\rightarrow R \xrightarrow{R_{\alpha} = \theta_{\alpha} R \rightarrow S_{\alpha} \searrow} S = S_{\alpha} + S_{\beta} \rightarrow R^{+} = F(S, b) \xrightarrow{R_{\beta} = \theta_{\beta} R \rightarrow S_{\beta}}$$

Model Framework for Pacific Tuna Management by the PIC

International Waters

- Key Characteristics:
 - EEZs surrounded by international waters
 - Spawning is spread across the Pacific
 - Feeding migration
- Framework
 - 2 countries: α and β

Framework

$$S_{\alpha,t}^{\cdot} = F(S_{\alpha,t}) - x_{\alpha,t}$$

$$S_{\beta,t}^{\cdot} = F(S_{\beta,t}) - x_{\beta,t}$$
Growth - Harvest
% To neighbor's waters
% To international waters
(outgoing)
% from neighbor's waters
(incoming)

At the Steady State

$$\dot{S} = 0$$
$$x_{\beta,t} = F(S_{\beta,t}) - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha}\bar{S}_{\alpha,t}$$

Present Value of Net Benefit from Cooperative Management

Joint Maximization Problem

Steady State Conditions under Cooperative Management

Steady state stocks satisfy the conditions:

 $[\rho - F'(S^*_{\alpha}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S^*_{\alpha})] - \delta_{\alpha}[p - c(S^*_{\beta})] + c'(S^*_{\alpha})[F(S^*_{\alpha}) - (\phi_{\alpha} + \delta_{\alpha})S^*_{\alpha} + \delta_{\beta}S^*_{\beta}] = 0$ $[\rho - F'(S^*_{\beta}) + (\phi_{\beta} + \delta_{\beta})][p - c(S^*_{\beta})] - \delta_{\beta}[p - c(S^*_{\alpha})] + c'(S^*_{\beta})[F(S^*_{\beta}) - (\phi_{\alpha} + \delta_{\beta})S^*_{\beta} + \delta_{\alpha}S^*_{\alpha}] = 0$

Once the steady state stocks are determined, we can find the harvests from:

$$x_{\alpha}^{*} = F(S_{\alpha}^{*}) - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha}^{*} + \delta_{\beta}S_{\beta}$$
$$x_{\beta}^{*} = F(S_{\beta}^{*}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{*} + \delta_{\alpha}S_{\alpha}$$

α's Maximization Problem

 $\max_{x_{\alpha,t}}$

 $\int_{0}^{\infty} e^{-\rho} [px_{\alpha,t} - c(S_{\alpha,t})x_{\alpha,t}] dt$ $S_{\alpha,t}^{\cdot} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}\bar{S}_{\beta,t}$ $S_{0} \text{ given} \longleftarrow \text{ Initial stock}$ $x_{i,t} \in [0, x^{\max}] \longleftarrow \text{ Upper bound}$

subject to

β's Maximization Problem

$$\max_{x_{\beta,t}} \int_{0}^{\infty} e^{-\rho t} [px_{\beta,t}] \cdot c(S_{\beta,t}) x_{\beta,t}] dt$$

subject to
$$S_{\beta,t} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta}) S_{\beta,t} + \delta_{\alpha} \overline{S}_{\alpha,t}$$
$$S_{0} \text{ given} \longleftarrow \text{ Initial stock}$$
$$x_{i,t} \in [0, x^{\max}] \longleftarrow \text{ Upper bound}$$

Steady State Conditions under Independent Management

α 's conditions

$$[\rho - F'(S^I_{\alpha}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S^I_{\alpha})] + c'(S^I_{\alpha})[F(S^I_{\alpha}) - (\phi_{\alpha} + \delta_{\alpha})S^I_{\alpha} + \delta_{\beta}\bar{S}_{\beta}] = 0$$

$$x^I_{\alpha} = F(S^I_{\alpha}) - (\phi_{\alpha} + \delta_{\alpha})S^I_{\alpha} + \delta_{\beta}\bar{S}_{\beta}$$

β's conditions

$$[\rho - F'(S^{I}_{\beta}) + (\phi_{\beta} + \delta_{\beta})][p - c(S^{I}_{\beta})] + c'(S_{\beta})[F(S^{I}_{\beta}) - (\phi_{\beta} + \delta_{\beta})S^{I}_{\beta} + \delta_{\alpha}\bar{S}_{\alpha}] = 0$$

$$x^{I}_{\beta} = F(S^{I}_{\beta}) - (\phi_{\beta} + \delta_{\beta})S^{I}_{\beta} + \delta_{\alpha}\bar{S}_{\alpha}$$

$$\alpha's \quad \delta_{\alpha} = 0.05, \delta_{\beta} = 0.01$$

$$\phi_{\alpha} = \phi_{\beta} = 0.05$$

$$\phi_{\alpha} = \phi_{\beta} = 0.05$$

Cooperative Management vs. Independent Management

Cooperative Management

$$[\rho - F'(S_{\alpha}^{C}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S_{\alpha}^{C})] - \delta_{\alpha}[p - c(S_{\beta}^{C})] + c'(S_{\alpha}^{C})[F(S_{\alpha}^{C}) - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha}^{C} + \delta_{\beta}S_{\beta}^{C}] = 0$$

$$[\rho - F'(S_{\beta}^{C}) + (\phi_{\beta} + \delta_{\beta})][p - c(S_{\beta}^{C})] - \delta_{\beta}[p - c(S_{\alpha}^{C})] + c'(S_{\beta}^{C})[F(S_{\beta}^{C}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{C} + \delta_{\alpha}S_{\alpha}^{C}] = 0$$

$$[\phi - F'(S_{\beta}^{C}) + (\phi_{\beta} + \delta_{\beta})][p - c(S_{\beta}^{C})] - \delta_{\beta}[p - c(S_{\alpha}^{C})] + c'(S_{\beta}^{C})[F(S_{\beta}^{C}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{C} + \delta_{\alpha}S_{\alpha}^{C}] = 0$$

$$[\phi - F'(S_{\beta}^{C}) + (\phi_{\beta} + \delta_{\beta})][p - c(S_{\beta}^{C})] - \delta_{\beta}[p - c(S_{\alpha}^{C})] + c'(S_{\beta}^{C})[F(S_{\beta}^{C}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{C} + \delta_{\alpha}S_{\alpha}^{C}] = 0$$

$$[\phi - F'(S_{\beta}^{C}) + (\phi_{\beta} + \delta_{\beta})][p - c(S_{\beta}^{C})] - \delta_{\beta}[p - c(S_{\alpha}^{C})] + c'(S_{\beta}^{C})[F(S_{\beta}^{C}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{C} + \delta_{\alpha}S_{\alpha}^{C}] = 0$$

Independent Management

$$[\rho - F'(S^I_{\alpha}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S^I_{\alpha})] + c'(S^I_{\alpha})[F(S^I_{\alpha}) - (\phi_{\alpha} + \delta_{\alpha})S^I_{\alpha} + \delta_{\beta}\bar{S}_{\beta}] = 0$$
$$[\rho - F'(S^I_{\beta}) + (\phi_{\beta} + \delta_{\beta})][p - c(S^I_{\beta})] + c'(S_{\beta})[F(S^I_{\beta}) - (\phi_{\beta} + \delta_{\beta})S^I_{\beta} + \delta_{\alpha}\bar{S}_{\alpha}] = 0$$

Stock Dynamics (S₀ = Carrying Capacity, Equal Leakage Rate)

- Cooperative management yields higher steady state stock level
- A steady stock level is higher for the country with lower emigration rate
- A country with a higher emigration rate reaches steady state first

Pacific Island Countries Sell Licenses to Distant Water Vessels

• Distant water fishing vessel's profit maximization problem

$$\max_{x_{i,j,t}} \prod_{i,j} = p x_{i,j,t} - c(S_{i,t}) x_{i,j,t} - \eta_i d_{i,j}.$$

• For simplicity, suppose that a catch is linear in number of fishing days, such that

$$x_{i,j,t} = \nu d_{i,j,t}$$

Distant water fishing vessel maximizes its profit by choosing how many days to operate

$$\max_{d_{i,j}} \prod_{i,j} = p\nu d_{i,j} - c(S_i)\nu d_{i,j} - \eta_i d_{i,j}.$$

• First order condition yields

$$\eta_i = \nu(p - c(S_i))$$

Optimal license fee is determined by the product of daily harvest and the net price

Net Price Dynamics ($S_0 = Carrying Capacity, Equal Leakage Rate)$

- Cooperative management yields higher steady state net price
 → Present value of net benefits higher under cooperation
- There is a relationship between migration parameters and net benefits

Migration between the Two Countries

XNo Leakage

10 . 5 0 0.03,0.01 0.05,0.01 0.01,0.01 0.05,0.05 (%Migration from α to β , %Migration from β to α)

Surplus Gain from Cooperation

Cooperation benefit increases with an increase in net migration

Migration to International Waters

Surplus Gain from Cooperation

(% Leakage from α to $\beta,$ %Migration from β to α)

Cooperation benefits decreases with an increase in migration to international waters

So What? Why Should We Care?

Predicted Change in Tuna Stock due to Climate Change

	2035	2050	2100
FSM	+14	+5	-16
Marshall Islands	+24	+24	+10
Nauru	+25	+20	-1
Palau	+10	+2	-27
Papua New Guinea	+3	-11	-30
Solomon Islands	+3	-5	-15
Kiribati	+37	+43	+24
Tuvalu	+37	+41	+25
Lehodey et al. (2011) cited in Bell et al. (2012) Table 1, Only PNA information shown			
here			

East-ward Shift of Stock Predicted by Climate Change

Eastward shift of the stock is predicted (Ex. Lehodey 2011)

Conclusion

- A model of cooperative management
 - Key characteristics: International waters, distributed spawning, feeding migration
- Objective:
 - Understand gains from cooperative management in relation to fish migration
- Main findings
 - Cooperation benefit increases with an increase in net migration
 - Cooperation benefits decreases with an increase in migration to international waters
- Way forward
 - Countries cooperate if the gains from cooperation surpasses the costs of cooperation
 - More detailed simulation with spatial data

THANK YOU

Acknowledgement

I acknowledge the funding support by the Nippon Foundation on the University of Tokyo's Ocean Alliance project titled "Science on Consensus Building Methods for Ocean Use."

Allocation of the Surplus

Nash bargaining rule

$$\max_{\pi_{\alpha},\pi_{\beta}}$$

$$(\pi_{\alpha} - \pi^{I}_{\alpha})^{\sigma}(\pi_{\beta} - \pi^{I}_{\beta})^{1-\sigma}$$

subject to $\pi_{\alpha} + \pi_{\beta} = \bar{\pi}$

Benefits are shared 50:50 if the two countries have the equal negotiation power

Proportionate rule

$$(NB)_i^{Coop} - (NB)_i^{Ind}$$

If equal migration rates, benefits are shared 50:50

A country with the higher out-migration rate gains more

Total Efforts in Number of Fishing Days

