Vanishing viscosity in the plane for nondecaying velocity and vorticity, II

Citation

DOI
10.2140/pjm.2014.270.335

Publisher
Mathematical Sciences Publishers

Version
Version of Record

Terms of Use
http://cdss.library.oregonstate.edu/sa-termsofuse
We consider solutions to the two-dimensional incompressible Navier–Stokes and Euler equations for which velocity and vorticity are bounded in the plane. We show that for every $T > 0$, the Navier–Stokes velocity converges in $L^\infty([0, T]; L^\infty(\mathbb{R}^2))$ as viscosity approaches 0 to the Euler velocity generated from the same initial data. This improves our earlier results to the effect that the vanishing viscosity limit holds on a sufficiently short time interval, or for all time under the assumption of decay of the velocity vector field at infinity.

1. Introduction

In this paper, we study the vanishing viscosity limit of solutions to the two-dimensional incompressible Navier–Stokes equations. Recall that the Navier–Stokes equations modeling incompressible viscous fluid flow on \mathbb{R}^n are given by

\[
\begin{align*}
\partial_t u_v + u_v \cdot \nabla u_v - \nu \Delta u_v &= -\nabla p_v, \\
\text{div } u_v &= 0, \\
u|_{t=0} &= u_0.
\end{align*}
\]

(NS)

When $\nu = 0$, the Navier–Stokes equations reduce to the Euler equations modeling incompressible inviscid fluid flow on \mathbb{R}^n:

\[
\begin{align*}
\partial_t u + u \cdot \nabla u &= -\nabla p, \\
\text{div } u &= 0, \\
|u|_{t=0} &= u_0.
\end{align*}
\]

(E)

There are a number of results addressing the vanishing viscosity limit of solutions of (NS) on \mathbb{R}^n under various assumptions on the initial data (see, for example, [Constantin 1986; Masmoudi 2007; Kelliher 2004; Chemin 1996; Kato 1972; Swann 1971]). Here we focus our attention on solutions to (NS) and (E) in the plane with bounded velocity and vorticity which do not necessarily decay at infinity. We show that such solutions to (NS) converge to solutions of (E) with the same initial

MSC2010: 76D05.

Keywords: fluid mechanics, inviscid limit.
data in the L^∞-norm, where convergence is uniform over any finite time interval. This result builds upon and is a continuation of work in [Cozzi 2009; 2010]. For this reason, we will often refer to these articles for background information and useful estimates.

The existence and uniqueness of solutions to (NS) without any decay assumptions on the initial velocity is considered by Giga, Inui, and Matsui in [Giga et al. 1999]. The authors establish the short-time existence and uniqueness of mild solutions v_ν to (NS) in the space $C([0, T_0]; BUC(\mathbb{R}^n))$ when initial velocity is in $BUC(\mathbb{R}^n)$ and $n \geq 2$. Here $BUC(\mathbb{R}^n)$ denotes the space of bounded uniformly continuous functions on \mathbb{R}^n. In [Giga et al. 2001], Giga, Matsui, and Sawada prove that when $n = 2$, the unique solution can be extended globally in time. Existence and uniqueness of solutions to (E) with bounded velocity and vorticity with $n = 2$ is due to Serfati [1995]. We briefly discuss these results in Section 2.

In this paper we prove that solutions u_ν to (NS) of [Giga et al. 2001] converge uniformly on \mathbb{R}^2 to Serfati solutions to (E) as viscosity approaches 0, where convergence is uniform over any finite time interval (see Theorem 3). To establish the result, we apply Littlewood–Paley theory and Bony’s paradifferential calculus [1981] and follow the general strategy of [Cozzi 2009; 2010]. Specifically, we consider low and high frequencies of the difference between the solutions to (NS) and (E) separately. We first show that for fixed t and for any positive integer n,

$$
(1.3) \quad \|u_\nu(t) - u(t)\|_{L^\infty} \leq n\|u_\nu(t) - u(t)\|_{B^0_{\infty, \infty}} + 2^{-n}\|\omega_\nu(t) - \omega(t)\|_{L^\infty},
$$

where $\omega_\nu = \text{curl } u_\nu$ and $\omega = \text{curl } u$. (See [Cozzi 2009] for a definition of the Besov space $B^0_{\infty, \infty}$.) Letting n be a function of ν such that n approaches ∞ as ν approaches 0, we show that the right-hand side of (1.3) approaches 0 as n approaches ∞. Since the second term on the right in (1.3) can be bounded above by $2^{-n}(\|\omega_\nu(t)\|_{L^\infty} + \|\omega(t)\|_{L^\infty})$, we have essentially reduced the problem to proving that the vanishing viscosity limit holds in the $B^0_{\infty, \infty}$-norm. Since L^∞ embeds continuously into $B^0_{\infty, \infty}$, we expect this problem to be easier than proving that the vanishing viscosity limit holds in the L^∞-norm; however, we must establish a rate of convergence sufficiently fast to combat the growth of the factor of n in front of the Besov norm.

Working in the Besov space $B^0_{\infty, \infty}$ has several advantages over working in L^∞. Recall that for two-dimensional fluids we can express the Euler velocity gradient in terms of its vorticity by the relation $\nabla u = \nabla \nabla^\perp \Delta^{-1} \omega$. We can also express the Euler pressure in terms of velocity by the equality $p(t) = \sum_{i,j=1}^2 R_i R_j u_i u_j(t)$, where R_i denotes the Riesz operator (similar relations hold for the Navier–Stokes velocity, vorticity, and pressure). The main mathematical obstacle when studying solutions to fluid equations in L^∞ is the lack of boundedness of the Calderon–Zygmund
operators $\nabla \nabla \perp \Delta^{-1}$ and $R_j R_i$ on L^∞. However, if we let Δ_j denote the Littlewood–Paley operator which projects in frequency space onto an annulus with inner and outer radius of order 2^j, then for any $j \geq 0$, $f \in S'$, and Calderon–Zygmund operator A, we have

$$\|\Delta_j Af\|_{L^\infty} \leq \|\Delta_j f\|_{L^\infty}. \tag{1.4}$$

Therefore, when proving estimates in the $B^0_{\infty, \infty}$-norm, we can localize the frequencies of (NS) and (E) by applying the Littlewood–Paley operator Δ_j to the equations. We can then estimate the difference $\Delta_j(u_\nu - u)$ in the L^∞-norm using (1.4). The presence of the Littlewood–Paley operator thus facilitates estimates for velocity gradients and pressure terms.

In [Cozzi 2009] we proved that when u, u_ν, ω and ω_ν belong to $L^\infty_{loc}(\mathbb{R}^+; L^\infty(\mathbb{R}^2))$, there exists $T > 0$ such that

$$\|u_\nu - u\|_{L^\infty([0, T]; L^\infty(\mathbb{R}^2))} \to 0 \text{ as } \nu \to 0. \tag{1.5}$$

To show (1.5), we reduced the problem to showing that the vanishing viscosity limit holds in the homogeneous $\dot{B}^0_{\infty, \infty}$-norm, but we were only able to show convergence in this norm for short time. In this paper, we show that (1.5) holds for every $T > 0$ by showing that the vanishing viscosity limit holds in the inhomogeneous $B^0_{\infty, \infty}$-norm on any finite time interval $[0, T]$.

We remark that this improvement of our previous result is not a consequence of using the inhomogeneous norm in place of the homogeneous norm. In fact, we are able to prove the same convergence result regardless of which Besov norm we use (the proof using the inhomogeneous norm is cleaner). Rather, in this paper we are able to improve upon the results in [Cozzi 2009] because we change our approach when estimating the commutator resulting from an application of the Littlewood–Paley operator to the nonlinear terms in (NS) and (E). Our approach here is similar to those in [Vishik 1999; Bahouri and Chemin 1994; Taniuchi et al. 2010]. As a result of our methods, we are able to prove the estimate

$$\|(u_\nu - u)(t)\|_{\dot{B}^0_{\infty, \infty}} \leq C(T)2^{-n \alpha} + \int_0^t C(2^{-p} + p\|(u_\nu - u)(s)\|_{\dot{B}^0_{\infty, \infty}}) \tag{1.6}$$

for any $p \in [2, \infty)$. By choosing p as a logarithmic function of $\|u_\nu - u\|_{\dot{B}^0_{\infty, \infty}}$, we are able to apply Osgood’s lemma, yielding a rate of convergence. In [Cozzi 2009], our methods only allow us to prove an estimate similar to (1.6) with n in place of p. Since n is a function of viscosity, we must apply Gronwall’s lemma and introduce a factor of e^{nt} on the right hand side, which prevents us from proving that the inviscid limit holds on any finite time interval.

The paper is organized as follows. In Section 2, we review properties of nonde-caying solutions to the fluid equations. In Section 3 and Section 4, we state and
prove the main result; we devote Section 4 entirely to showing that the vanishing viscosity limit holds in the $B^0_{\infty, \infty}$-norm.

For background information on Littlewood–Paley theory, Bony’s paraproduct decomposition, Besov spaces, and technical lemmas used throughout the paper, we refer the reader to Section 2 of [Cozzi 2009].

2. Existence and uniqueness of nondecaying solutions to the fluid equations

In this section, we briefly summarize what is known about nondecaying solutions to (NS) and (E). We begin with the mild solutions to (NS) established in [Giga et al. 1999]. By a mild solution to (NS), we mean a solution u_ν of the integral equation

$$u_\nu(t, x) = e^{tv \Delta} u_\nu^0 - \int_0^t e^{(t-s)v \Delta} P(u_\nu \cdot \nabla u_\nu)(s) \, ds.$$

In (2.1), $e^{tv \Delta}$ denotes convolution with the Gauss kernel; that is, for $f \in S'$,

$$e^{tv \Delta} f = G_{tv} \ast f,$$

where $G_{tv}(x) = 1/(4\pi tv \exp(-|x|^2/(4\pi v)))$. Also, P denotes the Helmholtz projection operator with i, j component given by $\delta_{ij} + R_i R_j$, where $R_l = (-\Delta)^{-1/2} \partial_l$ is the Riesz operator. Giga, Inui, and Matsui proved the following result regarding mild solutions in $\mathbb{R}^n, n \geq 2$:

Theorem 1 [Giga et al. 1999]. Let BUC denote the space of bounded uniformly continuous functions, and assume u_ν^0 belongs to BUC(\mathbb{R}^n) for fixed $n \geq 2$. There exists $T_0 > 0$ and a unique solution to (2.1) in the space $C([0, T_0]; \text{BUC}(\mathbb{R}^n))$ with initial data u_ν^0. Moreover, if we assume $\text{div } u_\nu^0 = 0$, and if we define $p_\nu(t) = \sum_{i,j=1}^2 R_i R_j u_\nu i u_\nu j(t)$ for each $t \in [0, T_0]$, then u_ν belongs to $C^\infty([0, T_0] \times \mathbb{R}^n)$ and solves (NS).

Remark 2.2. For the main theorem of this paper, we assume that u^0 and ω^0 are bounded on \mathbb{R}^2 and that $\text{div } u^0 = 0$. These assumptions imply that u^0 belongs to $C^\alpha(\mathbb{R}^2)$ for every $\alpha < 1$ and is therefore in BUC(\mathbb{R}^2) (see, for example, Lemma 4 of [Cozzi 2009]).

Giga, Matsui, and Sawada [2001] showed that when $n = 2$, the solution to (NS) established in Theorem 1 can be extended to a global-in-time smooth solution. Sawada and Taniuchi [2007] showed that if u^0_ν and ω^0_ν belong to $L^\infty(\mathbb{R}^2)$, then the following exponential estimate holds:

$$\|u_\nu(t)\|_{L^\infty} \leq C \|u_\nu^0\|_{L^\infty} e^{Ct\|\omega^0_\nu\|_{L^\infty}}. $$

For ideal incompressible fluids, we have the following result:

Theorem 2 [Serfati 1995]. Let u^0 and ω^0 belong to $L^\infty(\mathbb{R}^2)$, and let $c \in \mathbb{R}$. For every $T > 0$, there exists a unique solution (u, p) to (E) in the space

$$L^\infty([0, T]; L^\infty(\mathbb{R}^2)) \times L^\infty([0, T]; C(\mathbb{R}^2))$$
with \(\omega \in L^\infty([0, T]; L^\infty(\mathbb{R}^2)) \), \(p(0) = c \), and with \(p(t, x) / |x| \to 0 \) as \(|x| \to \infty \).

Serfati also proved an estimate analogous to (2.3) for his solutions:

\[
\|u(t)\|_{L^\infty} \leq C \|u^0\|_{L^\infty} e^{C_1 \|\omega^0\|_{L^\infty}}.
\]

Finally, we recall that we have a uniform bound in time on the \(L^\infty \)-norms of the vorticities corresponding to the solutions of (NS) and (E). For fixed \(\nu \geq 0 \), we have that

\[
\|\omega_\nu(t)\|_{L^\infty} \leq \|\omega^0_\nu\|_{L^\infty}
\]

for all \(t \geq 0 \). One can prove this bound by applying the maximum principle to the vorticity formulations of (NS) and (E). We refer the reader to Lemma 3.1 of [Sawada and Taniuchi 2007] for a detailed proof.

3. Statement and proof of the main result

We are now prepared to state the main theorem:

Theorem 3. Let \(u_\nu \) be the unique solution to (NS) and \(u \) the unique solution to (E), both with initial data \(u^0 \) and \(\omega^0 \) belonging to \(L^\infty(\mathbb{R}^2) \), and with \(p_\nu \) and \(p \) satisfying the conditions of Theorems 1 and 2, respectively. Let \(M \) be defined by (3.2) below and let \(T > 0 \) be fixed. Then there exists a constant \(C_{M, T} \), increasing with both \(M \) and \(T \), such that the following estimate holds for any fixed \(\alpha \in (0, 1) \):

\[
\|u_\nu - u\|_{L^\infty([0, T]; L^\infty(\mathbb{R}^2))} \leq C_{M, T} \left(2 - \log((\sqrt{\nu})^{\alpha e^{-C_{M, T}}})\right)(\sqrt{\nu})^{\alpha e^{-C_{M, T}}}.
\]

Proof. Throughout the proof of Theorem 3, we let \(M \) denote a constant, dependent on \(T \), which satisfies

\[
M \geq 1 + \sup_{t \in [0, T]} (\|u_\nu(t)\|_{L^\infty} + \|u(t)\|_{L^\infty} + \|\omega_\nu(t)\|_{L^\infty} + \|\omega(t)\|_{L^\infty}).
\]

We note that the value of \(M \) will change throughout the proof but will always satisfy (3.2). The existence results in Section 2 imply that \(M \) will be finite for any \(T > 0 \).

Let \(u \) be the unique Serfati solution to (E), and let \(u_\nu \) be the unique solution to (NS) given by [Giga et al. 2001]. We fix \(n \) to be a positive integer and we fix \(T > 0 \). We will eventually choose \(n = -\frac{1}{2} \log_2 \nu \) so that as \(\nu \) approaches 0, \(n \) approaches \(\infty \).
We begin with the following inequality:

\[(3.3) \quad \|u_\nu - u\|_{L^\infty([0,T]; L^\infty)} \leq \sum_{j=-1}^{n} \|\Delta_j(u_\nu - u)\|_{L^\infty([0,T]; L^\infty)} + \sum_{j=n+1}^{\infty} \|\Delta_j(u_\nu - u)\|_{L^\infty([0,T]; L^\infty)}.
\]

We can estimate the second term on the right-hand side of (3.3) using Bernstein’s lemma and the estimate

\[(3.4) \quad \|\Delta_j \nabla u\|_{L^\infty} \leq \|\Delta_j \omega\|_{L^\infty} \quad \text{for} \quad j \geq 0.
\]

(Both (3.4) and Bernstein’s lemma can be found in Section 2 of [Cozzi 2009].) We obtain the inequality

\[(3.5) \quad \sum_{j=n+1}^{\infty} \|\Delta_j(u_\nu - u)\|_{L^\infty([0,T]; L^\infty)} \leq M2^{-n}.
\]

To estimate the first term on the right-hand side of (3.3), we use the definition of $B_{\infty, \infty}^0$ to observe that

\[(3.6) \quad \sum_{j=-1}^{n} \|\Delta_j(u_\nu - u)\|_{L^\infty([0,T]; L^\infty)} \leq Cn \|u_\nu - u\|_{L^\infty([0,T]; B_{\infty, \infty}^0)}.
\]

After substituting (3.6) and (3.5) into (3.3), we conclude that

\[(3.7) \quad \|u_\nu - u\|_{L^\infty([0,T]; L^\infty)} \leq Cn \|u_\nu - u\|_{L^\infty([0,T]; B_{\infty, \infty}^0)} + M2^{-n}.
\]

We must estimate the difference of u_ν and u in the $B_{\infty, \infty}^0$-norm. We temporarily assume that the following estimate holds for all $\alpha \in (0, 1)$:

\[(3.8) \quad \|u_\nu - u\|_{L^\infty([0,T]; B_{\infty, \infty}^0)} \leq C_{M,T} (2 - \log 2^{-nae^{-CM,T}}) 2^{-nae^{-CM,T}}.
\]

Assuming that (3.8) holds, we see from (3.7) and (3.8) that

\[\|u_\nu - u\|_{L^\infty([0,T]; L^\infty)} \leq C_{M,T} (2 - \log 2^{-nae^{-CM,T}}) 2^{-nae^{-CM,T}}.
\]

The estimate (3.1) follows after setting $\nu = 2^{-2n}$. Therefore, to complete the proof of Theorem 3, it remains to prove (3.8).
4. Proof of (3.8)

Let $u_n = S_n u$, $\omega_n = S_n \omega(u)$, $\bar{u}_n = u_v - u_n$, and $\bar{\omega}_n = \omega_v - \omega_n$. Throughout most of the proof of (3.8), the time t is fixed and suppressed in the calculations.

Fix $p \in (1, \infty)$ (to be chosen later). We apply Bernstein’s lemma and (3.4) to establish the estimate

\[(4.1) \quad \|u_v - u\|_{B^{0, \infty}_{\infty, \infty}} \leq \sup_{-1 \leq l \leq 2} \|\Delta_l (u_v - u)\|_{L^\infty} + \sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l (\omega_v - \omega)\|_{L^\infty} + \sup_{l > p} 2^{-l} \|\Delta_l (\omega_v - \omega)\|_{L^\infty}.\]

The separation of frequencies at $l = 2$ will simplify estimates in what follows.

We will first consider the difference $\sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l (\omega_v - \omega)\|_{L^\infty}$. We will eventually need to estimate the viscosity term $\nu \|\Delta \omega\|_{L^\infty}$. To facilitate this estimate, we smooth out the Euler vorticity and write

\[(4.2)\quad \sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l (\omega_v - \omega)\|_{L^\infty} \leq \sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l \bar{\omega}_n\|_{L^\infty} + \sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l (\omega_n - \omega)\|_{L^\infty} \leq \sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l \bar{\omega}_n\|_{L^\infty} + M 2^{-n},\]

where we used properties of the Fourier support of ω_n to get the second inequality.

We now estimate $\sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l \bar{\omega}_n\|_{L^\infty}$. We note that ω_v and ω_n satisfy

\[(4.3)\quad \partial_t \omega_v + u_v \cdot \nabla \omega_v - \nu \Delta \omega_v = 0\]

and

\[(4.4)\quad \partial_t \omega_n + u_n \cdot \nabla \omega_n = \nabla \cdot \tau_n (u, \omega),\]

where $\tau_n (u, \omega) = (u - u_n)(\omega - \omega_n) - r_n (u, \omega)$ and

\[r_n (u, \omega) = \int \tilde{\psi}_0(y) (u(x - 2^{-n} y) - u(x)) (\omega(x - 2^{-n} y) - \omega(x)) \, dy.\]

Here ψ_0 denotes the Fourier multiplier associated with the Littlewood-Paley operator Δ_{-1}. Equation (4.4) was utilized by Constantin and Wu [1996] and by Constantin, E, and Titi in a proof of Onsager’s conjecture in [Constantin et al. 1994]. We subtract (4.4) from (4.3) and, for fixed l, we apply the Littlewood–Paley operator Δ_l to the difference of the two equations. After adding $(S_{l-2} u_v) \cdot \nabla \Delta_l \bar{\omega}_n$ to both
sides of the resulting equation, we obtain
\begin{equation}
\partial_t \Delta_l \tilde{\omega}_n + (S_{l-2} u_v) \cdot \nabla \Delta_l \tilde{\omega}_n - \nu \Delta \Delta_l \tilde{\omega}_n
\end{equation}
\begin{align*}
&= (S_{l-2} u_v) \cdot \nabla \Delta_l \tilde{\omega}_n - \Delta_l (u_v \cdot \nabla \tilde{\omega}_n) \\
&\quad - \Delta_l (\tilde{u}_n \cdot \nabla \omega_n) + \nu \Delta \Delta_l \omega_n - \Delta_l \nabla \cdot \tau_n (u, \omega).
\end{align*}

Borrowing notation from [Taniuchi et al. 2010], we define
\begin{equation}
I_{l,k} = (S_{l-2} u^k_v) \partial_k \Delta_l \tilde{\omega}_n - \partial_k \Delta_l (u^k_v \tilde{\omega}_n) \quad \text{and} \quad J_{l,k} = -\partial_k \Delta_l (\tilde{u}^k_n \omega_n).
\end{equation}

From (4.5), we see that
\begin{equation}
\partial_t \Delta_l \tilde{\omega}_n + (S_{l-2} u_v) \cdot \nabla \Delta_l \tilde{\omega}_n - \nu \Delta \Delta_l \tilde{\omega}_n
\end{equation}
\begin{align*}
&= \sum_{k=1}^{2} (I_{l,k} + J_{l,k}) + \nu \Delta \Delta_l \omega_n - \Delta_l \nabla \cdot \tau_n (u, \omega).
\end{align*}

Since \(S_{l-2} u_v \) belongs to \(L^1_{loc} (\mathbb{R}^+; \text{Lip} (\mathbb{R}^2)) \) and is divergence-free, we can apply the following lemma for the transport diffusion equation from [Hmidi 2005].

Lemma 4. Let \(p \in [1, \infty] \), and let \(u \) be a divergence-free vector field belonging to \(L^1_{loc} (\mathbb{R}^+; \text{Lip} (\mathbb{R}^d)) \). Moreover, assume the function \(f \) belongs to \(L^1_{loc} (\mathbb{R}^+; L^p (\mathbb{R}^d)) \) and the function \(a^0 \) belongs to \(L^p (\mathbb{R}^d) \). Then any solution \(a \) to the problem
\begin{align*}
\begin{cases}
\partial_t a + u \cdot \nabla a - \nu \Delta a &= f, \\
a|_{t=0} &= a^0,
\end{cases}
\end{align*}

satisfies the estimate
\begin{equation}
\|a(t)\|_{L^p} \leq \|a^0\|_{L^p} + \int_0^t \|f(s)\|_{L^p} ds.
\end{equation}

An application of Lemma 4 to (4.7) yields
\begin{equation}
\|\Delta_l \tilde{\omega}_n(t)\|_{L^\infty} \leq \|\Delta_l \tilde{\omega}_n(0)\|_{L^\infty} + \int_0^t \left(\sum_{k=1}^{2} \left(\|I_{l,k}(s)\|_{L^\infty} + \|J_{l,k}(s)\|_{L^\infty} \right) \right) ds
\end{equation}
\begin{align*}
&\quad + \int_0^t \left(\nu \|\Delta_l \omega_n(s)\|_{L^\infty} + \|\Delta_l \nabla \cdot \tau_n (u, \omega)(s)\|_{L^\infty} \right) ds.
\end{align*}

Our goal is to establish an upper bound for \(\sup_{3 \leq l \leq p} 2^{-l} \|\Delta_l \tilde{\omega}_n(t)\|_{L^\infty} \). In what follows, we will estimate each term on the right-hand side of (4.8), multiply by \(2^{-l} \), and take the supremum over \(l \) satisfying \(3 \leq l \leq p \). Estimates for the last two terms on the right-hand side of (4.8) follow from work in [Cozzi 2009]. Indeed, in that paper we used boundedness of the Euler vorticity and membership of the Euler
velocity in $C^\alpha(\mathbb{R}^2)$ for any $\alpha \in (0, 1)$ to show that for such α,

$$\sup_{l \geq 0} 2^{-l} \| \Delta_l \nabla \cdot \tau_n(u, \omega) \|_{L^\infty} \leq \| \nabla \cdot \tau_n(u, \omega) \|_{L^\infty} \leq M 2^{-n\alpha}.$$

We also showed there, using Bernstein’s lemma and properties of the Fourier support of ω_n, that

$$\sup_{l \geq 0} 2^{-l} \| \Delta_l \Delta \omega_n \|_{L^\infty} \leq 2^n v \| \omega_n \|_{L^\infty} \leq M 2^{-n},$$

where we set $v = 2^{-2n}$. To estimate the initial data, we used the Fourier support of $\omega^0_n = S_n \omega_0$ to write

$$\sup_{3 \leq l \leq p} 2^{-l} \| \Delta_l \omega_n(0) \|_{L^\infty} \leq \sup_{l \geq n} 2^{-l} \| \Delta_l \omega_n(0) \|_{L^\infty} \leq M 2^{-n}.$$

Multiplying (4.8) by 2^{-l}, taking the supremum of (4.8) over l satisfying $3 \leq l \leq p$, and applying the estimates (4.9), (4.10), and (4.11) gives

$$\sup_{3 \leq l \leq p} 2^{-l} \| \Delta_l \omega_n(t) \|_{L^\infty} \leq M(t + 1) 2^{-n\alpha} + \sup_{3 \leq l \leq p} 2^{-l} \int_0^t \left(\sum_{k=1}^2 (\| I^{l,k}(s) \|_{L^\infty} + \| J^{l,k}(s) \|_{L^\infty}) \right) ds.$$

It remains to estimate $I^{l,k}$ and $J^{l,k}$. We begin with $J^{l,k}$. We again borrow notation from [Taniuchi et al. 2010] and use Bony’s paraproduct decomposition to write

$$J^{l,k} = -\partial_k \Delta_l \sum_{|j-l| \leq 3, j \geq 1} S_{j-2} \tilde{u}^k_n \Delta_j \omega_n$$

$$- \partial_k \Delta_l \sum_{|j-l| \leq 3, j \geq 1} \Delta_j \tilde{u}^k_n S_{j-2} \omega_n$$

$$- \partial_k \Delta_l \sum_{|j-j'| \leq 1, \max\{j, j'\} \geq l-3} \Delta_j \tilde{u}^k_n \Delta_j' \omega_n$$

$$= J^{l,k}_1 + J^{l,k}_2 + J^{l,k}_3.$$

We estimate $J^{l,k}_1$. Several applications of Bernstein’s lemma give

$$\| J^{l,k}_1 \|_{L^\infty} \leq 2^l \sum_{|j-l| \leq 3, j \geq 1} \| S_{j-2} \tilde{u}^k_n \|_{L^\infty} \| \Delta_j \omega_n \|_{L^\infty}$$

$$\leq 2^l \sum_{|j-l| \leq 3, j \geq 1} \| \Delta_j \omega_n \|_{L^\infty} \sum_{k \leq j-2} \| \Delta_k \tilde{u}^k_n \|_{L^\infty}.$$
Multiplying by 2^{-l} and taking the supremum over l satisfying $3 \leq l \leq p$, we conclude that

$$\sup_{3 \leq l \leq p} 2^{-l} \| J_{1,k}^l \|_{L^\infty} \leq M p \| \tilde{u}_n \|_{B_{0,\infty}^0}.$$

We now estimate $J_{2,k}^l$. We write

$$\| J_{2,k}^l \|_{L^\infty} \leq 2^l \sum_{|j-l| \leq 3, j \geq 1} \| \Delta_j (\Delta_j \tilde{u}_n S_{j-2} \omega_n) \|_{L^\infty} \leq 2^l \sum_{|j-l| \leq 3, j \geq 1} \| \Delta_j \tilde{u}_n \|_{L^\infty} \| S_{j-2} \omega_n \|_{L^\infty}$$

so that

$$\sup_{3 \leq l \leq p} 2^{-l} \| J_{2,k}^l \|_{L^\infty} \leq M \| \tilde{u}_n \|_{B_{0,\infty}^0}.$$

To estimate $J_{3,k}^l$, we use properties of Littlewood–Paley operators to observe that

$$\| J_{3,k}^l \|_{L^\infty} \leq 2^l \sum_{|j-j'| \leq 1, \max\{j,j'\} \geq l-3} \| \Delta_j \tilde{u}_n \|_{L^\infty} \| \Delta_j \omega_n \|_{L^\infty} \leq C 2^l \sum_{j \geq l-3} \| \Delta_j \tilde{u}_n \|_{L^\infty} \| \Delta_j \omega_n \|_{L^\infty} \leq C 2^l \| \omega \|_{L^\infty} \| \tilde{u}_n \|_{B_{0,1}^0}.$$

We estimate the $B_{0,1}^0$-norm of \tilde{u}_n as follows: We bound the low frequencies using the definition of $B_{0,\infty}^0$, and we estimate the high frequencies using Bernstein’s lemma, (3.4), and boundedness of vorticity. We have the series of estimates

$$\| \tilde{u}_n \|_{B_{0,1}^0} \leq \sum_{j=-1}^p \| \Delta_j \tilde{u}_n \|_{L^\infty} + \sum_{j > p} 2^{-j} \| \Delta_j \tilde{\omega}_n \|_{L^\infty} \leq C p \| \tilde{u}_n \|_{B_{0,\infty}^0} + M 2^{-p}.$$

Substituting this estimate into (4.18), multiplying by 2^{-l} and taking the supremum over l between 3 and p yields the estimate

$$\sup_{3 \leq l \leq p} 2^{-l} \| J_{3,k}^l \|_{L^\infty} \leq M (2^{-p} + p \| \tilde{u}_n \|_{B_{0,\infty}^0}).$$

Combining the estimates for (4.15), (4.17), and (4.20), we conclude that

$$\sup_{3 \leq l \leq p} 2^{-l} \sum_{k=1}^2 \| J_{l,k}^l \|_{L^\infty} \leq M (2^{-p} + p \| \tilde{u}_n \|_{B_{0,\infty}^0}).$$
We now estimate $I_{l,k}^l$ for l satisfying $3 \leq l \leq p$. We apply Theorem 6.1 of [Vishik 1999] to write

$$
2 \sum_{k=1}^{2} \| I_{l,k}^l \|_{L^\infty} \leq C \sum_{|j-l|\leq3} \| S_{j-2} \nabla \tilde{\omega}_n \|_{L^\infty} \| \Delta_j u_v \|_{L^\infty} \\
+ \sum_{|j-l|\leq3} \| S_{j-2} \nabla u_v \|_{L^\infty} \| \Delta_j \tilde{\omega}_n \|_{L^\infty} \\
+ C2^l \sum_{j \geq l-3 \atop |j-j'|\leq1} 2^{-j} \| \Delta_j \nabla u_v \|_{L^\infty} \| \Delta_{j'} \tilde{\omega}_n \|_{L^\infty} \\
= X_1^l + X_2^l + X_3^l.
$$

To estimate X_1^l, keeping in mind that $l \geq 3$, we use Bernstein’s lemma and (3.4) to write

$$
\sum_{|j-l|\leq3} \| S_{j-2} \nabla \tilde{\omega}_n \|_{L^\infty} \| \Delta_j u_v \|_{L^\infty} \leq C \sum_{|j-l|\leq3} \| S_{j-2} \tilde{u}_n \|_{L^\infty} \| \Delta_j \omega_v \|_{L^\infty}.
$$

The remainder of the estimate for X_1^l is identical to that for $J_1^{l,k}$. Multiplying by 2^{-l} and taking the supremum over l between 3 and p, we conclude that

$$
(4.22) \sup_{3 \leq l \leq p} 2^{-l} X_1^l \leq Mp \| \tilde{u}_n \|_{B^0_{\infty,\infty}}.
$$

To estimate X_2^l for $3 \leq l \leq p$, we again apply Bernstein’s lemma and (3.4) to write

$$
(4.23) X_2^l = \sum_{|j-l|\leq3} \| S_{j-2} \nabla u_v \|_{L^\infty} \| \Delta_j \tilde{\omega}_n \|_{L^\infty} \\
\leq C2^l \sum_{|j-l|\leq3} \(\| u_v \|_{L^\infty} + (j-1) \| \omega_v \|_{L^\infty} \) \| \Delta_j \tilde{u}_n \|_{L^\infty} \\
\leq Mp2^l \sum_{|j-l|\leq3} \| \Delta_j \tilde{u}_n \|_{L^\infty}.
$$

To get the first inequality above, we bounded the term $\| S_{j-2} \nabla u_v \|_{L^\infty}$ above by the sum resulting from the S_{j-2} operator. We then applied (3.4). After multiplying (4.23) by 2^{-l} and taking the supremum over l satisfying $3 \leq l \leq p$, we find that

$$
(4.24) \sup_{3 \leq l \leq p} 2^{-l} X_2^l \leq Mp \| \tilde{u}_n \|_{B^0_{\infty,\infty}}.
$$
The estimate for \(X^l_3 \) is similar to that for \(J^{l,k}_3 \). For \(l \) satisfying \(3 \leq l \leq p \), we write
\[
X^l_3 = C2^l \sum_{j \geq l-3} 2^{-j} \| \Delta_j \nabla u_v \|_{L^\infty} \| \Delta_j \tilde{w}_n \|_{L^\infty}
\]
\[
\leq C2^l \sum_{j \geq l-3} \| \Delta_j w_v \|_{L^\infty} \| \Delta_j \tilde{u}_n \|_{L^\infty},
\]
where we used Bernstein’s lemma and (3.4) to get the last inequality. We now use the same argument as in (4.18) and (4.19) to conclude that
\[
\sup_{3 \leq l \leq p} 2^{-l} X^l_3 \leq M(2^{-p} + p \| \tilde{u}_n \|_{B^0_{\infty, \infty}}).
\]
Combining the above estimates for \(X^l_1, X^l_2, \) and \(X^l_3 \), we have
\[
\sup_{3 \leq l \leq p} 2^{-l} \sum_{k=1}^2 \| I^{l,k} \|_{L^\infty} \leq M(2^{-p} + p \| \tilde{u}_n \|_{B^0_{\infty, \infty}}).
\]
Applying the estimates (4.21) and (4.27) to (4.12), we conclude that
\[
\sup_{3 \leq l \leq p} 2^{-l} \| \Delta_l \tilde{w}_n(t) \|_{L^\infty} \leq C(t + 1)2^{-n\alpha} + M \int_0^t (2^{-\alpha} + p \| W(s) \|_{B^0_{\infty, \infty}}) ds
\]
for any \(\alpha \in (0, 1) \). We substitute (4.28) into (4.2). This gives
\[
\sup_{3 \leq l \leq p} 2^{-l} \| \Delta_l (w_v - \omega)(t) \|_{L^\infty} \leq C(t + 1)2^{-n\alpha}
\]
\[
\quad \quad \quad \quad \quad \quad \quad \quad + M \int_0^t (2^{-\alpha} + p \| \tilde{u}_n(s) \|_{B^0_{\infty, \infty}}) ds.
\]
Inspection of (4.1) reveals that we must still estimate \(\sup_{-1 \leq l \leq 2} \| \Delta_l (u_v - u)(t) \|_{L^\infty} \) and \(\sup_{l > p} 2^{-l} \| \Delta_l (w_v - \omega)(t) \|_{L^\infty} \). These two terms are more straightforward. We estimate the term \(\sup_{l > p} 2^{-l} \| \Delta_l (w_v - \omega)(t) \|_{L^\infty} \) by observing that
\[
\sup_{l > p} 2^{-l} \| \Delta_l (w_v - \omega)(t) \|_{L^\infty} \leq M2^{-p}.
\]
To estimate \(\sup_{-1 \leq l \leq 2} \| \Delta_l (u_v - u)(t) \|_{L^\infty} \), we use the velocity formulation. Setting \(\tilde{\rho} = p_v - p \) and \(\tilde{u} = u_v - u \), we subtract (E) from (NS). This gives
\[
\partial_t \tilde{u} + u_v \cdot \nabla \tilde{u} + \tilde{u} \cdot \nabla u - v \Delta \tilde{u} = -\nabla \tilde{\rho} + v \Delta u_v.
\]
We apply \(\Delta_l \) to (4.31) for \(-1 \leq l \leq 2 \). This gives
\[
\partial_t \Delta_l \tilde{u} + (\Delta_l u_v) \cdot \nabla \Delta_l \tilde{u} - v \Delta_l \Delta \tilde{u} = (\Delta_l u_v) \cdot \nabla \Delta_l \tilde{u} - \Delta_l (u_v \cdot \nabla \tilde{u})
\]
\[
\quad - \Delta_l (\tilde{u} \cdot \nabla u) - \Delta_l \nabla \tilde{\rho} + v \Delta_l (\Delta \tilde{u})v.
\]
Again by Lemma 4, we have

\[
\| \Delta_l \bar{u}(t) \|_{L^\infty} \leq \int_0^t \left(\| (\Delta_l u_v \cdot \nabla \Delta_l \bar{u})(s) \|_{L^\infty} + \| \Delta_l (u_v \cdot \nabla \bar{u})(s) \|_{L^\infty} \\
+ \| \Delta_l (\bar{u} \cdot \nabla u)(s) \|_{L^\infty} + \| \Delta_l \nabla \bar{p}(s) \|_{L^\infty} + \nu \| \Delta_l \Delta u_v(s) \|_{L^\infty} \right) \, ds.
\]

We have the following straightforward estimates, all which follow from Bernstein’s lemma and the divergence-free property of the velocity:

\[
\| (\Delta_l u_v) \cdot \nabla \Delta_l \bar{u} \|_{L^\infty} \leq C \| u_v \|_{L^\infty} L^2 \| \Delta_l \bar{u} \|_{L^\infty} \leq M 2^l \| \bar{u} \|_{L^\infty},
\]

\[
\| \Delta_l (u_v \cdot \nabla \bar{u}) \|_{L^\infty} \leq C 2^l \| u_v \|_{L^\infty} \| \bar{u} \|_{L^\infty} \leq M 2^l \| \bar{u} \|_{L^\infty},
\]

\[
\| \Delta_l (\bar{u} \cdot \nabla u) \|_{L^\infty} \leq 2^l \| \bar{u} \|_{L^\infty} \| u \|_{L^\infty} \leq M 2^l \| \bar{u} \|_{L^\infty},
\]

\[
v \| \Delta_l \Delta u_v \|_{L^\infty} \leq C \nu 2^{2l} \| u_v \|_{L^\infty} \leq M \nu 2^{2l}.
\]

To estimate the pressure, we follow an argument in [Taniuchi et al. 2010]. For 0 ≤ l ≤ 2, if \(\varphi_l \) is the Fourier multiplier associated with \(\Delta_l \), then

\[
\| \Delta_l \nabla \bar{p} \|_{L^\infty} = \left\| \sum_{i,i'=1}^2 R_i R_{i'} \nabla \Delta_l (\bar{u}^i u^{i'} + u^{i'} \bar{u}^i) \right\|_{L^\infty}
\]

\[
\leq \| R_i R_{i'} \nabla \bar{\varphi}_l \|_{L^\infty} \| \bar{u}^i u^{i'} + u^{i'} \bar{u}^i \|_{L^\infty} \leq M 2^l \| \bar{u} \|_{L^\infty},
\]

where we applied the estimates \(\| R_i R_{i'} \nabla \bar{\varphi}_l \|_{L^1} \leq \| R_i R_{i'} \nabla \bar{\varphi}_l \|_{H^l} \leq \| \nabla \bar{\varphi}_l \|_{H^l} \leq C 2^l \) to get the last inequality. For the case \(l = -1 \), we apply the same series of estimates as in (4.35) with \(\bar{\varphi}_0 \) in place of \(\bar{\varphi}_l \).

Substituting the estimates (4.34) and (4.35) into (4.33) and taking the supremum over \(-1 \leq l \leq 2\) yields

\[
\sup_{-1 \leq l \leq 2} \| \Delta_l \bar{u}(t) \|_{L^\infty} \leq M \int_0^t (\| \bar{u} \|_{L^\infty} + 2^{-2n}) ,
\]

where we used the equality \(\nu = 2^{-2n} \). We now apply the embedding \(B_{\infty,1}^0 \hookrightarrow L^\infty \), along with (4.19), to conclude that

\[
\sup_{-1 \leq l \leq 2} \| \Delta_l \bar{u}(t) \|_{L^\infty} \leq Mt 2^{-2n} + M \int_0^t (|\bar{u}(s)|_{B_{\infty,\infty}^0} + 2^{-p}) \, ds.
\]

We substitute the estimates (4.37), (4.29), and (4.30) into (4.1). We conclude that

\[
\sup_{l \geq -1} \| \Delta_l \bar{u}(t) \|_{L^\infty} \leq M (T + 1) 2^{-n\alpha} + M 2^{-p}
\]

\[
+ \int_0^t M (2^{-p} + p |\bar{u}(s)|_{B_{\infty,\infty}^0}) \, ds.
\]
To complete the proof of (3.8), we will apply Osgood’s lemma to (4.38). We first note that by the embedding $L^\infty \hookrightarrow B^0_{\infty, \infty}$,

$$\|\bar{u}(t)\|_{B^0_{\infty, \infty}} \leq \|\bar{u}(t)\|_{L^\infty} \leq \|u_\nu(t)\|_{L^\infty} + \|u(t)\|_{L^\infty} \leq M$$

for all $t \in [0, T]$. For each $t \in [0, T]$, set

(4.39) \[\delta(t) = \frac{\int_0^t \|\bar{u}(s)\|_{B^0_{\infty, \infty}} ds}{MT} \leq 1, \]

and set $p = 2 - \log \delta(t)$. Then (4.38) reduces to

(4.40) \[\|\bar{u}(t)\|_{B^0_{\infty, \infty}} \leq M(T + 1)2^{-\alpha} + M(T + 1)\delta(t) + M^2T(2 - \log_2 \delta(t))\delta(t). \]

Integrating both sides over $[0, t]$ and dividing both sides by MT yields the inequality

(4.41) \[\delta(t) \leq (T + 1)2^{-\alpha} + \left(\frac{T + 1}{T} + M\right) \int_0^t (2 - \log_2 \delta(s))\delta(s) ds. \]

We are now in a position to use Osgood’s lemma (see [Chemin and Lerner 1995]):

Lemma 5 (Osgood’s lemma). Let ρ be a measurable positive function, let γ be a locally integrable positive function, and let μ be a continuous increasing function. Assume that for some number $\beta > 0$, the function ρ satisfies

$$\rho(t) \leq \beta + \int_0^t \gamma(s)\mu(\rho(s)) ds.$$

Then $-\phi(\rho(t)) + \phi(\beta) \leq \int_0^t \gamma(s) ds$, where $\phi(x) = \int_x^1 \frac{1}{\mu(r)} dr$.

We set $\mu(r) = r(2 - \log r)$, $\rho(t) = \delta(t)$, $\beta = (T + 1)2^{-\alpha}$, and

$$\gamma(t) = \frac{T + 1}{T} + M := C_0(M, T),$$

and we apply Osgood’s lemma to obtain, for any $t \leq T$,

$$-\log(2 - \log \delta(t)) + \log(2 - \log((T + 1)2^{-\alpha})) \leq C_0(M, T)t.$$

Taking the exponential twice gives

(4.42) \[\delta(t) \leq e^{2e^{-C_0(M, T)t}}((T + 1)2^{-\alpha})e^{-C_0(M, T)t}. \]

The inequality (3.8) follows after substituting (4.42) into (4.40) and letting $\nu = 2^{-2n}$.

Acknowledgement

This work was supported by the National Science Foundation under grant DMS-1049698.
References

Received May 8, 2013. Revised October 31, 2013.

ELAINE COZZI
DEPARTMENT OF MATHEMATICS
OREGON STATE UNIVERSITY
368 KIDDER HALL
CORVALLIS, OR 97331
UNITED STATES
cozzie@math.oregonstate.edu