AN ABSTRACT OF THE THESIS OF

Murray Hackett for the degree of Master of Science in Toxicology presented on April 27, 1987. Title: The Determination of Selected Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Environmental Samples from Sites Associated with the use of Chlorophenolic Wood Preservatives

Abstract Approved:

Redacted for Privacy

Kenneth J. Williamson

Polychlorinated dibenzo-p-dioxins (PCDD's) and dibenzofurans (PCDF's) are environmental pollutants assoclated with the production and use of a number of industrial chemicals. In addition, PCDD's and PCDF's are produced during low temperature combustion of wastes containing polyvinylchloride (PVC), chlorophenols, and a number of other chemical precursors.

A significant source of environmental contamination by PCDD/PCDF in Oregon has been the use of technical grades of pentachlorophenol ($t-P C P$) and 2,3,4,6tetrachlorophenol, and their sodium and potassium salts. These compounds have been used extensively by the lumber
industry as wood preservatives since the 1930's.
Environmental samples from five sites in Oregon and Washington state were screened for 21 selected PCDD/PCDF isomers. These included the most toxic laterally substituted isomers, that is those with chlorines in the 2,3,7, and 8 positions, but lacking substituents in one or more of the peri positions. The samples were taken from sediments, soil, wood shavings from pressure treated lumber, diptank sludge, fresh crystalline t-PCP, and tissues from bovines and equines exposed to these chemicals in the environment. Three of the Oregon sites were associated with chlorophenate salts used to prevent "sapstain" in finished lumber. The fourth Oregon site served as a control. The Eagle Harbor, Washington, site was located near a pressure treatment facility long known to be a point source for creosote in Eagle Harbor.

The soil and sediment samples were analyzed for PCDD/ PCDF with the intent of finding evidence for in-situ degradation, and perhaps acclimated microorganisms capable of degrading these stable and persistent compounds. No significant evidence of such processes occurring under natural conditions was discovered. This tends to support other work which suggests these compounds are highly refractory to microbiological processes.

The Determination of Selected Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Environmental Samples from Sites Associated with the use of Chlorophenolic Wood Preservatives
by

Murray Hackett

A THESIS
submitted to Oregon State University

```
in partial fulfillment of the
    requirements for the
            degree of
        Master of Science
```

 Completed April 27, 1987
 Commencement June 1987
 Redacted for Privacy
Professor of Civif Engineering in charge of major

Redacted for Privacy

Chairman of Department of Toxicology

Date thesis is presented April 27, 1987
Typed by the researcher for
Murray Hackett

ACKNOWLEDGMENTS

This study was made possible by the cooperation and assistance of many individuals and several organizations. The Environmental Protection Agency, The National Science Foundation, and the Department of Civil Engineering at OSU are acknowledged for research support. The Department of Chemistry at Oregon State provided a Tartar Fellowship during the summer of 1985.

Partial support for analytical standards and supplies was provided by the Graduate Research Council, Oregon State University. The U.S. EPA Environmental Research Laboratory at Duluth, Minnesota and the University of Wisconsin at Superior, Wisconsin are acknowledged for their analytical support. Although most of the analytical work was carried out at ERA ERL Duluth, Oregon State University is solely responsible for the content of this thesis.

Specific individuals and other organizations to be acknowledged include:

Oregon State University, Department of Civil Engineering Dr. Kenneth Williamson, Dr. Sandra Woods

Oregon State University, Department of Agricultural Chemistry Dr. Max Deinzer, Dr. James Laramee, Mr. Brian Arbogast, Dr. Ian Tinsley, Mr. Rod Inman, Dr. Donald Buhler

Oregon State University, Department of Chemistry
Dr. John Westall, Dr. James Krueger

Oregon State University, School of Pharmacy
Dr. Robert Larson

Oregon State University, Department of Soil Science
Dr. John Baham

Oregon State University, School of Veterinary Medicine
Dr. Nancy Kerkvliet, Dr. Bruce Hultgren, Dr. Wayne Schmotzer

Oregon Department of Environmental Quality
Mr. Jeff Dresser, Mr. Larry Patterson
U.S. EPA, ERL Duluth, Minnesota

Dr. Norbert Jaworski, Mr. Brian Butterworth, Mr. Douglas Kuehl,
Dr. Gilman Veith, Dr. Philip Cook, Ms. Barbara Halligan
U.S. EPA, ERL Newport, Oregon

Dr. Donald Baumgartner
Dr. Larry Smith

Northrop Environmental Inc, Corvallis, Oregon
Mr. Glen Wilson

Center For Lake Superior Environmental Studies, University of Wisconsin, Superior, Wisconsin
Dr. Donald Bahnick, Dr. Raymond Hanson, Mr. Kenneth Johnson, Ms. Darcy Johnson, Ms. Sandra Neumann, Ms. Marie Larsen, Mr. Larry Holland, Mr. William DeVita, Mr. Chris Sauer

Oregon Department of Environmental Quality
Mr. Jeff Dresser, Mr. Larry Patterson

Oregon Health Divison
Mr. Michael Heumann

Crist, Stewart, Lowe \& Maurer, Attorneys at Law
Mr. John Lowe
Mr. Thomas Rastetter

Anderson Development Co. Adrian, Michigan

Chapman Chemical Co. Memphis, Tennessee

Reichold Chemical Co. Tacoma, Washington

TABLE OF CONTENTS

Introduction 1
Materlals and Methods 7
I. Eagle Harbor Site 14
II. Arablan Horse Farm, Adjacent to Sawmill Site 1 18
III. Sawmill Site Number 2 23
IV. Sawmill Site Number 3 29
V. Control Site 31
Overall Summary and Conclusions 33
References 71
Appenaix A : TCDD Equivalent Factors 78
Appendix B: Sample cleanup methods for Soil/Sediment 79
Appendix $C:$ Sample cleanup methods for Biological Tissues 86
Appendix D: Internal Standards 89
Appendix E: HRGC/GCMS Operating Parameters 90
Appendix F : Source Code for Computer Programs used to Quantify Samples 94

LIST OF FIGURES

Figure Page

1. Sampling Locations, Eagle Harbor Site 61
2. Sampling Locations, Sawmill Site 2 62
3. Chemical Structures of Pentachlorophenol,2,3,4,6-Tetrachlorophenol,1, 2, 3, 6, 7, 8-HxCDD,$1,2,3,4,7,8-\mathrm{HxCDF}$,2-nonachlorophenoxyphenol63
4. Two Eagle Harbor Sediment Samples Compared to an Industry Composite Sample of t-PCP, Congener Group Total Concentrations normalized to OCDD 64
5. Sample 222 Compared to Mean Values of four PCDD Isomers in $t-P C P$ and Flyash 65
6. Mass Chromatograms of HxCDD's in Eagle Harbor, $t-P C P$ and Flyash 66
7. Mean Values of four Selected PCDD/PCDF from Table 9 Compared to Sample 223 68
8. Mean Values of four Selected PCDD/PCDFfrom Table 9 Compared to Mean Valuesfrom Table 869
9. Schematic Diagram Showing Outline of Analytical Method for PCDD/PCDF 70

LIST OF TABLES

Table Page

1. Descriptions of Tissue Samples 35
2. Descriptions of Soil/Sediment/Other Samples 36
3. Results, Isomer Specific Analyses of Two Samples of Technical Pentachloro- phenol 39
4. Results, Congener Group Analyses of Two Samples of Technical Pentachlorophenol compared with Industry Composite Values 40
5. Results, Isomer Specific Analyses of Eagle Harbor Samples 41
6. Results, Congener Group Analyses of Eagle Harbor Samples 42
7. Results, Isomer Specific Analyses, Vicinity of site 2 43
7a. Results, Congener Group Analyses, Soil Core, Site 2 47
7b. Results, isomer specific analyses of sludge from Na-pentachlorophenate diptank, Site 2, concentrations normalized to OCDD 48
8. Results, Isomer Specific Analyses, Farm Near Site 3 49
9. Results, Isomer Specific Analyses, Beavercreek OR Control Site 50
10. Results, Isomer Specific Analyses, Equine Control Tissues 51
11. Results, Isomer Specific Analyses, Stallion From Arabian Horse Farm 52
12. Results, Contaminated Wood Chips, Arabian Horse Farm 53
13. Results, Isomer Specific Analyses, Tissues from Stillborn Foal, Arabian Horse Farm; Bull from Farm Near Site 2 54
14. Results, Isomer Specific Analysis of Soil Sample from Arabian Horse Farm 55
15. Results, Congener Group Analyses, Stillborn Foal, Arabian Horse Farm 56
16. Results, Congener Group Analyses, Mare from Arabian Horse Farm; Bull from Farm Near Site 2 57
17. Results, Six Replicates of a Contaminated Fish from the Petenwell Reservoir in Wisconsin 58
18. Results, six replicates of a reference sediment from northern Minnesota known to Contain Low ppt Levels of 2,3,7,8-TCDD 59
19. Statistical Summary of Analytical Precision for Data Summarized in Table 17, Fish 60
20. Statistical Summary of Analytical Precision for Data Shown in Table 18, Sediments 60

The Determination of Selected

Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Environmental Samples from Sites Associated with the use of Chlorophenolic Wood Preservatives

INTRODUCTI ON

The purpose of the work was to determine the extent of off-site contamination by polychlorinated dibenzo-p-dioxins (PCDD's) and dibenzofurans (PCDF's) at several sites in Oregon and Washington associated with the use of technical grades of pentachlorophenol (t-PCP) and/or 2,3,4,6-tetrachlorophenol. PCDD's and PCDF's are the most toxic, and likely the most environmentally persistent, contaminants present in commercial formulations of these products (1).

From measured spatial distributions of these compounds, descriptions of the environmental fate, transport and degradation properties of PCDD's/PCDF's would be proposed based on data from several "real world" sites of contamination.

Despite the wide interest in these compounds both within the scientific community and society at large, relatively few papers have been published with respect to dioxin/furan residues at sites contaminated with t-PCP. Most of these papers have been from Europe.

Isomer specific data has, as of this writing, been very 1 imited; for example, see references (16) and (17). At present, there are a number of studies presently being conducted under EPA and other federal funding which should help expand knowledge concerning the environmental behavior of PCDD's/PCDF's associated with $t-\mathrm{PCP}$ and other sources, such as the combustion of PVC (polyvinylchloride) (54).

Pentachlorophenol has often been cited as the second most common biocide in the United States (18), (19). Commercial formulations of $t-P C P$ or tetrachlorophenol consist of the chlorophenol dissolved in an organic solvent, or the potassium or sodium salts dissolved in water, or other polar solvent system. Penta has also been applied as an aerosol under conditions of heat and high pressure. Railroad ties, heavy laminated beams, and telephone poles are typically impregnated with penta at pressure treatment facilities. "Dip tanks" of aqueous chlorophenate ion are used as an anti-stain treatment for finished lumber. It has found use as a wood preservative, fungicide
and slimacide, to mention only a few of many applications. Largely as a result of work by Jansson et al. (2), and Rappe and coworkers (3)(4), the Swedish government has banned commercial grades of penta- and tetrachlorophenol for most of the applications for which these chemicals have been used in this country. Due to regulatory pressure, many wood treatment facilities have switched over to technical 2,3,4,6-tetrachlorophenol based formulations in recent years. The literature is ambiguous as to whether or not the tetrachlorophenol formulations have a lower PCDD/PCDF content than those based on pentachlorophenol (16), (17), (19).

The acute toxicities of technical grade tetra- and pentachlorophenol formulations are very similar, with respect to fish. They both have 96 hour LC- 50 values on the order of $0.10 \mathrm{mg} / \mathrm{liter}(\mathrm{ppm})$ for Coho salmon (56).

The selection of sampling sites was made on the basis of both scientific and regulatory interest. The sediment samples from Eagle Harbor, Washington were provided by EPA Region 10. This site was adjacent to a wood treatment plant which has used $t-P C P$ or its salts. sites 1,2 , and 3 were selected based on past sampling for chlorophenols carried out by the Oregon Department of Environmental Quality (DEQ). These sites were adjacent to
sawmills which have treated lumber using chlorophenate diptanks located on-site. Because of limited time and funding, only a small number of samples could be analyzed. PCDD/PCDF determinations are extremely expensive in terms of manual labor required, the cost of analytical standards, and the costs of the instrumentation. For this reason, no formal, statistically-based, sampling protocol was found which would have allowed the collection of an economically realistic number of samples (20), (21). Sample selection was therefore based on "best" judgement, depending on the hypothesis being tested. This is relevant to samples from Site 2 , where an attempt was made to determine the relative contributions of runoff from a lumber yard versus combustion from a nearby incinerator.

All tissue samples analyzed using mass spectrometry are listed in Table 1 . Soil, sediment and wood shaving samples are listed in Table 2. The sample numbers correspond to the numbers used in the remaining Tables, which contain all the quantitative GC-MS data gathered for this thesis. Recently, it has become common to report PCDD/PCDF concentrations as "TCDD Equivalent Units". For readers who wish to convert the data to these units, Appendix A shows the conversion factors currently being used by EPA and CDC (Centers for Disease Control) to perform such calc-
ulations (12)(13).
For purposes of reference, the chemical structures for pentachlorophenol, 2,3,4,6-tetrachlorophenol, 1,2,3,6,7,8HxCDD, $1,2,3,4,7,8-H \times C D F$ and 2 -nonachlorophenoxy phenol are shown in Figure 3.

Technical pentachlorophenol has been manufactured using two different processes: the direct chlorination of phenol using aluminum trichloride as a catalyst, and the treatment of hexachlorobenzene with strong base, followed by acid. The former process is the only one used in the united States. Of the two methods, the former also produces lower concentrations of PCDD/PCDF (19). The resulting chlorophenol then can be reacted with NaOH or KOH to form the sodium or potassium salt, if a water soluble product is desired. The total dioxin content and the specific isomers present varies depending on the reaction conditions existing during manufacture. Considerable differences exist between the phenols and their salts. The sodium and/or potassium salts have been observed to have a higher overall PCDD/PCDF content and a wider range of isomers present (19) (22).

The contaminants present in t-PCP in the highest concentration (1 to 5%) are the phenoxy phenols, also called predioxins or isopredioxins, depending on the location of the phenolic $O H$ group. These compounds are of much lower
toxicity than the toxic PCDD's/PCDF's (1). They are of interest to the present study in that the analytical methods used had to be effective in removing these compounds without converting them to PCDD/PCDF. The reaction pathways postulated for this conversion, as well as other pathways of dioxin/furan formation from chlorophenolic precursors, are reviewed in reference (19). The chemistry and toxicology of the phenoxyphenols are also discussed in references (22), (23) and (24).

MATERIALS AND METHODS

1) Sample Collection and Storage

Samples were collected in new, solvent-washed, amber glass bottles supplied by VWR. Their caps were teflon lined. Tissue samples were frozen immediately after collection, and thawed prior to sample preparation. Soil or sediment samples were frozen or kept in a 10 C cold room until sample preparation. Samples shipped from OSU to ERL Duluth, Minnesota, were sent overnight express mail in insulated containers, cooled with dry ice.
2) Sample Preparation

The sample preparation scheme for tissues is described in Appendix B. Where it differs from tissues, the sample preparation for soil/sediments/wood chips is described in Appendix C. For further information on sources of supplies, activation of reagents, and quality assurance/quality control, readers are urged to consult the final versions of references (42) and (60). They are expected to be published sometime during the summer of 1987, after an external peer review scheduled for June, 1987.

Briefly, the sample cleanup involved the removal of
bulk matrix and interferences with strong acid/strong base, silica gel, silver nitrate on silica, and chromatography using alumina and carbon dispersed on silica gel. This process is shown schematically in Figure 9.

3) Gas Chromatography/Mass Spectrometry

All samples listed in Tables 1 and 2 were analyzed for PCDD/PCDF using either capillary GC/low resolution mass spectrometry (HRGC/LRMS) or capillary GC/high resolution mass spectrometry (HRGC/HRMS). All isomer specific data were generated using HRGC/HRMS. For isomer specific work, representative samples were run on both a $30 \mathrm{MDB5}$ and a 60 M SP 2330 to insure the correct identification of individual PCDD/PCDF. Isomer assignments within a congener group (based on the number of chlorines attached) were based on a combination of labeled internal standards and a well defined qualitative standard known to contain all the compounds shown in Tables 3-18. Relative retention times assigned were also checked against literature values (26), (27), (28).

The GC/MS operating parameters are given in detail in Appendix E. The compositions of the internal standard solutions are given in Appendix D. In general, the approach used corresponds to the description of isotope dilution mass
spectrometry given by Millard (29). It was assumed that all native PCDD/PCDF within a given congener group had the same response relative to the labeled analog used to quantify isomers within that group. Samples were quantified based on the labeled compounds in internal standard solution A. This solution was added to the sample prior to extraction. Internal standard solution B was added to the microvial prior to sample injection into the GC/MS. Solution B was used to calculate recoveries of the labeled compounds in solution A. Three computer programs were written in order to generate response factors and quantify samples. The BASIC code for these programs is given in Appendix F, along with a more detailed summary of their structure and function. The key equations for quantitation and recovery are given as:

1) $\quad C_{n}=\frac{A_{n} C_{l}}{A_{1} \text { RRF }}$

Where: $\quad C_{n}=$ concentration of analyte. pg / g
$\mathrm{C}_{1}=$ concentration of label standard spiked into sample
$A_{n}=$ peak area of natural ion
$A_{1}=$ peak area of labled ion RRF $=$ Rn/RI, relative response $R=$ absolute response of ion. ADC counts/pg
2) $\quad \%$ REC $=\frac{C_{l \text { measured }}(100)}{C_{\mid \text {spiked }}}$

Where: $\quad C_{1 \text { measured }}=\frac{A_{1} C_{334}}{A_{334} R F}$
$\mathrm{C}_{334}=$ concentration of I.S. B
$\mathrm{A}_{334}=$ area of I.S. B
$R F=R_{l} / R_{334}$

The internal standard method used was superior to methods based on external calibration curves in that losses occuring at various stages in the cleanup, and changes in the instrument's sensitivity were all compensated for. The only major source of error which was not compensated for was the difference in extraction efficiency which would be expected for labeled surrogates spiked into a sample immediately prior to extraction and more tightly bound, weathered native compound (65). Weathered dioxin residues would be expected to be very tightly bound to their sample matrices, when organic carbon content is significant.

4) Quality Control

Of the 24 compounds presently listed in Tables 3 to 18 and the computer programs, the majority are substituted in all four of the lateral $2,3,7$ and 8 positions. These are the most toxic isomers, except for OCDF and OCDD, which are nearly devoid of biological activity (30). However, OCDD may be of utility with respect to identifying sources. Other compounds on the list were included because of their demonstrated bioaccumulative potential in fish. Two isomers on the list are present for reasons which are not relevant
to this study, $1,2,3,4-\operatorname{TCDD}$ and $1,3,4,6,7$-PCDF.
Many of the toxic isomers coelute with other, less toxic PCDD/PCDF. The situation is drastically simplified in biological tissues, which show a strong preference for retaining only isomers substituted in at least 3 of the 4 lateral ring positions. A number of recent publications describing $P C D D / P C D F$ residues in human adipose tissue have found only compounds substituted in all four 2,3,7, and 8 positions (31), (32), (33). The situation is more complex in soils, sediments and contaminated wood shavings, where potentially any of the PCDD/PCDF isomers may exist. other compounds have been documented to interfere with PCDD/PCDF determinations, including planar PCB's, diphenyl ethers, certain chlorinated naphthalenes and biphenylenes (35), and chlorinated xanthenes and xanthones (36).

Avoidance of false positives requires retention time data from at least two capillary columns and correct ion ratios for at least two ions within the molecular ion cluster. A close look at retention time data for all 75 PCDD's and 135 PCDF's, collected at ERL Duluth on the 30 M DB5 and the 60 M SP 2330 capillary columns, requires two caveats with respect to the "isomer specificity" of the data. Of the 24 compounds listed in Tables 3 to 18, all can be identified with two exceptions, if data
from both capillary columns is used. One exception is that the $1,2,3,7,8-\operatorname{TCDF}$ isomer coelutes with $1,2,3,4,8-T C D F$ on both columns. A contribution by the latter isomer cannot be ruled out, particularly in the soil/sediment data. The second exception is that $1,2,6,9-T C D F$ was shown to elute on the SP2330 as a shoulder, 7 seconds earlier, than 2,3,7,8TCDF. Thus one cannot completely rule out a contribution by the former isomer.

Limitations on the availability of HRMS instrumentation made it impossible to run every single sample on two columns. Alternatively, selected samples from groups appearing to contain the same cross section of isomers on one column were confirmed, and if necessary, requantified on the second column. All samples with positives in the tetra- and pentacongener groups were run on two columns; these groups presented the greatest problems with single column data. Because only a limited number of replicate samples were run, due to the high cost per sample, it is difficult to adequately describe the analytical precision of the data (34). To help address this question, five replicates of a reference tissue and six of a reference sediment were analyzed for PCDD/PCDF. The data are presented in Tables 17 and 18. The statistical evaluation of the data with respect to analytical precision are presented in Tables

19 and 20. These results compare favorably with what has been achleved in other laboratories (34). Precision is often poor for OCDD measurements due to the ubiquitous nature of the compound; it was almost always observed in laboratory blanks, along with $1,2,3,4,6,7,8-\operatorname{HpCDD}$. All values reported here have been background corrected based on levels found in the set reagent/glassware blank, with the single exception of the data in Table 17. The blank values are shown explicitly, in this one instance. The precision indicated by the fish data in Tables 17 and 19 $1 s$ better than what is normally achieved. Unfortunately, the glassware cleaning procedure which was largely responsible for these results did not lend itself to routine use. Although the data were reported as positive if the blank was significantly lower, the author believes that any value for OCDD under 150 parts per trillion (ppt) has very little meaning for in this study. Other laboratories have reported blank levels of OCDD as high as the low parts per billion (ppb) (34).

I. EAGLE HARBOR SITE

1) Introduction

Eagle Harbor is a small inlet in western Puget Sound with a history of contamination by a variety of chemical pollutants (37), (38). The proximity of Eagle Harbor to a wood treatment plant, which has used creosote and t-PCP, suggested that in addition to the high concentrations of PAH's and nitrogenous aromatic compounds known to be present at the ppm level, PCDD/PCDF would also be present. The site was of interest as a possible location to study in-situ biodegradation. It first had to be determined, however, that PCDD/PCDF was in fact present.

2) Results

The data for PCDD/PCDF concentrations are shown in Tables 3 and 4. Figure 6 shows the HxCDD mass chromatograms, on a DB5 column, for an Eagle Harbor Sediment, t-PCP, and fly ash from a MSWI (Municipal Solid Waste Incinerator) located in the eastern United States. Figure 4 shows two Eagle Harbor Sediment Samples compared to literature values for t-PCP congener group total concentrations.

As shown in Figure 4, when congener group totals are compared among two Eagle Harbor sediment samples and an industry composite sample of t-PCP (14), the three sets of concentration values are quite similar when normalized to OCDD concentration.

The isomer specific data in Table 5 indicates an interesting difference between the sediments and commercial t-PCP formulations described in the 1 iterature (16) and in Tables 3 and 4. The most toxic single component of the PCDD/PCDF fraction from t-PCP is probably the 1, 2, 3, 6, 7, 8-HxCDD isomer. This is also the HxCDD isomer which is reported to be present in the highest concentration of the 10 possible isomers, in all t-PCP formulations for which the author has seen isomer specific data. For example, see reference (14). Significantly different distributions have been observed for the chlorophenate salts, however. Miles et al. (16) have published data indicating the major components for the salts to be the $1,2,4,6,7,9 / 1,2,4,6,8,9$ and $1,2,3,6,7,9 / 1,2,3,6,8,9$ isomer pairs. The major component in the sediments was observed to be the $1,2,4,6,7,9 / 1,2,4,6,8,9$ pair, which coelutes on both of the capillary columns used in this study. The next largest component was observed to be the $1,2,3,6,7,9 / 1,2,3,6,8,9$
isomer pair. Samples of fly ash from waste incinerators which have been analyzed at ERL Duluth also show these two isomer pairs as major peaks in the $H x C D D$ congener group (39). The mass chromatograms in Figure 6 show these peaks for the different samples discussed above. Preliminary data from Oregon and Washington collected as part of the EPA's National Dioxin study suggests that $2,3,7,8-T C D D$ is rare in Pacific Northwest watersheds, quite unlike the widespread dispersion of this compound which has been observed east of the Missisippi River (40). This would lend support to the observation that a specific point source is responsible for the PCDD/PCDF in Eagle Harbor. The absence of 2,3,7,8-TCDD, and any other tetrachlorodioxin isomers also tends to argue against contributions from nonpoint sources such as combustion.
4) Conclusions

The overall pattern of PCDD/PCDF isomers present in the sediments more strongly resembles that expected from Na-PCP or K-PCP salts than that observed for combustion of municipal solid waste or the laboratory scale pyrolysis of chlorophenols or chhlorophenates (2), (4), (39). The absence of control site samples makes the extent of
contributions from combustion, if any, and/or airborne transport difficult to estimate.

No evidence of selective degradation of any PCDD/PCDF was observed, if one accepts the premise that these compounds had as their source some combination of pentachlorophenol/pentachlorophenate. It appears that the PCDD/PCDF residues in Eagle Harbor have not undergone any significant in-situ degradation, as would be evidenced by selective degradation of the 6 and 7 chlorine compounds. These would presumably be more subject to microbial degradation than a fully substituted compound such as OCDD.

The much higher concentrations of creosote related compounds, including a variety of PAH's and heterocyclic compounds known to be carcinogenic (37)(64), suggests that PCDD/PCDF does not contribute significantly to the overall toxicity of the sediments.
II. ARABIAN HORSE FARM ADJACENT TO SAWMILL SITE 1

1) Introduction

Sawnill site 1 contained a diptank on-site. A farm was located next to this mill which maintained a herd of 15 to 20 Arabian horses. Most of these animals became 111 during the period 1981-1985. A local veterinarian attributed much of the herd's problems to t-PCP exposure. No link was ever found between the use of $t-P C P$ at the adjacent mill and animal illness. However, a source of $t-P C P$ exposure was discovered, and residue analysis confirmed the presence of elevated levels of PCP and PCDD/PCDF in the horses. Tissue samples, wood chips and soil samples were collected in order to determine the source and extent of PCDD/PCDF contamination on the farm. Tissue samples were collected at necropsy from two mature horses and a stillborn foal. These animals died during or shortly after the period of time in which they were exposed to wood chips, used for bedding, which were highly contaminated with t-PCP. The cause of death was attributed by the osU Veterinary Diagnostic Laboratory to $t-P C P$ in one instance, the mare described later in this section (44). There was no connection between the toxic wood chips and the mill adjacent to the farm property.

The number of successful births on this farm dropped from normal levels in the 1970's to virtually zero during 1981-1985. The contaminated wood chips were later traced by the Oregon Department of Environmental quality to shavings from the surface of pressure treated "glulam" beams used in heavy construction. All wood chips measured by DEQ to contain more than 600 ppm pentachlorophenol were removed from Clackamas County farms in the late summer and fall of 1984. The same sample of wood chips shown in Table 12 was measured by Columbia Laboratories (Corbett, OR) to contain 2770 ppm pentachlorophenol (44). Sampling for chlorinated phenols carried out privately by the farm's owners and by the DEQ showed either not detectable or low levels of these compounds, with the exception of the wood chips.
2) Results

The PCDD/PCDF data for tissue samples collected from horses living on the farm are shown in tables 11, 13, 15 and 16. The data for contaminated wood chips, used for animal bedding, are shown in Table 12. Data for a soil sample collected from the barn, in which the wood chips were used, are summarized in Table 14. Data from four equine control tissues, provided by Dr. Bruce Hultgren at
the 0 SU School of Veterinary Medicine, are shown in Table 10.
In addition, several soil samples were screened semiquantitatively using capillary GC with electron capture. These samples were collected by the author in May, 1985 from areas of the farm which potentially could receive drainage from the nearby sawmill's logging yard. Results were negative, except for low ppt (parts per trillion) traces of the always present OCDD. No mass spectrometry based analyses were carried out on these samples, so they were not listed in Table 2.
3) Discussion

The horses on this farm began to develop a variety of illnesses, later attributed to t-PCP exposure (43), in 1981. These included laminitis, colic, respiratory problems, reproductive problems, blood disorders and mortality. Poor management, tansy, heavy metals, SCIDS, and other possible confounding factors were ruled out as causes of death with respect to the Arabian mare for which the most information was gathered (44). The PCDD/PCDF results for this animal's liver are shown in Table 16, Sample 9. These results are about two orders of magnitude higher than background levels suggested by the data in Table 10. The liver and adipose tissue from another animal from the same farm, shown in

Table 11, Yielded similar results. Tissues collected from a stillborn foal, conceived roughly three months prior to removal of the tainted chips from the premises, also showed elevated levels of PCDD/PCDF. The mare discussed above, and other horses on the farm, contained elevated levels of chlorophenols in their blood (43).

Tissues collected from a bull known to have been exposed to t-PCP containing runoff, but not to contaminated bedding or feed, are shown as Samples 420, 421, and 422 in Tables 13 and 16. This bull belonged to a farm near Sawnill site 2. The PCDD/PCDF residues found in this animal's liver are slightly higher than those reported for control tissues in Table 10. Residues measured in the bull's liver may be useful as a "positive control" with which to compare the Arabian Horse farm data.

4) Conclusions

The only point source of PCDD/PCDF contamination discovered was the wood chips described above. The DEQ had sampled other areas along the border of the mill with the road separating the farm from the mill property. The DEQ results were negative for chlorophenols (45). The residue analyses for PCDD/PCDF, in tissues from horses exposed to highly contaminated wood chips, tend to
support the etiology described in Dr. Wayne Schmotzer's final case report on the mare (44). According to this report, the mare died as a result of exposure to $t-P C P$ and/or its more toxic dimeric contaminants.

As has been observed for human adipose tissue (32), and for cattle (50), only 2,3,7,8-substituted isomers were retained in the tissues of the exposed horses. As one would expect, given the much longer toxicokinetic halflife of PCDD/PCDF when compared to PCP (1)(47), these compounds were retained long after higher levels of chlorophenols had been excreted. Thus, it would follow that negative results for chlorophenols should not be used to rule out exposure to PCDD/PCDF contained in commercial chlorophenol formulations.
III. SAWMILL SITE NUMBER 2

1) Introduction

Sawmill Site 2 was of interest because of: 1) its location next to a stream which at one time served as a spawning area for salmon (45), 2) extensive DEQ records regarding $P C P$ levels in the stream and other areas adjacent to the mill property, and 3) the presence of an abandoned incinerator which presumably burned t-PCP containing waste when it was in operation. Soil and sediment samples were collected from various locations adjacent to the mill property, including the stream mentioned above, a logging yard and its drainage ditch, farmland which received runoff from the logging yard, diptank sludge, and tissues from cattle exposed to PCDD/PCDF containing runoff.
2) Results

The data from sampling locations adjacent to Sawmill Site 2 are presented in Tables 7, 7a, and 7b. All samples from the area were positive for PCDD/PCDF. These results can be compared with those from a nearby community which the Oregon Health Division chose as a control site for an epidemiological study related to $t-P C P$ exposure (51). These "control" values are summarized
in Table 9, and discussed in more detail in Part V. The relative locations of the different samples discussed are shown in Figure 2.

Full scan mass spectra of crude extracts from Sample 12 suggested the presence of a variety of polyhalogenated compounds, in addition to PCDD/PCDF and PCP. No attempt was made to assign structures to these spectra, however.
3) Discussion

Site 2 had a long and well documented history of t-PCP contamination in adjacent drainages and in the stream shown in Figure 2 (52). Most Site 2 samples contained higher concentrations of PCDD/PCDF than what was observed in the Control Site samples. Sample number 223, which consisted of high TOC sediment collected upstream from Site 2, contained PCDD/PCDF levels comparable to those observed in the Control site samples, as shown in Figure 7. Samples collected downstream from the mill, particularly from portions of the stream in closest proximity to the diptank operation (Sample 222), contained high concentrations of PCDD/PCDF. Sample 222 was one of five samples which showed very low level traces of $2,3,7,8$-TCDD, in addition to the highest levels of total dioxins recorded in the present paper for any soil/sediment sample. The levels
of PCDD/PCDF recorded for Sample 222 were expected based on DEQ records of $P C P$ concentrations in the water a few yards downstream from this point (52). Dioxins are extremely hydrophobic compounds, with water solubilities on the order of 12 parts per trillion (57), (58). Similar compounds have been observed to collect at interfaces and are believed to equilibrate rapidly in the environment between organic matter and water (63). Figure 5 compares sample 222 to the mean values calculated by averaging the data for $\mathrm{t}-\mathrm{PCP}$ in Table 3, and also to flyash from a MSWI. The four PCDD isomers selected for this comparison were chosen based on their toxicity or presence in t-PCP. Note the similarity shown by $t-P C P$ and sample 222. In general, flyash samples have a lower relative amount of OCDD present than samples contaminated by t-PCP. The values shown in Figure 5 were normalized to OCDD concentration in order to emphasize this point.

The samples collected from the drainage ditch shown in Figure 2, on the opposite side of the mill property from Sample 222, were highest in concentration adjacent to the lumber yard. Concentrations of PCDD/PCDF were observed to decline as one moved downstream along the ditch towards the confluence with the stream. Samples 204 and 205 were collected from a field on the opposite side of the road
bordering the logging yard, across the street from an oil distributor. These samples were quite high in PCDD/PCDF, containing low levels of $2,3,7,8-\mathrm{TCDD}$ and $1,2,3,7,8-\mathrm{PCDD}$, two compounds not normally associated with t-PCP or its salts (54). However, the data in Table 7b, which shows the concentrations of PCDD/PCDF in diptank sludge collected from Site 2 in 1984, indicated the presence of these two isomers. Note that the levels in Table 7b are presented as normalized concentrations relative to OCDD. It was not possible to be absolutely quantitative with this sample, due to large changes in volume which took place during storage. Perhaps not coincidentally, the teepee burner was located near the oil distributor mentioned above, roughly two hundred yards from where Samples 204 and 205 were taken. According to DEQ sources, the burning of wood waste containing chlorophenols has been, and continues to be, a common practice in Oregon. The formation of PCDD/PCDF from the pyrolysis of chlorophenols and chlorophenates has been well documented (60)(42). Residues of the two above mentioned isomers were found in Samples 80, 218, and 222. Several other samples which were negative for $2,3,7,8$-TCDD were positive for $1,2,3,7,8$-PCDD. These were Samples 55, 92, 202, 214, and 221.

The recent findings by Hagenmaier (61) and Miller et al. are very relevant to the results presented herein. Hagenmaier has found measurable traces of 2,3,7,8-TCDD in several tetra- and penta-substituted phenols/phenates manufactured in Europe. To what extent this may be true of similar products produced in this country is uncertain.

Miller et al. have shown that under laboratory conditions, OCDD will preferentially photodegrade to 2,3,7,8-substituted isomers when it is bound to soil. This is very different from what has been observed in solution. In solution, the predominant photodegradation pathway for OCDD is the loss of the lateral chlorines and retention of those in the $1,4,6$, and 9 positions (62). This has obvious implications for the hundreds of sites, similar to Site 2 in this study, where OCDD is present in soils at ppb to ppm levels.

Conclusions

Higher than background levels of PCDD/PCDF were found in soil and stream sediment adjacent to Sawmill site 2 , which contained a diptank on-site. However, several of these samples contained isomers which, up to now, were not believed to be present in the diptank solution which was observed by DEQ to be the point source of PCP pollution in the stream
described above and in Figure 2. The combustion of chlorophenol containing waste and its airborne transport is suggested as one plausible hypothesis to explain the presence of $2,3,7,8$-TCDD and $1,2,3,7,8$-PCDD (41) (54). Another possibility, particularly for Sample 222, is a direct contribution by diptank runoff, as indicated by the presence of both above mentioned isomers in diptank sludge described in Table 7b. In light of the findings of Hagenmaier and Miller discussed in the previous section, it would seem that there are enough potential sources of 2,3,7,8-substituted isomers that it is not possible to draw any firm conclusions from the site 2 data with respect to separating out contributions from OCDD photolysis, direct contributions by t-PCP salts, or combustion of $t-P C P$ containing wood waste.

IV. SAWMIIl SITE 3

1) Introduction

Several soil samples from public and private lands adjacent to Sawmill site 3 were screened using capillary EC-GC with negative results, except for low ppt traces of OCDD. Samples collected from areas subject to runoff from the mill were collected from one farm whose manager had complained to state authorities about contamination from the mill. The mill used a chlorophenate diptank on-site.

2) Results

The results for PCDD/PCDF determinations from samples collected from the farm are shown in Table 8. The samples were collected based on best judgement as to the most likely locations to detect PCDD/PCDF. In this case, it meant low elevation areas most likely to receive runoff from the mill.
3) Discussion

The results shown in Table 8 are too close to those shown in Table 9, for the Control Site, to discern any difference. The mean PCDD/PCDF values for four selected
isomers, detected in every sample shown in Table 8 and Table 9, are shown in Figure 7. If one accepts the idea the Control Site samples are legitimate control values, then it would follow that the values in Table 8 indicate background levels. Although EC-GC was employed as a semi-quantitative screening tool, external calibration curves suggested a sensitivity roughly equal to that achieved by the HRGC-HRMS instrument used for the mass spectrometry based analyses.
4) Conclusions

The areas tested near Sawmill site 3 did not show PCDD/PCDF levels significantly different from the Control Site.

> V. CONTROL SITE, BEAVERCREEK, OREGON

1) Introduction

The community of Beavercreek, Oregon was chosen as a control community based on the recommendation of the DEQ and the Oregon Health Division. It was located in the same region of oregon as sites 1,2 and 3 , but did not have any sawmills within several miles.
2) Results

The results are presented in Table 9. It should be noted that sample 402 was obviously mislabeled. The bottle contained what appeared to be dry soil, although it was labeled as stream sediment. Table 9 indicates a background level in the low ppt range for several PCDD/PCDF isomers, and high ppt levels of OCDD.

Discussion
Beavercreek was chosen as a control site for reasons already noted. It should be stated explicitly both with respect to residue analysis and epidemiology that to use Beavercreek as a "control" is to compare one "exposed" community with other "exposed" communities. Objections to this approach for epidemiological studies have been
raised at recent conferences addressing the subject of human exposure to $\operatorname{PCDD} / \mathrm{PCDF}(55)(31)(33)$. For purposes of this study, the author is uncertain as to the validity of using the data in Table 9 as a yardstick against which to compare the rest of the Oregon data. EC-GC screening of samples gathered from a variety of sites in and around oSU and nearby farms failed to turn up any trace of PCDD/PCDF, with the usual exception of low ppt traces of OCDD.

In support of the data, it was very similar to the upstream sample results for the stream next to site 2 (sample 223), as discussed in Part III. Not enough is known about the background levels of PCDD/PCDF in the Willamette valley to address this question with any certainty. The sawdust dealer which distributed the tainted wood chips discussed in Part II was located in Beavercreek, Oregon. It is unknown if any connection exists between this fact and the measurable traces of PCDD/PCDF found in environmental samples from that community, as shown in Table 9. These levels are well below any which might be of human health concern, according to the most widely cited risk estimates for residential soils (59). According to DEQ sources, t-PCP was used in past decades all over the valley to control weeds. This might be another possible source for well dispersed background levels of PCDD/PCDF.

OVERALL SUMMARY AND CONCLUSIONS

The results indicate that isolated areas of high parts per trillion to parts per billion PCDD/PCDF contamination are associated with sites where chlorophenols or their salts are used, or burned without any precautions to insure sufficiently high temperatures exist to destroy PCDD/PCDF. A well dispersed low parts per trillion background level of four, five, six, and seven chlorine PCDD's and PCDF's was observed to be superimposed over residues from obvious point source discharges, in the northern Willamette Valley. At all sites studied, OCDD, a compound of low biological activity, was present in higher concentrations. Evidence for such secondary sources was not found in sediment samples from Eagle Harbor, Washington.

Equines exposed to ppb levels of PCDD/PCDF in $t-P C P$ contaminated wood chips over a period of roughly four years accumulated significant residues of these compounds in their liver and adipose tissues.

No evidence of significant naturally occurring degradative processes was suggested by any of the soil or sediment data. PCDD/PCDF, although apparently mobil enough to contaminate areas surrounding facilities where chlorophenolic products have been used, have been observed to be
extremely persistent and refractory compounds under natural conditions. The patterns of laterally substituted PCDD/PCDF isomers present in environmental samples were, in general, quite similar to that expected based on the content of the original chlorophenol/chlorophenate formulations released into the environment.

OSU no. \% lipid Descripision, ircluding date collected

1	NR*	adipose, stilliborn foal, Arabian horse farm 3-29-85
3	NA	Whole blood, stillborn foal, Arabians hor 5a farm, 3-29-85
4	NR*	liver, stillborn foal, Arabian horse farm, 3-29-85
5	NR*	placenta, stillborn foal, Arabian horse farin, 3-29-85
6	NR:	spleen, stillborn foal, Arabian horse farn, 3-29-85
7	NR*	thymus, stillborn foal, Arabian horse farm, 3-29-85
9	NR*	liver, "Caraa" (Arabian mare), Arabian horse farm, collected at necropsy, OSU Vet. Med., 5-23-83
426	NR	heart(composite of muscle/adipose), bull, farn near sawill site 2, 5-13-85
421	NR	liver, bull, 5-13-95
422	NR	nuscle, bull, 5-13-85
501	3	liver, "nrey mare sontrol", reaived from Dr. Hultgren OSU Vet. Med., 9-10-86
502	83	adipose, "grey mare control": received from Ci. Hultgren OSU Vet. Med., g-10-86
504	2	liver, "13 yr old are control", received from ìr. Hultgren OSU Vet. Med., 9-10-86
505	91	adipose, "13 yr old ware control", received from Dr. Hultgren, OSU Vet. Med., 9-10-86
506	77	adipose, "Coyns Fortune"(stallion), Ardbian horse farm, collected at necropsy, OSU Vet. Med., October 1985
508	9	brain, "Coyns Fortune"; collected at necropsy, OSU Vet. Med., October 1985
509	4	liver, "Coyns Fortune", collected at necropsy, OSU Vet. Med., October 1985
510	5	kidney, "Coyns fortune", collected at necropsy, OSU Vet. Med., Octoder 1985

NR\# not recorded due to insufficient sample, sample lost or damaged
NA not applicable

Table 2

Descriptions of Soil/Sediment/Dther Samples

OSU no. \% Moisture Description

EHPII	58	Eagle Harbor, 斯 sediment, received fron EPA Region 10, April 1985
EH: 2	67	Eagle Harbor: WA sediment, received from EPA Region 10, April 1985
EH05-6	54	Eagle Harbor, WA sedinent, received from EPA Newport, 0 R Environmental Res. Lab., 8-28-85
EH2	37	Eagle Harbor, HA sediment, received from EPA Newport, OR Environmental Res. Lab., dated 8-9-85, received 9-24-85
Reichold	NA	crystalline technical grade pentachlorophenol "4-9-162", gift from Reichold Chenical Co., Tacoma WA
Aldrich	NA	crystallive technical grade pentachlorophenol, lot no. CCO22487, gift of Dr. Nancy Kerkviliet, DSU Vet. Med. School
11	NA	diptank sludge from mill, site 2, collected by DEE in 1984
12	44	soil coilected from drainage ditch between road and lumber yard, see Figure $2,2-12-85$, Sate 2
33	NA	unod chips, from "Caraa's" stall, Columbia Labs no. 8604, Arabian horse farm, 6-84
53	19	surface sail collected from underneath easternmust stall in barn, Arabian horse fars, 5-10-85
55	56	surface soil collected from drainage ditch between Road and lumber yard, sée Figure 2, 5-10-85, site 2
80	25	Sufface soil collected from drainage ditch between Read and lumber yard, see Figure $2,5-10-85$, site 2
92	28	surface soil collected from drainage ditch tetween Road and and lumber yard, see Figurs 2, 5-10-85, Site 2

(Table 2, continued)

202	24	surface sediment collected from drainage ditch at Road 150 ft upstream of confluence with Strean, 6-13-85, Site 2
203	27	same location as 202 , samples are not exact duplicates, surface ditch sediment, 6-15-85, Site 2
204	25	middle of field across street from Oil Company, 6-13-85 dry soil, Site 2
205	31	surface sediment from ditch across street from oil Company, 6-13-85, Site 2
207	16	Stream, $10-20$ en sediment core, middle of cieek, 10 ft south of 13275 access rd. culvert, 6-13- 85 , Site 2
208	27	Stream, 2-10 cos sediment core, midnle of creek, 10 ft south of 13275 access rd. culvert, same location as 207, 6-13-85
209	24	Strean, surface sedinent, 20 ft north oi 13275 access rd culvert, $6-13-35$, Site 2
210	26	Strean, 100 yds south of Road, confluence ditch surface sediment from middle of creek, E-13-87, Site 2
211	23	same as 210 except sampled east side of Strean, 2 ft fron bank, 6-13-85, site?
214	36	beginning of drainage ditch between Road and lumber yard, see Figure 2, 6-13-85, Site 2
215	NR*	surface soii, to depth of 7.6 , from ditch draining Avison lunber yard, drains into larger ditch running along Road see Figure 2, 6-13-85
216	NR \ddagger	same location as $215,7.6-15.2$ en depth, see Figure $2,6-$ 13-85, Site 2
217	41	110 ft upstrean from confluence with Road ditch, suali ditch oraining lumber yard, see Figure 2, 6-13-85, Site 2
218	47	surface soil on oank of Road, ditch adyacetit to farm property, 25 ft upstream from drivesay, $5-13-85$, Site 2
219	23	farm propepty, surface soi!, field adjecent to Road, ditch, center of lield, 6-13-85, site 2
220	24	same as 219 , but corner of field closest to trailer, 6-13-85, Site 2

(Table 2, continued)

221	28	same as 219, but extreme NW corner of property, adjacent to Road, ditch, 6-13-85, Site 2
222	34	Strea east of culvert next to Crown lellerbach easement, surface sediment, adjaceni to mill, 6-13-85
223	23	control surface sediment upstrean from mill, Stream, 20 ft east of continuation of Croun lellerbach easement, 6-13-85, Site 2
401	38	Beaver Creek control sample, "strean sediment beside rd", received from OSU 8-28-85
402	8 **	Beaver Creek control sample, "ditch sedinent ", received fron 0SU 8-28-85
403	8	Beaver Creek control sample, "agricultural soil", received from 05U 8-28-85
404	46	Beaver Creek control sample, " 64 core top", received fron 0SU 8-28-85
405	35	Beaver Creek control sanple, " 14 core botton", received from 0SU 8-28-65
407	34	Farm near site 3, "egrralulural soil, flood piain", received from OSU 8-20-85
408	25	Farm near site 3, "sedinent sample, stagnant pond", received from 050 8-29-85
409	60	Farin near site 3 , "sedinent sample...", received from OSU 8-29-85
410	27	Farn near site 3, "sediment sample, noving yater above stagnant pool", received from OSU 8-29-85

[^0]* sample appeared to be dry soil when received for analysis, contrary to label on bottle

Table 3

Summary Table of Results, Biosignificant Isomers of PCDD, PCDF found in two Samples of Techrical Pentachlorophenol

n	isomer	sample, units are nicrogran/gram of $t-P C P$ (Reichold*) (Aldrich**)	
1	2378-TCDF	nd (0.10)	nd (0.10)
2	2367-TCDF	nd (0.07)	nd (0.15)
3	3467-TCDI	nd (0.07)	nd (0.15)
4	1234-TCDD	NR	NR
5	2378-TCDD	nd (0.05)	nd(0.08)
6	13467-PCDF	nd(0.01)	nd(0.14)
7	12379-PCDF	1.10	$1.6 i$
\square	1236\%-PCDF	nd (0.07)	nd (0.14)
9	23478-PCDF	0.30	0.48
10	23467-PCDF	0.47	0.63
11	12378-PCDD	ad (0.11)	nd (0.15)
12	123478-HxCDF	1.43	nd (0.80)
13	123467-HxCDF	nd(0.04)	nd (0,04)
14	123678-HxCDF	0.55	nd (0.51)
15	234678-HxCDF	0.32	0.62
16	1237日3-HxCDF	0.52	0.18
17	123478-HxCDO	Fid (0.07)	nd(0, 10)
18	123678-HxCDI	8.30	12.6E
19	123789-HxCDD	0.51	0.22
20	1234678-HpCDF	8.92	39.50
21	1234789-HpCDF	nd(0.67)	0,41
22	1234678-HpCDD	83.1	157
23	OCDF	4.97	210
24	OCDD	1500	1100

nd $=$ not detected at $5 / \mathrm{N} 2.5$ correspording to the quantity in parenthesas
$N R=$ data not recorded

* oniy documentation with 116 can was $4-9-162^{*}$
stamped on the top
* lot no, CCO22487, gift of Dr. Nancy Kerkyliet, OSU School of Veterinary Medicina

Table 4

Sumeary Table of Results, Total Congener Group Concentrations of PCDD, PCDF found in two Sanplas of Technical Pentachlorophenol Compared with an Industry Composite Sample

Congener Group	sample, units are \{Reichold\}	nicrogram/gram \{Aldrich\}	$\begin{aligned} & t-P C P \\ & \text { \{froi reference (14)\} } \end{aligned}$
TCDF***	nd(0.10)	5.42	NR
PCDF	6.05	3.20	nd (2.0)
HxCDF	18.0	52.5	57
HpCDF	24.3	158	130
OCDF	4.97	210	90
TCDD***	nd(0.06)	nd (0.083)	NR
PCDD	nd(0,11)	nd (0. 15)	nd(1.0)
HxCDD	21.0	29.2	15.0
HpCDD	138	221	410
OCDD	1500	1100	1500

nd $=$ not detected at $5 / N 2.5$ corresponding to the quantity in parentheses
$N R=$ not reported in publication, presumably not detected
*** DOES NOT include ary contributions from 2,3,7,8-TCDF or $2,3,7, B-T C D D$. These isomers were not found in at ther $t-P C P$ sample at the detection linits stated in Table 1.

Table 5
Summary Table of Results, Biosignificant Isoners of PCDD, PCDF found in Eagle Harbor Sediments

n	isomer	sample, units are pg/gram dryweight			
		\{EH:1才\}	\{EH!2*\}	(EH05-5)	\{EH2**\}
1	2378-TCDF	nd (2)	nd(3)	nd (2)	nd(b)
2	2367-TCDF	nd(2)	nd(3)	nd (2)	nd (6)
3	3467-rCDr	nd (2)	nd(3)	nd (2)	nd (10)
4	1234-TCDD	NR	NR	NR	NR
5	2378-TCDD***	nd (8)	nd (12)	nd (4)	nd (2)
6	13667-PCDF	NR	NR	NR	NR
7	12378-PCDF	nd (6)	nd (64)	nd(8)	nd(6)
θ	12367-PCDF	nd (6)	nd (64)	nd (8)	nd(6)
9	23478-PCDF	nd (6)	nd (64)	nd (8)	nd(6)
10	23467-PCDF	nd(6)	nd (64)	nd (8)	nd(6)
11	12378-PCDD	nd(6)	nd (75)	nd(4)	5
12	123478-HxCDF	nd(5)	nd (8)	nd(6)	nd ($\mathrm{B}^{\text {) }}$
13	123467-HxCDF	nd(5)	nd (8)	nd (6)	nd(3)
14	123678-HxCDF	nd (5)	nd (8)	nd (6)	nd(3)
15	234678-HxCDF	nd(5)	nd (8)	nd (6)	nd (3)
16	123789-HxCDF	nd(5)	nd (B $^{\text {(}}$	nd(6)	nd(3)
17	123478-HxCDD	nd (12)	nd (20)	nd (25)	nd (4)
18	123678-HxCDD	nd (12)	nd (20)	nó(25)	16
19	123789-HxCDD	nd (12)	nd (20)	nd (25)	nd(20)
20	1234678-HpCDF	440	790	225	58
21	1234789-HpCDF	nd (20)	nd (25)	nd (30)	nd (10)
22	1234678-HpCDD	1450	2370	800	420
23	OCDF	980	1440	350	250
24	OCDD	37000	42000	6050	4500

nd $=$ not detected at $5 / N 2.5$ corresponding to the quantity
in parentheses
$N R=$ data not recorded
\# samples received 051 during April 85
*. sample dated 8-9-85, received ERLD 9-24-85
1** DOES NOT include any contributions fron 2,3,1,8-iCDD or 2,3,7,8-TCDF. These isomers were NOT found in any Eagle Harbor samples.

Table 6

Sumary Table of Results, Total Congener Group Concentrations of PCDD, PCDF found in Eagle Harbor Sediments

Congener Group	Sample, \{EH:1*\}	units are \{EH\#2*\}	$\begin{gathered} \mathrm{pg} / \mathrm{gra} \text { dr} \\ \text { \{EH-05-6 } \end{gathered}$	veight \{EH2**\}
TCDF***	nd(2)	nd(3)	nd(2)	10
PCDF	nd (6)	nd(64)	nd(8)	35
HxCDF	207	750	56	60
HPCDF	980	1980	910	175
OCDF	980	1440	350	250
TCDO***	nd(8)	nd(12)	nd(4)	nd (2)
PCDD	nd (6)	nd(75)	nd (4)	12
HXCDO	67	660	17	45
HpCDD	4400	7200	1800	1100
OCDD	37000	42000	6050	4500

nd = not detected at $S / N 2.5$ corresponding to the quantity in parentheses

* sample received OSU during April 85
** sample dated 8-9-85, received ERLD 9-24-85
*** DOES NOT include any contributions from 2,3,7,8-TCDF or $2,3,7,8$-TCDD. These isoners were not found in any Eagle Harbor Samples, at the detection linits stated in Table 5.

Table 7
Summary Table of Results, Biosignificant lsomers of PCDD, PCDF from Vicinity of Savnill Site $2 \ddagger$

Sample, units are pg/gram dry weight
n isomer $\{12\}$ \{55\} \{202\} \{207\} \{208\}

1	2378-TCDF	nd (51)	nd (32)	nd (23)	nd (0.5)	nd(0.4)
2	2367-TCDF	nd (1.6)	2.0	nd(1.6)	nd(0.5)	nd(0.4)
3	3467-TCDF	nd (1.6)	nd (2.3)	nd (0.2)	nd (0.5)	nd(0.4)
4	1234-TCDD	NR	NR	NR	NR	NR
5	2378-TCDD	nd (12)	nd (11)	nd (11)	nd(1.1)	nd (0.6)
6	13467-PCDF	nd(1.2)	nd (0.2)	nd(0.2)	nd (0.6)	nd(0.5)
7	12378-PCDF	123	73	21	nd (0.6)	nd(1.2)
8	12357-PCDF	nd(50)	nd (0.2)	nd(0.2)	nd (0.6)	nd(0.5)
9	23478-PCDF	163	40	23	nd(0.6)	nd(1.7)
10	23467-PCDF	nd(1.2)	58	28	nd(6.5)	nd (2.4)
11	12378-PCDD	nd(151)	56	90	nd(1.6)	nd(4.0)
12	123478-HxCDF	116	49	nd(0.3)	nd(1.2)	nd(2.1)
13	123467-HxCDF	nd(0.7)	nd (0.3)	nd(0.3)	nd (1.2)	nd(2.1)
14	123678-HxCDF	157	122	29	nd(1.2)	nd(2.1)
15	234678-HxCDF	126	45	3.8	日f(1.2)	nd 2.11
16	123789-HxCDF	nd (0.9)	nd (5.9)	nd(1.5)	nd(1.2)	nd(2.1)
17	123478-HxCDD	nd(2.1)	nd (1.3)	nd (200)	nd(4.9)	r.d(6.5)
18	123678-HxCDD	3250	1400	531	8.1	17
19	123789-HxCDD	678	461	197	.1d(3.0)	nd (8.5)
20	1234678-HpCDF	1810	731	437	nd (237)	NR
21	1234789-HpCDF	2580	22	11	nu(32)	MR
22	1234678-HpCDD	20600	5190	4940	479	NR
23	OCDF	569	324	131	50	NR
24	OCDD	68100	20200	19200	7650	NR

nd $=$ not detected at $S / N 2.5$ corresponding to the quantity
in parentheses
$N R=$ data not recorded due to poor recoveries

* samples collected in on May 10 and June 13, 1985
* sample collected on February 12, 1985
(Table 7, continued)
Summary Table of Results, Biosignificant Isomers of PCDD, PCDF from Vicinity of Saunill Site 2*

Sample, units are pg/gram dry weight
n isoner \{92\}㭋 \{209\} \{211\} \{214\} \{217\} \{220\}

1	2378-TCDF	nd(50)	nd (2.0)	nd (5.1)	nd (9.0)	nd (0.5)	nd (0.6)
2	2367-TCDF	nd (4.8)	nd (0.4)	nd (1.0)	nd (1.2)	nd(0.5)	nd(0.4)
3	3467-TCDF	nd (2.6)	nd(0.4)	nd (2.0)	nd (0.9)	nd (0.5)	nd (0.5)
4	1234-TCDD	NR	NR	NR	NR	NR	NR
5	2378-TCDD	nd(0.5)	nd (0.6)	nd (2.4)	nd (4.9)	nd (1.1)	nd (0.7)
6	13467-PCDF	nd (1.0)	nd (0.4)	nd(0.9)	nd(0.7)	nd(0.3)	nd(0.2)
7	12378-PCDF	nd (68)	nd(2.1)	nd (5.7)	nd (13)	ndi0.6)	nd (0.7)
8	12367-PCDF	nd (1.0)	nd (0.4)	nd (0.9)	nd(0.7)	nd(0.3)	nd(0.2)
9	23478-PCDF	42	1.3	nd(10)	11	nd(0.3)	nd (0,9)
10	23467-PCDF	61	2.8	nd(13)	16	nd (0.3)	nd (1.3)
11	12378-PCDD	110	nd(4.2)	nd(9.6)	22	nd (1.1)	nd(1.6)
12	123478-HxCDF	47	2.5	nd (6.0)	18	nd(1.0)	nd(1.8)
13	123467-HxCDF	nd (1.6)	nd(0.7)	nd(! 13$)$	nd (0.9)	nd(0.5)	nd (0.3)
14	123678-HxCDF	74	2.6	nd (2.0)	nd (1.3)	nd (0.5)	nd(1.3)
15	234678-HxCDF	61	2.7	5.0	15	nd(0.5)	nd (0.8)
16	123789-HxCDF	20	nd (3.0)	nd(3.3)	5.8	nd(0.5)	nd (0.3)
17	123478-HxCDD	nd(9.2)	nd(6.6)	nd (5.9)	nd(49)	nd(3.7)	nd(4,1)
18	123678-HxCDD	1090	34	57	233	$n d(25)$	6.1
19	123789-HxCDD	253	5.7	8.9	52	nd(3.1)	nd (2.7)
20	1234678-HpCDF	803	87	163	207	98	21
21	1234789-HpCDF	17	nd (5.2)	nid(10)	nd(7.2)	nd (27)	nd (4.2)
22	1234678-HPCDD	8770	548	860	2560	716	136
23	OCDF	253	55	83	66	NR*	NR*
24	OCDD	29900	6240	5500	13400	NR*	NR \ddagger

nd $=$ not detected at $S / N 2.5$ corresponding to the quantity
in parentheses
$N R=$ data not recorded
NR* = data not recorded due to poor recoveries

* samples collected on June 13,1985
* sample collected on Hay 10, 1985
(Table 7, continued)
Sumary Table of Results, Biosıgnificant lsomers of PCDD, PCDF from Vicinity of Sammill Site 2*

n	Sample, units are pg/gram dry weight						
	i somer	\{218\}	\{219]	(221)	\{222\}	\{223\}	\{80) ${ }^{\text {\% }}$
1	2378-TCDF	50	nd(i.5)	nd (12.5)	120	nd(0.7)	20
2	2367-iCDF	1.5	$n \mathrm{n}(0.7)$	nd (1.2)	16	nut (0.7)	nd (6.9)
3	3467-TCDF	1.2	nd(0.7)	0.5	17	nid(1.1)	nd(3.7)
4	1234-icdo	NR	NR	NR	NR	NR	NR
5	2378-TCDD	3.0	nd(1.7)	nd(0.5)	2.0	nd (1.5)	0.5
6	13467-PCDF	nd(2.0)	ndil.2)	nó (0.3)	Ad(1.8)	nd (1.2)	别(1.6)
7	12378-PCDF	159	nd(1.2)	nd(26)	252	nd(1.2)	37
8	12367-PCDF	nd (2.0)	ndil.2)	nd(0.3)	nd (1.8)	nd(1.2)	nd (1.6)
9	23478-PCDF	179	nd(1,2)	11	127	nd(1.2)	37
10	234E7-PCDF	308	nd(1.2)	17	524	nd(1.2)	53
11	12378-PCDD	441	nd(3.5)	27	250	nd(4.9)	152
12	123478-HxCDF	223	nd(1.9)	15	293	nd(1.6)	33
13	123467-HxCDF	nd(3.i)	nd(1.9)	nd(0.6)	nd(2.9)	nd(1.6)	nd(2.4
14	123678-HxCDF	314	nd(1.9)	24	315	nd (1.6)	78
15	234678-HxCDF	323	nd(1.9)	17	320	nd(1.6)	53
16	123789-HxCDF	115	nd(1.9)	nd(12)	143	nd(1.6)	12
17	123478-HxCDD	nd(546)	nd(4.2)	nd (2,9)	612	nd(6.1)	76
18	123678-HxCDD	4800	nd (21)	284	81.100	nd(2)	830
19	123789-HxCDD	1140	$n d(4.2)$	54	908	nd (12)	326
20	1234678-HpCDF	3690	10	348	7170	22	844
21	1234789-HpCDF	57	nd(4.1)	nd (3.6)	221	nd(3.4)	20
22	1234678-HpCDD	46100	70	3180	77000	159	9440
23	OCDF	893	nd(11)	nd (142)	2000	nd (30)	296
24	OCDD	218000	600	13400	6500001	1200	51800

```
nd = not detected at S/N 2.5 corresponding to the quantity
    in parentheses
NR = data not recorded
** sample collected on May 10, 1985
```

- Estinated concentration based on FID data
(Table 7, continued)
Summary Table of Results, Biosignificant Isomers of PCDD, PCDF from Vicinity of Sawnill Site 2*

Sample, units are pg/gran diy weight

n	isomer	$\{203\}$	\{204\}	\{205\}	$\{210\}$
1	2378-TCDF	nd(1.0)	5.5	28	nd (0.6)
2	2367-TCDF	nd (0.2)	2.3	nd(3.6)	nd (0.2)
3	3467-TCDF	nd(0.2)	nd(0.9)	nd (2.4)	nd (0.5)
4	1234-TCDD	NR	NR	NR	NR
5	2378-TCDD	nd(0.5)	3.0	7.2	nd (2.4)
6	13467-PCDF	nd (0.2)	nd (4.0)	nd(5.0)	nd(0.7)
7	12378-PCDF	nd(0.5)	nd(13)	57	nd(0.7)
8	12367-PCDF	nd (0.2)	nd(0.2)	nd(5.0)	nid(0.7)
9	23478-PCDF	nd(0.3)	10	74	nd (0.7)
10	23467-PCDF	nid(0.2)	22	105	1.1
11	12378-PCDD	nd(2.0)	25	120	nd(1.8)
12	123478-HxCDF	1.3	15	92	nd (2.2)
13	123467-HxCDF	nd (0.2)	nd(0.3)	65	nd(0.4)
14	123578-HxCDF	nd $(2,3)$	19	92	3.0
15	234678-HxCDF	0.9	16	86	1.8
16	123789-HxCDF	nd(0.4)	4.9	40	nd (0.8)
17	123478-HxCDD	nd(0.9)	nd(1.3)	100	nd (1.0)
18	123678-HxCDD	10	250	2340	28
19	123789-HxCDD	4.3	72	371	\%(4.0)
20	1234678-HpCDF	25	300	1500	36
21	1234789-4pCDF	nd (0.9)	10	43	nd (1.4)
22	1234678-HpCDD	183	1900	7000	437
23	OCDF	32	232	649	32
24	OCDD	5820	14000	72000*	2500

nd = not detected at S/N 2.5 corresponding to the quantity in parentheses
$N R=$ data not recorded

* samples collected on June 13, 1985
* Estinated concentration based on FIV data

Table 7a

Sumary Table of Results, Total Congener Group Concentrations of PCDD, PCDF found in Soil Core From Samill Site 2

Congener Group	sample, (215)	$\mathrm{pg} / \mathrm{gram}$ uet weight as received \{216\}
TCDF***	nd (2.0)	nd (5.0)
PCDF	nd(5.0)	nd (20)
HxCDF	NR	NR
HpCDF	NR	NR
OCDF	NR	NR
TCOD***	nd(1.0)	nd (5,0)
PCDD	76	nd(30)
HxCDD	1700	10
HpCDO	5400	400
OCDD	30000	2900

Note that these samples are reported as wet veight concentrations, due to insufficient sample present for $\%$ moisture deteraination
nd $=$ not detected at $5 / N 2.5$ corresponding to the quantity in parentheses
$N R=$ not reported
*** DOES NOT include any contributions from 2,3,7,8-TCDF or $2,3,7,8-T C D D$. These 1 somers were not found in either core sample at the detection limits indicated

* Samples collected on June 13, 1985

Table 7b
Sumary Table of Results, Biosignificant Isomers of PCDD, PCDF found in Diptank Sludge Collected From Site 2

Sample, units are dimensionless*
n isomer
(11\}

1	2378-TCDF	0.51
2	2367-TCDF	0.087
3	3467-TCDF	nd(0.0010)
4	1234-TCDD	NR
5	2378-TCDD	0.0033
6	13467-PCDF	NR
7	12378-PCDF	0.20
8	12367-PCDF	nd(0.0050)
9	23478-PCDF	0.28
10	23467-PCDF	0.080
11	12378-PCDD	0.22
12	123478-HxCDF	nd (0.009)
13	123467-HxCDF	nd (0.008)
14	123678-HxCDF	$\mathrm{nd}(0.008)$
15	234678-HxCDF	11
16	123789-HxCDF	1.3
17	123478-HxCDD	nd(0.01)
18	123678-HxCDD	19
19	123789-HxCDD	3.2
20	1234678-HpCDF	3.9
21	1234789-HpCDF	2.5
22	1234678-HpCDD	770
23	OCDF	100
24	OCDD	10000

nd $=$ not detected at $5 / N 2.5$ corresponding to the quantity in parentheses
$N R=$ data not recorded

* Concentrations have been normalized to a scale yith $O C D D=10000$ dimensionless units. It was not possible to assign absolute concentrations to this sample.

Table 8
Summary Table of Results, Biosignifican: Isomers of PCDD, PCDF found at Farm near Savill Site 3

Sample, units are pg/gran dry Height

n	isoner	Sample, units are pgigran ory Height				
		\{407\}	\{407\}	(408)	(409)	\{410\}
1	2378-TCDF	nd (1)	nd (1.6)	nd(0.9)	nd (2)	nd (0.2)
2	2367-TCDF	nd (1)	0.5	nd(0.2)	nd(1.4)	nd(0.4)
3	3467-TCDF	nd (1)	nd (0.6)	nd (0.2)	nd(0.9)	nd(0.2)
4	1234-TCDD	NR	NR	NR	NR	NR
5	2378-TCDD	nd(2)	nd(4.4)	nd (0.8)	nd(0.6)	nd (0.5)
6	13467-PCDF	nd (0.2)	nd(0.2)	nd(0.2)	nd (0.3)	nd (0.4)
7	12378-PCDF	nd (0.3)	nd(0.3)	nd(1.2)	nd(0.7)	nd(0.4)
8	12367-PCDF	nd (0.2)	nd(0.2)	nd(0.2)	nd (0.3	nd(0.2)
9	23478-PCDF	nd(0.2)	nd(0.4)	nd(1,1)	nd(0,4)	nd(0.4)
10	23467-PCDF	nd (0,2)	nd (0,6)	nd (2,2)	nd(0.4)	nd (0.2)
11	12378-PCDD	nd (0.6)	nd(1.5)	nd(1.5)	nd(2.6)	nd(1.4)
12	123478-HxCDF	nd(0.4)	nd(2.0)	1.7	nd (2,2)	nd (0.7)
13	123467-HxCDF	$n d(0.4)$	nd(0.4)	nd(0.3)	nd(0.4)	nd(0.2)
14	123678-HxCDF	nd(0.4)	nd(0.4)	nd(4.3)	nd(0.4)	nd(0.3)
15	234678-HxCDF	nd(0.4)	nd(0.4)	3.8	nd(0.4)	nd(0.3)
16	123789-HxCDF	nd (0.4)	nd(0.4)	and (3.0)	nd(0.7)	nd (0.3)
17	123478-HxCDD	nd(0.7)	nd(1.1)	nd(0.8)	nd(0.9)	nd (1.4)
18	123678-HxCDD	nd(8)	5.5	29	14	nd (17)
19	123789-HxCDD	1.1	2.3	5.8	3.5	nd(1,:)
20	1234678-HpCDF	6.7	6.3	120	23	17
21	1234789-HpCDF	nd (1.2)	nd(1.5)	nd (3.6)	nd(1.1)	nd (0.9)
22	1234678-HpCDD	38.8	36.9	876	128	174
23	OCDF	nd(14)	9.2	91	34	12
24	OCDD	532	334	16100	1890	4010

nd = not detected at S/N 2.5 corresponding to the quantity in parentheses
$N R=$ data not recorded

Table 9

Sumnary Table of Results, Biosignificant Isomers of PCDD, PCDF found at Beaver Creek Control Sites
sample, units are pg/gran dry weight

n	i somer	\{401\}	\{402\}	$\{402\}$	\{403)	\{404\}	\{405)
1	2378-TCDF	nd (0.8)	nd(0.8)	nd(12)	nd (1.5)	nd(0.7)	nd(2.3
2	2367-TCDF	nd(0.6)	nd (0.8)	nd(1.4)	nd(0.9)	0.4	0.7
3	3467-TCDF	nd (0,3)	nd(0.8)	nd (0,3)	nd (0.6)	nd (0.2)	nd (0.9)
4	1234-TCDI	NR	NR	NR	NR	NR	NR
5	2378-TCDD	nd(0.3)	nd(0.5)	nd(0.5)	nd (0.5)	nd (1.6)	nd (0.7)
6	13467-PCDF	nd(0.2)	$\mathrm{nd}(0.3)$	nd(0.3)	nd (0.2)	nd(0.2)	$\mathrm{nd}(0.3)$
7	12378-PCDF	nd(0.5)	nd (1,3)	0.9	nd (1.1)	nd (1.5)	nd(0.7)
8	12367-PCDF	nd(0.2)	$\mathrm{nd}(0.3)$	nd (0.3)	ndio.2)	nd (0.2)	nd(0.3)
9	23478-PCDF	nd(1.4)	nd (2.0)	nd(0.3)	nd (1.9)	nd (1.2)	nd(: 3)
10	23467-PCD5	nd(0.9)	1.6	nd(6.2)	nd (2.8)	nd(1.3)	nd(0.7)
11	12378-PCDD	nd(1.1)	nd(3.3)	nd(i.5)	nd(1.2)	0.8	$\mathrm{nd}(1.6)$
12	123478-HxCDF	nd(1.9)	2.7	3.6	nd(0.3)	nd (0.4)	nd(0.7)
13	123467-HxCDF	nd(0.4)	nd (0.6)	nd(0.4)	nd(4.1)	1.6	nd (0.7)
14	123678-HxCDF	nd(0.6)	nd(2.9)	2.6	nd (2.3)	nd(3.6)	nd(0.5)
15	234678-HxCDF	nd(0.6)	nd (3.2)	nd(3.7)	nd(1.4)	3.5	nd (0.5)
16	123789-HxCDF	nd (0.4)	nd(2.9)	nú (2.3)	nd(1.5)	nd (2.4)	nd(0.5)
17	123478-HxCDD	nd(1.4)	1.3	1.7	nd(0.4)	nd (2.1)	nd (1.4)
18	123678-HxCDD	nd (4.7)	10	14	4.3	18	nd (7,6)
19	123789-HxCDD	nd(1.8)	4.2	6.5	2,4	nd (4.2)	nd (1.4)
20	1234678-HpCDF	3.6	32	49	15	64	nd(9.5)
21	1234789-HpCDF	nd (1.2)	1.2	nd (5.0)	nd (0.4)	nd (3.1)	nd(1.0$)$
22	1234678-HpCDD	19	151	218	62	683	nd (46)
23	OCDF	nd(18)	71	66	32	54	nd (16)
24	OCDD	296	1290	1630	536	18000	595

[^1]* samples recieved from OSU via Federal Express 8-29-85, collected under supervision of S. Woods and K.J. Willianson

Table 10
Summary Table of Results, Biosignificant Isoners of PCDD, PCDF found in Control Equine Tissue fron Western Oregon and Hestern Washington *
sample, units are pg/gram vet veight of homogenized tissue
n isomer $\quad\{501\} \quad\{502\} \quad\{502\} \quad\{504\} \quad\{505\}$

1	2378-TCDF	nd (0.4)	nd(1.3)	nd (0.5)	nd (0.2)	nd (0,6)
2	2357-TCDF	nd (0.4)	nd(1.3)	nd(0.5)	nd(0.2)	nd(0.6)
3	3467-TCDF	nd(0.4)	nd(1.3)	nd(0.5)	nd(0.2)	nd (0.6)
4	1234-TCDD	NR	NR	NR	NR	NR
5	2378-TCDD	nd(1,0$)$	nd(1.3)	nd(1.1)	nd (1.1)	nd (1.6)
6	13467-PCDF	nd (0.7)	nd(0.7)	nd(1.6)	nd(0.4)	nd(1.3)
7	12378-PCD ${ }^{-}$	nd(0.7)	$\mathrm{nd}(0.7)$	nd(1.5)	nd (0.4)	nd(1.3)
8	12367-PCDF	nd (0.7)	nd(0.7)	nd (1.6)	nd (0.4)	nd(1.3)
9	23478-PCDF	nd(0.7)	nd(0.7)	nd(1.6)	nd (0.4)	nd (1.3)
10	23467-PCDF	nd (0.7)	nd(0.7)	no(1.6)	nd(0.4)	nd (1.3)
11	12378-PCDD	nd (2.6)	nd (6.1)	nd(5.8)	nd(1.9)	nd(5.5)
12	123478- $\mathrm{H} \times \mathrm{CDF}$	nd(2.2)	nd (2.3)	nd (6.1)	nd(1.7)	nd(2.4)
13	123467-HxCDF	nd (2.2)	nd(2.3$)$	nd(6.1)	nd(1.7)	nd(2.4)
14	123678-HxCDF	nd(2.2)	nd(2.3)	nd(f.1)	nd(1.7)	nd(2.4)
15	234678-HxCDF	$\mathrm{nd}(2.2)$	nd(2.3)	nd(6.1)	nd (1.7)	nd(2,4)
16	123789-HxCDF	nd (2.2)	nd(2.3)	nd(6.1)	nd(1.7)	nd(2.41
17	123478-HxCDO	nd (7.5)	nd(5.1)	nd(3.9)	nd (4.6)	nd(4,6)
18	123678-HxCDD	nd(7.5)	33	42	nd(4.6)	nd(38)
19	123789-HxCDD	nd (7.5)	nd(5.1)	nd(3.9)	$n d(4,6)$	nd (4.6)
20	1234678-HpCDF	nd (2.2)	24	24	3.6	6.2
21	1234789-HpCDF	nd (2.2)	nd (4.3)	nd(4.4)	nd(1.2)	nd (2.0)
22	1234678-HPCDD	50	243	228	32	67
23	OCDF	nd(4.1)	nd(8.4)	nd(10)	$n d(3.4)$	nd (4.9)
24	DCDD	140	1890	604	211	152

nd $=$ not detected at $5 / \mathbb{N} 2.5$ corresponding to the quantity
in parentheses
$N R=$ data not recorded

* samples received from Dr. Hultgren at 0SU School of Veterinary Medicine on September 10, 1986

Table 11

Summary Table of Results, Biosignificant Isoners of PCDD, PCDF found in Tissues Collected From "Coyns Fortune", Arabian horse farm*

Sample, units are pg/gram vet weight of homogenized tissue

n	i somer	\{506\}	(506)	\{508)	\{509\}	(510)
1	2378-TCDF	nd(2.1)	nd (1.0)	nd(0.4)	nd(1.0)	nd(0.4)
2	2367-TCDF	not (2.1)	nd (1.0)	nd (0.4)	nd(1.0)	nd(0.4)
3	3467-TCDF	nd(2.1)	nd(1.0)	nd (0.4)	nd(1.0)	nd(0.4)
4	1234-TCDD	NR	NR	MR	NR	NR
5	2378-TCDD	nd(6.8)	nd(4.2)	nd (1.7)	nd (1.4)	nd (1.1)
6	13467-PCDF	nd (2,4)	nd (2.6)	nd (0.7)	nd (2.6)	nd(1.5)
7	12378-PCDF	nd (2.4)	nd(2.6)	nd (0.7)	nd(2.6)	nd(1.5)
8	12367-PCDF	nd(2.4)	nd(2.6)	nd (0.7)	nd(2.5)	nd(1.5)
9	23478-PCOF	40	34	nd(0.7)	58	nd(1.5)
10	23467-PCDF	nd (2,4)	nd(2.6)	no (0.7)	$n \mathrm{nd}(2,6)$	nd(1.5)
11	12378-PCDD	23	24	nd (2.1)	nd (54)	nd(2.3)
12	123478-HxCDF	97	101	nd(2.5)	117	nd(7.1)
13	123467-HxCDF	nd(2.7)	nd (3.3)	nd(2.5)	ndi 3.7)	nd(7.1)
14	123678-HxCDF	57	59	nd (2.5)	84	nd (7.1)
15	234678-HxCDF	18	17	nd (2.5)	39	nd(7.1)
16	123783-HxCDF	nd (2.7)	nd(3.3)	nd (2.5)	nd(3.7)	nd (7, 1)
17	123478-HxCDD	nd(2.7)	nd (4.3)	nd(7.1)	nd(3.8)	nd (2.8)
18	123678-HxCDD	2173	2426	nd (7.1)	1516	38
19	123783-HxCDD	nd(2.7)	nd (4.3)	nd(7.1)	nd (3.8)	nd (2.8)
20	1234678-HpCDF	422	502	nd(6.1)	805	8
21	1234789-HpCDF	nd(6.8)	nd (12)	nd(6.1)	nd(10)	nd (1.4)
22	1234678-HpCDD	2230	2370	nd(12)	3570	29
23	OCDF	31	36	nd(4.7)	33	nd (7.6)
24	OCDD	12600	12800	nd (68)	15000	161

nd = not detected at $S / N 2.5$ corresponding to the quantity in parentheses
$N R=$ data not recorded

* samples collected during necropsy at OSU Srhool of Veterinary Medicine, March 1986

Table 12

Sumary Table of Results, Biosignificant Isomers of PCDD, PCDF found in Hood Chips taken from Arabian horse farm*
i soner
sample, units are manogram/gram of wood chips, wet weight as received \{33\}

1	2378-TCDF	nd (0.007)
2	2367-TCDF	0.066
3	3467-TCDF	nd (0.007)
4	1234-TCDD	NR
5	2378-TCDD	nd (0.019)
6	13467-PCDF	nd(0.008)
7	12378-PCDF	1.450
8	12367-PCDF	nd(0.008)
9	23479-PCDF	1.000
10	23467-PCDF	1.600
11	12378-PCDD	21.80
12	123478-HxCDF	4.020
13	123467-HxCDF	nd (0.020)
14	123678-HxCDF	2.780
15	234679-HxCDF	2.330
16	123789-HxCDF	nd (0.023)
17	123478-HxCDD	nd (0.021)
18	123678-HxCDD	30.90
19	123789-HxCDD	3.530
20	1234678-HpCDF	43.90
21	1234789-HpCDF	2.550
22	1234678-HpCDD	1170
23	OCDF	714
24	OCDD	28000

[^2]
Table 13

Summary Table of Results，Biosignificant Isomers of PCDD，PCDF found in Tissues Collected From Stillborn Foal，Arabian horse farm＊，and bull fron farm near Sawill Site 2 靬
sample，units are pg／gram vet weight of tissue
n isomer
〔3） 4
（920）

1	2378－TCDF	nd（0．2）	nd（0．5）	nd（0．4）
2	2367－TCDF	nd（0．2）	nd（0．5）	nd（0．4）
3	3467－TCDF	nd（0．2）	nd（0．5）	nd（0．4）
4	1234－TCDD	NR	NR	NR
5	2378－TCDD	nd（0．2）	nd（0．6）	nd（0．5）
6	13467－PCDF	$\mathrm{nd}(0.2)$	nd（1．4）	nd（0．4）
7	12378－PCDF	nd（0．2）	nd（1．4）	nd（0．4）
8	12367－PCDF	nd（0．2）	nd（1．4）	nd（0．4）
9	23478－PCDF	nd（0．2）	nd（1．4）	1.8
10	23467－PCDF	nd（0．2）	nd（1．4）	nd（0．4）
11	12378－PCDD	nd（0．6）	nd（6．2）	nd（13）
12	123478－HxCDF	nd（0．8）	nd（1．0）	2.0
13	123467－HxCDF	nd（0．8）	nd（1．8）	nd（0．6）
14	123678－HxCDF	nd（0．8）	nd（1，8）	1.1
15	234678－HxCDF	nd（0．8）	nd（1．8）	nd（0， 0 ）
16	123789－HxCOF	nd（0．8）	nd（1．8）	nd（0．6）
17	123478－HxCDD	nd（1．5）	nd（3．3）	nd（0．9）
18	123678－HxCDD	nd（1．5）	18	15
19	123789－HxCDD	nd（1．5）	nd（2．3）	rid（0．9）
20	1234678－HpCDF	nd（1．1）	nd（12．6）	nd（6．7）
21	1234789－HpCDF	nd（1．1）	nd（2．2）	nd（0．8）
22	1234678－HpCDD	3.4	24	21
23	OCDF	2.8	nd（5．1）	nd（1．3）
24	OCDD	19	180	50

nd＝not detected at S／N 2.5 corresponding to the quantity in parentheses
$N R=$ data not recorded
＊tissues collected by attending veterinarian，harch 3， 1985
数 tissue collected May 13， 1985

Table 14

Sumary Table of Results, Giosignificant Isomers of PCJD, PCDF found in Soil Collecter Frim
Arabian horse farm
n isoner
Sample, units are pg/gram dry veight (53)

1	2378-TCDF	nd (0,4)
2	2367-TCDI	nd (0.4)
3	3467-TCDF	nd(0.2)
4	1234-TCDD	NR
5	2378-TCDD	nd (0.4)
6	13467-PCDF	nd (0.3)
7	12378-PCDF	nd(0.4)
8	12367-PCDF	nd (0.3)
9	23478-PCDF	nd(0.8)
10	23467-PCDF	nd (0.7)
11	12378-PCDD	nd (0.6)
12	123478-HxCDF	nd (1.0)
13	123467-HxCDF	nd (0.4)
14	123678-HxCDF	nd (0.8)
15	234678-HxCDF	nd (0.6)
16	123789-HxCDF	nd (0.6)
17	123478-HxCDD	nd (0.7)
18	123578-HxCDD	4.4
19	123789-HxCDD	nd (0.7)
20	1234678-HpCDF	6.0
21	1234789-HpCDF	nd (1.1)
22	1234678-HpCDD	46
23	OCDF	nd (27)
24	OCDD	309

$\begin{aligned} \text { nd }= & \text { not detected at } S / N 2.5 \text { corresponding to the quantity } \\ & \text { in parentheses } \\ N R= & \text { data not recorded }\end{aligned}$

* 50il collected May 10, 1985

Table 15

Sumary Table of Results, Total Congener Group
Concentrations of PCDD, PCDF found in
Tissues from Stillborn Foal, Arabiari horse farat

Congener Group	$\begin{aligned} & \text { sample } \\ & \{1\} \end{aligned}$	units ar (4)	$\begin{gathered} p g / g r a n y: \\ \{5\} \end{gathered}$	ysight (?)	(6)
TCDF**	nd(0.5)	nd (6,0)	nd (1,0)	nd(2.0)	nd (2.0
PIDF	nd (2.0)	$n d(0.5)$	nd (2.0)	nd (1.0)	nd (3.0)
HxCDF	nd(10)	nd (10)	nd (4.0)	nd(100)	nd(17)
HpCDF	NR	NR	$N R$	NR	NR
BCDF	NR	NR	NR	NR	NR
TCOD*	nd (0.5)	nd(7.0)	nd(1.0)	nd(1,0)	nd (9,0)
PCDD	nd(54)	nd(13)	nd(7.0)	nd(3.0)	nd(3.0)
HXCDD	110	20	nd(12)	50	110
HipCDD	110	20	48	82	200
$0 C D D$	360	150	430	230	3000

[^3]Table 16
Sumary Table of Results, Total Congener Group Concentrations of PCDD, PCDF found in
Tissues fron Marek and Bull**

Congener Sroup	sample, (9)	2r: pg/gr (42.1)	vet weight (422)
TCDF***	nd (3.5)	nd(3.0)	nd (3.0)
PCDF	nd(3.0)	nd(3.0)	nd(3.0)
HxCDF	nd (50)	nd(15)	nd(93)
HpCDF	200	nd(40)	and (40)
OCDF	NR	NR	NR
TCDD**	nd(18)	nd(30)	nd(5)
PCDD	nd(2.0)	nd(17)	$n d(18)$
HxCDD	2000	$n d(50)$	nd(35)
HpCDD	1900	50	nd(20)
$0 C D D$	19000	1700	142

nd = nut detected at $S / K 2.5$ corresponding to the quantiaty in parentheses

* sample from Arabian horse farm collected May 23, 1383 at necropsy
ta sample from farm near Savaill Site 2 collected May 13, 1985
** DOES NOT include any contributions fron 2,3,7,8-TCDF or $2,3,7,8$-rCoD. These isomers were not found in any animal tissues from the Molalla area aralyzed in this study.

Table 17
Sumbary Table of Results, Replicate Analyses
for Selected Isoners, Fish Tissue Saaple (carp)
Fron the Petenvell Reservoir, Hisconsin

isoner	Units are pg/gran wet weight of tissue					(BLANK
	\{REPI\}	\{REP2\}	[REP3)	(REP4]	\{REP5\}	
2378-TCDF	15	14	13	13	14	nd(0.5)
1234-TCDO*	200	160	160	200	142	170
2378-TCD	59	56	56	59	47	nd 0.5)
12378-PCDF	1.1	i.1	1.2	1.0	1.5	nd(0.2)
12378-PCDD	4	3	3	4	3	nd (1)
123678-HxCDO	9	7	7	8	6	no(2)
1234678-HpCDD	12	11	12	12	12	nd(2)
OCDD**	26	17	16	17	24	5

[^4]* laboratory artifact
** low level of OCDD in blank was only achieved by nonstandard glassuare cleaning procedure enployed for this sei; values have not been corrected for background

Table 18

Sumary Table of Results, Replicate Analyses of a Control Lake Sediment From Northern Minnesota Knoun to be Contaminated with Low ppt Levels of 2,3,7,8-TCDD

i 50 mer	Units ar \{REP1\}	e pg/gram \{REP2]	vet veight (REP3)	of sedi (REP4)	ent (REP5)	\{REP6
2378-TCDF	nd(2.1)	nd(0.8)	nd(0.7)	nd (1,9)	nd(0.7)	nd(1.1)
1234-TCDD	NR	NR	NR	NR	NR	NR
2378-TCDD	4.5	4.2	5.3	4.5	5.3	4.1
12378-PCDF	nd(0.0)	nd(0.6)	nd (0.5)	nd (0.7)	nd(0.9)	nd(1.3)
12378-PCDD	nd(2.1)	nd (1.9)	nd(1.9)	nd (2.2)	nd (3.0)	ind (4.3)
123678-HxCDD	nd(1.9)	nd(1.4)	nd(1.4)	nd(1.7)	$n \mathrm{nc}(2.7)$	ni (2.9)
1234678-HpCDD**	21	23	25	35	20	23
OCDD**	129	143	149	257	17%	179

né $=$ not uetected at $\mathrm{S} / \mathrm{N} 2.5$ corresponding to the guantity
in parentheses
$N R=$ not reported
** does not differ significantly from blank yalues at the tise these replicates vere analyzed

Table 19
Statisical Summary of Fish Replicate Data (fron Table 17)

150ner	(n)	\{mean	\{ 7 RSD $\}$
2378-TCDF	5	14.2	3.2
1234-TCOD	5	172	13
2378-TCDI	5	55	9.0
12378-PCDF	5	1.2	16
12378-PCDD	5	3.4	16
123578-HxCCD	5	7.4	15
1234678-HpCDD	5	12	3.8
OCDD	5	[5	31

Table 20

Statisical Sumbary of Sediment Replicate Data (from Table 18)

i somer	\{n\}	\{nean	\{2RS0\}
2378-TCDF	6	nd(1.2)	52
1234-TCDD	6	MF:	NR
2373-TCDD	6	4.7	11
12378-PCDF	6	nd(0.7)	30
12378-PCDD	5	nod(2.6)	37
123678-4xCDO	6	nd (2,0)	33
1234678-HpCDD	6	25	22
OCOD	6	166	32

BAINBRIDGE ISLAND

Figure 1: Sampling Locations for Eagle Harbor Site (taken, with permission, from Swartz et al., Toxicity of sediment from Eagle Harbor, Washington to the Infaunal Amphipod, Rhepoxynius Abronius, Environ. Sci. Technol., in press)

Figure 2: Sketch of Sampling Locations, site 2 (scale is approximately 1 inch $=725$ feet)

2 -nonachlorophenoxyphenol

Figure 3

Chemical Structures of Some Compounds Found in t-PCP

Figure 4
Two Eagle Harbor Sediment Samples Compared to Industry Composite Values for PCDD/PCDF in t-PCP Taken from Reference 14, Congener Group Total Concentrations, Normalized to OCDD

Figure 5: Sample 222 Compared to Concentrations of Four Selected PCDD's Found in $t-P C P$ and Flyash (the values for $t-P C P$ were calculated by averaging the two samples shown in Table 3)

Figure 6
Mass Chromatograms for HxCDD's in a Typical sample of t-PCP, Flyash from a MSWI (Municipal Solid Waste Incinerator), and an Eagle Harbor Sediment (data was collected on a 30 meter $x 0.32 \mathrm{~mm}$ DB5 capillary column, monitoring $\mathrm{m} / \mathrm{z} 389.8156$)

Isomer Assignment Key to Labels Shown in Figure 6
A. $\quad 1,2,4,6,7,9 / 1,2,4,6,8,9-\mathrm{HxCDD}$
B. $\quad 1,2,3,4,6,8-\mathrm{HxCDD}$
C. $\quad 1,2,3,6,7,9 / 1,2,3,6,8,9-\mathrm{HxCDD}$
D. $\quad 1,2,3,4,6,9-H \times C D D$
E. $\quad 1,2,3,4,7,8-\mathrm{HxCDD}$
F. $\quad 1,2,3,6,7,8-\mathrm{HxCDD}$
G. $\quad 1,2,3,7,8,9 / 1,2,3,4,6,7-\mathrm{HxCDD}$

Figure 7: Mean Values for Positives for Four Selected Isomers of PCDD/PCDF Shown in Table 9 Compared with Those Found in Sample 223 (Table 9 values were used as background control values)

Figure 8: Mean Values for Positives in Table 9 Compared with Table 8 for Four Selected Isomers of PCDD/PCDF (Table 9 values were used as background control values!

Figure 9
Diagram in Flow Chart Form Outlining the Analytical Scheme, modified from that presented by Tondeur in Reference (12)

REFERENCES

1) Alborg, U.G., and Thunberg, T.M. (1980). Contaminants in chlorophenols, in Chlorinated Phenols: Occurrence, Toxicity, Metabolism, and Environmental Impact. CRC Critical Reviews in Toxicology 7 (1): 1-35.
2) Jansson, B. and Sundstrom, G. (1978). Formation of polychlorinated dibenzo-p-dioxins during combustion of chlorophenol formulations. The Sci. of the Total Environ. 10: 209-217.
3) Rappe, C. (1984). Analysis of polychlorinated dioxins and furans. Environ. Sci. Technol. 18: 78A-90A.
4) Rappe, C., and Marklund, S. (1978). The formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) by burning or heating chlorophenates. Chemosphere 3: 269-281.
5) Kuehl, D.W., Leonard, E.N. (1978). Isolation of xenobiotic chemicals from tissue samples by gel permeation chromatography. Ana. Chem. 50: 182-185.
6) VanNess, G.F. et al. (1980). Tetrachlorodibenzo-p-dioxins in chemical wastes, aqueous effluents and soils. Chemosphere 9: 553-563.
7) Lamparski, L.L., Nestrick, T.J., and Steh1, R.H. (1979). Determination of part-per-trillion concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin in fish. Ana. Chem. 51: 1453-1458.
8) Langhorst, M.L., and Shadoff, L.A. (1980). Determination of parts-per-trillion concentrations of tetra-, hexa-, hepta-, and octachlorodibenzo-p-dioxins in human milk samples. Ana. Chem. 52: 2037-2044.
9) Stalling, D.L., et al. (1982). Isolation and analysis of polychlorinated dibenzofurans in aquatic samples, in Chlorinated Dioxins \& Related Compounds, impact on the environment. Hutzinger, 0. et al. eds., Pergamon Press, New York, pp. 77-85.
10) Buser, Hans-Rudolf (1976). High resolution gas chromatography of polychlorinated dibenzo-p-dioxins and dibenzofurans. Ana. Chem. 48: 1553-1557.
11) Snyder, L.R. (1968). Principles of Adsorption Chromatography, the separation of nonionic organic compounds. Marcel Dekker, New York, pp. 172-177.
12) Tondeur, Y. (1987). Analytical procedures and quality assurance for multimedia analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by high resolution gas chromatography/high resolution mass spectrometry, preliminary draft dated January 1987.
13) EPA/CDC Chlorinated Dioxins Workgroup (1985). Chlorinated dioxins workgroup position document, March 16, 1985, risk assessment procedures for mixtures of chlorinated dioxins and -dibenzofurans (CDDs and CDFs), review draft.
14) McConnell, E.E. et al. (1980). The chronic toxicity of technical and analytical pentachlorophenol in cattle 1., clinicopathology. Tox. and Appl. Pharmacol. 52: 468-490.
15) Wolfe, P.M. and Koelling, C.P. (1983). BASIC Engineering and Scientific Programs for the IBM PC. Robert J. Brady Co., Bowie, MD. pp. 65-71.
16) Miles, W.F., et al. (1985). Isomer specific determination of hexachlorodioxins in technical pentachlorophenol (PCP) and its sodium salt. Chemosphere 14: 807-810.
17) Hagenmaier, H., Berchtold, A. (1985). Analysis of waste from PCP-na-production for PCDD and PCDF. Poster presentation at Dioxins 85, 5th International Symposium on Chlorinated Dioxins and Related Compounds, Bayreuth, FRG September 16-19, 1985. The authors are from the University of Tubingen, FRG.
18) Oregon State University Extension Service (1984). Oregon Pesticide Use Estimates for 1981, Special Report 712, September 1984. Oregon State University, Corvallis, OR 97331.
19) U.S. EPA, Office of Research and Development (1980). Dioxins, EPA -600/2-80-197. U.S. Government Printing Office, Washington D.C. This document is currently available through NTIS.
20) Kratochvil, B. (1985). Sampling for chemical analysis of the environment: statistical considerations, in Trace Residue Analysis, chemometric estimations of sampling, amount and error, ACS Symposium Series 284. American Chemical Society, Washington D.C. pp. 5-23.
21) Schweitzer, G.E. and Santolucito, J.A., eds. (1984). Environmental Sampling for Hazardous Wastes, ACS Symposium Series 267. American Chemical Society, Washington D.C.
22) Miles, W.F., Gurprasad, N.P., and Malis, G.P. (1985). Isomer specific determination of hexachlorodibenzo-pdioxins by oxygen negative chemical ionization mass spectrometry, gas chromatography, and high-pressure liquid chromatography. Ana. Chem. 57: 1133-1138.
23) Miller, T.L. et al. (1982). The acute toxicity of nonachloropredioxin and 3- and 4-hydroxynonachlorodiphenyl ether in mice. Jour. of Tox. and Environ. Health 10: 699-707.
24) Miller, T.L. et al. (1983). The acute toxicity of penta-, hexa-, and heptachlorodiphenyl ethers in mice. Jour. of Tox. and Environ. Health 12: 245-253.
25) Miller, T.L., and Deinzer, M.L. (1980). Effects of nonachloropredioxin and other hydroxychlorodiphenyl ethers on biological membranes. Jour. of Tox. and Environ. Health 6: 11-25.
26) Gelbaum, L.T., Patterson D.G., and Groce, D.F. (1986). Preparation of dioxin standards for chemical analyses, in Chlorinated Dioxins and Dibenzofurans in Perspective. Rappe, C., Choudhary, G., Keith, L.H. eds., Lewis Publishers, Chelsea, Michigan, pp. 479-483.
27) Hale, M.D. et al. (1985). Mathematical modeling of temperature programmed capillary gas chromatographic retention indexes for polychlorinated dibenzofurans. Anal. Chem. 57: 640-648.
28) Kueh1, D.W., Butterworth, B.C., Johnson, K.L. (1986). Supplemental quality assurance criteria for the high-resolution gas chromatography/high-resolution mass spectrometric determination of $2,3,7,8$-Tetrachlorodibenzo-p-dioxin in biological tissues. Ana. Chem. 58: 1598-1599
29) Millard, B.J. (1978). Quantitative Mass Spectrometry. Heyden, London, pp. 120-157.
30) Poland, A., and Knutson, J.C., (1982). 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Ann. Rev. in Pharmacol. and Tox. 22: 517-554.
31) Ryan, J.J. et al. (1986). Distribution of chlorinated dibenzofurans in human tissues from the general population, in Chlorinated Dioxins and Dibenzofurans in Perspective, Rappe, C., Choudhary, G., Keith, L.H. eds., Lewis Publishers Chelsea, Michigan, pp. 3-14.
32) Nygren, M. et al. (1986). Identification of $2,3,7,8-$ substituted polychlorinated dioxins and dibenzofurans in environmental and human samples, in Chlorinated Dioxins and Dibenzofurans in Perspective. Rappe, C., Choudhary, G., Keith, L.H. eds., Lewis Publishers, Chelsea, Michigan, pp. 15-34.
33) Schecter, A., Ryan, J.J., and Gitlitz, G. (1986). Chlorinated dioxin and dibenzofuran levels in human adipose tissues from exposed and control populations, in Chlorinated Dioxins and Dibenzofurans in Perspective. Rappe, C., Choudhary, G., Keith, L.H. eds., Lewis Publishers, Chelsea, Michigan, pp. 51-66.
34) P.W. Albro et al. (1985). Methods for the quantitative determination of multiple, specific polychlorinated dibenzo-p-dioxin and dibenzofuran isomers in human adipose tissue in the parts-per-trillion range. An interlaboratory study. Ana. Chem 57: 2717-2725.
35) Smith, L.M. and Johnson, J.L. (1983). Evaluation of interferences from seven series of polychlorinated aromatic compounds in an analytical method for polychlorinated dibenzofurans and dibenzo-p-dioxins in environmental samples, in Chlorinated Dioxins and Dibenzofurans in the Total Environment. Choudhary, G., Keith, L.H., Rappe, C. eds. Butterworth Publishers, Boston, pp. 321-332.
36) Kuehl, D.W. et al. (1987). Environmental contamination by polychlorinated dibenzo-p-dioxins and dibenzofurans associated with pulp and paper mill discharge. Biomedical and Environmental Mass Spectrometry, in press.
37) Krone, C.A. et al. (1986). Nitrogen-containing compounds in sediments from a polluted harbor in Puget Sound. Environ. Sci. Techno1. 20: 1144-1150.
38) Malins, D.C., et al. (1985). Carcinogenesis 6: 1463.
39) Kueh1, D.W., EPA ERL Duluth, Minnesota, unpublished data.
40) U.S. EPA, Office of Water (1986). The National Dioxin Study, Tiers 3, 5, 6, and 7, Final Draft Report for Phase I. Office of Water Regulations and Standards, U.S. EPA, Washington, D.C. 20460.
41) Czuczwa, J.M., and Hites, R.A. (1986). Airborne dioxins and furans: sources and fates. Environ. Sci. Technol. 20: 195-200.
42) U.S. EPA (1987). Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF's in Biological Tissues, EPA ERL Duluth, MN., draft dated March 1987.
43) Schrader, W.K., DVM. Unpublished veterinary medical records relating to an Arabian horse farm in Molalla, Oregon. Undated letter summarizing cases from this and other farms, submitted to PARC/DEQ in 1984.
44) Schmotzer, W.O., DVM. Case Summary, Arabian mare OSU VTH \#183-002-739, and supporting records.
45) Oregon Department of Environmental Quality, Northwest Regional Office, unpublished records of sampling for chlorophenols carried out at Publishers Paper sawmill, Liberal, Oregon.
46) Poiger, H., and Buser, H-R. (1984). The metabolism of TCDD in the Dog and Rat, in Banbury Report 18, Biological Mechanisms of Dioxin Action. Cold Spring Harbor Laboratory, pp. 39-47.
47) Van den Berg, M. et al. (1986). Some pharmacokinetic aspects of PCDDs and PCDFs in mammals after administration of a flyash extract from a municipal incinerator. Chemosphere 15: 1477-1487.
48) Firestone, D., et al. (1979). Polychlorodibenzo-p-dioxin and pentachlorophenol residues in milk and blood of cows fed technical pentachlorophenol. Jour. Agric. Food Chem. 27: 1171-1177.
49) McConnell, E.E. (1984). Clinicopathologic concepts of dibenzo-p-dioxin intoxication, in Banbury Report 18, Biological Mechanisms of Dioxin Action. Cold Spring Harbor Laboratory, pp. 27-37.
50) Parker, C.E., et al. (1980). The chronic toxicity of technical and analytical pentachlorophenol in cattle. 2. Chemical analyses of tissues. Tox. Appl. Pharmacol. 55: 359-369.
51) Oregon State Health Division (1985). Report of the findings of a household health survey conducted in the Molalla/Liberal area, May, 1985.
52) Oregon Department of Environmental Quality, Northwest Regional Office, unpublished monitoring data from the vicinity of Avison Lumber Co., Molalla, Oregon.
53) Lamberton, J. et al. (1979). The determination of polychlorodibenzo-p-dioxins in pentachlorophenol and wood treatment solutions. Am. Ind. Hyg. Assoc. J. 40: 816-821.
54) Rappe, C., et al. (1984). Chemistry and analysis of polychlorinated dioxins and dibenzofurans in biological samples, in Banbury Report 18, Biological Mechanisms of Dioxin Action. Cold Spring Harbor Laboratory, pp. 17-25.
55) Houk, V.N. (1986). Status of centers for disease control dioxin studies of U.S. population. Chemosphere 15: 17651768.
56) Oregon Department of Environmental Quality, unpublished bioassay data provided by northwest regional office.
57) Marple, L., Brunck, R., and Throop, L. (1986). Water solubility of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ. Sci. Technol. 20: 180-182.
58) Lodge, K. (1987). Abstract submitted to Dioxin '87, seventh international symposium on chlorinated dioxins and related compounds, University of Nevada, Las Vegas, October 4-9, 1987.
59) Kimbrough, R.D. et a1. (1984). Health implications of 2,3,7,8-tetrachlorodibenzo-p-dioxin contamination of residential soil. Jour. Toxicol. Environ. Health 14: 47-93.
60) U.S. EPA (1987). Analytical Procedures and Quality Assurance Plan for the Determination of PCDD/PCDF's in Soils, Sediments, Water, and Industrial Sludge. EPA ERL Duluth, MN., draft dated March 1987.
61) Hagenmaier, H. (1986). The determination of 2,3,7,8-Tetra-chlorodibenzo-p-dioxin in commercial chlorophenols and related products. Fresenius' Z. Anal. Chem. 325: 603-606. (This paper is written in English.)
62) Miller, G.C., et al. (1987). Photolysis of octachlorodi-benzo-p-dioxn on soils: production of $2,3,7,8-T C D D$. Abstract submitted to Dioxin ' 87 , seventh international symposium on chlorinated dioxins and related compounds, Las Vegas, Nevada, October 4-9, 1987.
63) Chiou, C.T. (1981). Partition coefficient and water solubility in environmental chemistry, in Hazard Assessment of Chemicals, current developments. Saxena, J. and Fisher, F. eds, Academic Press, New York, pp. 117-154.
64) LaVoie, E.J., and Hect, S.S. (1981). Chemical carcinogens: in vitro metabolism and activation, in Hazard Assessment of Chemicals, current developments. Saxena, J. and Fisher, F. eds., Academic Press, New York, pp. 155-249.
65) Karasek, F.W. (1985). Polychlorinated dibenzo-p-dioxins and dibenzofurans, in Mass Spectrometry for the Environmental Sciences. Karasek, F.W., Hutzinger, 0. and Safe, S. eds., Plenum Press, New York.

APPENDICES

APPENDIX A

```
2,3,7,8-TCDD "Toxicity Equivalent Factors" or TEF's
Currently used by EPA and CDC for Dioxin Risk
Assessments*
```

compound (s)	TEF
$2,3,7,8-$ TCDD	1.00
$1,2,3,7,8-$ PCDD	0.20
$1,2,3,6,7,8$-HxCDD	0.04
$1,2,3,7,8,9-$ HXCDD	0.04
$1,2,3,4,7,8-$ HxCDD	0.04
$1,2,3,4,6,7,8-H P C D D$	0.001
other TCDD**	0.01
other PCDD**	0.002
Other HxCDD**	0.0004
other HPCDD**	0.00001
OCDD	0.0

2,3,7,8-TCDF 0.10
$1,2,3,7,8-\mathrm{PCDF} \quad 0.10$
$2,3,4,7,8-\mathrm{PCDF} \quad 0.10$
$1,2,3,6,7,8-\mathrm{HxCDF} \quad 0.01$
$1,2,3,7,8,9-\mathrm{HxCDF} \quad 0.01$
$1,2,3,4,7,8-\mathrm{HxCDF} \quad 0.01$
$2,3,4,6,7,8-\mathrm{HxCDF} \quad 0.01$
$1,2,3,4,6,7,8-\mathrm{HPCDF} \quad 0.001$
$1,2,3,4,7,8,9-\mathrm{HPCDF} 0.001$
other TCDF** 0.001
other PCDF**
other HxCDF**
other HPCDF**
OCDF 0.0
0.001
** compounds which are not substituted in all four 2,3,7,
and 8 positions

APPENDIX B

Sample Cleanup Methods for Soils, Sediments and Other Particulates

This appendix describes the sample preparation method for soils, and sediments. It is based on modifications of procedures used by EPA ERLD (60). These procedures are based on a combination of earlier work by Nestrick and Lamparski (7), Langhorst and Shadoff (8), Stalling et al. (9) and Buser (10). The bulk matrix removal column, using 50% silica gel/H2SO4, v/v, and the silver nitrate column, are based on the two Dow Chemical Co. references above.

As with the tissue methods described in Appendix C, the core of the procedure is the carbon column chromatography developed primarily by David Stalling, Larry Smith and coworkers at the U.S. Fish and Wildife Columbia National Fisheries Laboratory. This step, more than any other, allows the separation of planar aromatics from environmental coextractives and interferences often present at several crders of magnitude higher concentration than the analytes of interest. This is particularly important in light of the 1000 X concentration of the toluene used to elute the PCDDiPCDF fraction from the carbon.

Reagents

1) All solvents were Burdick and Jackson (Muskegon, Michigan) distilled in glass, high purity grade; methylene chloride, benzene, carbon tetrachloride, hexane, isooctane, toluene, acetone and methanol.
2) The following reagents were used in preparing the cleanup columns described in this appendix:
silica gel 60, 80-100 mesh, Merck Darmstadt (Germany)
aluminum oxide $90,70-230$ mesh, Merck Darmstadt (Germany)
Super-A activated carbon, AX-21, Anderson Development Co. Adrian, Michigan
disposable pasteur pipets, 5.25 inch borosilicate glass, Kimball, Toledo, Ohio

Anhydrous sodium sulfate, course, granular, J. T. Baker Ultrex concentrated sulfuric acid, J. T. Baker, Jackson Tennesee
potassium hydroxide, pellets, high purity grade, Aldridge Chemical Co., Milwaukee, Wisconsin
copper, granular, 20-30 mesh, J. T. Baker

Whatman glass fiber filter paper, $15 \mathrm{~cm}, \mathrm{~W} . \mathrm{R}$. Balston (United Kingdom)
sodium hydroxide, pellets, ACS reagent grade, J. T. Baker silver nitrate, ACS reagent grade, J. T. Baker

Notes on preparation of reagents and glassware

1) Activated silica was prepared by soxhlet extraction of sililica gel 60 overnight in methanol. The solvent washed silica was then dried for eight hours in a fume hood. After the batch was free of solvent vapors, it was placed in a vacuum oven at 125 C overnight. It was then transferred to a 120 C oven and left until use (60).
2) Basic alumina was soxhlet extracted with methanol (60). dried the same as described above for silica, and left in a 120 C oven until columns were are prepared. The complete columns were activated for 24 hours at 225 C prior to use.
3) The activated carbon reagent was prepared by blending 10 grams AX-21 carbon with 200 grams activated silica; 200 mg of this mixture was used for each column. The columns themselves were fabricated from disposable pasteur pipets, as described in reference (60).
4) Silver nitrate on silica was prepared as described in reference (7), with the exception that the slow heating described by Lamparski and Nestrick at Dow Chemical was carried out in a vacume oven, not in a tube furnace under nitrogen. Extreme care must be used in the preparation of this reagent to avoid reducing the silver ion to metallic silver.
5) Potassium silicate was prepared by dissolving 56 grams of KOH in 300 ml methanol. The mixture was heated to 60 C , 100 grams of silica gel were added; then left to stir for an hour. The reagent was dried as described above for silica gel, then left in a 120 C oven until use. This procedure was based on that of the Dow Chemical Co. (7).
6) All glassware was repeatedly solvent washed with acetone, hexane and methylene chloride prior to use. Soxhlet extractors were assembled empty and allowed to reflux for at least 12 hours with methylene chloride prior to use. After a set of samples suspected to contain high levels of PCDD/PCDF was prepared, all glassware was soaked for 15 minutes in a hot solution of 10 NKOH in methanol, $50 / 50 \mathrm{v} / \mathrm{V}$. This has proven effective in removing residual PCDD/PCDF. The treated glassware was then put through ERLD's normal
washing procedure consisting of sonic cleaning in detergent solution, rinse with filtered tapwater, followed by a final rinse in acetone before the glassware was returned to the shelf.

Procedure

1) An appropriate amount of sample was weighed out. This was to a certain extent dependent on prior knowledge, if any, of the site in question. In practice, this varied from 1 to 20 grams, wet weight as received. A 1.0 gram aliquot of the sample was placed in a disposable aluminum pan and baked at 105-110 C for 18-24 hours. The sample dry weight was determined by difference.

The portion of the sample weighed out for analysis was spread out evenly over a piece of glass fiber filter paper, placed on a stainless steel screen, and left to dry over night in a fume hood. For dry soils, this step was omitted. The partially dried sample was mixed with roughly an equal amount of course sodium sulfate in a convieniently sized beaker; the mixture was placed in an all glass soxhlet thimble with a course (70-100 micron) frit. Prior to adding the sample, the frit was covered with about 1.0 cm of solvent washed unactivated silical gel. This facilitated cleaning the thimbles by preventing sample from being trapped within the frit itself. The loaded thimble was spiked with 100 or 200 ul of the labeled internal standard solution described in Appendix D. A plug of solvent extracted glass wool was placed on top of the sample, to keep all sample particles within the thimble during the extraction. The loaded thimble was placed in the soxhlet apparatus and extracted for 24-30 hours with $50 / 50$ (by volume) methylene chloride/benzene, 250 ml total volume. The extraction flask contained 5.0 grams of fresh copper shavings for relatively clean samples. Up to 20 grams of copper was used for sulfur rich anaerobic sediments.
2) The crude extract was poured through a funnel, containing glass wool covered with 20 grams of sodium sulfate, into a 500 ml Kuderna Danish (KD) apparatus containing 5.0 ml of isooctane. The funnel was precleaned with 100 ml of hexane prior to being used with the sample. The extracting solvent was boiled off over a steam bath, leaving the concentrated residue in isooctane.
3) The lower tube was separated from the $K D$ and the sample transferred to the bulk matrix removal column with several 1 to 2 ml washes of hexane. The KD was washed twice with hexane, the wash being deposited in the column. Allowing each wash to drain until only a cm or so of solvent remains above the top layer, the column was eluted twice with 100 ml of 5% benzene in hexane. All washes and both 100 ml fractions were drained into a 500 ml KD apparatus.

The column itself was prepared as follows:
a) A solvent washed liquid chromatography column, $30 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ with a 300 ml reservoir and teflon stopcock, was packed with a plug of glass wool.

This was followed, from bottom to top, by 2 grams of activated silica, 2 grams of potassium silicate, 2 grams of silica, 10 grams of 44\% sulfuric acid on silica, 4 grams silica, and 2 grams Na2SO4.
b) The sulfuric acid/silica was prepared by slowly adding 4.0 ml of Ultrex (J.T. Baker) grade acid to 6 grams of activated silica while the silica was still hot. This operation was performed in a hood, as large amounts of highly irritating fumes were given off. The potassium silicate was prepared according to the procedure in reference (60).
c) The column was washed with 100 ml of 5% benzene in hexane and the wash disgarded prior to adding the sample.
d) The eluate from the column was concentrated to 5.0 ml , leaving the sample in isooctane. The sample was concentrated further, down to about 2.0 ml , under a gentle stream of filtered air over a heated water bath.
4) A column ($20 \mathrm{~cm} \times 1 \mathrm{~cm}$ with 50 ml reservoir) containing 10\% silver nitrate on silica was prepared. This reagent was kept in a heated vacuum dessicator over "Drierite" until immediately prior to use. The prepared column should be kept under hexane until the sample is applied. The sample was applied to the column, followed by three 0.5 to 1.0 ml hexane washes. The colunm was then eluted with 50 ml of 5% benzene in hexane. All eluate was retained in a 100 ml pair flask. The silver ion serves to complex compounds containing olefinic bonds (ll). All
visible residual pigmented materials which survived the bulk matrix column were removed at this point, including an as yet unidentified yellow-green oil which coleluted with the dioxin fraction on both alumina and activated carbon. Silver nitrate chromatography has a reputation for being tricky in practice, and has fallen out of favor in some labs doing dioxin work for this reason. This worker has found it to be the only method described in the literature which effectively removes the above described material. If left in the sample, these pigments often have the effect of ruining capillary columns after only a few injections. It was found in all anaerobic sediments and many soils analyzed during this study.
5) The sample was applied to an alumina column (60) with three 1 ml washes of hexane. The column was eluted with 4.0 ml of carbon tetrachloride, which was disgarded. This fraction contained PCB's and polychlorinated napthalenes. The alumina column was then placed such that it drained directly into a resevoir attached to a carbon column. The PCDD/PCDF fraction was eluted off the alumina with 8.0 ml of methylene chloride, which drained into the carbon column. The resevoir was washed three times with 0.5 mls of methylene chloride. The carbon and alumina columns were made from disposable pasteur pipets. The details of their construction, activation of reagents, etc. are discussed in reference (60).
6) The carbon column was eluted in the forward direction with 15 ml of methylene chloride, followed by 15 ml of 25\% (by volume) benzene in methylene chloride. These fractions were disgarded. The column was "flipped", reattached to its reservoir, and eluted with 20 ml of toluene. This fraction contains PCDD/PCDF and was retained in a 25 ml pear flask.
7) The pear flask was placed, using a specially fabricated rack, in a warm water bath and the toluene evaporated under a gentle stream of pure air until only about 50 ul remained. This was transferred with a microliter syringe to a tapered microvial of about 300 ul capacity. The pear flask was carefully washed with 30-50 ul amounts of toluene, until the microvial was filled to a reasonable volume. The sample was stored in the microvial, with a teflon lined cap, frozen,
until shortly before GC-MS analysis. Prior to GC-MS analysis, the toluene is evaporated at room temperature. The "dry" microvial was then brought to a final volume of 20 ul with 10 ul of internal standard B (see Appendix D) and 10 ul of toluene.

APPENDIX C

Sample Cleanup Methods for Biological Tissues

This appendix describes the different approach required for the cleanup of mamalian tissues, particularly liver and adipose tissue. It was discovered that the sulfuric acid/ celite column (42) used at ERLD to clean up fish tissues was inadequate to deal with samples containing more than 5.0 grams of extractable lipid. This left a choice between gel permeation chromatography (5) and a separatory funnel type cleanup, similar to that employed by the Brehm Laboratory at Wright State University (6).

The separatory funnel method was chosen due to its relative simplicity. The reagents and procedures used were much the same as those described in Appendix B. Only the steps which differ will be described here.

1) Frozen bovine and equine tissues were thawed out and weighed. If sufficient tissue existed, 2.0 grams was set aside for a \% lipid determination. PCDD/PCDF determinations are often reported on a lipid basis, like most hydrophobic environmental pollutants The 2.0 gram subsample was mixed with sufficient sodium sulfate to dry the tissue, loaded into a liquid chromatography column, and slowly eluted with 50 ml of methylene chloride, which drained into a pre-weighed disposable aluminum pan. The \% lipid was calculated based on the weights of the tissue, pan, and pan plus extracted lipid.
2) In a 100 ml beaker, 20 grams or all remaining sample was weighed out and mixed with sufficient sodium sulfate to dry the sample. All tissues had to be cut up with a solvent washed scissors and ground by hand, using a mortal and pestle. The meat grinders used for fish samples at ERLD were not effective against the more tendonous, tough, stringy tissues analyzed in this study. A Soxhlet thimble was loaded with half the sample, spiked with 100 ul of internal standard solution, loaded with the remaining sample, covered with a plug of glass wool, and loaded into the extractor. The sample was extracted for 24 hours in hexane/ methylene chloride, $50 / 50 \mathrm{v} / \mathrm{v}, 250 \mathrm{ml}$ total volume.
3) The crude extract was quantitatively transferred with several hexane washes to a KD containing 3.0 to 5.0 ml isooctane. The extracting solvent was removed by heating over a steam bath. The sample was then transferred to a 500 ml separatory funnel with sufficient hexane washes to bring the total solvent volume to about 200 ml . The hexane phase was then washed, with 5 to 8 minutes of vigorous shaking each, with the following reagents:
a) 10-15 mls of Ultrex sulfuric acid, repeated until all visible color was removed. With liver, it was necessary to dilute the acid 50% with millipore water. Undiluted sulfuric acid was observed to form a thick, intractable gel with equine liver samples. Care must be taken to cool the water/acid mixture before adding it to the separatory funnel, to avoid any unwanted chemical reactions.
b) three 50 ml washes with millipore water
c) two washes with 10 to 15 mls 0.5 N NAOH
d) three 50 ml washes with millipore water
4) The hexane phase was then poured through a funnel containing glass wool and sodium sulfate, into a KD. The funnel was rinsed three times with 5 to 10 ml quantities of hexane. The hexane was boiled off, leaving the sample in 3 to 5 ml of isooctane. The sample was further concentrated and cleaned up with silver nitrate on silica and carbon on silica as described in Appendix B. The alumina column was omitted for tissues analyzed using high resolution mass spectrometry, but retained for samples analyzed on a quadrupole instrument.

Although messy, time consuming, and expensive when compared to the soil/sediment methods in Appendix B, the approach described here proved effective on tissue samples which were impossible to deal with using techniques already established for fish. The silver nitrate column was effective in removing lipid pigments which were refractory to the sulfuric acid treatment; these orange/yellow pigments were present in adipose tissue samples from equines. Although not visible in 200 ml of hexane, these samples took on an obvious orange/yellow tint when concentrated to 2.0 ml .

APPENDIX D

Internal Standard A Concentrations

CompoundSolution $\mathrm{pg} / \mathrm{ul}$		$\begin{aligned} & \text { Sample* } \\ & \text { ppt } \end{aligned}$
37C14 2,3,7,8-TCDD	5	25
13C6 1,2,3,4-TCDD	5	25
$13 \mathrm{C12} 2,3,7,8-\mathrm{TCDF}$	5	25
13 Cl 2 1,2,3,7,8-PCDD	10	50
$13 \mathrm{Cl} 121,2,3,7,8-\mathrm{PCDF}$	10	50
13 C 12 1, $2,3,4,7,8-\mathrm{HxCDD}$	20	100
$13 \mathrm{C} 12 \mathrm{1}, 2,3,4,7,8-\mathrm{HxCDF}$	20	100
$13 \mathrm{Cl} 21,2,3,4,6,7,8-\mathrm{HPCDD}$	20	100
$13 \mathrm{C} 121,2,3,4,6,7,8-\mathrm{HPCDF}$	20	100
13 Cl 2 OCDD	40	200

Internal standard B Concentrations

Compound	Solution pg/ul	Sample* ppt
13C12-1,2,3,4-TCDD	2000	100

* Assuming analysis on a 20 gram aliquot of sample, brought to a final volume of 20 ul .

The concentrations above are based on the assumption of 100 ul of internal standard A and 10 ul of internal standard B brought to a final sample volume of 20 ul.

APPENDIX E

GC-MS Operating Parameters

Data Acquisition: Multiple Ion Selection of the Following Ions:
Compounds $\quad \mathrm{m} / \mathrm{z}$ Value

TCDF	$303.9016,305.8986$	
13C12-TCDF	317.9389	
TCDD	$319.8965,321.8936$	
37C14-TCDD	327.8847	
13C6-TCDD	327.9137	
13C12-TCDD	333.9338	
PCDF	$339.8597,341.8567$	
13C12-PCDF	351.9000	
PCDD	$355.8546,357.8516$	
13C12-PCDD	367.8949	
HxCDF	$373.8207,375.8178$	
13C12-HxCDF	385.8610	
HXCDD	$389.8156,391.8127$	
13C12-HxCDD	401.8559	
HPCDF	$407.7817,409.7788$	
13C12-HpCDF	419.8220	
HPCDD	$423.7766,425.7737$	
13C12-HpCDD	435.8169	
OCDF	443.7398,	445.7369
OCDD	$457.7377,459.7348$	
13C12-OCDD	471.775	

Note: Nominal masses were used for low resolution MS
*The material in this appendix is taken almost entirely from reference (42), with slight modifications based on conditions specific to the work reported here.

Operating paramters for Finnigan-MAT 8230 mass spectrometer

Sample Introduction: Open split interface with fused silica
transfer line inserted directly into source
Ionization: Electron Impact, $70 \mathrm{ev}, 1 \mathrm{~mA}$ emission current
Source Pressure: $7 \times 10-6$ torr
Ionizer Temperature: 250 C
Mass Resolution: 5000, 10\% valley
Scan Rate: 1 MIS cycle per second GC Column: 30 m DB5, 60 m SP 2330
Linear Velocity: $30 \mathrm{~cm} / \mathrm{sec}$ Helium
Temperature Programs:

Injector: split/splitless 300 C

Operating paramters for Finnigan 4500 mass spectrometer

GC Column Performance

```
Resolution: The ion current profile for 13 C (1,2,3,4-TCDD and for \(37 \mathrm{Cl} 42,3,7,8-T C D D\) must be resolved by a resolution coefficient of \(0.7587 .5 \%\) resolved) or greater, see references (42) and (60).
Isomer Identification: The ion current profile for a natural isomer must maximize at the same time as the stable isotope labeled analog, or elute at the relative GC retention time of an isomer identified in one of the two qualitative Standards available at ERL-Duluth.
Quality Assurance Requirement: Scan maxima may deviate by 2 scans.
```

```
Mass Spectrometer Performance
Mass Resolution
(8230 Instrument)
```

Mass resolution will be determined by analyzing for 1306 1,2,3,4TCDD and $37 \mathrm{Cl} 42,3,7,8-\mathrm{TCDD}$ at $2500,5000,7500$ and 10,000 resolution and calibrating resolution with peak overlap between the two TCDD isomers.

Quality Assurance Requirement: 10% of set resolution
See reference (28) for more a more detailed description of this procedure.
Resolution was also determined statically at the beginning of each working day using methods described in the manufacturer's operating manual.

Quality Assurance Parameters

	Method	Accuracy	Precision
Ion RatiotEfficiency $(+/-$ error $)$	at $10 \mathrm{pg} / \mathrm{g}$ $(+/-)$	at $10 \mathrm{pg} / \mathrm{g}$	aininu
$(+/-)$			

TCDD	$.76+.10$	$>50 \%$	$+50 \%$	$+50 \%$	2.5
PCDD	$1.53+.15$	$>35 \%$	$+50 \%$	$+50 \%$	2.5
HXCDD	$1.23+.15$	$>35 \%$	$+100 \%$	$+100 \%$	2.5
HPCDD	$1.02+.15$	$>35 \%$	$+100 \%$	$+100 \%$	2.5
OCDD	$.88+.20$	$>25 \%$	$+200 \%$	$+100 \%$	2.5
TCDF	$.76+.10$	$>50 \%$	$+50 \%$	$+50 \%$	2.5
PCDF	$1.53+.15$	$>35 \%$	$+50 \%$	$+50 \%$	2.5
HXCDF	$1.23+.15$	$>35 \%$	$+100 \%$	+100	2.5
HPCDF	$1.02+.15$	$>35 \%$	$+500 \%$	+500	2.5
OCDF	$1.53+.20$	$>25 \%$	$+500 \%$	+500	2.5

* Ratio of chlorine lsotope pattern

APPENDIX F

Source Code for Computer Programs Used to Quantify Samples

This appendix consists of three BASIC computer programs used to quantify samples analyzed for PCCD/PCDF utilizing data generated by ERLD's Finnigan-MAT 8230 high resolution mass spectrometer. RFACTOR calculates response factors for the ions of interest. In addition, it also checks the "fit" of the users" isomer assignments against librarles of known retention times. These librarles have, at the time of this writing, been created for the 30 meter $X 0.32 \mathrm{~mm}$ DB5 and the 60 meter X .0 .32 mm SP2330 columns.

DFQUANT reads the files generated by RFACTOR, peak area/height and retention time data entered by the user, and libraries; it then combines this information to quantify the sample and send reports to a printer and/or disk drive.

QAD reads the output from DFQUANT and generates a short report, containing concentrations and detection limits only.

All programs are written in a hybrid of Microsoft IBM-PC BASIC and a newer language, microsoft's "Quick BASIC" compiler. At present, the chemists at ERLD must still enter their data manually. It is anticipated that in the near future both programs will be able to read and sort raw data files sent over modem or hardwire serial connection from the host PDP 11-24 to a VAX minicomputer or several IBM PC-AT's. Earlier versions of both programs have been in use since July of 1986, on several IBM and compatible microcomputers. Previously, the individual chemist was required to reduce his data by hand. This was clumsy for $2,3,7,8-\operatorname{TCDD}$ alone, but impossibly slow when screening for the 24 compounds currently in the program libraries. The PDP 11 based data system, which came with ERLD's 8230, was inadequate to this task with existing software. Thus, the reason for writing data reduction software as part of my project. This source code will not run on a BASIC interpreter. It must be compiled with Quick BASIC into a stand alone EXE file or used within the quick BASIC programing environment.

Examples of program output are included.
The linear regression routine used in RFACTOR is based on that published by Wolfe and Koelling (15).

```
    REH
        Progran RFACTOR version 6.1 2/8/1987
REH Murray Hackett
REM Toxicology Program
REH Oregon State University
REN Corvallis, Oregon 97331
60 REM DB5 Version
70 REM A progran to calculate RF and RRF values
80 REM fron & series standards, weans and SD's
90 REH Also RT and RRT values for Biosig standard, WSU vindou narkers
92 REM
```

DEF FNCONVERT(X) FNCONVERT $=$ INT $(x)+((x-\operatorname{INT}(x)) / .6000)$
END DEF

DEF FNHINSEC(Y)

END DEF

REM initialize variables

DEFINT I

DIM L5(20), L6(20), N5(50), N6(50)

DIM RFLA 20), RFNA(50), RRFLA(20), RRFNA(50)
DIM SUAN(50), SUMRL(20), SUMRN(50)
DIM SUMSQN(50), SUMSQRN(50), SUMSQNT(50), RRTN(50)
DIM SUMSQL (20), SUMSERL (20), SUMSQLT(20)
DIF VRFL(20), VRRL(20), VLRT(20)
DIM VRFN(50), VRRN(50), VNRT(50)
$\operatorname{DIM} \operatorname{DLRT}(20,20), \operatorname{DLRTA}(20), \operatorname{DNRT}(50,20), \operatorname{DNRTA}(50)$ PRINT : PRINT
INPUTaStrike ENTER key when ready ... ", ANYs
CLS : PRINT : PRINT

CLS

```
FNHINSEC \(=\operatorname{INT}(Y)+((Y-\operatorname{INT}(Y)) \pm .6000)\)
DIM L3(20), N3(50), L4(20), N4(50), LI(20), L2(20), N1(50), N2(50)
DIM \(\operatorname{LP}(20,20), \operatorname{LRT}(20,20), \operatorname{NP}(50,20), \operatorname{NRT}(50,20), \operatorname{RFLC}(50,20)\)
DIF RFL 20,20 ), \(\operatorname{RFN}(50,20), \operatorname{RRFL}(20,20), \operatorname{RRFN}(50,20)\)
dIM NRTA(50), LRTA(20), SUMNT(50), SUMLT(20), SUML(20)
DIM \(\operatorname{RSDNRT}(50), \operatorname{RSDLRT}(50), \operatorname{RSDRFN}(50), \operatorname{RSDRFL}(20), \operatorname{RRTL}(20)\)
DIM ALYTE (30), BION(30), RRBT(30), LION(20), \(\operatorname{NION(50)}\)
DIH \(\operatorname{BRT}(30), \operatorname{DBRT}(30), X(30), Y(30), \operatorname{EY}(30), \operatorname{PRMS}(30), \operatorname{LIB}(30)\)
REM User must enter rav peak area and RT data interactively REM calculate RF and RRF values fron \(\theta\) series standards
PRINT"Be sure and set the Caps Lock Key 50 that only" PRINT"caps vill be printed, othervise things will not vork!"
INPUT"How nany \(Q\) series standards do you wish to average "; \(N\)
```370400
410 INPUT 'enter RT's for 320, 322 '; \(\operatorname{NRT}(7, \mathrm{~J})\), \(\operatorname{NRT}(8, \mathrm{~J})\)
CLS
430 INPUT "enter peak areas for 2378 TCDD, 320 and 322 "; NP(9, J), NP(10, J)
440 INPUT 'enter RT's for 320,322 '; \(\operatorname{NRT}(9, \mathrm{~J})\), \(\operatorname{NRT}(10, \mathrm{~J})\)
450 CLS
460 INPUT "enter peak area for \(37 C L 42378\) TCDD, 327.8847 "; LP(4,J)
470 INPUT "enter RT for \(37 C L 42378 \operatorname{TCDD}\) "; \(\operatorname{LRT}(4, \mathrm{~J})\)
480 CLS
490 INPUT "enter peak area for 13C6 1234 TCDD, 327.9137 "; LP(3,J)
500 INPUT "enter RT for 13C6 1234 TCDD "; \(\operatorname{LRT}(3, \mathrm{~J})\)
510 CLS
520 INPUT "enter peak area for \(13 C 121234\) TCDD, 334 "; LP(1, J)

CLS
550 INPUT 'enter peak areas for 12378 PCDF, 340 and 342 ; \(\operatorname{MP}(13, \mathrm{~J}), \mathrm{NP}(14, \mathrm{~J})\)
560 IMPUT 'enter RT's for 340,342 '; \(\operatorname{MRT}(13, \mathrm{~J}), \operatorname{NRT}(14, \mathrm{~J})\)
570 CLS
580 INPUT "enter peak ared for \(13 C 1212378\) PCDF, 352 "; LP(5, J)
590 INPUT 'enter peak RT for 13C12 12378 PCDF '; LRT(5,J)
600 CLS
610 INPUT "enter peak areas for 12378 PCDD, 356 and 358 '; NP(21, J), NP(22,J)
620 INPUT "enter RT's for 356, 358 '; \(\operatorname{MRT}(21, \mathrm{~J}), \operatorname{NRT}(22, \mathrm{~J})\)
630 CLS
640 INPUT 'enter peak area for \(13 C 1212378\) PCDD, 368 '; LP(E,J)
650 INPUT "enter RT for \(13 C 1212378\) PCDD "; LRT(6,J)
660 CLS
670 INPUT'enter peak areas for 123478 HxCDF, 374 and 376 '; \(N P(23, J), N P(24, J)\)
680 INPUT "enter RT's for 374, 376 '; \(\operatorname{MRT}(23, \mathrm{~J}), \operatorname{NRT}(24, \mathrm{~J})\)
690 CLS
700 INPUT 'enter peak arta for \(13 \mathrm{Cl} 2123478 \mathrm{HxCDF}, 386\) "; LP(7,J)
710 INPUT "enter RT for 13 Cl 2123478 HxCDF '; LRT(7,J)
720 CLS
730 INPUT "enter peak areas for \(123678 \mathrm{HxCDD}, 390\) and 392 '; \(\operatorname{NP}(35, \mathrm{~J})\), NP(36, J)
740 INPUT 'enter RT's for 390, 392 '; NRT(35, J), NPT(36, J)
750 CLS
760 INPUT 'enter peak area for \(13 C 12123678 \mathrm{HxCDD}, 402\) "; LP(8,J)
770 INPUT 'enter RT for 13 Cl 2123678 HxCDD '; LRT(\(8, \mathrm{~J}\))
780 CLS
790 INPUT"enter peak areas for \(1234678 \mathrm{HpCDF}, 408\) and \(410^{\circ}\); \(N P(39, \mathrm{~J}), N P(40, \mathrm{~J})\)
B00 INPUT 'enter RT's for 408, 410 '; \(\operatorname{NRT}(39, \mathrm{~J}), \operatorname{NRT}(40, \mathrm{~J})\)
810 CLS
820 INPUT "enter peak area for \(13 C 121234678\) HpCDF, 420 "; LP(9,J)
830 INPUT "enter RT for 13 Cl 21234678 HPCDF - \(\operatorname{LRT}(9, \mathrm{~J})\)
840 CLS
850 INPUT 'enter peak areas for 1234678 HpCDD, 424, 426 '; \(\operatorname{NP}(43, \mathrm{~J}), N P(44, \mathrm{~J})\)
860 INPUT 'enter RT for 424,426 '; \(\operatorname{NRT}(43, \mathrm{~J}), \operatorname{NRT}(44, \mathrm{~J})\)
870 CLS
880 INPUT 'enter peak arta for 13C12 1234678 HpCDD, 436 '; LP(10,J)
890 INPUT "enter RT for \(13 C 121234678\) HpCDD "; \(\operatorname{LRT}(10, \mathrm{~J})\)
900 CLS
910 INPUT 'enter peak areas for OCDF, 444 and 446 '; \(N P(45, \mathrm{~J}), N P(46, \mathrm{~J})\)
920 INPUT 'enter RT's for 444, 446 '; \(\operatorname{NRT}(45, \mathrm{~J}), \operatorname{NRT}(46, \mathrm{~J})\)
930 CLS
940 INPUT "enter peak arta for \(13 C 12\) OCDF, 456 '; LF(11,J)
950 INPUT "enter RT for 13C12 OCDF "; LRT(11,J)
960 CLS
970 INPUT 'enter peak areas for OCDD, 458 and 460 '; \(\operatorname{NP}(47, \mathrm{~J}), N P(48, \mathrm{~J})\)
980 INPUT 'enter RT's for 458, 460 '; NRT(47,J), NRT(48,J)
990 CLS
1000 INPUT "enter peak area for \(13 C 12\) OCDD, 472 ; \(\operatorname{LP}(12, \mathrm{~J})\)
1010 INPUT 'enter RT for \(13 C 12\) OCDD "; LRT(12,J)

1015 CLS : REM add natural ions for biosig compounds not in \(\theta\) standards
\(1020 \operatorname{NP}(3, \mathrm{~J})=\operatorname{NP}(\mathrm{l}, \mathrm{J}): \operatorname{NP}(5, \mathrm{~J})=\operatorname{NP}(\mathrm{l}, \mathrm{J}): \operatorname{NP}(4, \mathrm{~J})=\operatorname{NP}(2, \mathrm{~J}): \operatorname{NP}(6, \mathrm{~J})=\operatorname{NP}(2, \mathrm{~J})\)
\(1025 N P(11, \mathrm{~J})=N P(13, \mathrm{~J}): N P(15, \mathrm{~J})=N P(13, \mathrm{~J}): N P(17, \mathrm{~J})=N P(13, \mathrm{~J}): N P(19, \mathrm{~J})=N P(13, \mathrm{~J})\)
\(1030 \operatorname{NP}(12, \mathrm{~J})=\operatorname{NP}(14, \mathrm{~J}): \operatorname{NP}(16, \mathrm{~J})=\operatorname{NP}(14, \mathrm{~J}): \operatorname{NP}(18, \mathrm{~J})=\operatorname{NP}(14, \mathrm{~J}): \operatorname{NP}(20, \mathrm{~J})=\operatorname{NP}(14, \mathrm{~J})\)
\(1035 \operatorname{NP}(25, \mathrm{~J})=\operatorname{NP}(23, \mathrm{~J}): \operatorname{NP}(27, \mathrm{~J})=\operatorname{NP}(23, \mathrm{~J}): \operatorname{NP}(26, \mathrm{~J})=\operatorname{NP}(24, \mathrm{~J}: \quad: \operatorname{NP}(28, \mathrm{~J})=\operatorname{NP}(24, \mathrm{~J})\)
```

1040 NP(29, J)=NP(23,J):NP(3!,J)=NP(23,J):NP(30,J)=NP(24,J):NP(32,J)=NP(24,J)
1045 NP(33,J)=NP(35,J):NP(34,J)=NP(36,J):NP(37,J)=NP(35,J):NP(38,J)=NP(36,J)
1050 NP(41,J)=NP(39,J):NP(42,J)=NP(40,J)

```
\begin{tabular}{|c|c|}
\hline 1072 & REM pg/ul for each Q standard, Q1-Q6 \\
\hline 1074 & REM Subroutine: Enter concentrations for a standards \\
\hline 1075 & REM Standard Q3 \\
\hline 1080 & L3(1) \(=100\) : REM pg 13C12 1234 TCDD ion 334 \\
\hline 1090 & \(L 3(3)=12.5\) : REM pg 13C6 1234 TCDD ion 328 \\
\hline 1100 & L3(4) \(=12.5\) : REM pg 37CL4 2378 TCDD ion 328 \\
\hline 1110 & L3(2) \(=12.5\) : REM pg \(13 C 122378\) TCDF ion 318 \\
\hline 1120 & L3 3) \(=25\) : REM Pg 13C12 12378 PCDF ion 352 \\
\hline 1130 & L3 \((6)=25:\) REM Pg \(13 C 1212378\) PCDD ion 368 \\
\hline 1140 & \(L 3(7)=50\) : REM \(\mathrm{Pg} 13 \mathrm{Cl2} 123478 \mathrm{HxCDF}\) ion 386 \\
\hline 1150 & \(L 3(8)=50\) : REM Pg 13 Cl 2123678 HxCDD ion 402 \\
\hline 1160 & \(L 3(9)=50\) : REM pg 13 Cl 21234678 HpCDF ion 420 \\
\hline 1170 & \(L 3(10)=50\) : REM Pg \(13 C 121234678\) HpCDD ion 436 \\
\hline 1180 & L3(11) \(=100\) : REM pg 13 Cl 1212346789 OCDF ion 456 \\
\hline 1190 & L3(12) \(=100\) : REM pg 13C12 12346789 OCDD ion 472 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1210 & N3(1) = 12.5 : REM pg nat & 2378 TCDF ion 304 \\
\hline 1220 & N3(2) \(=12.5\) : REM pg nat & 2378 TCDF ion 306 \\
\hline 1230 & \(\mathrm{N} 3(7)=2.5:\) REM pg nat & 1234 TCDD ion 320 \\
\hline 1240 & \(N 3(8)=2.5:\) REM pg nat & 1234 TCDD ion 322 \\
\hline 1250 & \(\mathrm{N} 3(9)=12.5\) : REM pg nat & 2378 TCDD ion 320 \\
\hline 1260 & N3(10) \(=12.5:\) REM pg nat & 2378 ICDD ion 322 \\
\hline 1270 & \(\mathrm{N} 3(13)=25 \quad\) : REM Pg nat & 12378 PCDF ion 340 \\
\hline 1280 & \(\mathrm{N} 3(14)=25 \quad:\) REM pg nat & 12378 PCDF ion 342 \\
\hline 1290 & \(\mathrm{N} 3(21)=25:\) REM pg nat & 12378 PCDD ion 356 \\
\hline 1300 & N3(22) \(=25\) : REM Pg nat & 12378 PCDD ion 358 \\
\hline 1310 & \(N 3(23)=50 \quad:\) REM pg nat & 123478 HxCDF ion 374 \\
\hline 1320 & \(N 3(24)=50:\) REM Pg nat & 123478 HxCDF ion 376 \\
\hline 1330 & \(\mathrm{N} 3(35)=50 \quad:\) REM pg nat & 123678 HxCDD ion 390 \\
\hline 1340 & \(N 3(36)=50\) : REM pg nat & 123678 HxCDD ion 392 \\
\hline 1350 & \(N 3(39)=50:\) REM pg nat & 1234678 HpCDF ion 408 \\
\hline 1360 & \(\mathrm{N} 3(40)=50\) : REM pg nat & 1234678 HpCDF ion 410 \\
\hline 1370 & \(N 3(43)=50 \quad:\) REM pg nat & 1234678 HPCDD ion 424 \\
\hline 1380 & N3(44) \(=50\) : REM pg nat & 1234678 HpCDD ion 426 \\
\hline 1390 & \(\mathrm{N3}(47)=100\) : REM pg nat & 12346789 OCDD ion 458 \\
\hline 1400 & \(N 3(48)=100:\) REM pg nat & 12346789 OCDD ion 460 \\
\hline 1410 & \(N 3(45)=100\) : REM pg nat & 12346789 OCDF ion 444 \\
\hline 1420 & \(\mathrm{N} 3(46)=100\) : REM pg nat & 12346789 OCDF ion 446 \\
\hline
\end{tabular}

1425 REM add natural ions for biosig compounds not in \(Q 3\) standard
\(1426 \quad N 3(3)=N 3(1): N 3(5)=N 3(1): N 3(4)=N 3(2): N 3(6)=N 3(2)\)
1427 N3(11) \(=N 3(13): N 3(15)=N 3(13): N 3(17)=N 3(13): N 3(19)=N 3(13)\)
1428 N3(12) \(=N 3(14): N 3(16)=N 3(14): N 3(18)=N 3(14): N 3(20)=N 3(14)\)
1429 N3(25) \(=N 3(23): N 3(27)=N 3(23): N 3(26)=N 3(24): N 3(28)=N 3(24)\)
1430 N3(29) \(=N 3(23): N 3(30)=N 3(24): N 3(31)=N 3(23): N 3(32)=N 3(24)\)
1435 N3(33) \(=N 3(35): N 3(34)=N 3(36): N 3(37)=N 3(35): N 3(38)=N 3(36)\)
\(1437 \mathrm{~N} 3(41)=\mathrm{N} 3(39): N 3(42)=N 3(40)\)

1440 L4(1) \(=100:\) REM pg \(13 C 121234\) TCDD ion 334
\(1450 \quad\) L4(3) \(=25:\) REM pg 13C6 1234 TCDD ion 328
1460 L4(4) \(=25\) : REN pg 37CL4 2378 TCDD ion 328
1470 L4(2) \(=25:\) REM pg I3C12 2378 TCDF ion 318
\(1480 \quad \mathrm{~L}(5)=50:\) REK pg 13 Cl 1212378 PCDF ion 352
\(1490 \quad\) L4(6) \(=50:\) REM pg 13 Cl 212378 PCDD ion 368
\(1500 \quad \mathrm{L4}(7)=100\) : REM \(\mathrm{pg} 13 \mathrm{Cl2} 123478 \mathrm{HxCDF}\) ion 386
\(1510 \quad L 4(8)=100:\) REM pg \(13 C 12123678 \mathrm{HxCDD}\) ion 402
\(1520 \quad\) L4(9) \(=100:\) REM Pg \(13 C 121234678\) HpCDF ion 420
\(1530 \quad\) L4(10) \(=100:\) REM pg \(13 C 121234678 \mathrm{HPCDD}\) ion 436
\(1540 \quad \mathrm{~L}(11)=200\) : REM Pg 13C12 12346789 OCDF ion 456
1550 L4(12) \(=200\) : REM Pg 13C12 12346789 OCDD ion 472
\begin{tabular}{|c|c|c|c|}
\hline 1560 & \(N 4(1)=25\) & : REM pg nat & 2378 TCDF ion 304 \\
\hline 1570 & \(\mathrm{N4}(2)=25\) & : REM pg nat & 2378 TCDF ion 306 \\
\hline 1580 & \(N 4(7)=5\) & : REM pg nat & 1234 TCDD ion 320 \\
\hline 1590 & N4(8) & REM pg nat & 1234 TCDD ion 322 \\
\hline 1600 & \(N 4(\mathrm{~g})=25\) & : REM pg nat & 2378 TCDD ion 320 \\
\hline 1610 & \(N 4(10)=25\) & : REM pg nat & 2378 TCDD ion 322 \\
\hline 1620 & \(N 4(13)=50\) & : REM pg nat & 12378 PCDF ion 338 \\
\hline 1630 & \(N 4(14)=50\) & : REM pg nat & 12378 PCDF ion 342 \\
\hline 1640 & \(N 4(21)=50\) & : REC pg nat & 12378 PCDD ion 356 \\
\hline 1650 & \(\mathrm{N4}(22)=50\) & : REM pg nat & 12378 PCDD ion 358 \\
\hline 1660 & \(N 4(23)=100\) & : REM pg nat & 123478 HxCDF ion 374 \\
\hline 1670 & \(N 4(24)=100\) & : REM pg nat & 123478 HxCDF ion 376 \\
\hline 1680 & \(\mathrm{N4}(35)=100\) & : REM pg nat & 123678 HxCDD ion 390 \\
\hline 1690 & \(N 4(36)=100\) & : REC Pg nat & 123678 HxCDD ion 392 \\
\hline 1700 & \(\mathrm{N4}(39)=100\) & : REM pg nat & 1234678 HpCDF ion 408 \\
\hline 1710 & \(N 4(40)=100\) & : REM pg nat & 1234678 HpCDF ion 410 \\
\hline 1720 & \(N 4(43)=100\) & : REM pg nat & 1234678 HpCDD ion 424 \\
\hline 1730 & \(N 4(44)=100\) & : REM Pg nat & 1234678 HpCDD ion 426 \\
\hline 1740 & \(\mathrm{N} 4(47)=200\) & : REK pg nat & 12346789 OCDD ion 458 \\
\hline 1750 & \(\mathrm{N} 4(48)=200\) & : REM pg nat & 12346789 OCDD ion 460 \\
\hline 1760 & \(N 4(45)=200\) & : REM pg nat & 12346789 OCDF ion 442 \\
\hline 1770 & \(\mathrm{N} 4(46)=200\) & : REM pg nat & 12346789 OCDF ion 4 \\
\hline
\end{tabular}
```

1771 CLS : REM add natural ions for biosig compounds not in Q4 standard
1772 N4(3)=N4(1):N4(5)=N4(1):N4(4)=N4(2):N4(6)=N4(2)
1773 N4(11)=N4(13):N4(15)=N4(13):N4(17)=N4(13):N4(19)=N4(13)
1774 N4(12)=N4(14):N4(16)=N4(14):N4(18)=N4(14):N4(20)=N4(14)
1775 N4(25)=N4(23):N4(27)=N4(23):N4(26)=N4(24):N4(28)=N4(24)
1776 N4(29)=N4(23):N4(30)=N4(24):N4(31)=N4(23):N4(32)=N4(24)
1777 N4(33)=N4(35):N4(34)=N4(36):N4(37)=N4(35):N4(38)=N4(36)
1779 N4(41)=N4(39):N4(42)=N4(40)

```
\begin{tabular}{|c|c|c|}
\hline 1780 & REM standa & ans \\
\hline 1790 & L2(1) \(=100\) & : REM pg I3C12 1234 TCDD ion 334 \\
\hline \(`-1800\) & \(L 2(3)=12.5\) & REM pg 13C6 1234 TCDD ion 328 \\
\hline 1810 & L2(4) \(=12.5\) & : REM pg 37CL4 2378 TCDD ion 328 \\
\hline 1820 & \(L 2(2)=12.5\) & REM pg \(13 C 122378\) TCDF ion 318 \\
\hline 1830 & \(L 2(5)=25\) & : REM pg \(13 \mathrm{Cl2} 12378\) PCDF ion 352 \\
\hline 1840 & \(L 2(6)=25\) & : REM pg 13C12 12378 PCDD ion 368 \\
\hline 1850 & L2(7) \(=50\) & : REM pg 13 Cl 12123478 HxCDF ion 386 \\
\hline 1860 & \(\mathrm{L} 2(8)=50\) & : REM Pg \(13 C 12123578\) HxCDD ion 402 \\
\hline 1870 & L2(9) \(=50\) & : REM pg 13 Cl 121234678 HpCDF ion 420 \\
\hline 188 & \(12(10)=50\) & : REM Pg \(13 \mathrm{Cl} 121234678 \mathrm{HPCDD}^{\text {ion } 4}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1910 & N2(1) = 5 : REM Pg nat & 2378 TCDF ion 304 \\
\hline 1920 & \(\mathrm{N2} 2(2)=5:\) REM pg nat & 2378 TCDF ion 306 \\
\hline 1930 & \(\mathrm{N} 2(7)=2.5: \mathrm{REM} \mathrm{Pg} \mathrm{nat}\) & 1234 TCDD ion 320 \\
\hline 1940 & \(\mathrm{N} 2(8)=2.5: \mathrm{REM} \mathrm{pg} \mathrm{nat}\) & 1234 TCDD 10 C 322 \\
\hline 1950 & N2(9) \(=5\) : REM Pg nat & 2378 TCDD ion 320 \\
\hline 1960 & \(\mathrm{N} 2(10)=5:\) REM pg nat & 2378 TCDD ion 322 \\
\hline 1970 & N2(13) = 10: REM pgnat & 12378 PCDF ion 340 \\
\hline 1980 & N2(14) = 10: REM pg nat & 12378 PCDF ion 342 \\
\hline 1990 & \(\mathrm{N} 2(21)=10:\) REM Pg nat & 12378 PCDD ion 356 \\
\hline 0 & \(\mathrm{N} 2(22)=10:\) REM pg nat & 12378 PCDD ion 358 \\
\hline 2010 & \(\mathrm{N} 2(23)=20:\) REM pg nat & 123478 HxCDF ion 374 \\
\hline 2020 & N2(24) \(=20\) : REM pg nat & 123478 HxCDF ion 376 \\
\hline 2030 & \(\mathrm{N} 2(35)=20:\) REM Pg nat & 123678 HxCDD ion 390 \\
\hline 2040 & \(\mathrm{N} 2(36)=20:\) REM pg nat & 123678 HxCDD ion 392 \\
\hline 2050 & N2(39) \(=20\) : REM pg nat & 1234678 HpCDF ion 408 \\
\hline 2060 & \(\mathrm{N} 2(40)=20:\) REM pg nat & 1234678 HpCDF ion 410 \\
\hline 2070 & N2(43) \(=20\) : REM pg nat & 1234678 HpCDD ion 424 \\
\hline 2080 & N2(44) \(=20\) : REM pg nat & 1234678 HpCDD ion 426 \\
\hline 2090 & \(\mathrm{N} 2(47)=40:\) REM Pg nat & 12346789 OCDD ion 458 \\
\hline 2100 & \(\mathrm{N} 2(48)=40\) : REM pg nat & 12346789 OCDD ion 460 \\
\hline 2110 & \(\mathrm{N} 2(45)=40\) : REM pg nat & 12346789 OCDF ion 444 \\
\hline 2120 & \(\mathrm{N} 2(46)=40\) : REM pg nat & 12346789 OCDF ion 44 \\
\hline
\end{tabular}

2121 CLS : REM add natural ions for biosig conpounds not in 82 standard

2123 N2 (11) \(=N 2(13): N 2(15)=N 2(13): N 2(17)=N 2(13): N 2(19)=N 2(13)\)
2124 N2(12) \(=N 2(14): N 2(16)=N 2(14): N 2(18)=N 2(14): N 2(20)=N 2(14)\)
2125 N2 (25) \(=N 2(23): N 2(27)=N 2(23): N 2(26)=N 2(24): N 2(28)=N 2(24)\)
2126 N2(29) \(=N 2(23): N 2(30)=N 2(24): N 2(31)=N 2(23): N 2(32)=N 2(24)\)
\(2127 \mathrm{~N} 2(33)=N 2(35): N 2(34)=N 2(36): N 2(37)=N 2(35): N 2(38)=N 2(36)\)
\(2128 \quad N 2(41)=N 2(39): N 2(42)=N 2(40)\)
\begin{tabular}{|c|c|c|}
\hline 2130 & REM Standard 81 & \\
\hline 2140 & LI(1) \(=100\) : REM pg \(13 \mathrm{Cl2}\) & 1234 TCDD ion 334 \\
\hline 50 & \(\mathrm{Lf}(3)=12.5:\) REM Pg 13C6 & 1234 TCDD ion 328 \\
\hline 2160 & \(\mathrm{LI}(4)=12.5\) : REM Pg 37CL4 & 2378 TCDD ion 328 \\
\hline 70 & \(\mathrm{LI}(2)=12.5\) : REM Pg 13 Cl 2 & 378 TCDF ion 318 \\
\hline 2180 & \(\mathrm{LI}(5)=25:\) REM pg 13 Cl 2 & 2378 PCDF ion 352 \\
\hline 90 & \(\mathrm{LI}(6)=25:\) REM Pg 13 Cl 2 & 2378 PCDD ion 368 \\
\hline 00 & \(\mathrm{LI}(7)=50:\) REM pg 13 Cl 2 & 23478 HxCDF ion \\
\hline 2210 & \(\mathrm{LI}(8)=50\) : REM pg 13C12 & 23678 HxCDD ion \\
\hline 200 & \(\mathrm{LI}(\mathrm{g})=50\) : REM pg 13 Cl 12 & 234678 HpCDF \\
\hline 2230 & \(L 1(10)=50 \quad:\) REM pg \(13 C 12\) & 1234678 HpCDD \\
\hline 40 & \(L 1(11)=100:\) REM pg \(13 C\) & 12346789 OCDF \\
\hline 2250 & \(L 1(12)=100:\) REM Pg 130 & 2346789 OCDD \\
\hline 70 & NI(1) \(=1\) : REM pgnat & 2378 TCDF ion 304 \\
\hline 80 & \(\mathrm{NL}(2)=1\) : REM pg nat & 2378 TCDF ion 306 \\
\hline 2290 & \(\mathrm{NI}(7)=2.5\) : REM pg nat & 1234 TCDD ion 320 \\
\hline 2300 & \(\mathrm{NL}(8)=2.5\) : REM Pg nat & 1234 TCDD ion 322 \\
\hline 2310 & \(\mathrm{NL}(\mathrm{g})=1\) : REM pg nat & 2378 TCDD ion 320 \\
\hline 2320 & \(\mathrm{NL}(10)=1\) : REM pg nat & 2378 TCOD ion 322 \\
\hline
\end{tabular}
\(N 1(13)=2:\) REM Pg nat 12378 PCDF ion 340
2340 N1(14) \(=2\) : REM Pg nat 12378 PCDF ion 342
2350 N1 (21) \(=2\) : REM Pg nat 12378 PCDD ion 356
2360 NI (22) \(=2\) : REM pg nat 12378 PCDD ion 358
\(2370 \mathrm{NI}(23)=4\) : REM Pg nat 123478 HxCDF ion 374
\(2380 \mathrm{Nl}(24)=4\) : REM pg nat 123478 HxCDF ion 376
2390 MI (35) \(=4\) : REM pg nat 123678 HxCDD ion 390
\(2400 \mathrm{NI}(36)=4\) : REM pg nat 123678 HxCDD ion 392
\(2410 \mathrm{NI}(39)=4\) : REM Pg nat 1234678 HpCDF ion 408
\(2420 \mathrm{MI}(40)=4\) : REM pg nat 1234678 HPCDF ion 410
2430 NI (43) \(=4\) : REM Pg nat 1234678 HPCDD ion 424
\(2440 \mathrm{Nl}(44)=4\) : REM pg nat 1234678 HPCDD ion 426
\(N 1(46)=8 \quad\) : REM pg nat 12346789 OCDF ion 446
```

2481 CLS : REM add natural ions for biosig compounds not in Ql standard
2482 Nl(3)=N!(1) : NI(5)=NI(1) : NI(4)=NI(2) : NI(6)=NI(2)
2483 NI(11)=NI(13) : NI(15)=NI(13) : Nl(17)=NI(13) : Nl(19)=NI(13)
2484 Nl(12)=N1(14) : NI(16)=N1(14) : NI(18)=N1(14) : NI(20)=N1(14)
2485 NI(25)=NI(23) : NI(27)=NI(23) : NI(26)=NI(24) : NI(28)=NI(24)
2486 Nl(29)=N!(23) : NI(30)=N!(24) : NI(31)=NI(23) : NI(32)=N!(24)
2487 Nl(33)=NI(35):Nl(34)=NI(36):Nl(37)=NI(35):Nl(38)=NI(36)
2488 Nl(41)=N!(39) : Nl(42)=NI(40)

```
2489 REM 25

L5(1) \(=100:\) REM Pg \(13 C 121234\) TCDD ion 334
L5(3) \(=25\) : REM Pg \(13 C 61234\) TCDD ion 328
L5(4) \(=25\) : REM pg 37CL4 2378 TCDD ion 328
L5(2) \(=25\) : REM pg \(13 C 122378\) TCDF ion 318
\(\mathrm{LE}(5)=50:\) REM pg 13C12 12378 PCDF ion 352
L5(6) \(=50:\) REM PG 13C12 12378 PCDD ion 368
L5(7) \(=100:\) REM pg 13C12 123478 HxCDF ion 386
L5(8) \(=100:\) REM PG \(13 C 12123678\) HxCDD ion 402
\(L 5(9)=100:\) REM pg \(13 C 121234678\) HpCDF ion 420
\(L 5(10)=100\) : REM pg 13C12 1234678 HpCDD ion 436
\(\mathrm{L5}(11)=200:\) REM pg 13C12 12346789 OCDF ion 456
L5 (12) \(=200\) : REM pg \(13 C 1212346789\) OCDD ion 472
\begin{tabular}{|c|c|}
\hline 50 : REM Pg & 2378 TCDF ion 304 \\
\hline N5(2) = 50 : REM pg nat & 2378 TCDF ion 306 \\
\hline N5(7) = 5 : REM pg nat & 1234 TCDD ion 320 \\
\hline \(N 5(8)=5\) : REM pg nat & 1234 TCDD ion 322 \\
\hline N5(9) \(=50:\) REM pg nat & 2378 TCDD ion 320 \\
\hline \(N 5(10)=50\) : REM pg nat & 2378 TCDD ion 322 \\
\hline N5(13) \(=100:\) REM pg nat & 12378 PCDF ion 338 \\
\hline N5(14) = 100: REM pg nat & 12378 PCDF ion 342 \\
\hline N5(21) = 100 : REM p n nat & 12378 PCDD ion 356 \\
\hline \(N 5(22)=100:\) REM pg nat & 12378 PCOD ion 358 \\
\hline N5 (23) = 200 : REM g nat & 123478 HxCDF ion 374 \\
\hline N5(24) = 200 : REM pg nat & 123478 HxCDF ion 376 \\
\hline N5(35) \(=200\); REM pg nat & 123678 HxCDD ion 390 \\
\hline N5(36) \(=200\) : REM pg nat & 123678 HxCDD ion 392 \\
\hline
\end{tabular}
\(N 5(39)=200\) : REF DG nat 1234678 HDCDF ion 408
NS (40) \(=200\) : REN Pg nat 1234678 HDCDF ion 410
\(N 5(43)=200\) : REn Pg nat
M5 (44) \(=200:\) REM pg nat
\(N 5(47)=400:\) REM pg nat
\(N 5(48)=400\) : REM pg nat
N5 (45) \(=400\) : REM pg nat
\(N 5(46)=400:\) REK pg nat

1234678 HPCDD ion 424
1234678 HPCDD ion 426
12346789 OCDD ion 458
12346789 OCDD ion 460
12346789 OCDF ion 442
12346789 OCDF ion 446

CLS : REK add natural ions for biosig conpounds not in 85 standard
\(N 5(3)=N 5(1): N 5(5)=N 5(1): N 5(4)=N 5(2): N 5(6)=N 5(2)\)
\(N 5(11)=\) N5 (13) : N5 (15) = N5 (13) : N5 (17) = N5 (13) : N5 (19) = N5 (13)
\(N 5(12)=N 5(14): N 5(16)=N 5(14): N 5(18)=N 5(14): N 5(20)=N 5(14)\)
\(N 5(25)=N 5(23): N 5(27)=N 5(23): N 5(26)=N 5(24): N 5(28)=N 5(24)\)
\(N 5(29)=N 5(23) ; N 5(30)=N 5(24): N 5(31)=N 5(23): N 5(32)=N 5(24)\)
\(N 5(33)=N 5(35): N 5(34)=N 5(36): N 5(37)=N 5(35): N 5(38)=N 5(36)\)
\(N 5(41)=N 5(39): N 5(42)=N 5(40)\)
REM Q6
L6(1) = 100 : REK pg \(13 C 121234\) TCDD ion 334
L6(3) = 25 : REM pg \(13 C 6\) 1234 TCDD ion 328
L6(4) \(=25\) : RER pg 37CL4 2378 TCDD ion 328
L6 \((2)=25:\) REM pg \(13 C 122378\) TCDF ion 318
L6(5) \(=50:\) REM pg 13 C12 12378 PCDF ion 352
L6(6) \(=50\) : PEM Pg \(13 C 12\) 12378 PCDD ion 368
L6(7) \(=100:\) REM pg 13 C12 123478 HxCDF ion 386
L6(8) \(=100:\) REA Pg \(13 C 12123678 \mathrm{HxCDD}\) ion 402
L6 6) \(=100\) : REH pg \(13 C 121234678\) HpCDF ion 420
L6(10) \(=100:\) REK pg \(13 C 121234678\) HpCDD ion 436
L6(1) \(=200\) : REM Pg \(13 C 12\) 12346789 OCDF ion 456
L6(12) \(=200\) : REK pg \(13 C 1212346789\) OCDD ion 472
N6(1) = 100 : REM pg nat 2378 TCDF ion 304
N6(2) \(=100:\) REK pg nat 2378 TCDF ion 306
N6(7) \(=5\) : REK pg nat 1234 TCDE ion 320
\(\mathrm{NE}(8)=5\) : RER pg nat 1234 TCDD ion 322
N6 (9) = 100 : REK pg nat 2378 TCDD ion 320
N6(10) \(=100:\) PEM pg nat 2378 TCDD ion 322
N6(13) \(=200\) : REF Pg nat 12378 PCDF ion 338
N6(14) \(=200\) : REM Pg nat 12378 PCDF ion 342
N6(21) \(=200\) : REM pg nat 12378 PCDD ion 356
N6(22) \(=200\) : RER pg nat 12378 PCDD ion 358
N6(23) \(=400\) : REM Dg nat 123478 HxCDF ion 374
N6(24) \(=400:\) REN Pg nat 123478 HxCDF ion 376
N6(35) \(=400\) : REM pg nat 123678 HxCDD ion 390
N6 \((36)=400\) : REK pg nat 123678 HxCDD ion 392
N6 (39) \(=400\) : REM pg nat 1234678 HpCDF ion 408
N6(40) \(=400\) : REM pg nat 1234678 HpCDF ion 410
\(\mathrm{N} 6(43)=400\) : REH pg nat 1234678 HpCDD ion 424
N6(44) \(=400\) : REK pg nat 1234678 HpCDD ion 426
N6(47) \(=800\) : REM pg nat 12346789 OCDD ion 458
N6(48) \(=800\) : REK pg nat 12346789 OCDD ion 460
N6(45) \(=800\) : RER Pg nat 12346789 OCDF ion 442
N6(46) \(=800\) : RER pg nat 12346789 OCDF ion 446

CLS: REM add natural ions for biosig coapounds not in QE standard

N6 \((11)=N 66(13): N 6(15)=N 6(13): N 6(17)=N 6(13): N 6(19)=N 6(13)\)
\(N 6(12)=N 6(14): N 6(16)=N 6(14): N 6(18)=N 6(14): N 6(20)=N 6(14)\)
N6(25) \(=\mathrm{N}_{6}(23): N 6(27)=N 6(23): N 6(26)=N 6(24): N 6(28)=N 6(24)\)
\(\left.\mathrm{N}_{6}(29)=\mathrm{N}_{6}(23): \mathrm{N}_{6}(30)=\mathrm{N}_{6}(24): \mathrm{N}_{6}(31)=\mathrm{N}_{6}(23): \mathrm{N}_{\mathrm{c}} .22\right)=\mathrm{N}_{6}(24)\)
\(N 6(33)=N 6(35): N 6(34)=N 6(36): N 6(37)=N 6(35): N 6(38)=N 6(36)\) \(\mathrm{N} 6(41)=\mathrm{N} 6(39): \mathrm{N} 6(42)=\mathrm{N} 6(40)\)

REM Calculate RF values

2520 CLS : PRINT : PRINT
PRINT : PRINT
If \(J=N\) THEN PRINT' Please be patient ..."

If \(Q Q=1\) THEN 2570 ELSE IF \(Q 8=2\) THEN 2650 ELSE IF \(Q 8=3\).
THEN 2730 ELSE IF QQ \(=4\) THEN 2810 ELSE IF QQ \(=5\) THEN 2863_
ELSE IF QQ \(=6\) THEN 2864

REM Calculate RF's using standard Q1
FOR I = 1 TO LABEL \(R F L(I, J)=L F(I, J) /(L I(I))\)
NEXT !
FOR I \(=1\) TO NAT \(\operatorname{RFN}(\mathrm{I}, \mathrm{J})=N P(\mathrm{I}, \mathrm{J}) /(\mathrm{N} I(\mathrm{I}))\)
NEXT I
60TO 2865

REM Calculate RF's using standard Q2
FOR \(I=1\) TO LABEL \(\operatorname{RFL}(\mathrm{I}, \mathrm{J})=\operatorname{LP}(\mathrm{I}, \mathrm{J}) /(\mathrm{L}(\mathrm{I}))\)
NEXT I
FOR I = 1 TO NAT \(\operatorname{RFN}(I, J)=N P(I, J) /(N 2(1))\)
NEXT I
60TO 2865

REH Calculate RF's using standard Q3
FOR I = 1 TO LABEL
\(\operatorname{RFL}(\mathrm{I}, \mathrm{J})=\mathrm{LP}(\mathrm{I}, \mathrm{J}) /(\mathrm{L} 3(\mathrm{I}))\)
NEXT I
FOR \(I=1\) TO NAT
\(\operatorname{RFN}(1, \mathrm{~J})=\operatorname{NP}(1, \mathrm{~J}) /(\mathrm{N} 3(\mathrm{I}))\)
NEXT I
6070 2865
REM Calculate RF's using standard Q4
FOR I \(=1\) TO LABEL
\(\operatorname{RFL}(I, J)=L P(I, J) /(L 4(I))\)
NEXT I
FOR I = 1 TO NAT
\(\operatorname{RFN}(\mathrm{I}, \mathrm{J})=\mathrm{NP}(\mathrm{I}, \mathrm{J}) /(\mathrm{N} 4(\mathrm{I}))\)
NEXT I
60702865

REH Calculate RF's using standard 85 FOR \(1=1\) TO LABEL \(\operatorname{RFL}(I, J)=L P(I, J) /(L 5(I))\)
NEXT I
FOR I = 1 TO NAT \(\operatorname{RFN}(I, J)=N P(I, J) /(N 5(I))\)
NEXT I
60TO 2865

REM Calculate RF's using standard Q6 FOR I = 1 TO LABEL \(R F L(I, J)=L P(I, J) /(L 6(I))\)
NEXT I
FOR I = 1 TO NAT
\(\operatorname{RFN}(1, \mathrm{~J})=N P(I, J) /(N 6(I))\)
NEXT I

REM tcdf
FOR \(I=1\) TO 6
\(\operatorname{RFLC}(I, J)=\operatorname{RFL}(\dot{i}, J)\)
NEXT I

REM 1234 tcdd
FOR I = 7 TO 8
\(\operatorname{RFLC}(I, J)=R F L(3, J)\)
NEXT I

REM 2378 tcodd
FOR I = 9 TO 10
\(\operatorname{PFLC}(\mathrm{I}, \mathrm{J})=\operatorname{RFL}(4, \mathrm{~J})\)
NEXT I

REM podf
FOK I = 11 TO 20
\(\operatorname{RFLC}(I, J)=\operatorname{RFL}(5, j)\)
NEXT I

REM pidd
FOR I = 21 TO 22
\(\operatorname{RFLC}(I, J)=\operatorname{RFL}(6, J)\)
NEXT I

REM hxcdf
FOR I = 23 TO 32
\(\operatorname{RFLC}(\mathrm{I}, \mathrm{J})=\operatorname{RFL}(7, \mathrm{~J})\)
NEXT I

REM hxidd
FOR I = 33 T0 38
 \(\operatorname{RFLC}(I, J)=\operatorname{RFL}(8, J)\)

NEXT I

REM hocd!
FOR \(1=39\) TO 42
\(\operatorname{RFLC}(1, \mathrm{~J})=\operatorname{RFL}(9, \mathrm{~J})\)
NEXT I
```

REM Subroutine: calculate average RF, RRF, RRT of N iterations,
REM sum squares, if value of N is 3 or greater
REM Average RFL
FOR I = 1 TO LABEL
SUM = 0
SUMSQ = O
FOR J = 1 TO N
SUM = SUM + RFL(I, J)
SUMSE = SUMSE + RFL(I,J)^2
NEXT J
SUML(I) = SUM
SUMSQL(I) = SUMSQ
RFLA(I) = SUML(I)/N
NEXT I
REM Average RFN
FOR I = 1 TO NAT
SUM = O
SUMSQ = 0
FOR J = 1 TO N
SUM = SUM + RFN(I,J)
SUMSQ = SUMSQ + RFN(I,J)^2
NEXT J
SumN(I) = SUM
SUMSQN(I) = SUMSE
RFNA(I) = SUMN(I)/N
NEXT I

```
FOR I = 1 TO LABEL
 SUM = 0
 SUMSE = 0
 FOR J = 1 TO N
 SUM = SUM + RRFL(I, J)
 SUMSE = SUMSE + RRFL(I,J)^2
 NEXT J
 SUMRL(I) = SUM
 SUMSQRL(I) = SUMSQ
 RRFLA(I) = SUMRL(I)/N
 NEXT I
 REM Average RRFN
 FOR I = 1 TO NAT
 SUM = 0
 SUMSQ = 0
 FOR J = 1 TO N
 SIMM = SUM + RRFN(I,J)
 SUMSE = SUMSQ + RRFN(1,J)^2
 NEXT J
 SUMEN(1) = SUM
 SUMSQRN(I) = SUMSQ
 RRFNA(I) = SUMRN(I)/N
 NEXT I
 REM Average LRT
 FOR I = 1 TO LABEL
 SUM = 0
 SUMSQ = 0
 FOR J = 1 TO N
 DLRT(I,J) = FNCONYERT(LRT(I,J))
 SUM = SUM + DLRT(I,J)
 SUMSE = SUMSE + DLRT(I,J)^2
 NEXT J
 SULLT(I) = SUM
 SUMSQLT:I) = SUMSQ
 DLRTA(I) = SUMLT(I)/N
 LRTA(I) = FNHINSEC(DLRTA(I))
 NEXT I
 REM Average NRT
 FOR I = 1 TO NAT
 SUM = 0
 SUMSE = 0
 FOR J = 1 TO N
 DNRT(I,J) = FNCONVERT(NRT(I,J))
 SUM = SUM + DNRT (I,J)
 SUMSE = SUMSE + DNRT(I,J)^2
 NEXT J
 SUMNT(I) = SUM
 SUMSQNT(I) = SUMSQ
 DNRTA(I) = SUMNT(I)/N
 NRTA(I) = FNMINSEC(DNRTA(I))
```

NEXT I

REM Calculate Relative Retention Tives (w/respect to REFF)
3580 REM Normalize RRT's w/respect to 2378-TCDD

REM
3600
5048
5040 ALYTEs(21) $=$ "1234789-HpCDF" : ALYTE\$(22)= "1234678-HpCDD*
5045 ALYTE $\$(23)=$ OCDF" : ALYTE\$(24) $={ }^{\circ}$ OCDD ${ }^{\circ}$
5047 REM add new analytes to target list 9-17-86

REM Subroutine: Calculate standard deviations
IF $N \quad=3$ THEN 4010 ELSE 4990

FOR I = ! TO LABEL
VRFL(I) $=$ ABS( (SUMSQL(I) $-(S U M L(I) \wedge 2 / N)) /(N-1))$
$\operatorname{VLRT}(I)=\operatorname{ABS}($ (SUMSQLT(I)-(SUMLT(I)^2/N))/(N-1))
NEXT I

FOF I = 1 TO NAT
$\operatorname{VRFN}(I)=\operatorname{ABS}((\operatorname{SUMSQN}(1)-(S U M N(1) \wedge 2 / N)) /(N-1))$

NEXT I

FOR I = 1 TO LAEEL
IF RFLA(I)>0 THEN RSDRFL(I)=S日R(VRFL(I))/RFLA(I) ELSE RSDRFL(I)=0 If LRTA(I) >0 THEN RSDLRT(I) $=$ SQR(VLRT(I))/DLRTA(I) ELSE RSDLRT(I)=0 NEXT I

FOR I = ! TO NAT
IF RFNA(I)>0 THEN RSDRFN(I)=SQR(VRFN(I))/RFNA(I) ELSE RSDRFN(I)=0
 NEXT I

RETURN

REM Subroutine: biosignificant standard, RT and RRT data


ALYTE $(7)=$ "12378-PCDF" : ALYTE\$(8) = "12367-PCDF" : ALYTEs $(9)=$ "23478-PCDF"
ALYTES(10)= "23467-PCDF* : ALYTEs(11)= "1237B-PCDD" : ALYTE\$(12) = '123478-HxCDF"
 ALYTE $(18)=$ "123E78-HXCDD" : ALYTEs (19) $=* 123789-H \times C D D ": ~ A L Y T E S(20)=" 1234678-H P C D F "$ ALYTEs(21) $=$ "1234789-HpCDF" : ALYTE\$(22) $=$ "1234678-HpCDD"
ALYTE\$(23) ${ }^{\circ} O C D F ": ~ A L Y T E \$(24)={ }^{\circ} O C D D "$

ALYTES(13) = "123467-HxCDF" : ALYTES(16)= "123789-HxCDF"

```
5050 REM Natural ions for biosig standard
5055 BION(1)= 306 : BION(2)=306 : BION(3)=306: BION(4)= 322: EION(5)= 322
5060 BION(6)=340 : BION(7)=340 : BION(8)= 340 : BION(') = 340 : BION(10)= 340
5065 BION(11)= 356 : BION(12)= 374 : BION(13)= 374 : BION(14)= 374 : BION(17)= 390
5070 BION(18)=390: BION(19)=390: BION(20)=408: BION(21)=408: BION(22)=424
5075 BION(23)=444: BION(24)=460: }\operatorname{BION}(15)=374:\operatorname{BION}(16)=37
5080 CLS : PRINT : PRINT
5085 PRINT"This portion of RFACTOR calculates RRT'5 from your *
5088 PRINT"Biosignificant PCDD/FCDF standard" ; PRINT : PRINT : BEEP
5090 INPUT"Strike ENTER key when ready ...", ANYs
5 0 9 2 ~ R E M
5095 HALFNAT = 24
5100 FOR B = 1 TO HALFNAT
5110 CLS : PRINT : PRINT
5:20 PRINT 'Enter your retention time for "
5130 PRINT ALYTE$(B) : PRINT
5140 INPUT' '; BRT(B)
 CLS : PRINT : PRINT
 FRINT ALYTES(B), BRT(B) : PRINT
 INPUT"Is the data correct? Answer 'Y' or 'N'"; CORRECTs
 IF CORRECTs= 'N' THEN 5110 ELSE SI50
5150 NEXT B
5153 CLS
5155 REM Substitute values from Q for isomers not in biosig standard
5157 BRT(4) = NRTA(8) : REM 1234789-HpCDF not in Q or biosig standards
5160 REM Calculate RRT's
5170 FOR E = 1 TO HALFNAT
 IF BRT(B)(OO THEN DBRT(B) = FNCONVERT(BRT(B)) ELSE DBRT(B)=0
5180 NEXT B
5200 FOR B = 1 TO HALFNAT
5210 If DERT(5)<>0 THEN RRBT(B) = DBRT(B)/DBRT(5) ELSE RRET(B)=0
5220 NEXT B
5300 RETURN
5500 REM Subroutine: output u5er input to printer
5510 CLS : PRINT : PRINT
 PRINT"Adjust your printer paper, if necessary, for hardcopy"
 INPUT"Strike the ENTER key when ready ...", ANYS
 CLS : PRINT : PRINT
5520 PRINT"Your input will nou be sent to the printer."
```



```
5545 FOR J = 1 TO N
5550 FOR I = 1 TO LABEL
 LPRINT USING FINP$; J, I, LP(I,J), LRT(I,J)
5560 NEXT I
```

LPRINT USING FINF's; J, I, NP(I, J), NRT (I, j)

```
5592 LPRINT : LPRINT : LPRINT : LPRINT : LPRINT
```

NEXT J
5600 PRINT"lf it is accurate, enter 'Y'. If it contains aistakes,"
5610 INPUT"enter ' $N$ ' '; INPs
5620 IF INPs = "N" THEN $200{ }^{\circ}$ ELSE 5990
RETURN

```
REM Subroutine: RT and RRT values from HSU window marker standard
REM not being used in this version
RETURN
```

7000 REM Subroutine: Disk, printer output for average RF, RRF, RT, SD
$7002 \operatorname{LION}(1)=334: \operatorname{LION}(2)=318: \operatorname{LION}(3)=328: \operatorname{LION}(4)=328: \operatorname{LION}(5)=352$
$7004 \operatorname{LION}(6)=368: \operatorname{LION}(7)=38 E: \operatorname{LION}(8)=402: \operatorname{LION}(9)=420: \operatorname{LION}(10)=43 E$
$7006 \operatorname{LION}(11)=456: \operatorname{LION}(12)=472$
$7010 \operatorname{NION}(1)=304: \operatorname{NION}(2)=305: \operatorname{NION}(3)=304: \operatorname{NION}(4)=306: \operatorname{NION}(5)=304 ; \operatorname{NION}(6)=306$
$7012 \operatorname{NION}(7)=320 ; \operatorname{NION}(8)=322: \operatorname{NION}(3)=320: \operatorname{NION}(10)=322: \operatorname{NION}(11)=340: \operatorname{NION}(12)=342$
$7013 \operatorname{NION}(13)=340: \operatorname{NION}(14)=342: \operatorname{NION}(15)=340: \operatorname{NION}(16)=342: \operatorname{NION}(17)=340: \operatorname{NION}(18)=342$
$7014 \operatorname{NION}(19)=340: \operatorname{NION}(20)=342: \operatorname{NION}(21)=356: \operatorname{NION}(22)=358: \operatorname{NION}(23)=374: \operatorname{NION}(24)=376$
$7015 \operatorname{NION}(25)=374: \operatorname{NION}(26)=376: \operatorname{NION}(27)=374 ; \operatorname{NION}(28)=376: \operatorname{NION}(33)=390 ; \operatorname{NION}(34)=392$
$7016 \operatorname{NION}(35)=390: \operatorname{NION}(36)=392: \operatorname{NION}(37)=390: \operatorname{NION}(38)=392: \operatorname{NION}(39)=408: \operatorname{NION}(40)=410$
$7017 \operatorname{NION}(41)=408: \operatorname{NION}(42)=410: \operatorname{NION}(43)=424: \operatorname{NION}(44)=426: \operatorname{NION}(45)=444: \operatorname{NION}(46)=446$
$7018 \operatorname{NION}(47)=458: \operatorname{NION}(48)=460: \operatorname{NION}(29)=374: \operatorname{NION}(30)=376 ; \operatorname{NION}(31)=374: \operatorname{NION}(32)=376$
7019 CLS : PRINT : PRINT : BEEF
7020 PRINT 'Place your disk in drive $A$ or $B$, for output of RF and RRF."
7030 PRINT 'Enter the complete name of your file in quotation marks, '
7040 INPUT 'including the drive designator: ", RSFAC's
7050 REM
7060 OPEN RSFACS FOR OUTPUT AE \#1
7061 LPRINT"File I.D. : "; RSFACs
706: LPRINT"Output from RFACTOR progran"
7063 LPRINT'The number of standards averaged was '; $N$
7054 LPRINT"Q Standard Data'

7068 LPRINT" Labeled
7069 LPRINT" Ion RT RSD RET \{Label/334\} RSD NO."
7070 FOR I = 1 TO LABEL
7080 URITE $11, \operatorname{LION}(I), \operatorname{LRTA}(\mathrm{I}), \operatorname{RFLA}(\mathrm{I}), \operatorname{RRFLA}(\mathrm{I})$
7090 LPRINT USING FORMs; LION(I), LRTA(I), RSDLRT(1), RRTL(I), RRFLA(I), RSDRFL(I), I
7100 NEXT I
7102 FOR I = 1 TO 47 : LPRINT : NEXT I
7105 LPRINT* Natural RF
7106 LFRINT: lon RT RSD RRT (Nat/label) RSD ND."

```
7110 FOF I = I TO NAT
7120 WRITE 11, NION(1), NRTA(1), RFNA(1), RPFNA(I)
7130 LPRINT USING FORMs; NION(I), NRTA(I), RSDNRT(I), RFTN(I), REFNA(I), RSDRFN(I), I
7140 NEXT I
7150 REM Biosig standard
7155 FOR I = 1 TO 20 : LPRINT : NEXT I
7160 LPRINT'Eiosignificant Standard"
7170 LPRINT ' Iteration
780 LPRINT • No. RT RRT Compound
```



```
7210 FOR B = 1 TO HALFNAT
7220 LPRINT USING FORHBS; B, BRT(B), RRBT(B), ALYTES(B), PRMS(B), Y(B)-EY(B)
7230 URITE 11, BION(B), BRT(B), RRBT(B), ALYTE$(B)
7240 NEXT B
7250 LPRINT : LPRINT 'regression statistics
LPRINT " coefficient of deteraination = ', OR
LPRINT - coefficient of correlation = ", CC
LPRINT 'standard deviation of the estimate = ', SE
LPRINT
LPRINT 'linear model: Predict decimal RT = ";A;' + ";H;" LIB"
LPRINT : LPRINT
RETURN
6000 REM subroutine for RFACTOR program ver. 6.1
 'linear regression of library values on user biosig input
 'DIM LIB(30), X(30), Y(30), PRMS(30), EY(30)
 'dim only when using as stand alone program
 , DEF FNCONUERT(A)
 FNCONVERT = INT(I) + ((I - INT(I))/.6000)
 END DEF
 DEF FNMINSEC(A)
 FNMINSEC = INT(I) + ((I - INT(I)):.6000)
 END DEF
 REM renove this block after debugging
 FOR I = 1 TO 24
 READ BRT(I)
 NEXT I
 DATA
```

CLS : PRINT : PRINT : BEEP
PRINT "SIMPLE LINEAR REGRESSION"

```
PRINT 'Independent variable = !iorary RRT values
PRINT "dependent variable = your flyash or blosignificant standard RT's"
PRINT ; PRINT
INPUT 'Strike the ENTER key when ready ... ', ANYs
```

GOSUB 6002	: REM	nout library values for correct coluan
GOSUB 6100	: REM	sieple linear regression of LIB on DBRT

RETURN 264

6002 , Relative Retention Tine librarys

- all tises relative to 2378-TCDD
, libraries are self- docunenting for easy updates
- last update on Feb 8, 1987, based on old teap prograns
, which start at 120 C

CLS ; PRINT : PRINT

PRINT "Choose a library from one of three listed below:'
PRINT
PRINT" $1 \quad 30 \times .32$ m DES *
PRINT * $260 \times .32$ © D85 "

PRINT * 4 Skip regression, exit to next routine '

PRINT: PRINT

INPUT"Enter the correct nubber: ", CHOICE\%
IF (CHOICEK = 1) THEN
60706010
ELSEIF (CHOICEK = 2) THEN
PRINT : PRINT"this library has not been buit yet, you lose buddy!" '60T0 6020
INPUT"Strike the ENTER key to return to the last eenu', ANYs
60TO E002
ELSEIF (CHOICE\% = 3) THEN
60T0 6030

ELSEIF (CHOICE\% = 4) THEN
RETURN 264
ELSE $60 T 06002$
END IF
6010 REM library for 30 Mx .32 w DE5 capillary colum
'decinal absolute values, NOT relative
'data fromey thesis see also UWS werio dated $1 / 12 / 87$

$\operatorname{LIB}(01)$	$=17.38$	
$\operatorname{LIB}(02)$	$=17.78$	
$\operatorname{LIB}(03)$	$=17.98$	



REF library for 60 a $x .32$ wn 085 capillary column

$L I B(01)$	$=1$	,	2378-TCDF
LIB(02)	$=1$	,	2367-TCDF
LIB(03)	$=1$	,	3467-TCDF
LIB(04)	$=1$	,	1234-TCDD
LIB(05)	$=1$	,	2378-TCOD
LIB(06)	$=1$	,	13467-PCDF
LIB(07)	$=1$	1	12378-PCDF
LIB(08)	$=1$	,	12367-PCDF
LIB(09)	$=1$	,	23478-PCDF
$L I B(10)$	$=1$	1	23467-PCDF
LIB(11)	$=1$	,	12378-PCDD
LIB(12)	$=1$	1	123478-HxCDF
LIB(13)	$=1$	,	123467-HxCDF
LIB(14)	$=1$	1	123678-HxCDF
LIB(15)	$=1$	1	234678-HxCDF
LIB(16)	$=1$	'	123789-HxCDF
LIB(17)	$=1$	1	123478-HxCDD
LIB(18)	$=1$	,	123678-HxCDD
LIB(19)	$=1$	1	123789-HxCDD
LIB(20)	$=1$	'	1234678-HpCDF
LIB(21)	$=1$	1	1234783-HpCDF
LI8(22)	$=1$	,	1234678-HpCDD
LIB(23)	$=1$	,	OCDF
LIB(24)	$=1$	1	OCDD

RETURN

```
 , fron Doug kuehl, east coas: flyash paper Feb 86
 ' old tenp progran
```

LIB(01)	$=23.450$	1	2378-TCDF
LIB(02)	$=24.400$	,	2367-TCDF
LIB(03)	$=25.900$	,	3467-TCDF
LIB(04)	$=19.650$	,	1234-TCDD
$L I B(05)$	$=19.380$	1	2378-TCDD
$L I B(06)$	$=22.650$	,	13467-PCDF
LIB(07)	$=24.400$	,	12378-PCDF
LIB(08)	$=25.267$	,	123E7-PCDF
LIB(03)	$=32.733$	$\dagger$	23478-PCDF
LIB(10)	$=34.067$	,	23467-PCDF
LIB(11)	$=26.100$	1	12378-PCDD
LIB(12)	$=31.800$	,	123478-HxCDF
LIB(13)	$=33.017$	1	123467-HxCOF
LIB(14)	$=32.167$	'	123678-HxCDF
LIB(15)	$=46.267$	1	234678-HxCDF
LIB(16)	$=42.217$	,	123789-HxCDF
LIB(17)	$=34.933$	,	123478-HxCDD
LIB(18)	$=35.356$	,	123578-HxCDD
LI8(19)	$=38.183$	1	123789-HxCDD
LIB(20)	$=42.483$	,	1234578-HPCDF
LIB(21)	$=56.217$	,	1234783-HpCDF
LIB(22)	$=51.950$	,	1234678-HPCDD
LI8(23)	$=74.700$	,	OCDF
LIB(24)	$=76.333$	1	OCDD

RETURN

6100 REM Using linear regression this progra will estinate a
' line, $Y=A+B X$, where $X$ is the independent variable and
, Y is the dependent variable. If aore than 30
' observations are used, the dieension statenents nust

- be changed. Subroutine REGRESSION way be used by other
' prograns if data is provided in the arrays $X$ and $Y$ and
, the number of observations is provided in variable IN.

REM subroutine linear regression calcs

IN $=$ HALFNAT $-2 \quad$ 'OCTAS not included in regression calcs

6190 CLS : PRINT : PRINT "AVAILABLE OPTIONS:"
PRINT TAB(7) "I-LIST INPUT DATA"
PRINT TAB(7) '2-MODIFY INPUT DATA"
PRINT TAB(7) "3-PERFORH REGRESSION ANALYSIS"
PRINT TAB(7) "4-QUIT"
INPUT 'OPTION'; IP

6250 IF (IP $\langle 1)$ OR (IP $>4$ ) THEN 6190

```
6260 IF IP=1 THEN GOSUB 6330
6 2 7 0 ~ I F ~ I P = 2 ~ T H E N ~ G O S U B ~ 6 4 5 0
6280 IF IP=3 THEN GOSUB 6520
6230 IF IP=4 THEN GOSUB 6870
6300 60TO 6190
```

6320 REM SUBRDUTINE: LIST DATA
6330 PRINT:PRINT "LISTING OF DATA"
PRINT " LIB', " BRT"
$I C=1$
FOR $I=1$ TO IN
IF I $\rangle$ (IC $\$ 15$ ) THEN 6400
$I C=I C+1$
PRINT:INPUT "Strike the ENTER key to continue ... ", Ys:PRINT
6400 PRINT LIB(I), BRT(I)
6410 NEXT I
PRINT : INPUT'Strike the ENTER key to continue ...", ANYs
6420 RETURK

6440 REM SUBROUTINE: MODIFY DATA
6450 PRINT:INPUT "ENTER NUMBER OF DATA POINT TO BE MODIFIED'; IO
6460 PRINT 'NEH VALUES FOR LIB AND BRT FOR POINT'; ID;
6470 INPUT LIB(ID), BRT(ID)
6480 INPUT "ANY MORE DATA POINTS TO BE MODIFIED (Y/N)"; Ys
6430 IF ( Y : $=^{\prime} \mathrm{Y}^{\circ}$ ) THEN GOTO 6450
6500 RETURN

6520 REM SUBROUTINE REGRESSION
' Convert to decieal here, to incorporate changes into DBRT array
FOR I $=1$ TO IN
$\operatorname{DBRT}(I)=\operatorname{INT}(\operatorname{BRT}(I))+((\operatorname{BRT}(I)-(\operatorname{INT}(\operatorname{BRT}(I)))) / .6000)$
NEXT I
' enter LIB and DBRT into $X$ and $Y$ arrays

FOR I = 1 TO IN
$X(I)=L I B(I)$
$Y(I)=\operatorname{DRRT}(I)$
NEXT I

[^5]6530 SX=0:SY=0:SX2=0:SY记 $0: S X Y=0$
6540 FOR I=1 TO IN
$6550 \quad 5 X=5 X+X(1) \quad$ SUM OF $X$
$6560 \quad S Y=S Y+Y(1) \quad$ SUM OF $Y$
6570 SX2 $=$ ABS ( $\left.5 \times 2+X(1)^{\wedge} 2\right) \quad$ SUM OF $X^{\wedge} 2$
$6580 \quad$ SY $2=$ ABS ( $\left.5 Y 2+Y(1)^{\wedge} 2\right) \quad$ SUK OF $Y^{\wedge} 2$
$6590 \quad 5 X Y=5 X Y+K(1) \neq Y(1) \quad$ 'SUM OF X X $\quad$ Y
6600 NEXT I
$6610 W=(I N * S X Y-S X \neq S Y) /\left(I N * S X 2-S X^{\wedge} 2\right) \quad$ 'SLOPE OF LINE
6620 A $=($ SY-H*SX) $/$ IN
'INTERCEPT OF LINE
6630 REM Coefficient of correlation

```
6640 SQXY = (SQR((SX2-(SX^2)/IN)*(SY2-(SY^2)/IN)))
 IF(SQXY <= 0) THEN
 CC = 0
 CR=0
 ELSEIF(SQXY >0) THEN
 CC=(SXY-SX#SY/IN)/ SQXY 'COEFFICIENT DF DETERMINATION
 CR= CC^2
 END IF
6660 SSE= ABS(SY2-SY^2/IN-K#(SXY-SX*SY/IN)) 'ERROF SUM OF SQUARES
```

$6670 \operatorname{SE}=\operatorname{SQR}(S S E /(I N-2))$
'STD DEVIATION OF ESTIMATE

6690 REM SUBROUTINE: PRINT RESULTS
6700 CLS : PRINT 'REGRESSION EQUATION:'
6710 PRINT "DBRT $(Y)={ }^{*} ; A ; "+{ }^{*} ; H_{j} \operatorname{LIB}(X) *$
6720 PRINT "CDEFFICIENT OF DETERMINATION='; CR
6730 PRINT "COEFFICIENT OF CDRRELATION="; CC
6740 PRINT 'STANDARD DEVIATION OF THE ESTIMATE='; SE
6750 PRINT:PRINT "ACTUAL VERSUS ESTIMATED VALUES"
6760 PRINT " $\mathrm{X}^{\prime}$, ' $\mathrm{Y}^{\prime}$, "ESTIMATED $\mathrm{Y}^{\prime}$, "ERROR"
6770 IC=1
6780 FOR I=1 TO IN
6790 IF I<>(ICI14) THEN 6820
6800 PRINT:INPUT PPRESS ENTER TO CONTINUE';Ys:PRINT
$6810 \quad I C=I C+1$
$6820 \quad E Y(1)=A+W * X(I)$
6830 PRINT X(I), Y(I), EY(I), Y(I)-EY(I)
6840 NEXT I

REM Convert EY(i) from decial to insec format
FORI = 1 TO IN
PRMS(I) = FNMINSEC(EY(I))
NEXT I

```
6850 PRINT:INPUT "PRESS ENTEF TO CONTINUE";ys
 CLS : PRINT : PRINT
 IF(CR < = .990) THEN
 PRINT" Your isoner a5signments do not correlate well with"
 PRINT" the standard library for this colum."
 PRINT : PRINT
 PRINT" CHECK YOUF ISDMER ASSIGNHENTS AND/DR THE QUALITY DF *
 PRINT" YOUR CHROMATDGRAPHY, assuaing you entered the RT data correctly."
 ELSEIF (CR > .990) THEN
 PRINT" Your lsomer assignments correlate well with the *
 PRINT" standard library, *
 END IF
 PRINT : INPUT'Strike the ENTER key to continue ...", ANYS
6 8 6 0 \text { RETURN}
6 8 7 0 ~ P R I N T : P R I N T ~ T A B (7) ~ " E N D ~ O F ~ R E G R E S S I O N ~ C A L C U L A T I O N S ~ * ~ '
 PRINT TAB(7) "YOUR OUTPUT WILL BE SENT TO THE LINE PRINTER"
6880 PRINT : INPUT" Strike the ENTER key to exit the regression routine...", ANYs
6890 CLS : PRINT : PRINT : PPINT"Adjust the printer paper for your RFACTOR output"
 PRINT : PRINT
 INPUT"Strike the enter key when ready ...", ANYs
 CLS
```

        RETURN 264
    | 10 REM | Frogran DFQUANT Ver. 6.1 1/23/87 |
| :---: | :---: |
| 20 REA | Murray Hackett |
| 30 REM | Toxicology Progran |
| 40 REM | Oregon State University |
| 50 REM | Corvallis, Oregon 97331 |
| 60 REM | 60 eeter DB5 version |
| 70 REM | A progras in ten subroutines to quantify |
| 80 REN | dioxin/furan residues from gi-ms data |
| 100 | REM Initialize arrays |
| 105 | DIM L3(30), N3(50), L4(30), N4(50), QREC(20), QaREC (30) |
| 110 | DIn LP(30), LRT(30), NP(50), NRT(50), LHQ (5), LHB(5), LHS (5) |
| 120 | DIM RRFL (30), RRFN(50), CRRTN(30), DSLRT(20), $\operatorname{DSNRT}(50)$, RECC(50) |
| 130 | DIM SLP (30), $\operatorname{SNP}(50), \operatorname{SLRT}(30), \operatorname{SNRT}(50), \mathrm{C}(30), \mathrm{RATRANGE}(30)$ |
| 140 | dIM REC(30), LION(30), $\operatorname{THEORY}(30), \operatorname{CD}(30), \operatorname{RFL}(20), \operatorname{RFN}(50)$ |
| 141 | DIM S6NS (30), SNMDL (30), NQ (30), HB(30), HS (30), HQ (30), QNRT(50) |
| 142 | dIM CQa 30 ), S6DS 30 ), RRTL (30), RRTN(50), QLION(30), Qnion(50) |
| 150 | DIM RATS (30), NION(50), BION(30), BRT(30), RRET (30), ALYTE\$(30) |
| 155 | REM user functions to convert RT values to decial fornat for calculating RRT |
| 156 | DEF FNCONUERT(X) |
| 158 | FNCONVERT $=\operatorname{INT}(x)+((x-\operatorname{INT}(x)) / .60)$ |
| 160 | END DEF |
| 162 | DEF FMMINSEC(Y) |
| 164 | FNHINSEC $=$ INT $(Y)+((Y-I N T(Y)) \ddagger .60)$ |
| 168 | END DEF |
| 174 | REM Subroutines |
| 176 | CLS : KEY OFF |
| 178 | PRINT : PRINT : PRINT'You are about to be victinized by Murray's DFQUANT Progran!' |
| 180 | PRINT"Be sure and set the Caps Lock Key so only caps vill' |
| 185 | PRINT'be entered, othervise this does not vork. * |
| 190 | PRINT : PRINT |
| 195 | INPUT'Strike ENTER key when ready ... ', ANY\$ |
| 210 | CONC $=24 \quad:$ REM Nuaber of Concentrations Reported |
| 212 | LABEL $=12$ : REM Nunber of labeled isoners |
| 215 | NAT $=48 \quad$ : REM Nunber of natural ions |
| 216 | REM Error Handing routine not included this version |
| 220 | 60SUB 2500 : REM read RF and RRF values fron disk file |
| 225 | 60SUB 2600 : REN enter raw data fron disk file \{optional\} |
| 230 | 60SUB 3000 : REM enter rav data interactively |
| 235 | $60 S U B 3385$ : REn quantitation calculations for isotope dilution nethod |
| 240 | 60SUB 4000 : REM calculate recoveries |
| 250 | 605UB 5000 : REM calculate ion ratios for QA purposes |
| 260 | 60SUB 7000 : REM calculate $\mathrm{S} / \mathrm{N}$ or $\mathrm{S} / \mathrm{N}$ and MDL |
| 270 | 60SUB 8700 : REM calculate RRT'5 |
| 280 | GOSUB 9000 : REM output report forn to printer, disk |
| 290 | 60SUB 10000: REM not used in this version |
| 300 | 60SUB 11000: REM output for Phil's data base |
| 400 | CLS : PRINT : PRINT : BEEP |
| 410 | PRINT'You are now finished with this run of DFQUANT' |
| 500 | END |

REM Subroutine to read RF and RRF values fron disk file
CLS : PRINT: PRINT
PRINT "Place your diskette vith RF'S in drive $A$ or $B . "$
PRINT "Enter the complete nase of your file in quotation arks, "
INPUT 'including the drive designator: ", RFACs
CLS
OPEN RFAC FOR INPUT AS $\$ 2$
FOR J = 1 TO LABEL
INPUT \$2, $\operatorname{QLION}(\mathrm{J}), \operatorname{LRT}(\mathrm{J}), \operatorname{RFL}(\mathrm{J}), \operatorname{RRFL}(\mathrm{J})$
NEXT J
FOR $K=1$ TO NAT
INPUT 2, QNION(K), QNRT(K), RFN(K), RRFN(K)
NEXT K
FOR $I=1$ TO CONC
INPUT \%2, BION(I), BRT(I), RRBT(I), ALYTES(I)
NEXT !
CLOSE \#2
RETURN

REM Subroutine to enter ray data froe disk file PRINT "Quantification of an unknown sample"
PRINT : PRINT
PRINT "Do you wish to enter peak area and RT data froe disk file"
PRINT "or interactively fron your uritten notes? "
INPUT 'enter ' $D$ 'for disk or ' $I$ ' for interactive: ", UNKNDS
IF UNKNOS = "D" THEN 2670 ELSE IF UNKNOS = "I' THEN RETURN
PRINT : PRINT
PRINT"Enter your data base file nare, in quote5, including"
INPUT"the drive designator: ' , RAWDATs
OPEN RANDAT $\$$ FOR INPUT AS $\$ 3$
INPUT $\ddagger 3$, MSIDS, PCIDS, OTHERS
FOR $I=1$ TO LABEL
INPUT © 3 , LION(I), SLRT(I), RRTL(I), RECC(I), QREC(I)
NEXT I
FOR I $=1$ TO CONC
INPUT $\ddagger 3, \operatorname{BION(I)}, \operatorname{NRT}(\mathrm{I}), \operatorname{CRRTN(1)}, \mathrm{C}(1), \operatorname{CD}(\mathrm{I}), \operatorname{RATS}(\mathrm{I}), \operatorname{THEORY}(\mathrm{I})$
INPUT \&3, HS(I), SGNS(I), SNMDL(I), CQA(I), SGDS(I)
NEXT I
REM User input, should not noreally be used in data base
FOR I = 1 TO LABEL
INPUT $\ddagger 3, \operatorname{SLP}(1), \operatorname{LRT}(\mathrm{I})$
NEXT I
FOR I = 1 TO NAT
INPUT \#3, $\operatorname{SNP}(1), \operatorname{SNRT}(1)$
NEXT I
INPUT \&3, LHB(1), LHS(1), LHE(1)
FOR I $=1$ TO CONC
INFUT $\ddagger 3, H B(1), H S(1), H Q(1)$
NEXT I
CLOSE 13
CLS
RETURN
3030 INPUT "enter peak areas for 2378 TCDF, 304 and $30 E$ *; SNP(1), SNP(2)
3032 INPUT 'enter RT's for 304, 306 '; SNRT(1), SNRT(2)
3075 INPUT "enter peak areas for 2378 TCDD, 320 and $322^{\circ}$; $\operatorname{SNP}(9), \operatorname{SNP}(10)$
3080 INPUT 'enter RT's for 320, 322 '; SNRT(9), SNPT(10)
3085 CLS
3090 INPUT "enter peak area for $37 C L 42378$ TCDD, 328 '; SLP(4)
3095 INPUT 'enter RT for 37CL4 2378 TCDD '; SLRT(4)
3100 CLS
3105 INPUT "enter peak area for 13C6 1234 TCDD, 328 "; SLP(3)
3115 INPUT "enter RT for 13C6 1234 TCDD '; SLRT(3)
3120 CLS
3125 INPUT "enter peak area for 13C12 1234 TCDD, 334 "; SLP(1)
3130 INPUT 'enter RT for 13 C12 1234 TCDD "; SLRT(1)
3135 CLS
3138 INPUT 'enter peak areas for 13467 PCDF, 340 and $342^{\prime}$; SNP(11), SNP(12)
3140 INPUT "enter RT's for 340,342 "; SNRT(11), SNET(12)
3142 CLS
3144 INPUT "enter peak areas for 12378 PCDF, 340 and 342 "; SNP(13), SNP(14)
3146 INPUT 'enter RT's for 340,342 "; SNRT(13), SNRT(14)
3148 CLS
3150 INPUT 'enter peak areas for 12367 PCDF, 340 and 342 '; SNP(15), SNP(16)
3152 INPUT "enter RT's for 340, 342 '; SNRT(15), SNPT(16)
3154 CLS
3156 IMPUT "enter peak areas for 23478 PCDF, 340 and 342 "; $\operatorname{SNP}(17), \operatorname{SNP}(18)$
3158 INPUT 'enter RT's for 340, 342 '; SNRT(17), SNRT(18)
3160 CLS
3162 INPUT 'enter peak areas for 23467 PCDF, 340 and 342 '; SNP(19), SNP(20)
3164 INPUT 'enter RT's for 340, 342 '; SNRT(19), SNRT(20)
3166 CLS
3168 INPUT "enter peak area for $13 C 1212378$ PCDF, 352 '; SLP(5)
3170 INPUT "enter peak RT for $13 C 1212378$ PCDF '; SLRT(5)
3172 CLS
3174 INPUT "enter peak areas for 12378 PCDD, 356 and 358 ; $\operatorname{SNP}(21), \operatorname{SNP}(22)$
3176 INPUT 'enter RT's for 356, 358 '; SNRT(21), SNRT(22)
3178 CLS
3180 INPUT "enter peak area for $13 C 1212378$ PCDD, 368 '; SLP(6)
3182 INPUT "enter RT for $13 C 1212378$ PCDD "; SLRT(6)
3184 CLS

INPUT enter peak areas for $123478 \mathrm{HxCDF}, 374$ and 376 . '; SNP (23), SNP (24)
3194 INPUT 'enter RT's for 374, 376 "; SNRT(27), SNRT(28)
3196 CLS
3197 INPUT "enter peak areas for 234678 HxCDF, 374 and 376 '; $\operatorname{SNP}(29), \operatorname{SNP}(30)$
3198 INPUT "enter RT's for 374, 376 "; SNPT(29), SNRT(30)
3199 CLS
3200 INPUT "enter peak areas for $123789 \mathrm{HxCDF}, 374$ and $376{ }^{\circ}$; $\operatorname{SNP}(31)$, $\operatorname{SNP}(32)$
3201 INPUT "enter RT's for 374, 376 '; SNRT(31), SNRT(32)
3202 CLS
3204 INPUT 'enter peak ared for $13 C 12123478 \mathrm{HxCDF}, 386$ '; SLP(7)
3206 INPUT "enter RT for $13 C 12123678 \mathrm{HxCDF}$ '; SLRT(7)
3208 CLS
3210 INPUT "enter peak areas for $123478 \mathrm{HxCDD}, 390$ and $392^{\prime \prime}$; SNP (33), $\operatorname{SNP}$ (34)
3212 INPUT "enter RT's for 390,392 '; SNRT(33), SNRT(34)
3214 CLS
3216 INPUT 'enter peak areas for $123678 \mathrm{HxCDD}, 390$ and $392^{\prime \prime}$; $\operatorname{SNP}(35), \operatorname{SNP}(36)$
3218 INPUT 'enter RT's for 390,392 '; $\operatorname{SNRT}(35), \operatorname{SNRT}(36)$
3220 CLS
3222 INPUT "enter peak areas for $123789 \mathrm{HxCDD}, 390$ and 392 '; $\operatorname{SNP}$ (37), $\operatorname{SNP}(38)$
3224 INPUT "enter RT's for 390,392 '; SNRT(37), SNRT(38)
3226 CLS
3228 INPUT "enter peak area for $13 C 12123678 \mathrm{HxCDD}, 402$ '; SLP (8)
3230 INPUT "enter RT for $13 C 12123678 \mathrm{HxCDD}$ '; SLRT(8)
3232 CLS
3234 INPUT "enter peak areas for 1234678 HPCDF, 408 and 410 ; $\operatorname{SNP}(39), \operatorname{SNP}(40)$
3238 INPUT "enter RT's for 408, 410 '; SNRT (3'3), SNRT(40)
3240 CLS
3242 INPUT 'enter peak areas for 1234789 HPCDF, 408 and $410^{\prime}$; $\operatorname{SNP}(41), \operatorname{SNP}(42)$
3246 INPUT 'enter RT's for 408, $410^{\circ}$; SNRT(41), SNRT(42)
3248 CLS : REM This isoner is not in any biosig or Q standard
3260 INPUT "enter peak area for $13 C 121234678 \mathrm{HpCDF}, 420$ '; SLP(9)
3265 INPUT 'enter RT for $13 C 121234678 \mathrm{HPCDF}$ '; SLRT(9)
3270 CLS
3275 INPUT 'enter péak areas for $1234678 \mathrm{HPCDD}, 424,426^{\prime}$; $\operatorname{SNP}(43), \operatorname{SNP}(44)$
3280 INPUT 'enter RT for 424, 426 '; SNRT(43), SNRT(44)
3285 CLS
3290 INPUT "enter peak area for $13 C 121234678$ HPCDD, 436 '; SLP(10)
3295 INPUT "enter RT for 13 C12 1234678 HpCDD '; SLRT(10)
3300 CLS
3305 INPUT "enter peak areas for OCDF, 444 and $446^{\prime \prime}$; $\operatorname{SNP}(45), \operatorname{SNP}(46)$
3310 INPUT 'enter RT's for 444, 446 '; SNRT(45), SNRT(46)
3312 CLS
3315 INPUT "enter peak area for $13 C 12$ OCDF, 456 "; SLP(11)
3320 INPUT "enter RT for $13 C 12$ OCDF "; SLRT(11)
3325 CLS
3330 INPUT 'enter peak areas for OCDD, 458 and $460^{\circ}$; $\operatorname{SNP}(47), \operatorname{SNP}(48)$
3335 INPUT 'enter RT's for 458, 460 '; SNRT(47), SNRT(48)
3340 CLS
3345 INPUT "enter peak area for 13C12 OCDD, 472 "; SLP(12)

```
3355 REM output user input in interactive code to printer
 CLS : PRINT : PRIMT
 PRINT'Adjust your printer paper, if necessary"
 INPUT*Strike the ENTER key when ready ...', ANYs
```

3357 FOR $1=1$ TO 2 : LPRINT : NEXT I

3361 LPRINT"USER INPUT*
3362 LPRINT - Labeled Ion RT Iteration •
3364 FOR I $=1$ TO LABEL
3366 LPRINT USING INP:; SLP(I), SLRT(I), !
3368 NEXT I
3370 FOR I = 1 TD 50 : LPRINT : NEXT I
3371 LPRINT"USER INPUT*
3372 LPRINT • Natural Ion RT Iteration •
3374 FOR I = 1 TO NAT
337 E LPRINT USING INP\$; SNP(I), SNRT(I), I
3377 NEXT I
FOR I = 1 TO 20 : LPRINT : NEXT I
3378 CLS : PRINT : PRINT
3379 PRINT'Please inspect the hardcopy of your input to ake "
3380 INPUT'sure it is correct; type 'y' or 'N': ', CHOICE\$
3381 IF CHDICEs = 'Y" THEN RETURN ELSE 3028
REM Subroutine: quantitation calculations
3386 CLS : PRINT : PRINT : REM enter as5s of sample in grans
3387 INPUT 'enter sample eass in units of grans: ', MASS
3389 REM constant to correct for sanple size
$3390 \mathrm{KC}=20 /$ MASS
3392 REM Input constant to adjust for volune of spiking soln
3394 CLS : PRINT : PRINT
3395 PRINT 'Enter volune of spiking soln added to sanple, .

3397 KSP $=K S / 100$
3398 K334 $=100$ : REM resove redundant code for next version
3400 REM calculate "wet weight" concentration of analyte in sample
REK tedf
3410 If (SLP (2)<>0 AND RRFN(2)<>0) THEN $C(1)=\operatorname{SNP}(2) * 25 * K C * K S P /(S L P(2) * R R F N(2))$ ELSE C(1) $=0$
3412 IF (SLP $(2)<>0$ AND RRFN $(4)<>0)$ THEN $C(2)=\operatorname{SNP}(4) * 25 * K C * K S P /(S L P(2) * R R F N(4)) \operatorname{ELSE} C(2)=0$
3414 IF (SLP $(2)\langle>0$ AND $\operatorname{RRFN}(6)\rangle 0)$ THEN $C(3)=\operatorname{SNP}(6) * 25 * K C * K S P /(S L P(2) * R R F N(6))$ ELSE $C(3)=0$
REM 1234 tcdd

REM 2378 tcodd
3418 IF (SLP (4) 〈>0 AND RRFN(10)<>0) THEN C(5) $=\operatorname{SNP}(10) \star 25 * K C \nless K S P /(S L P(4) * \operatorname{RRFN}(10)) \operatorname{ELSEC}(5)=0$
REK pcof
3420 If (SLP $(5)<>0$ AND RRFN(11)<>0) THEN $C(6)=S N P(11) * 50 * K C * K S P /(S L P(5) * R R F N(11))$ ELSE C(6) $=0$
3422 IF (SLP $(5)<>0$ AND RRFN $(13)\langle>0)$ THEN $C(7)=\operatorname{SNP}(13) * 50 * K C * K S P /(S L P(5) * R R F N(13))$ ELSE C(7) $=0$
3424 IF (SLP $(5)<>0$ AND RRFN (15)<>0) THEN C $(8)=\operatorname{SNP}(15) * 50 * K C * K S P /(S L P(5) * R R F N(15))$ ELSE C $(8)=0$
3426 IF (SLP $(5)<>0$ AND RRFN (17) < >0) THEN $C(9)=\operatorname{SNP}(17) * 50 * K C * K S P /(S L P(5) \approx R R F N(17))$ ELSE $C(9)=0$
3428 IF (SLP(5)<>0 AND RRFN(19)<>0) THEN C(10) $=\operatorname{SNP}(19) * 50 * K C * K S P /(S L P(5) * R R F N(19))$ ELSE C(10) $=0$
REK podd
 REK hxidf
3432 IF (SLP(7)<>0 AND RRFN(23)<>0) THEN C(12) = SNF (23) *100*KC*KSP/ (SLP(7)\&RRFN(23)) ELSE C(12) =0
3434
3436
3437
3438
IF (SLP $(7)<>0$ AND RRFN $(25)<>0)$ THEN $C($
IF (SLP $(7)<>0$ AND RRFN(27)<>0) THEN $C(1$
IF (SLP $(7)<>0$ AND RRFN $(29)<>0)$ THEN $C(15)=S N P(29) \pm 100 \pm K C \nless K S P /$
If (SLP(7)<>0 AND RRFN(31)<>0) THEN C(16)=SNP(31) $1100 \pm K C \neq K S P /$
(7) IRRFN(29)) ELSE C(15) $=0$

REM hxcdd

3439
 REM hpcodd
 REM oidf


REM ocdd

3600 REM calculate dry veight of tissue or solid
3605 CLS : PRINT : PRINT
3610 PRINT'Enter \% lipid (tis5ue), 100 - \% noisture (solids) or "
3615 INPUT'O (yater sample): ", KD
3620 KKD $=$ KD/ 100
3625 FOR $N=1$ TO CONC
IF (KKD>0 AND C(N) $>0$ ) THEN $C D(N)=C(N) / K K D E L S E C D(N)=0$
NEXT n
CLS
RETURN

REM Subroutine: calculate $\%$ recovery for each isoner group
K334 $=100$ : REM Constant for 20 ul voluni, $100 \mathrm{pg} / \mathrm{ul} 13 \mathrm{Cl} 2$ TCDO
REM WARNING!!! Change this constant if I.S. is handed differently
FOR I = 2 TO 4
IF (RRFL(I)<>0 AND SLP(1)<>0) THEN REC(I) = SLP(1) $\ddagger K 334 /($ RRFL(I) $\ddagger S L P(1) \neq K S P \$ 25)$ ELSE REC(I) $=0$ NEXT I
FOR I = 5 TO 6
IF (RRFL(I)<>0 AND SLP(1)<>0) THEN REC(I) = SLF(I) $\$ K 334 /(\operatorname{RPFL}(1) \nmid S L P(1) \$ K S P \$ 50)$ ELSE REC(I) $=0$ NEXT I
FORI $=7$ TO 10
 NEXT I
FOR $1=11$ TO 12
If (RRFL(I)<>0 AND SLP(1)<>0) THEN REC(I) = SLP(I) $\$ K 334 /(\operatorname{RRFL}(I) * S L P(1) \pm K S P * 200)$ ELSE REC(I) $=0$ NEXT I
REM output to video for hrecovery subroutine
PRINT
PRINT
PRINT "Congener", "\% Recovery "

FOR I = 2 TO LABEL
PRINT I, REC(I):100
NEXT I
RETURN

5000
IF $Q Q=1$ THEN 7160 ELSE IF $Q Q=2$ THEN 7200 ELSE IF $Q Q=3$ THEN.
7300 ELSE IF QQ $=4$ THEN 7400
7160 REM Values for variable NQ, standard Q1, assune sane value for nissing biosigs as $Q$

REM Subroutine for calculating ion ratios for QA
REM Ratios for unxnown sample
FOR L $=1$ TO CONC
FOR $J=1$ TO ( $2 \neq L$ ) -1 STEF 2
FOR $K=2$ TO ( $\mathrm{J}+1$ ) STEP 2
IF $(\operatorname{SNP}(K)=0)$ THEN RATS $(L)=0 \operatorname{ELSE} \operatorname{RATS}(L)=\operatorname{SNP}(J) \neq 1 / \operatorname{SNP}(K)$
NEXT K
NEXT J
NEXT L
REM set flag to ark if ratios fall within allowable ranges FOR $M=1$ TO 5 : REM tetras
 NEXT H
FOR $M=6$ TO 11 : REM pentas
If (RATS $(M)<1.35$ OR RATS $(M)>1.70)$ THEN Ratrange $(M)=0$ ELSE RATRange $(M)=1$
NEXT H
FOR $M=12$ TO 19: REM hexas
If (RATS (M) < 1.03 OR RATS (M) >1.43) THEN RATRANGE $(M)=0$ ELSE RATRANGE $(M)=1$
NEXT ${ }^{\text {M }}$
FOR $M=20$ TO $22:$ REF heptas
If (RATS (M) <. 865 OR RATS $(M)>1.22)$ THEN RATRANGE $(M)=0$ ELSE RATRANGE $(M)=1$ NEXT M
REM ocdf and ocdd ratranges
If (RATS (23) ( 1.28 OR RATS (23) >1.78) THEN RATRANGE (23) $=0$ ELSE RATFANGE (23) $=1$
If (RATS (24) <. 675 OR RATS (24) > 1.13) THEN RATRANGE(24) $=0$ ELSE RATRANGE (24) $=1$

REM Subroutine calculates detection linits, $S / N$
REM pg/ul values for Q series standards
CLS : PRINT : PRINT
PRINT "Chouse the lowest concentration $Q$ series standard •
PRINT "in your set which can be used to generate MDL's '
KQA334 = $100:$ REM pg/ul $13 C 12$ 1234-TCDD in Q series standards
INPUT 'Enter '1', '2', '3', or '4': ', QQ
IF $Q Q=1$ THEN 7160 ELSE IF $Q Q=2$ THEN 7200 ELSE IF $Q Q=3$ THEN.
7300 ELSE IF QQ $=4$ THEN 7400
REM Values for variable NQ, standard Q1, assune sane value for nissing biosigs as a
$N Q(1)=1 ; N Q(2)=1 ; N Q(3)=1 \quad ; N Q(4)=2.5$
$N Q(5)=1 \quad: N Q(6)=2 \quad: N Q(7)=2 \quad: N Q(8)=2$
$N Q(9)=2: N Q(10)=2 \quad: N Q(11)=2$
$N Q(12)=4 \quad: N Q(13)=4 \quad: N Q(14)=4 \quad: N Q(15)=4$
$N Q(16)=4 \quad: N Q(17)=4 \quad: N Q(18)=4 \quad: N Q(19)=4$
$N Q(20)=4 \quad: N Q(21)=4 \quad: N Q(22)=4 \quad: N Q(23)=8 \quad: N Q(24)=8$
REM Values for variable NQ, standard 02
$N Q(1)=5 \quad ; N Q(2)=5 \quad: N Q(3)=5 \quad: N Q(4)=2.5$
$N Q(5)=5 \quad: N Q(6)=10 \quad: N Q(7)=10 \quad: N Q(8)=10$

7215	$N Q(9)=10$	: $\mathrm{NQ}(10)=10$	: $N$ Q $(11)=10$			124
7220	$N Q(12)=20$	: $\mathrm{NQ}(13)=20$	: $N Q(14)=20$	: $N Q(15)=20$		
7225	$N Q(16)=20$	: $N P(17)=20$	: $\mathrm{NQ}(18)=20$	: $N Q(19)=20$		
7230	$N Q(20)=20$	: $N Q(21)=20$	: $N Q(22)=20$	: $N Q(23)=40$	$N Q(24)=40$	
7235	60707700					
7300	REM Values for variable NQ, standard 83					
7305	$\mathrm{NQ}(1)=12.5$	$: N Q(2)=12.5$$: N Q(6)=25$	; $\mathrm{NQ}(3)=12.5$	: $\mathrm{NQ}(4)=2.5$		
7310	$N Q(5)=12.5$		: $N Q(7)=25$	: $N Q(8)=25$		
7315	$N \mathrm{C}(\mathrm{g})=25$	$\begin{aligned}: N Q(6) & =25 \\ : N Q(10) & =25\end{aligned}$	: $N Q(11)=25$			
7320	$N Q(12)=50$	: $\mathrm{NQ}(13)=50$	: $N Q(14)=50$	: $N Q(15)=50$		
7325	$N Q(16)=50$	$: N Q(17)=50$	: $\mathrm{NQ}(18)=50$	: $N Q(19)=50$		
7330	$N Q(20)=50$	: $N Q(21)=50$	: NQ(22) = 50	: $N$ N(23) $=100$	$N Q(24)=100$	
7335	60507700					
7400	REM Values for variable NQ, standard Q4					
7405	$N Q(1)=25$	: $\mathrm{NQ}(2)=25$	: $N Q(3)=25$	: $N Q(4)=5$		
7410	$N Q(5)=25$	: $N Q(6)=50$	: $N Q(7)=50$	: $N Q(8)=50$		
7415	$N Q(9)=50$	: $N Q(10)=50$	: $N Q(11)=50$			
7420	$N Q(12)=100$	: $\mathrm{NQ}(13)=100$	$: N \mathrm{~N}(14)=100$	: $N Q(15)=100$		
7425	$N Q(16)=100$	: $N Q(17)=100$	: $N Q(18)=100$	: $N Q(19)=100$		
7430	$N Q(20)=100$	: $N(2121)=100$	: $N Q(22)=100$	: $N Q(23)=200$	: $N(24)=200$	
7500	REM Stick 05 here, should it be added in the future					
7600	REM Stick 06 here					
7700	REM Covert REC(i), $i=11$, to Qarec $(i), i=24$ isoners					
7705	$\operatorname{FORI}=1$ TO $3: \operatorname{QAREC}(1)=\operatorname{REC}(2): \operatorname{NEXT} \mathrm{I}: \operatorname{QAREC}(4)=\operatorname{REC}(3): \operatorname{QarEC}(5)=\operatorname{REC}(4)$					
7710	FOR I = 6 TO $10: \operatorname{QAREC}(1)=\operatorname{REC}(5): \operatorname{NEXT} I: \operatorname{QAREC}(11)=\operatorname{REC}(6)$					
7715	FOR I = 12 TO $16: \operatorname{QAREC}(1)=\operatorname{REC}(7):$ NEXT I					
7720	FOR I = 17 TO 13: $\operatorname{QAREC}(\mathrm{I})=\operatorname{REC}(8): \operatorname{NEXT}$ I : $\operatorname{QAREC}(20)=\operatorname{REC}(9): \operatorname{QAREC}(21)=\operatorname{REC}(3)$					
7725	$\operatorname{QaREC}(22)=\operatorname{REC}(10): \operatorname{QaREC}(23)=\operatorname{REC}(11): \operatorname{QaREC}(24)=\operatorname{REC}(12)$					
8000	REM					
8020	CLS : PRINT : PRINT					
8030	PRINT " This portion of the progran generates S/N and MOL data *					
8040	PRINT ' for your sample ' : PRINT : PRINT					
8050	REM Enter data from disk or interactively					
8060	PRINT : PRINT					
8070	PRINT 'Do you wish to enter peak height data '					
8080	PRINT 'fron disk files or interactively? '					
8090	PRINT					
8100	INPUT 'Enter ' $D$ ' for disk or 'I' for interactive: ', UNKNOs					
8110	CLS					
8120	IF UNKNO $=$ ' D' THEN 8495 ELSE 8270					
8270	CLS : PRINT : PRINT					
8280	REF interactive input					
8290	PRINT "Enter your peak height data for the lowest C series standard"					
8300	PRINT 'in your set ' : PRINT : PRINT					
8302	INPUT 'Strike ENTER key when ready ... ', ANYS					
8304	CLS : PRINT : PRINT					
8306	INPUT *Enter your peak height for 13C12 1234-TCDD, 334 ion: ", LHE(1)					
8308	CLS : PRINT : PRINT					
8310	FOR I = 1 TO CONC					
8312	PRINT'Enter your peak height for '; ALYIES(I); PRINT" ion ';					

```
 PrINT BION(I)
 INPUT * ", HQ(I)
 CLS : PRINT : PRINT
 NEXT !
 PRINT" 334', "13C12 TCDD", LHQ(!)
 FOR I = 1 TO CONC
 PRINT BION(I), ALYTE$(I), HQ(I)
 MEXT I
 INPUT'Is your data correct? Type 'Y' or 'N': ", CHECK$
 IF CHECK$ = 'Y" THEN 8370 ELSE 8270
 CLS : PRINT : PRINT
 PRINT"Enter your peak height data for the noise windows in your sample: "
 INPUT 'Strike ENTER key when ready ... ', ANYS
 CLS : PRINT : PRINT
 INPUT "Enter your peak height for 13C1: 1234-TCDD, 334 ion: ", LHB(1)
 CLS : PRINT : PRINT
 FOR I = 1 TO CONC
 PRINT'Enter your peak height for '; ALYTEs(1);
 PRINT" ion ":
 PRINT BION(I)
 INPUT HE(I)
 CLS : PRINT : PRINT
 NEXT I
 REM default noise to two counts {8230 only}, no democracy here!
 FOR ! = ! TO CONC
 IF(HB(I)<>O AND HE(I)<2) THEN
 HB(I)=2
 END IF
 NEXT !
 CLS
 PRINT" 334", "13C12 TCDD", LHB(1)
 FOR ! = 1 TO CONC
 PRINT BION(I), ALYTE$(I), HB(I)
 NEXT I
 INPUT'Is your data correct? Type 'Y' or 'N': ", CHECKS
 IF CHECKs = 'Y' THEN }8456\mathrm{ ELSE }837
 CLS : PRINT : PRINT
 PRINT"Enter your peak height data for sample peak height5: "
 INPUT "Strike ENTER key when ready ... ', ANYS
 CLS : PRINT : PRINT
 INPUT "Enter your peak height for 13C:2 i234-TCDD, 334 ion: ", LHS(1)
 CLS : PRINT : PRINT
 FOR I = 1 TO CONC
 PRINT'Enter your peak height for '; ALYTEs(I);
 PRINT" ion ";
 PRINT BION(I)
 INPUT HS(I)
 CLS : PRINT : FRINT
 NEXT I
 CLS
```

```
8481 REM default sample to two counts {8iJionlyj
 FOR I = I TO CONC
 IF(HS(I)\O ANE HS(I)<2; THEN
 HS(1) = 2
 END IF
 848% NEXT I
 8483 PRINT" 334*, "13C12 TCDD", LHS(1)
8484 FOR I = 1 TO CONC
 PRINT BION(I), ALYTES(I), HS(I)
 NEXT !
 INPUT"Is your data correct? Type 'Y' or 'N': ', CHECKS
 IF CHECKS = "Y" THEN 8435 ELSE 8456
 REM Output peak heights entered for S/N and MDL calcs
 CLS
 FOR Z = 1 TO CONC : PRINT HQ(Z), HB(Z), HS(Z) : NEXT I
 LION(1) = 334: IS = 0
```



```
 LPRINT"USER INPUT"
8500 LPRINT * ION Peak Height Peak Height Peak Height "
8502 LPRINT * Noise Sample Standard Iteration a
8504 LPKINT USING INPMDL$; LION(1), LHE(1), LHS(1), LHP(1), IS
850E FOR N = 1 TO CONC
8508
8510
8512
 FOR I = 1 TO 34 : LPKINT : NEXT I
 CLS : PRINT : PRINT : BEEF
8520 INPUT'ls your data correct? Type 'Y' or 'N': ", CHECK&
8530% IF CHECK$ = "Y" THEN 8540 ELSE 8000
8540 REM Calculate S/N for positives, S/N and MDL for negatives
8545 KMDL = 20 : REM Constant as5umes 20 ul final volune in microvial
8550 FORM = 1 TO CONC : REM logic is not easy to follow
8550 IF (HB(M)<>0) THEN 8570 ELSE 8590
8570 S6NS(M)=(HS(M)/LHS(1))/(HB(M)/LHB(1)): REM note assumption I.S. 5ane conc in both
 If (SĞNS(M) (2.5 OR RATRANGE (M)=0) THEN
 SGDS(M) = 0
 ELSEIF (SGNS(M)>= 2.5 AND RATRANGE(M) = 1) THEN
 SGDS(M)=1
 END IF
 IF (SGOS (M) = 0) THEN SGNS (M)=0
 IF (SGNS(M) = O) THEN 8590 ELSE 8610
 IF (HS(M)<>0) THEN SNMDL(M)=(HQ(M)/ LHQ(1))/((HS(M)/LHS(1))&2.5) ELSE SNMDL(M)=0
 REM \d for negatives
 IF (QAREC(M)<>O AND SNMDL(M)<>O) THEN CQA(M)=NQ(M)*MDL/(@AREC(M)*MASS* SNMDL(M)) ELSE CGA(M)=0
 IF (CQA(M)\.135 AND CQA(M)>0) THEN CQA(M)=.2 ELSE 8610
 NEXT M
```

8616 PRINT"of calculating an MDL for 2378 -TCDD using the 'surrogate.
8618 INPUT'analyte approach? Type 'Y' or 'N': ', SUREs : PRINT
IF (RATRANGE (4)=0) THEN
CLS : PRINT : PRINT
PRINT"You have a bad ion ratio for natural 1234-TCDD."
PRINT"Or, you failed to enter both iuns wen prompted"
PRINT"for peak areas for 1234-TCDD. The surrogate analyte "
PRINT"approach cannot be used under these circunstances."
PRINT"The progra will use the default ethod instead."
PRINT : PRINT
INPUT'Strike the ENTER key when ready...", ANY
GOTO 8630
END IF
$\operatorname{SGNS}(5)=(H S(5) / L H S(1)) /(H B(5) / L H E(1)):$ PEM note assumption that I.S. sane conc in both
IF (StiNS (5) < 2.5 OR RATRANGE $(5)=0$ ) $\operatorname{THEN~SGDS(5)=0}$
IF $(S 6 D S(5)=0)$ THEN SGNS $(5)=0$
IF $(\operatorname{SGNS}(5)=0)$ THEN $\operatorname{SNMDL}(5)=\operatorname{HS}(5) \neq 2.5 \operatorname{ELSE} \operatorname{SNMDL}(5)=0$
IF $(\operatorname{SGNS}(5)=0)$ THEN CQA(5) $=(\operatorname{SNHDL}(5) / \mathrm{HS}(4)) *($ RFN $(8) /$ PFN(10)) $* 5.0$ ELSE CQA(5) $=0$
REM Adjust reported concentrations based on SGDS indicator variable
FOR 1 = 1 TO CONC
IF ( $\mathfrak{C}(1)$ (. 195 OR SGDS(1)=0) THEN
$C(I)=0$
$C D(I)=0$
END IF
NEXT I
FEM Adjust $S / N$ for negatives, redundancy necessary if data base used for input
FOR I = I TO CONC
IF (SGDS (I) $=1$ ) THEN
SNHDL(I) $=0$
CQACI) $=0$
END IF
NEXT I
REM concentrations should remain unchanged if data passes QA
RETURN
REM Subroutine: calculate RRT's for sample
CLS : PRINT : PRINT : BEEP
FOR I = 1 TO LABEL
DSLRT(I) = FNCONVERT(SLRT(I))
NEXT I
FOR I = I TO NAT
9180 PRINT
9230 REM
FOR I = 2 TO LABEL
$\operatorname{RECC}(1)=\operatorname{REC}(1) * 100$
NEXT I
9100 INPUT 'enter asas spec run nuaber: ", MSIDs
9110 INPUT "enter prep chenist I.D, number: ", PCIDs
3120 INPUT "enter other I.D.: ", OTHERS
9130 CLS : KEY OFF
9140 PRINT : PRINT : PRINT
9150 PRINT "Mass Spec Run Nunber: "; MSIDs
9160 PRINT "Preparation Chenistry I.D. nunber: '; PCIDs
9170 PRINT "Other Sample Identification: '; OTHERs

9190	FORHS $=$ " $\#$	\#\#	\#	\# 4	\#	\#\#
9200	PRINT "	Labeled			Sapple	ninimut QA
9210	PRINT " N	Ion	RT	RRT	\% Recovery	\% Recovery
9220	PRINT - --					

REM Subroutine: prepare final report for sample; uutput to printer, screen
REM QA recovery nininuas
$\operatorname{QREC}(2)=50: \operatorname{AREC}(3)=50: \operatorname{QREC}(4)=50: \operatorname{AREC}(5)=35: \operatorname{QREC}(6)=35$
$\operatorname{QREC}(7)=35: \operatorname{QREC}(8)=35: \operatorname{QREC}(9)=35: \operatorname{QREC}(10)=35: \operatorname{QREC}(11)=25$ $\operatorname{QREC}(12)=25$
REM Convert REC(i) to \% for output
FOR I = 2 TO LABEL
$\operatorname{RECC}(1)=\operatorname{REC}(1) * 100$
NEXT I
REM List of labeled ions used for quant and recovery
$\operatorname{LION}(1)=334: \operatorname{LION}(2)=318: \operatorname{LION}(3)=328: \operatorname{LION}(4)=328$
$\operatorname{LION}(5)=352: \operatorname{LION}(6)=368: \operatorname{LION}(7)=386: \operatorname{LION}(8)=402$
$\operatorname{LION}(9)=420: \operatorname{LION}(10)=436: \operatorname{LION}(11)=456: \operatorname{LION}(12)=472$
REM Theoretical ion ratios to eatch those calculated frow sample
$\operatorname{THEORY}(1)=.76: \operatorname{THEORY}(2)=.76: \operatorname{THEORY}(3)=.76: \operatorname{THEORY}(4)=.76$
$\operatorname{THEORY}(5)=.76: \operatorname{THEORY}(6)=1.53: \operatorname{THEORY}(7)=1.53$
$\operatorname{THEORY}(8)=1.53: \operatorname{THEORY}(9)=1.53: \operatorname{THEORY}(10)=1.53$
$\operatorname{THEORY}(11)=1.53$
FOR $I=12$ TO 1' $: \operatorname{THEORY}(1)=1.23:$ NEXT 1
$\operatorname{THEORY}(20)=1.02: \operatorname{THEORY}(21)=1.02$
$\operatorname{THEORY}(22)=1.02: \operatorname{THEOPY}(23)=1.53: \operatorname{THEORY}(24)=.88$
REM Translate fron $n=48$ to $n=24$ retention tiees for output
$M=0$
FOR $1=2$ TO NAT STEP 2
$H=1 / 2$
NRT(M) $=$ SNRT(I)
$\operatorname{CRRTN}(\mathrm{M})=\operatorname{RRTN}(1)$
NEXT I
PRINT
INPUT "enter asss spec run nuaber: ", MSIDs
INPUT "enter prep chealst I.D. nuaber: ", PCIDs
INFUT Enter other I.D.: ", OTHERs
CLS : KEY OFF

PRINT "Mass Spec Run Nunber: "; MSIDs
PRINT "Preparation Chenistry I.D. number: '; PCIDs
PRINT "Other Sanple Identification: '; OTHERs
PRINT

REM

```
9240 FOR M = 2 TO LABEL
 FRINT USING FORMS; M, LION(M),SLRT(M),RFTL(M), RECC(M), QREC(M)
 NEXT M
9270 REM Report quantitation
9280 PRINT : PRINT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 9290 & FIIs=' & \#\# & \#\#\#\# & 14.11 & - & & \#.\#\# & \#.14 \\
\hline 9300 & PRINT" & najor & & & \(\mathrm{pg} / \mathrm{gran}\) & pg/grat & Ratio & Ratio \({ }^{\prime}\) \\
\hline 9310 & PRINT \({ }^{\text {N }}\) & ion & RT & RET & vet & dry & Observed & Theory' \\
\hline 9320 & PRINT" -- & & ----- & ----- & & & & ' \\
\hline
\end{tabular}
9325 FOR M = 1 TO CONC
9330 PRINT USING FII$; M, BION(M),NRT(M),CRFTN(M),C(M), CD(M), RATS(M), THEORY(M)
9335 NEXT M
9340 PRINT
9350 REM Report for S/N data
```



```
9370 PRINT' Major Peak Piositives Not Detectable '
9375 FRINT" N ion RT RRT Height S/N S/N at MDL'
9380 PRINT' -- ----
93B5 FOR M = 1 TO CONC
9390 PRINT USING F2s; M, BION(M),NFT(M),CRKTN(M),HS(M),SGNS(M),SNMDL(M),CQA(M)
9392 NEXT %
9393 REM Output to printer
 PRINT : PRINT
9394 PRINT'lf nece5sary, rearrange your printer paper for DFQUANT'S output. "
9396 INPUT'Strike the ENTER key when ready for output ... ", ANYs
9450 LPRINT "Ma5s Spec Run Nunber: '; MSIDs
9460 LPRINT 'Preparation Chenistry I.D. number: '; PCIDS
9470 LPRINT 'Other Sample ldentification: '; OTHER;
9 4 8 0 ~ L P R I N T
```



```
9540 FOR M = 2 TO LABEL
9550 LPRINT USING FORK$; M, LION(M), SLRT(M), RRTL(M), RECL(M), QFEC(M)
9560 NEXT M
9570 REM Quantitation Repurt
9580 FOR I = 1 TO 5 : LPRINT : NEXT I
9600 LPRINT' Major pg/gram pg/gram Ratio Ratio ',
9610 LPRINT' N ion RT RRT vet vern dry Observed Theoretical'
9625 FOR M = 1 TO CONC
9630 LPRINT USING FII$; M, BION(M),NRT(M),CRRTN(M),C(M), CD(M), RATS(M), THEORY(M)
9635 NEXT H
9640 PEM Report for S/N data
9645 FOR I = 1 TO 20 : LFRINT : NEXT I : REM Space output to two sheets
```



```
3670 FOK M = 1 TO CONC
9675 LPRINT USING F2$;M, BION(M),NRT(M),CRRTN(M),HS(M),SGNS(M),SNHDL(M),CEA(M)
9680 NEXT H
9685 LPRINT : LPRINT
g700 REM Output to disk file is optional
```

```
9710 CLS : PRINT : PRINT
9720 PRINT"Do you desire output to a disk file for your report form"
9725 BEEP
9730 INPUT"Enter ' \(y\) ' or 'N': ', DOUTs
9740 IF DOUTs = "Y" THEN 9750 ELSE 9995
9750 CLS : PkINT : PRINT
9760 PRINT"Enter the complete nane of your output file in quatation
9770 INPUT'marks, ancluding the drive: ", DFQTs
9780 OPEN DFQTS FOR OUTPUT AS \(\$ 4\)
9790 PRINT \#4, : PRINT \$4,
9791 PRINT 14, 'Mass Spec Run Number: '; MSIDs
9792 PRINT \#4, "Preparation Chenistry l.D. nubber: "; FClDs
9793 PRINT \#4, "Other Sanple Identification: '; OTHERs
9794 PRINT \#4,
```



```
9820 PRINT \#4, " -- ----- ----- -------- --------- -----------
9840 FOR M \(=2\) TO LABEL
9850 PRINT 14, USING FORMS; M, LION(M),SLRT(M), RRTL(M), RECC(M), QPEC(M)
9860 NEXT M
9870 REM Keport quantitation
9880 PRINT \# 4 ,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PRINT 44, & & Major & & & pg/gram & pg/gram & Ratio & Ratio \\
\hline PRINT 4, \({ }^{\text {P }}\) & \(N\) & ion & RT & RRT & wet & dry & Observed & Theoretical \({ }^{\text {n }}\) \\
\hline PRINT \#4,* & & & & & & & & \\
\hline
\end{tabular}
9915 FOR M = 1 TO CONC
9920 PRINT 14 , USING FII!; M, BION(M),NFT(M),CRPTN(M),C(M), CD(M), RATS(M), THEDEY(M)
9925 NEXT M
9930 PRINT 4 4,
9940 REM Report for S/N data
9945 FOR I = 1 TO 25 : PRINT \$4, : NEXT I ; REM Space hardcopy over two pages
9955 PRINT 44, " Major Fiak Positives Not Detectable '
9960 PRINT 4, " \(N\) ion RT RRT Height \(S / N \quad S / N\) at MDL "
```



```
9970 FOR \(M=1\) TO CONC
9975 PRINT 44, USING F25; M, BION(M),NRT(M),CRRTN(M),HS(M), S6NS (M), SNMDL(M), CQA(M)
9980 NEXT M
9985 PRINT 44, : PRINT 4 ,
9990 CLOSE 44
9995 RETURN
```

10000 REM Subroutine reserved for future expansion, debueging output
10390 EETURN

11000 REM Subroutine: Output to sequential file to be read into
11010 REM Phil's data base
11020 CLS : PRINT : PRINT
11030 PRINT"Please enter the name of your file for Phil's data base,"
11040 INPUT'in quotes, including the drive designator: ", PHILs
11050 OPEN PHIL F FOF OUTFUT AS $\$ 5$
11060 WRITE 15 , MSIDS, PCIDS, OTHERS
11065 FOR I = 1 TO LABEL
11070 HRITE \& $5, \operatorname{LION(I)}, \operatorname{SLPT}(1), \operatorname{RFTL}(I), \operatorname{FECC}(I), \operatorname{QREC}(1)$
11080 NEXT I

11090 FOR I $=1$ TO CON:
11100 WRITE 15, BION(I), NRT(1), CRETN(I), C(I), CJ(I), RATS(I), THEOPY(I:
11105 WRITE \$5, HS(I), SENS(D), SNHDL(I), CQA(I), SIBDS(I)
11110 NEXT I
$11: 20$ REM User input, should not norally be used in data base
11130 FOR I = 1 TO LABEL
11140 WRITE $15, \operatorname{SLP}(1)$, SLRT(I)
11150 NEXT I
11160 FOR I = 1 TO NAT
11170 HRITE $\ddagger 5, \operatorname{SNP}(1), \operatorname{SNRT}(1)$
11180 NEXT I
11190 HRITE 15, LHE(1), LHS(1), LHQ(1)
11200 FOR I = 1 TO CONC
11210 WRITE $45, \mathrm{HE}(\mathrm{I}), \mathrm{HS}(\mathrm{I}), \mathrm{HE}(\mathrm{I})$
11220 NEXT I
11230 CLOSE $\$ 5$
11500 CLS
11700 RETURN

EXAMPLE OF DFQUANT OUTPUT
Mass Spec Run Number: MAT86800
Preparation Chemistry I.D. number: B071086MH
Other Sample Identification: ADIPOSE--REPLICATE

N	Labeled Ion	RT	RRT	Recovery	Minimum $Q A$ * Recovery
2	318	18.05	0.96	74	50
3	328	0.00	0.00	0	50
4	328	18.53	1.00	74	50
5	352	22.30	1.19	61	35
6	368	24.04	1.27	82	35
7	386	27.27	1.45	59	35
8	402	28.52	1.53	73	35
9	420	31.57	1.69	55	35
10	436	33.31	1.77	55	35
11	456	37.56	2.01	39	25
12	472	37.54	2.01	39	25


N	Major ion	RT	RRT	pg/gram	$\begin{array}{r} \mathrm{pg} / \mathrm{gram} \\ \mathrm{dry} \end{array}$	Ratio   Observed	Ratio   Theoretical
1	306	0.00	0.00	0.0	0.0	0.00	0.76
2	306	0.00	0.00	0.0	0.0	0.00	0.76
3	306	0.00	0.00	0.0	0.0	0.00	0.76
4	322	0.00	0.00	0.0	0.0	0.00	0.76
5	322	18.52	1.00	0.0	0.0	0.65	0.76
6	340	0.00	0.00	0.0	0.0	0.00	1.53
7	340	0.00	0.00	0.0	0.0	0.00	1.53
8	340	0.00	0.00	0.0	0.0	0.00	1.53
9	340	23.33	1.25	40.3	53.0	1.56	1.53
10	340	0.00	0.00	0.0	0.0	0.00	1.53
11	356	24.03	1.27	22.8	29.9	1.36	1.53
12	374	27.28	1.45	96.9	127.5	1.21	1.23
13	374	0.00	0.00	0.0	0.0	0.00	1.23
14	374	27.37	1.46	56.7	74.6	1.22	1.23
15	374	28.27	1.51	17.7	23.3	1.19	1.23
16	374	0.00	0.00	0.0	0.0	0.00	1.23
17	390	28.52	1.53	0.0	0.0	1.21	1.23
18	390	28.52	1.53	2173.4	2859.8	1.21	1.23
19	390	0.00	0.00	0.0	0.0	0.00	1.23
20	408	31.57	1.69	422.7	556.1	0.96	1.02
21	408	0.00	0.00	0.0	0.0	0.00	1.02
22	424	33.31	1.77	2225.6	2928.5	1.02	1.02
23	444	37.56	2.01	31.1	40.9	1.55	1.53
24	460	37.54	2.01	12625.6	16612.6	0.92	0.88

EXAMPLE OF DFQUANT OUTPUT (CONTINUED)

	Major			Peak   lon
--20	RT	RRT	Helght	
1	306	0.00	0.00	8
2	306	0.00	0.00	8
3	306	0.00	0.00	8
4	322	0.00	0.00	4
5	322	18.52	1.00	19
6	340	0.00	0.00	5
7	340	0.00	0.00	5
8	340	0.00	0.00	5
9	340	23.33	1.25	169
10	340	0.00	0.00	5
11	356	24.03	1.27	82
12	374	27.28	1.45	536
13	374	0.00	0.00	5
14	374	27.37	1.46	254
15	374	28.27	1.51	93
16	374	0.00	0.00	5
17	390	28.52	1.53	5
18	390	28.52	1.53	7486
19	390	0.00	0.00	5
20	408	31.57	1.69	1263
21	408	0.00	0.00	10
22	424	33.31	1.77	5311
23	444	37.56	2.01	60
24	460	37.54	2.01	30000


Positives
S/N
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
33.8
0.0
20.5
107.2
0.0
50.8
18.6
0.0
0.0
1497.2
0.0
157.9
0.0
663.9
10.0
5000.0


Not	Detectable
S/N	at
-0.	MDL
1.3	2.1
1.3	2.1
1.3	2.1
0.0	0.0
0.4	6.8
2.7	2.4
2.7	2.4
2.7	2.4
0.0	0.0
2.7	2.4
0.0	0.0
0.0	0.0
4.8	2.7
0.0	0.0
0.0	0.0
4.8	2.7
4.1	2.7
0.0	0.0
4.1	2.7
0.0	0.0
2.1	6.8
0.0	0.0
0.0	0.0
0.0	0.0

```
REM Progra& QAD
REM Murray Hackett
REK Toxicology Progran
REM Oregon State University
REM Corvallis, Oregon 97331
REM 'Quick And Dirty' output pending Phil's data base
REM 10-3-86
DIM BION(30), C(30), CD(30), CQA(30), LION(12), SLRT(12), RRTL(12), RECC(12), QREC(12)
DIM ALYTES(30), MRT(30), CRRTM(30), RATS(30), THEORY(30), HS(30), S6NS(30)
DIM SKHDL(30), SGDS(30)
ALYTES(1)= '2378-TCDF' : ALYTES(2)='2367-TCDF' : ALYTES(3)='3467-TCDF"
ALYTES(4)= '1234-TCDD' : ALYTES(5)="2378-TCDD' : ALYTES(6)='13467-PCDF"
ALYTEs(7) = "12378-PCDF": ALYTEs(8)='12367-PCDF': ALYTE$(9)='23478-PCDF"
ALYTES(10)='23467-PCDF': ALYTES(11)="12378-PCDD': ALYTES(12)='123478-HxCDF'
ALYTES(13)='123467-HxCDF" : ALYTES(14)="123678-HxCDF" : ALYTES(15)='234678-HxCDF'
ALYTES(16)='123789-HxCDF' : ALYTES(17)='123478-HxCDD' : ALYTES(18)="123678-HxCDD'
ALYTES(19)="123789-HxCDD' : ALYTES(20)="1234678-HPCDF': ALYTES(21)='1234789-HPCDF'
ALYTES(22)='1234678-HpCDD': ALYTES(23)='OCDF' : ALYTES(24)='OCDD'
CLS : PRINT : PRINT
PRINT'Welcone to the progras QAD' : PRINT : PRINT
PRINT'Enter your data base file number in quotes, including" INPUT"your drive designator: ' \({ }^{\prime}\), DRIVEs
CLS : PRINT : PRINT
PRINT"Enter the results from any previous 2378-TCDD analysis" INPUT'in units of ppt, vet veight, or nd, P2NA, etc.: i, OLDS
GOSUB 10
60SUB 100
PRINT : PRINT"The progran is finished with your data" END
REM Subroutine: data file input
OPEN DRIVES FOR INPUT AS \$I
INPUT 11, MSIDS, PCIDS, OTHERS
FOR \(1=1\) TO 12
InPUT 11, LION(I), SLRT(I), RRTL(I), RECC(I), QREC(I)
NEXT I
FOR \(1=1\) TO 24
INPUT 11, BION(I), NRT(I), CRRTN(I), C(I), CD(I), RATS(I), THEORY(I)
INPUT 11, HS(I), SGNS(I), SNMDL(I), CQA(I), S6DS(I)
```

FOR I = 1 TO 32
LPRINT
NEXT I

130 RETURN

SCC NUMBER:
ADIPOSE--REPLICATE--COYS FORTUNE
SAMPLE PREP: BO7 1086MH
MASS SPEC I.D.:
MAT86800
PREVIOUS TCDD ANALYSIS: TEST

Isomers	pg/gram wet	MDL
2378-TCDF	0.0	2.1
2367-TCDF	0.0	2.1
3467-TCDF	0.0	2.1
1234-TCDD	0.0	0.0
2378-TCDD	0.0	6.8
13467 -PCDF	0.0	2.4
12378 -PCDF	0.0	2.4
12367-PCDF	0.0	2.4
23478-PCDF	40.3	0.0
23467-PCDF	0.0	2.4
12378 -PCDD	22.8	0.0
123478 -HxCDF	96.9	0.0
123467 - HxCDF	0.0	2.7
$123678-\mathrm{HxCDF}$	56.7	0.0
234678-HxCDF	17.7	0.0
123789-HxCDF	0.0	2.7
123478-HzCDD	0.0	2.7
$123678-\mathrm{HxCDD}$	2173.4	0.0
123789-HzCDD	0.0	2.7
1234678 -HPCDF	422.7	0.0
1234789-HPCDF	0.0	6.8
1234678-HPCDD	2225.6	0.0
OCDF	31.1	0.0
OCDD	12625.6	0.0


[^0]:    NR not recorded due to insufficient sample

[^1]:    nd $=$ not detected at $5 / \mathrm{N} 2.5$ corresponding to the quantity in parentheses
    $M R=$ data not recorded

[^2]:    nd = not detected at S/N 2.5 corresponding to the quantity in parentheses
    $N R=$ data not recorded

[^3]:    nd $=$ not detected at $S / N 2.5$ corresponding to the quentity in parantheses

    * samples collected on March 29, 1985
    *** DOES NOT include any contributions from 2,3,7;8-TCDF or 2,3,7,8-TCDD. These isomers vere not found in any animal tissues from the Molalla area anaiped in this study.

[^4]:    nd = not detected at S/N 2.5 corresponding to the quantity in parentheses

[^5]:    ' the following code is nodified fron Holfe, P. M., and Koelling, C.P.

    - (1983) Basic Engineering and Scientific Prograns for the 18M PC,
    ' Willian J. Brady Co., Bowie, Md., chapter 4

