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 Clostridium perfringens is a spore-forming pathogenic bacterium that causes a 

variety of diseases in human and animals. C. perfringens type A isolates produce 

enterotoxin (CPE) causing food poisoning (FP) and non-food-borne (NFB) 

gastrointestinal (GI) diseases including antibiotic-associated diarrhea and sporadic 

diarrhea. C. perfringens type A food poisoning currently ranks as the second most 

commonly reported bacterial foodborne outbreaks in the United States. C. perfringens 

has the ability to form metabolically dormant spores in the environment that are 

resistant to various lethal factors such as, moist heat, dry heat, UV radiation, nitrate, 

pH-induced stress, prolonged frozen storage, and high pressure processing. These 

spore resistant properties allow the survival of spores against the preservative 

approaches that are applied in food manufacturing plants. Thus, the cross- 

contamination of C. perfringens spores from food contact surfaces into finished 

products might increase the consumer health risk. 



 

In this work, C. perfringens type A isolates were evaluated for their ability to 

survive on stainless steel (SS) chips under aerobic conditions. C. perfringens spores 

adhered onto SS chips and remained viable up to 48 h in aerobic conditions while 

vegetative cells died within 30 minutes of exposure to aerobic environment. Further, 

we determined the surface hydrophobicity of C. perfringens cells and spores and its 

correlation to the adhesion onto SS chips. Results showed that spores are more 

hydrophobic than vegetative cells, and this hydrophobicity is related to the presence of 

the spore outer coat. Lastly, we applied a modified Clean-in-Place (CIP) procedure on 

C. perfringens spores adhered onto SS chips as an inactivation strategy to control the 

contamination level of adhered C. perfringens spores. Our results demonstrated that 

CIP wash steps are able to inactivate C. perfringens spores from SS chips after treating 

with sodium hydroxide (NaOH). 

 Collectively, our current findings contributes to food industry in order to 

enhance food safety by lowering the potential cross-contamination of C. perfringens 

into food products, thereby helping reducing the risk of C. perfringens-associated food 

poisoning outbreaks.  
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Inactivation Strategy for Clostridium perfringens Spores Adhered onto Stainless 
Steel Surfaces 

 

CHAPTER 1 

Introduction 

 

Clostridium perfringens is defined as a Gram-positive, anaerobic, rod-shaped 

bacterium. It is a non-motile pathogen that forms endospores. C. perfringens is 

considered to be the most commonly reported pathogenic bacterium that belongs to 

Clostridium genus. More pathogenic bacterium belong to Clostridium genus such as 

C. botulinum, C. tetani, C. difficile, and other industry related organisms, such as C. 

acetobutylicum and C. thermocellum (Hatheway, 1990). In the 1940’s and 1950’s C. 

perfringens was first recognized as a causative agent of foodborne disease. Later on, 

C. perfringens was found to cause human gas gangrene and two different foodborne 

diseases, i.e., C. perfringens type A food poisoning and enteritis necroticans 

(McClane, 2007). C. perfringens type A isolates that produce C. perfringens 

enterotoxin (CPE) are the causative agent of C. perfringens type A food poisoning, 

which is estimated to be the second most commonly reported pathogenic bacteria that 

causes food-borne diseases in the United States (Grass et al., 2013; McClane, 2007). It 

estimated to cause nearly one million cases of foodborne illnesses annually and results 

in economical loss of $309.4 million per year (Hoffmann et al., 2012; Lynch et al., 

2006; McLinden et al., 2014; Scallan et al., 2011). Also, C. perfringens type A strains 
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are recognized as the cause of non-food-borne (NFB) human gastrointestinal (GI) 

diseases, such as antibiotic-associated and sporadic diarrheas (Borriello et al., 1984; 

Collie and McClane, 1998; Lindström et al., 2011). Inactivating C. perfringens 

bacteria in food industry is a major challenge to food manufacturers due to its ability 

to form dormant spores that become extremely resistant to lethal treatments such as 

hydrostatic pressure, temperature, pH stress, heat, chemicals, nitrite, osmotic, and 

prolonged frozen storage (Li and McClane, 2006a, b; Paredes-Sabja et al., 2007; 

Paredes-Sabja et al., 2008; Sarker et al., 2000; Udompijitkul et al., 2013). These 

resistant properties of C. perfringens against various treatments commonly applied in 

manufacturing plants makes it very difficult to eliminate or control contamination of 

food products.  

The cross-contamination of pathogenic organisms from contaminated food 

contact surfaces into finished products in food processing plants during food product 

handling or food preparation is one of the leading causes of food-related GI diseases 

(Kusumaningrum et al., 2003; Ryu et al., 2004). When C. perfringens spores attach to 

food contact surfaces (i.e., stainless steel, glass, and plastic), it enhances the resistance 

to disinfectants and becomes a continuous source of cross contamination of pathogen 

onto food products, thus affecting the quality, shelf life, and safety of the consumer 

(Hornstra et al., 2007). Among C. perfringens type A FP outbreaks, contamination of 

equipment accounted for 15% of the total cases (McClane, 2007). One of the 

important characteristics of the microorganisms is the ability to attach onto surfaces, 
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which allow them to survive under stressful environments. Adhesion of pathogenic 

microorganisms onto surfaces can act as an initial stage for developing biofilms, and 

allowing microbial transmission to finished products, and subsequently leading to 

consumer health risk (Boulané‐Petermann, 1996; Frank, 2001). Several studies 

suggest that bacterial surface characteristics such as cell surface hydrophobicity, 

surface charge, and the presence of particular surface structures play an important role 

on bacterial adhesion on surfaces. Although adhesion factors have been extensively 

studied in Bacillus species, Escherichia coli, Salmonella typhimurium, Lysteria 

monocytogenes, and Staphylococcus aureus (Dickson and Koohmaraie, 1989; 

Escobar-Cortés et al., 2013; Faille et al., 2007; Gilbert et al., 1991; Parkar et al., 2001; 

Rönner et al., 1990; van Loosdrecht et al., 1987; Wiencek et al., 1991), such 

information is much less available for Clostridium species.  Therefore, understanding 

the surface hydrophobicity of C. perfringens cells and spores and its relation to the 

adherence of this organism on SS chips as a model of food contact surfaces, would 

lead to development of a strategy to prevent or minimize the adhesion of 

microorganism on surfaces. 

To control bacterial contamination, a system called Clean-in-Place (CIP) has 

been successfully applied in food manufacturing plants, which is an automated method 

of cleaning and disinfecting the surface of large and fixed equipment without 

disassembly. The CIP procedure aims to remove any undesired organic and inorganic 

fouling layers in a closed system using chemical, physical, and thermal aspects 
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(Stanga, 2010). It is known that surface attached or biofilms-associated spores, which 

enhance resistance against crucial procedure of the CIP regime (Faille et al., 2001). In 

several studies, CIP has been applied on biofilms of Streptococcus thermophilus and 

Bacillus species (Bremer et al., 2006; Flint et al., 1999; Parkar et al., 2004) rather than 

single organism. The effectiveness of the standard CIP regime on biofilms did not 

result in significant reduction in viable cells due to many factors influencing the 

effectiveness; however, adding a sanitizer in the CIP regime was more effective at 

reducing the adhered biofilm than the standard CIP regime (Bremer et al., 2006; 

Dufour et al., 2004). The effect of the CIP regime on C. perfringens had never been 

reported; therefore a study of the effect of the CIP system on adhered C. perfringens 

onto SS surfaces is required. In this work, we focused on studying the adhesion and 

the survival rate of C. perfringens spores and cells of FP and NFB isolates and its 

relation to surface hydrophobicity, as well as the effect of a modified CIP system on 

C. perfringens spores adhered onto SS surfaces.   



                                            

 

5 

Objective of this study 

C. perfringens is known to firmly adhere to wide variety of materials 

commonly found in food manufacturing plants, and is easily transmitted to finished 

products and affecting quality of food, shelf life, and consumer health risk. Therefore, 

understanding the behaviors of C. perfringens spores and cells adhered onto SS 

surfaces as well as factors affecting their adhesion could provide valuable information 

towards developing an effective inactivation procedure.  

The objectives of this research are: 

• Determine the viability of C. perfringens FP and NFB isolates adhered onto SS 

surfaces under aerobic conditions at different temperatures. 

• Measure the surface hydrophobicity of vegetative cells and spores from 

various C. perfringens FP and NFB isolates 

• Evaluate the effectiveness of the widely used CIP procedure in removing C. 

perfringens from a model food contact surfaces.   
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CHAPTER 2 

Literature Review 

 

2.1. Bacterium characteristics 

Clostridium perfringens is a Gram positive, rod-shaped, nonmotile, spore-

forming, anaerobic bacterium. C. perfringens is ubiquitous and present normally in 

many environmental sources like soil, water, wastewater as well as an inhabitant of 

humans and animals intestinal normal flora. Although C. perfringens is anaerobic 

bacterium and produces no colony on agar plate in the presence of oxygen, it is 

considered moderately aerotolerant (Brynestad and Granum, 2002; McClane, 2007). 

The growth of C. perfringens in food is influenced by many environmental factors, 

i.e., temperature, pH, water activity (aw), and oxidation reduction (Eh) (McClane, 

2007). Vegetative forms of C. perfringens can grow at temperature range between 20 

°C and 50 °C, with an optimal growth temperature from 43 °C to 45 °C for most 

strains (Brynestad and Granum, 2002; Novak et al., 2005). At lower temperatures, C. 

perfringens growth rate notably decrease for all strains. However, spore of C. 

perfringens are more resistant than vegetative cells to cold temperature, and all C. 

perfringens strains do not grow at 6 °C. Once contaminated frozen food products are 

warmed improperly, spores can germinate and multiply rapidly causing C. perfringens 

type A FP disease (McClane, 2007). C. perfringens  isolates show sensitivity towards 

the pH, with optimal growth at pH values of 6.0 to 7.0. Besides, C. perfringens strains 
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have lower growth rate at pH ≤ 5 and ≥ 8.3 (Labbe and Juneja, 2006; McClane, 2007). 

Under favorable conditions of other environmental factors, C. perfringens needs the 

minimum water activity of 0.93 to grow and requires very low oxidation-reduction 

potential (Eh) in order to support growth. It was suggested that most common food 

products have acceptable level of Eh for C. perfringens to initiate growth (Labbe and 

Juneja, 2006; McClane, 2007).  

 Pathogenicity of C. perfringens is also attributed to several factors. First, C. 

perfringens strains have the ability to produce at least 15 different toxins. However, an 

individual isolate produces only a certain toxin or combination of toxins (Petit et al., 

1999). Second, C. perfringens is able to grow faster in meat-based systems and can 

proliferate and multiply rapidly in less than 15 minutes causing contamination. Third, 

C. perfringens is able to form highly resistant spores that survive under environmental 

stresses such as radiation, low temperature, heat, chemicals preservative, and high 

hydrostatic pressure (McClane, 2001; Paredes-Sabja et al., 2007; Sarker et al., 2000). 

Lastly, C. perfringens spores have the ability to survive in inadequately cooked food 

or in improperly heated food during food services (McClane, 2007) 

 

2.2 Major toxins produced by C. perfringens  

 C. perfringens isolates are classified into five toxino-types (A, B, C, D, and E), 

depending on the expression of four major toxins (alpha, beta, epsilon, and iota) 

(Table 2.1).   
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Table 2.1: C. perfringens toxin typing (McClane, 2007; Petit et al., 1999) 
Toxin Expressedb 

Typea Alpha Beta Epsilon Iota 
A + - - - 
B + + + - 
C + + - - 
D + - + - 
E + - - + 

a C. perfringens  type, 
b + expressed; - not expressed 
 
 
 Alpha toxin  

 All C. perfringes types produce abundant alpha toxin. It has a molecular 

weight of 43-kDa. The alpha toxin encoding gene (plc) is located on the chromosome 

of C. perfringens (Ohtani et al., 2002). It contains of two domains, N-domain and C-

domain, one exhibits phospholipase activity, and the other partly responsible in 

binding to membrane. It was suggested that the activity of N-domain is affected by C-

domain (Sakurai et al., 2004). Alpha toxin causes tissue damage and lyses the blood 

cells and epithelial cells by degradation of phosphatidylcholine and sphingomyelin 

followed by membrane disruption when large amount is expressed (Sakurai et al., 

2004). The ability of alpha toxin to lyse blood cells has been used in the reverse 

CAMP (Christie, Atkins, Munch-Peterson) test to diagnose the presence of alpha toxin 

as an identification of C. perfringens. Alpha toxin causes gas gangrene by damaging 

tissues, hepatic toxicity, and myocardial disfunction (Murray et al., 1998). 

 

Beta toxin 
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 C. perfringens  type B and C produce extracellular beta toxin. Beta toxin is 

encoded by cpb gene, which is located on the large plasmid of C. perfringens 

(Hatheway, 1990). Beta toxin is a pore forming toxin and it is suggested that the 

formation of cation-selective pores is responsible of the toxin lethality (Nagahama et 

al., 2003). Inactivation of beta toxin occurs in GI tract by trypsin. Also, beta toxin 

causes necrotic enteritis or pigbel disease in human and domesticated livestock, which 

is associated with necrosis of the intestine. The symptoms of pigbel disease are 

diarrhea and abdominal pain (Songer, 1996). Administrating beta-toxoid is a cure for 

the disease (Songer, 1996).  

 

Epsilon toxin 

 C. perfringens type B and D animal isolates produce the epsilon toxin. It is 

encoded by etx gene, which is located on a large plasmid of C. perfringens (Songer, 

1996). Epsilon toxin is classified as Category B bioterror agent, after botulinum and 

tetanus neurotoxins (Rood, 1998). Epsilon toxin causes fatal diseases such as 

enterotoxaemia (sudden death syndrome) in lamb, goat, horses, and rarely in adult 

cattle, which results in neurological disorder and sudden death. Other diseases include 

dysentery in newborn lambs (Petit et al., 2003; Rood, 1998). When a large amount of 

the toxin is produced, it facilitates its absorption in the intestinal mucosa causing 

increases in vascular permeability, elevation of blood pressure, and kidney necrosis 

(Petit et al., 2003). 
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Iota toxin 

 C. perfringens  type E isolates are characterized by their ability to produce the 

binary iota toxin. It has comparable structure and activity to C. spiroforme toxin 

(Perelle et al., 1993; Songer, 1996). Iota toxin is composed of two independent 

subunits: Ia, exhibit ADP-ribosyltrasferase activity that causes globular skeletal 

muscle and nonmuscle actin and induces cell death; and Ib, required for translocating 

Ia subunit into the host cell (Perelle et al., 1993).  These subunits are encoded by iap 

and ibp and located on a large plasmid, and their toxic activity is turned on only when 

combined. This toxin causes sporadic diarrhea in calves and lambs (Barth et al., 2004; 

Rood, 1998).  

 

Clostridium perfringens enterotoxin (CPE) 

 CPE is the most important virulence factor for pathogenesis of C. perfringens 

food poisoning and non-food borne GI diseases in humans (Sarker et al., 1999). About 

~ 5% of C. perfringens type A produce this medically important CPE. It is encoded by 

cpe gene and can be located on either the chromosome or large plasmid (McClane, 

2007). The chromosomal copy of cpe is carried by C. perfringens type A FP isolates 

(Collie and McClane, 1998; Novak et al., 2005), whereas the plasmid copy of cpe is 

carried by C. perfringens isolates from non-food-borne GI diseases (i.e., antibiotic-

associated or sporadic diarrhea) (Lahti et al., 2008).  CPE is a heat-labile protein 
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(inactivate at 60°C for 10 min) with a molecular mass of 35-kDa, and is sensitive to 

pH values of < 6 or >8 (Labbe and Juneja, 2002; McClane, 2007). 

The expression of CPE is regulated during bacterial sporulation. CPE is 

released when C. perfringens cells grown under sporulation-inducing condition; the 

mother cell lyses and releases mature spores and CPE (Duncan et al., 1972; Labbe and 

Rufner, 1980). C. perfringens strains often secret large amounts of CPE in the 

intestinal lumen, whereas CPE was not detected in the vegetative growth (McClane, 

2007; McClane et al., 2006). The mechanism of regulation of sporulation and CPE 

production is not fully understood at the molecular level. It was hypothesized that 

Spo0A, a master regulatory protein that initiate sporulation in C. perfringens, plays an 

important role in producing CPE and in forming heat resistant endospore. This was 

proven by spo0A gene knock-out studies, which indicated that in the absence of 

spo0A, the C. perfringens spo0A knockout mutant wasn’t able to form spores or 

produce CPE, showing a direct correlation between sporulation and CPE production 

(Huang et al., 2004). The major sigma factors that regulate sporulation of B. subtilis 

found to be encoded in C. perfringens. In a previous study, it was suggested that for 

CPE synthesis only SigF, SigE, and SigK are necessary, whereas for spore formation, 

all sigma factors (SigF, SigE, SigK, and SigG) are required (Harry et al., 2009; Li and 

McClane, 2010). CPE acts as pore forming protein with cytotoxic activity that binds to 

its protein receptor via its C-terminal portion in the host epithelial cells which results 

in formation of ~90 kDa small complex (Fujita et al., 2000; McClane et al., 2006). 
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This complex binds to different proteins to form a large complex of ~ 155 kDa which 

stimulates plasma membrane permeability and ion influx in mammalian cells, causing 

damage to the small intestine. Eventually induce diarrhea, acute abdominal pain, and 

nausea; vomiting and fever are rare (Cabrera-Martinez et al., 2003; McClane, 2001, 

2007; Songer, 1996).  

CPE toxicity increases by removal of the first 45 N-terminal amino acids and 

the activity of CPE increases by three fold in the presence of trypsin or chymotrypsin. 

These results suggest a similar activation of CPE may undergo in intestine during GI 

disease; thus, enhancing the toxicity of the CPE (Brynestad and Granum, 2002; 

McClane, 2001).  

 

2.3 CPE associated GI diseases 

 C. perfringens isolates that produce CPE are considered to be one of the most 

important causative agent for human GI disease i.e., C. perfringens  type A FP and C. 

perfringens  type A NFB diseases. Importantly, most of C. perfringens type A strains 

that carry a chromosomal cpe gene (C-cpe) cause FP GI disease, while strains that 

carry a plasmid copy of the cpe gene (P-cpe) cause NFB human GI disease including 

~20% of antibiotic-associated diarrhea (AAD), and sporadic diarrhea (SD) (Collie and 

McClane, 1998; Lindström et al., 2011; Sarker et al., 2000; Sparks et al., 2001). 

Interestingly, C. perfringens FP isolates possess higher resistance properties against 

environmental stresses (such as heat, osmotic induced stress, nitrite, pH, and 
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prolonged frozen storage) than C. perfringens NFB isolates (McClane et al., 2006; 

Sarker et al., 1999). C-cpe isolates are associated with food poisoning in food 

processing plants, which may be related to the phenotype of C. perfringens FP isolates 

that are able to grow rapidly and survive at wider ranges of temperature than P-cpe 

isolates (Deguchi et al., 2009; Xiao et al., 2012). 

 

2.3.1 C. perfringens type A FP  

 C. perfringens  type A is currently ranked as the second most reported bacterial 

cause of foodborne outbreaks in the United States, accounting for almost 1 million 

illnesses per year (Grass et al., 2013). C. perfringens  type A FP illnesses cost is 

estimated to be $309.4 million annually (Buzby and Roberts, 1997). C. perfringens 

type A illnesses are often related to dishes containing raw meat or poultry. Since 

spores are commonly found in soil and water, during slaughter operation of animals, 

spores tend to transmit to and contaminate raw products (Juneja and Thippareddi, 

2004; Juneja et al., 2006). Importantly, the application of heat treatment on 

contaminated meat by the meat industry activates C. perfringens spores to germinate 

but not kill them (Paredes-Sabja et al., 2008; Thippareddi et al., 2003). Upon 

activation and spore survival and during improper handling, cooling and storage, C. 

perfringens spores germinate and rapidly proliferate to high levels (106 CFU/g). When 

a person ingests this contaminated food, some vegetative cells survive stomach 

acidity, enter into small intestine where they proliferate, sporulate, and produce CPE. 
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Once the mother cell lyses, the mature spores and CPE releases in the intestinal lumen, 

and the released CPE binds to the epithelial cells of the intestine. This leads to 

intestinal tissue damage and initiates fluid loss (diarrhea). One important aspect of 

controlling contamination during processing and handling and eliminating C. 

perfringens spores from food is cooling and reheating food properly prior 

consumption and selecting high quality food sources. Most C. perfringens type A FP 

disease is considered to be mild and self-limiting and last for about 12 to 24 hours. 

Symptoms are mainly diarrhea and severe abdominal pain but in rare cases vomiting 

and fever might be observed (McClane, 2007; McClane et al., 2006). Antibiotics are 

not recommended since the disease is self-limiting and keeping an individual hydrated 

would be necessary (Labbe and Juneja, 2002) 

 

2.3.2 Antibiotic-associated diarrhea and sporadic diarrhea 

 C. perfringens isolates that produce CPE have been reported to cause ~20% of 

AAD and SD illnesses in humans. In 1984, 11 patients were diagnosed with AAD 

caused by C. perfringens following ingestion of antibiotics (Asha and Wilcox, 2002). 

These incidents are considered non-food borne illnesses. It was implicated that AAD 

is developed after exposure to antibiotics (i.e., penicillin, cephalosporins, trimethoprim 

or cotrimoxazole), whereas SD proposed to be developed independently after exposure 

to any antimicrobial drugs. It was suggested that a small number of P-cpe strains are 

able to cause ADDs and SDs, as the cpe plasmid can be transferred to cpe-negative C. 
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perfringens strains that already present in the gut as normal microbiota (Heikinheimo 

et al., 2006; Lindström et al., 2011; Sparks et al., 2001). Until today, the transmission 

route of P-cpe is still unknown. Furthermore, some cases of AAD and SD are caused 

by C. perfringens P-cpe strains and were isolated from food products (Lahti et al., 

2008; Miki et al., 2008; Nakamura et al., 2004), suggesting that development of AAD 

and SD in some cases might also transmit via food, and thus consider as food 

poisoning (Lahti et al., 2008). However, these FP illnesses may not be as severe as in 

traditional CPE food poisoning and their food vehicle often unknown (Lindström et 

al., 2011). Elderly and people who take antibiotics for long terms are more susceptible 

to AAD and SD and treatment for the most cases of AAD and SD is needed by 

restoring fluid/electrolyte balance therapy (McClane et al., 2006). 

   

2.4. Spore formation 

 Bacterial spore formation of Bacillus species has been widely studied, 

especially in Bacillus subtilis (Errington, 2003; Piggot and Hilbert, 2004). Studies 

reported that Clostridium species spore formation is similar to spore formation of 

Bacillus species. (Durre and Hollergschwandner, 2004). The sporulation process takes 

place through seven stages (Hitchins and Slepecky, 1969; McDonnell, 2007; Piggot 

and Coote, 1976). Stage 0 is the normal growing vegetative cell, followed by stage I 

and II where the DNA is remodeled into an axial filament, while the cell undergoes 

asymmetric division. This process forms two compartments; a smaller compartment 
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called the pre-spore and a large mother compartment, which separated by a septum 

within a cell. Stage III called the engulfment where the formation of a free protoplast 

when the mother cell engulfs the pre-spore to form fore-spore surrounded by inner and 

outer fore-spore membrane. Synthesis of spore cortex occurs in stage IV, leading to 

deposition of primordial germ cell wall and cortex between the inner and outer 

membrane surrounding the fore-spore. Stage V is entered during formation of the 

spore coat, a complex structure of protein outside the surface of fore-spore. Stage VI is 

also termed spore maturation, a time period in which spore acquires resistance 

characteristics against heat, UV radiation, and chemicals. The coat becomes denser 

with no morphological changes. In the final stage VII, the mother cell lyses and 

releases the mature spore structure in the environment. This mature spore structure 

protects the dormant microorganism until spore find favorable conditions once again 

for vegetative cell growth. When dormant spores are reactivated, it undergoes 

germination and outgrowth (Errington, 2003; Leggett et al., 2012; Piggot and Coote, 

1976).  

2.5 Spore structure 

The structure and chemical composition of spore differs from those of 

vegetative cell (Fig. 2.1). The differences mostly accounts for spore resistance features 

against environmental stresses (Setlow, 2014). 
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Fig. 2.1 The structure of typical bacterial spore. The layers are not 
drawn to scale, and sub-layers may present in the coat and exosporium. 
In many species the exosporium layer is absent. Modified from Setlow 
(2014) 

 

Starting from the outside to inside layers are in order of: exosporium, coat, 

outer membrane, cortex, germ cell wall, inner membrane and central core. The spore 

structure of Clostridium spp. is similar to the spore structure of Bacillus ssp., except 

that in some of Clostridium spp. the outermost structure is the coat. Also, in some of 

the Bacillus spp., the exosporium is absent or greatly reduced in size (Henriques and 

Moran, 2007; Lai et al., 2003; Todd et al., 2003). The exosporium consists mainly of 

proteins (43-52% of dry weight), including some glycoproteins. The function of these 

proteins is still unknown but it was suggested that they have a role in adherence and 

hydrophobic interaction of the spores (Koshikawa et al., 1989). The coat structure is 

composed of several layers of  > 50 spore-specific proteins. It plays a role in 
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protecting the spore from reactive chemicals and lytic enzymes. Since, in some 

species, this is the outermost layer, it might be also responsible for the spore 

hydrophobicity (Koshikawa et al., 1989; Kutima and Foegeding, 1987; Wiencek et al., 

1990). Under the spore coat lies the outer membrane, which is essential structure 

during spore formation (Leggett et al., 2012; Piggot and Hilbert, 2004). However, the 

function of the outer membrane remains unknown and doesn’t act as significant 

permeability barrier in dormant spore.  The cortex structure is similar to the cortex of a 

growing cell, which is composed of peptidoglycan (PG) with several spore-specific 

modifications (Popham, 2002; Warth and Strominger, 1972). The cortex is important 

in attaining spore dormancy and resistance characteristics. Also, the cortex is essential 

for reducing the water content of the spore core and maintaining its dehydrated 

environment. During spore germination, the cortex is degraded, leading to core 

expansion and outgrowth (Leggett et al., 2012; Setlow, 2014). Just under the cortex 

another PG structure comes, which is the germ cell wall; this structure probably 

identical to PG of a growing cell wall. After germination and the outgrowth this 

structure becomes the cell wall of a growing cell. There is no role for germ wall in 

spore resistance properties (Leggett et al., 2012; Setlow, 2014). Unlike the outer spore 

membrane, the inner membrane of spore has a very low permeability to small 

molecules that plays a major role in protecting the spore core DNA from damage. The 

inner membrane is significantly compressed, in which the lipid composition are 

largely immobile. This lipid composition becomes fully mobile upon germination. 
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However, the lipid composition of the spore inner membrane is very similar to the 

plasma membrane of growing cell, but completely different protein composition than 

the growing cell membrane (Cowan et al., 2003; Cowan et al., 2004; Leggett et al., 

2012; Setlow, 2006). The innermost layer is the core that contains most spore 

enzymes, DNA, and RNA. The core has low water content (27-55% of wet weigh), 

which play a major role in spore resistance to heat and some chemicals. Another 

important factor that is likely important in spore’s enzymatic dormancy is pyridine-

2,6-dicarboxylic acid (dipicolinic acid, DPA), which is present at 5-15% in the spore 

core. The third group of molecules that play a major role in spore resistance are α/β-

type small acid-soluble proteins (SASP). These comprise 3-6% of total spore protein 

and involved in saturation of the spore DNA. Each of those factors contributes to the 

spore resistance characteristic against UV radiation, heat, and chemicals (Leggett et 

al., 2012; Setlow, 2014).  

2.6 Spore germination 

 Under unfavorable growth conditions, vegetative cells of Bacillus spp. and 

Clostridium spp. initiate the sporulation process to become dormant spores (Piggot 

and Hilbert, 2004; Setlow, 2014). During dormancy, the spore surveys the surrounding 

environments until favorable growth conditions are present. A dormant spore must 

undergo germination, and then outgrowth processes, in order to return to life as an 

actively grown cell (Moir, 2006; Setlow, 2014). The presence of specific nutrients, 

termed germinant, in the environment, initiate dormant spore germination. There are 
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number of germinate agents such as amino acids, sugar, or purine nucleosides that 

trigger spore germination (Setlow, 2003; Setlow, 2014). Spore germination is initiated 

by interaction between germinant molecules and their cognate germinant receptor 

(GR) that is located in the spore’s inner membrane (Hudson et al., 2001; Paidhungat 

and Setlow, 2001). Upon initiation of germination, the spore undergoes a series of 

different biophysical and biochemical events.  

I. The spore core releases monovalent cations, H+, and Zn2+, which lead to pH 

elevation of the spore core’s from ~6.5 to 7.7. This is an essential change for 

spore metabolism once the core’s water content is low enough for enzyme 

action.  

II. Following ion release, the spore core’s large DPA, along with divalent cations, 

(predominantly Ca2+ ) are also released.  

III. The hydration level of the spore core is increased as the released DPA is 

replaced with water. This results in decreased moist heat resistance. However, 

the hydration increase in the core does not favor protein motion or enzyme 

action (Cowan et al., 2003; Setlow, 2003). 

IV. Germination actually begins with the hydrolysis of spore cortex peptidoglycans 

by cortex-lytic enzymes. 

V. The spore core takes up more water, causing swelling of the spore core and 

expansion of the germ cell wall.  

The germination process is then complete. After this step, the protein mobility 
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resumes, allowing enzyme action and normal metabolism in the core. Then, 

macromolecular synthesis follows that event in later development of spore outgrowth 

process that converts germinated spore into a growing cell (Paidhungat and Setlow, 

2002; Setlow, 2003). 

2.7. Bacterial adhesion to surfaces and its relation to hydrophobicity 

Bacterial adhesion onto surfaces has been studied for many years, and it has 

significant implications for food safety. Microorganisms have the ability to adhere 

firmly onto surfaces commonly found in manufacturing plants such as stainless steel 

(SS), plastic, and glass (Chae and Schraft, 2000; Chia et al., 2009; Frank, 2001). The 

adhered organisms have the potential to transmit to food products, which is considered 

a serious problem for food industries. Once microorganisms adhere to surfaces, they 

become highly resistant to disinfecting chemicals, which subsequently affect the 

quality of food, shelf life, and consumer risk of foodborne diseases (Andersson et al., 

1995; Austin and Bergeron, 1995; Frank, 2001). Microbial characteristics leading to 

attachment and later release from surfaces are critical for their survival; in fact, 

microbial attachment to surfaces is probably the first stage of surviving in natural 

environment and a type of protection against environmental stresses. Because, the 

attached organism can detach from surfaces and transmit to finished food products, it 

is important to study the mechanism of attachment and inactivating procedures for 

attached spores (Boulané‐Petermann, 1996; Frank, 2001).  



                                            

 

22 

Adhesion to surfaces is influenced and enhanced by cell surface charges, 

hydrophobicity, and presence of particular surface structures (Gilbert et al., 1991; van 

Loosdrecht et al., 1987). In Pseudomonas spp., the adhesion to SS was due to 

hydrophobic interaction between the bacteria and the surface (Vanhaecke et al., 1990). 

Many studies have been conducted to study the mechanism of microbial attachment 

(Bitton and Marshall, 1980; Fletcher, 1996; Klavenes et al., 2002; Mafu et al., 1990; 

Marshall et al., 1971). The microbial attachment to surfaces needs 5 to 30 seconds and 

occurs in two stages; reversible attachment followed by irreversible attachment. The 

weak interaction between the substratum and bacteria is referred to as the reversible 

attachment, which involves van der waal attraction forces, electrostatic forces, and 

hydrophobic interactions. During this stage, shear forces such as rinsing can easily 

remove attached bacteria (Kumar and Anand, 1998; Marshall et al., 1971). Over time, 

reversible attachment become irreversible, when bacteria produce extracellular 

polymers (Sutherland, 1982), which bridge the gap between the bacteria and 

substratum (Boulané‐Petermann, 1996; Bower et al., 1996; Dawson et al., 1981). 

Several studies suggest that irreversible attachment occurs from 20 min to 4 h post 

contact with substratum (Lundén et al., 2000; Mafu et al., 1990; Sorongon et al., 

1991). However, in the case of attachment to SS surface, the attachment to substratum 

takes less than one minute and rapidly increases with time. In contrast to reversible 

attached microbes, removal of irreversible attached cells require strong chemicals, 

heat, sanitizers, or application of enzymes (Bower et al., 1996).  
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Hydrophobicity has been identified as a dominant factor for bacterial adhesion 

to surfaces (Escobar-Cortés et al., 2013; Faille et al., 2007; Peng et al., 2001). 

Hydrophobicity of bacterial surface is determined by different methods, such as 

bacterial adherence to hydrocarbon (BATH), hydrophobic interaction chromatography 

(HIC), and the salt aggregation test (Mozes and Rouxhet, 1987; Rönner et al., 1990; 

Rosenberg et al., 1980). Cells with hydrophobic characteristic are more adherent to 

surfaces than hydrophilic cells, and most bacteria are likely to adhere to hydrophobic 

surfaces (Pringle and Fletcher, 1983; van Loosdrecht et al., 1987). In Bacillus spp., a 

strong correlation has been observed between spore hydrophobicity of exosporium-

positive species and the adhesion. Also, similar observation was demonstrated with 

Clostridium spp. (Andersson et al., 1998; Paredes-Sabja and Sarker, 2012). More 

likely, attachment of spores is greater than the attachment of vegetative cell due to the 

spore’s high hydrophobicity and the surface coverage hair-like structure (Bower et al., 

1996). 

Equally important, the outer layer of spore structure considered playing a role 

in spore adhesion due to its large collection of proteins (Doyle et al., 1984; Matz et al., 

1970; Takumi et al., 1979). Several researchers have correlated the presence of an 

exosporium with spore hydrophobicity in several Bacillus species (Kjelleberg, 1984; 

Kutima and Foegeding, 1987). When the exosporium of spores of B. cereus strain T 

and B. megaterium QMB1551 are removed by chemical treatment, a decrease in the 

hydrophobicity was observed compared with normal spores of the same strains 
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(Koshikawa et al., 1989; Kutima and Foegeding, 1987). 

2.8 Spore inactivation 

 Spore forming pathogens lead to challenges in developing countries due to 

their ability to survive during food processing and production. C. perfringens is one of 

the major pathogens with significant implications in the food industry, due to its 

ability to form spores that are resistant to various preservation approaches such as, 

moist heat, osmotic, nitrite, pH, prolonged frozen storage, and high pressure 

processing (Li and McClane, 2006a, b; Sarker et al., 2000). When spores encounter 

suitable conditions, they germinate, and subsequently proliferate in food during 

cooling and storage (McClane, 2007). An alternative strategy, referred to as the 

“Clean-in-Place system”, has been developed in order to inactivate harmful bacteria 

by using alkaline detergent, rinsing, acid detergent and using sanitizers if needed. Use 

of the Clean-in-Place system increases food safety, shelf life, and leads to better food 

quality for consumer (Frank and Chmielewski, 2001; Leclercq-Perlat et al., 1994). 

2.9 Disinfectant chemicals 

Food processing plants use a variety of cleaning chemicals to sanitize food 

contact surfaces in order to inactivate spore activity or minimize the harmful bacteria. 

Many chemicals have been used to disinfect the adhered bacteria on SS surfaces. In a 

recent study, typical disinfectant agents such as ethanol, iodophores, Quarternary 

Ammonium Compounds have been used to sanitize SS surfaces. Results showed no 
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inhibitory effect of these disinfectants at maximum acceptable levels on C. perfringens 

spores adhered onto SS (Udompijitkul et al., 2013). Furthermore, various factors 

accompanied the effectiveness of disinfectant chemicals such as, temperature, 

chemical concentration, pH, characteristics of the surface being cleaned, microbial 

density, exposure time, and solution flow pressure (Dufour et al., 2004; Husmark and 

Rönner, 1992; Lelievre et al., 2001). Thus, understanding the characteristics of the 

chemical agent as well as the effect of this agent on pathogenic bacteria is essential in 

order to select the most suitable agent for the selected cleaning application. 

2.9.1 Sodium hydroxide (NaOH) 

 NaOH is widely available and inexpensive and is one of the powerful 

surfactants among other alkaline solutions. Thus, using NaOH as a detergent in 

manufacturing plants is economical and it provides high level of hygiene. Solutions of 

NaOH have a pH of ≥ 9. Since NaOH is highly basic, most bacterial growth is 

restricted at that pH. Low concentrations of NaOH, lead to an inhibitory effect; 

whereas at high concentrations, it has a bactericidal effect. Depending on 

concentration, contact time, and temperature, NaOH has the ability to inactivate 

bacteria and yeast (Committee, 1996; McDonnell, 2007; Tilley, 1946). In 

manufacturing plants, NaOH is used as a routine cleaning agent of surfaces and 

equipment; however, it is considered as an aggressive chemical to inactivate 

microorganisms. NaOH has been known as an effective antimicrobial agent, including 

efficacy, low cost, ease to disposal. Moreover, NaOH is highly corrosive agent to SS 
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and skin and should be handled with caution (Committee, 1996; Troller, 2012).  

2.9.2 Nitric acid (HNO3) 

Nitric acid was discovered between 12th and 13th century A.D. and for many 

years has been very important chemical that has used for industrial purposes (Stern et 

al., 1960). It is a colorless liquid that contains 50-65% of HNO3 in water; solutions of 

HNO3 have a pH of < 3. It’s characterized by a unique odor that fades with increasing 

water. HNO3 is a very dangerous chemical, as the high concentration of this may 

destroy organic tissues, cause skin burns, and inhaling the red fumes coming out of 

any reaction with the acid may easily cause deadly pneumonia. Therefore, care must 

be taken during handling (Miles, 1961). HNO3 is formulated as detergent that can 

remove soiling, staining, and scaling (Troller, 2012). 

2.10 Clean-in-Place (CIP)  

A satisfied standard of hygiene is one of the most critical aspects to increase 

the safety of the consumer and quality of products. A proper cleaning and sanitization 

procedure is also required for high quality production (Chisti, 1999; Tamime, 2009). 

CIP is a very common procedure in food, dairy, brewery and beverage processing 

plants for sufficient chemicals cleaning in closed system. It involves piping connected 

to tanks, valves, connections, and pumps that distributes cleaning detergents remotely 

with high pressure and low volume throughout the plant (Troller, 2012). 
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CIP can be defined as: ”The cleaning of complete items of plant or pipeline 

circuits without dismantling or opening of the equipment and with little or no manual 

involvement on the part of the operator. The process involves jetting or spraying of 

surfaces or circulation of cleaning solutions through the plant under conditions of 

increased turbulence and flow velocity.” (NDA Chemical Safety Code, 1985(Romney, 

1990)).  

Since the 1950’s, CIP has been introduced to the industries, especially in dairy 

industries needed for a frequent, rapid and consistent cleaning. In recent years, CIP 

has been accepted by the pharmaceutical, biotechnology, and other processing 

operations (Chisti, 1999; Flint et al., 1997; Stewart et al., 1996). In general, tightly 

connected equipment in the plant is cleaned automatically using chemicals, physical 

processes, and thermal aspects. The CIP process involves a series of cleaning and 

rinsing cycles as follows: 

I. Pre-rinsing with water to remove loosely adhered substances from the 

surface.  

II. Alkaline cleaning to remove any remaining soil on the plant surface 

with heated solution.  

III. Rinse out the alkaline solution with water at ambient temperature for 

preventing disruption with the following step. 

IV. Acid cleaning to removing more of the remaining soil especially 

inorganic residues with heated solution.  
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V. A final rinse with water at ambient temperature. In some cases a final 

step of adding sanitizer is also applied (Chisti, 1999; Stanga, 2010).  

The CIP system cleaning is achieved via different processes: physical action of 

velocity flow, chemical action of cleaning agent, and high temperature of the cleaning 

solution (Chisti, 1999). The CIP system is mostly dependent on chemical actions, 

which are selected for their ability to lift organic and inorganic residues. The most 

common cleaners used are alkaline (sodium hydroxide, NaOH) and acid (nitric acid, 

HNO3) cleaners. The alkali wash step primarily removes protein and fats, while the 

acid washing step mainly removes mineral deposits and helps to remove alkaline 

traces from the plant surfaces (Bremer et al., 2006). There are few factors that should 

be taken into consideration for the bactericidal efficacy of the solutions: including 

concentration, temperature, and contact time. These factors vary among 

microorganisms. For example, 0.5% of NaOH at 120 °F for 16 min is sufficient to 

remove 25% of B. subtilis spores, whereas 1.66% of NaOH at 150 °F for 1 min is 

sufficient to remove 25% of B. subtilis (Romney, 1990). Moreover, industries have 

been using CIP for three primary reasons. First, it is an automated system and 

repeatable which reduces the chances of errors during manual cleaning. Second, it 

reduces labor costs and minimizes the use of water and detergents required. There also 

is no labor needed for disassembly of equipment and reducing the material cost used 

for cleaning and the cost of getting rid of detergent waste. Finally, it increases plant 

and product safety by cleaning cytotoxic products form the plants, and personnel have 
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much less contact with hazardous material (Stewart et al., 1996; Tamime, 2009; 

Troller, 2012).   
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Abstract 

 

The cross-contamination of the enterotoxigenic Clostridium perfringens spores 

from contaminated food-contact surfaces onto finished food product is one of the 

leading causes of food-related GI diseases caused by C. perfringens. This is mostly 

due to the high resistance of C. perfringens spores to various disinfectants commonly 

used to decontaminate the food-contact surfaces in the food industry. In this study, we 

aimed to understand the mechanism of attachment of C. perfringens spores onto 

stainless steel (SS) surfaces and then validate the effectiveness of a simulated Clean-

in-Place (CIP) regime in decontamination of SS surfaces. Our results demonstrated 

that spores of all tested C. perfringens isolates were adhered firmly onto SS surfaces 

and survived up to 48 h under aerobic conditions at ambient and refrigerated 

temperatures. The spores carrying intact spore-coat were more hydrophobic than the 

decoated spores, which might possibly explain the low hydrophobicity of vegetative 

cells. These results suggest a correlation between spore coat components and the 

adhesion onto surfaces. The effectiveness of the CIP cleaning agents showed a 

complete reduction of adhered spores onto SS surface after treating with 1% NaOH as 

compared to control surface, suggesting that 1% NaOH enhances the inactivation of C. 

perfringens spores adhered onto SS surfaces. Collectively, our current findings might 

contribute towards developing a strategy to control cross-contamination of C. 
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perfringens spores into food products, which will help reducing the risk of C. 

perfringens-associated food poisoning outbreaks.  
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3.1 Introduction 

Clostridium perfringens is a Gram-positive, anaerobic, rod shaped bacterium. 

It is a non-motile pathogen that produces prolific toxins causing a wide verity of 

gastrointestinal (GI) diseases in humans and animals (McClane, 2007). C. perfringens 

can be classified into 5 types (A through E) based on the production of  four major 

lethal toxins (α, β, ε, and ι toxins) (McClane, 2007; Petit et al., 1999). However, 

approximately 5% of C. perfringens type A are able to produce C. perfringens 

enterotoxin (CPE), which is an important factor for most cases of C. perfringens type 

A food poisoning (FP) as well as non-food borne (NFB) GI diseases such as 

antibiotic-associated diarrhea, sporadic diarrhea and nosocomial diarrheal diseases 

(Grass et al., 2013; Kobayashi et al., 2009; Lindström et al., 2011; Miyamoto et al., 

2012; Sarker et al., 1999). In previous studies, genotyping of CPE-positive C. 

perfringens isolates reveal that CPE-encoding gene (cpe) can be either chromosomal- 

or a plasmid- borne. The chromosomal cpe isolates are generally associated with FP 

due to their high resistance to food-related preservatives such as heat, low 

temperature, NaCl, and nitrite, whereas the plasmid-borne cpe isolates are associated 

with NFB GI diseases and show lower resistance to environmental insults than those 

of the chromosomal cpe isolates (Collie and McClane, 1998; Li and McClane, 2006a, 

b; Li and McClane, 2008; Miyamoto et al., 2012; Raju and Sarker, 2007; Sarker et al., 

2000). C. perfringens type A FP is currently ranked as the second most reported 

bacterial foodborne illness outbreaks in United States causing ~1 million cases per 
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year, and estimated cost of $309.4 million loss annually (Bennett et al., 2013; Grass et 

al., 2013; Hoffmann et al., 2012; Lynch et al., 2006; Sarker et al., 1999; Scallan et al., 

2011; Xiao et al., 2012).  

Spores of C. perfringens type A exhibit higher resistance to various lethal 

factors such as heat, osmotic stress, chemicals, prolonged frozen storage and high 

pressure processing than vegetative cells (Li and McClane, 2006a, b; Paredes-Sabja et 

al., 2007; Sarker et al., 2000). These resistant properties allow spores to survive 

against various preservative approaches applied in the food industry in which spores 

remain in the dormancy, and only resume growth once the favorable conditions are 

achieved (McClane, 2007; Paredes-Sabja et al., 2008). Adherence of microorganisms 

onto surfaces commonly found in manufacturing plants such as SS, glass, or plastic 

could act as a source of product contamination, eventually leading to the occurrence of 

foodborne disease outbreaks. Understanding the mechanisms of adhesion of harmful 

bacteria onto food contact surfaces is critical in order to develop effective measures to 

decontaminate, or at least minimize, microbial contamination onto food contact 

surfaces thereby reducing the risk of foodborne illnesses (Ortega et al., 2010; Peng et 

al., 2001; Ryu et al., 2004; Simmonds et al., 2003; Tauveron et al., 2006). Bacterial 

adherence to surfaces has been related to cell surface hydrophobicity and relative 

surface charge, as well as the presence of particular surface structures (Escobar-Cortés 

et al., 2013; Faille et al., 2007; Peng et al., 2001; Rönner et al., 1990; van Loosdrecht 

et al., 1987; Wiencek et al., 1990). Some reports suggest that the presence of particular 
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structures such as the outer coat or exosporium in B. cereus group and C. difficile can 

further enhance the adhesion process to solid surfaces (Doyle et al., 1984; Faille et al., 

2007; Husmark and Rönner, 1992; Joshi et al., 2012; Tauveron et al., 2006). However, 

hydrophobic interaction is considered to be an important factor contributing to 

bacterial adhesion to solid surfaces (Faille et al., 2007; Husmark and Rönner, 1992; 

van Loosdrecht et al., 1987). The adherence of Bacillus spores and Stapylococcus 

epidermidis to solid surfaces is correlated with hydrophobicity and cell-surface 

negative charges (Gilbert et al., 1991; Koshikawa et al., 1989; Rönner et al., 1990). 

Moreover, the spores of some Clostridium species can be highly hydrophobic and 

have the ability to adhere firmly on surfaces encountered in manufacturing plants 

(Craven and Blankenship, 1987; Husmark and Rönner, 1992; Simmonds et al., 2003; 

Wiencek et al., 1990). These spores’ characteristics can lead to the cross-

contamination of pathogenic bacteria from contaminated food contact surfaces into 

finished products during food processing and handling (Andre et al., 2012; Bae and 

Lee, 2012; Kusumaningrum et al., 2003). Adhered pathogenic bacteria on surfaces and 

materials are more resistant to various disinfectants used in the food industry and 

could serve as a continuous source of product contamination affecting their quality, 

shelf-life, and safety of the consumer (Andrade et al., 1998; Andre et al., 2012; Das et 

al., 1998; Frank and Koffi, 1990; Holah, 2003; Hornstra et al., 2007; Kreske et al., 

2006; LeChevallier et al., 1988). A recent study on C. perfringens, demonstrates that 
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commonly used disinfecting agents showed limited inhibitory effect towards C. 

perfringens spores adhered onto SS surfaces (Udompijitkul et al., 2013).  

Food processing industries successfully use Clean-in-place (CIP) procedure to 

clean and disinfect the surface of large and fixed equipment without disassembling. 

The general CIP regime involves cleaning with alkaline solution (NaOH) followed by 

acid solution (HNO3) in order to control bacterial contamination and remove organic 

and inorganic residues (Bremer et al., 2006; Romney, 1990; Stanga, 2010). However, 

the effectiveness of CIP regimes differ in eliminating adherence pathogenic bacteria to 

surfaces (Austin and Bergeron, 1995; Dufour et al., 2004; Faille et al., 2001), 

depending on number of factors, i.e., the concentration of cleaning solutions, treatment 

duration, temperature of the solutions, and the characteristics of the surface being 

cleaned (Boulange-Petermann et al., 2004; Lelievre et al., 2001; Stewart et al., 1996). 

Nevertheless, the effectiveness of the CIP procedure is debated in the literatures as 

some adhered bacteria are resistant to CIP (Bénézech et al., 2002; Blel et al., 2007; 

Faille et al., 2002; Le Gentil et al., 2010), and other adhered bacteria are decreased 

after applying the CIP procedure (Bremer et al., 2006; Faille et al., 2001; Hornstra et 

al., 2007; Parkar et al., 2004). So far, the detailed study regarding the application of 

CIP against C. perfringens spores adhered to the model food contact surface is 

lacking.  

The purpose of this study was to 1) determine the viability of C. perfringens 

vegetative cells and spores adhered onto SS surfaces under different temperatures. 2) 
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Measure the surface hydrophobicity of vegetative cells and spores (intact and 

decoated) from various C. perfringens isolates. 3) Evaluate the effectiveness of the 

CIP procedure in removing C. perfringens spores from the model food contact 

surfaces. 
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3.2 Material and methods  

3.2.1. Bacterial growth conditions 

The bacterial strains examined in this study included 4 C. perfringens type A 

FP isolates (SM101, E13, NCTC10239, and NCTC8239) and 2 NFB isolates (F4969 

and NB16) (Sarker et al., 2000). All isolates were maintained at -20 °C in a cooked 

meat medium (Difco, BD Diagnostic Systems, Sparks, Md., U.S.A.). Each strain was 

retrieved by inoculating 0.1 ml of cooked meat culture into fluid thioglycollate 

medium (FTG) (Difco), and incubating at 37 °C overnight. Vegetative cell cultures of 

C. perfringens were grown in a TGY (3% trypticase, 2% glucose, 1% yeast extract, 

and 0.1% L-cysteine) broth (Kokai-Kun et al., 1994). 

 

3.2.2 Spore preparation and purification 

 Sporulating cultures of C. perfringens were prepared by using previously 

described method (Akhtar et al., 2008). Briefly, 0.1 ml of C. perfringens stock cultures 

were inoculated into FTG and grown overnight at 37 °C. Then 0.4 ml of the FTG 

cultures were transferred to a fresh 10 ml FTG medium and incubated for 8 to 12 h at 

37 °C. 0.4 ml of actively growing cultures were then inoculated into 10 ml of Duncan 

Strong (DS) sporulation medium (1.5% protease peptone, 0.4% yeast extract, 0.1% 

sodium thioglycolate, 0.5% sodium phosphate dibasic [Na2HPO4; anhydrous], 0.4% 

soluble starch) (Duncan and Strong, 1968) and incubated for 24 h at 37 °C. Spore 

formation in DS culture was observed and confirmed by phase-contrast microscopy. 
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The preparation of large amounts of C. perfringens spores was accomplished by 

scaling up the aforementioned procedure. Spore cultures were purified by repeated 

washing with sterile distilled water through centrifuging (800 rpm, 15 min) until spore 

suspension was > 98% free of vegetative cells, cell debris, and germinated spores. The 

purified free spores were suspended in sterile distilled water and adjusted to a final 

optical density at 600 nm (OD600) of ~6 using SmartspecTM 3000 Spectrophotometer 

(Bio-Rad Laboratories, Hercules, CA, USA) and stored at -20 °C until used (Paredes-

Sabja et al., 2008). 

 

3.2.3. SS surface preparation and adhesion of spores onto SS chip 

SS chips (300 series, no. 4 finish) were purchased and prepared as 2 × 3 inches 

size from The Home Depot (Corvallis, OR) for adhesion and survival experiments. 

Prior to use, the surface of each chip was cleaned with 1% (w/v) Alconox® (VWR 

International, West Chester, PA) followed by rinsing with distilled water, drying, and 

then wrapping individually with aluminum foil. The SS chips were sterilized in the 

autoclave at 121 °C for 20 min and stored at room temperature (RT) until used 

(Udompijitkul et al., 2013). Purified spore or vegetative cell suspensions of C. 

perfringens at OD600 of ~6 were prepared in a suspension of 0.1 ml. Spore suspensions 

were heat-activated at 80 °C for 10 min or 75 °C for 20 min for FP and NFB spores, 

respectively, and then cooled in a water bath at room temperature for 5 min. Spore and 

cell adhesion to SS chips were assessed by inoculating 0.1 ml of heat-activated spores 
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or vegetative cells onto sterilized SS chip and spread with a sterile bent glass rod 

(Udompijitkul et al., 2013). All chips were contaminated under Class II biosafety 

cabinet (Labconco, Kansas, MO, USA.) and dried for 60 min to promote adherence. 

For every trial of adhesion experiment, two chips were included. After drying, SS 

chips were placed in sterilized plastic bags and stored under aerobic conditions at both 

room temperature (20 ± 2 °C) and refrigeration temperature (4 ± 1 °C).  

The number of total viable cells and dormant spores was determined after 0, 1, 

3, 6, 10, 24 or 48 h storage at both temperatures. The contaminated chips were 

aseptically transferred to sterile petri dishes and the surface of every individual chip 

was entirely dried by swabbing with 4 sterilized cotton swabs (Puritan Medical 

Products Company LLC, Guilford, ME) and soaked in 10 ml of 25 mM Na2HPO4 

buffer adjusted to pH 7.5 and mixed vigorously with a vortex mixer (Vortex Genie2, 

Model G-560, Scientific Industries Inc., NY) for 1 min (Ortega et al., 2010). 1 ml of 

the spore suspension was then subjected to heat shock at 75 °C for 20 min in order to 

enumerate population of non-germinated spores and another 1 ml with no heat shock 

for population of total count of spores and germinated spores. The number of viable C. 

perfringens cells was assessed by serially diluting aliquots from swabs, plating onto 

Brain Heart Infusion (BHI) agar (Difco, BD Diagnostic Systems), and counting 

colonies after 24 h anaerobic incubation at 37 °C.  

 

3.2.4. Scanning electron microscopy  
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 Contaminated stainless steel chips were prepared as described in section 3.2.3. 

The chips were sputter coated with gold palladium at a 10-15 nm thickness and 

imaged on a Quanta Dual Beam Scanning Electron Microscope (FEI Co.) at the 

Oregon State University Electron Microscopy Facility (Corvallis, OR).  

 

3.2.5. Attachment of spores onto SS surfaces  

A set of chips were artificially contaminated as described in section 3.2.3 and 

dried for 1 h under Class II biosafety cabinet to promote adherence. The chips were 

transferred to a sterile petri dish containing 25 ml of 25 mM Na2HPO4 buffer at pH 

7.5 and subjected for shaking with a shaker (Barnstead Lab-Line, Melrose Park, IL, 

USA) at 100 rpm for 10 min. Under the biosafety cabinet, the entire surface of the SS 

chips was swabbed as described in section 3.2.3 in order to enumerate the number of 

the remaining attached spores on the surfaces. In addition, the number of removed or 

detached spores from the SS chips was enumerated by plating the washed buffer itself 

after serial dilution.   

 

3.2.6. Determination of cell surface hydrophobicity 

Two different methods were used to assess the relative cell surface 

hydrophobicity of C. perfringens spores and vegetative cells. The bacterial adhesion to 

hydrocarbons (BATH) assay was performed as previously described (Sorongon et al., 

1991; Wiencek et al., 1990). Briefly, spore and cell suspensions were prepared by 
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suspending spores in distilled water, and vegetative cells in 25 mM Na2HPO4 buffer 

(pH 7.5) at OD600 of 0.8 to 1.0 for a total volume of 3 ml and incubated in 35 °C water 

bath for 15 min. Various volumes of hexadecane (Avantor Performance Materials. 

Inc., Center Valley, PA, USA) (0.2, 0.6, or 1.0 ml) were added to each spore or cell 

suspension and agitated vigorously for 1 min with a vortex mixer. The mixture was 

left for 15 min to allow separation of the hexadecane and the aqueous phases. After 

separation, the aqueous phase was carefully removed and the OD600 was measured. 

The results were expressed as percent hydrophobicity of the suspension, calculated by 

the formula: 100[(Ai –Af)/Ai], where Ai and Af are the optical density of the initial 

suspension and the final optical density of the aqueous phase after partition, 

respectively. The percentage hydrophobicity was obtained as the average percent 

decrease of the initial OD600 for the different volumes of hexadecane in each trial. All 

surface hydrophobicity measurements for spores and vegetative cells were carried out 

in triplicates. 

The hydrophobic interaction chromatography (HIC) assay was performed 

based on a previously published method (Ismaeel et al., 1987; Wiencek et al., 1990). 

Sepharose CL-4B (Sigma Aldrich) columns were prepared in short-tip glass Pasteur 

pipettes (7 mm diameter) plugged with glass wool and packed to a height of 20 mm 

with Sepharose. Spore suspensions of various strains were prepared by centrifuging 

twice and suspending in NaCl buffer to a final volume of 5 ml upon adjusting spore 

concentration to OD600 ~0.3 to 0.6, and then incubated at 35 °C for 15 min.  Prior to 
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passing the suspension, columns were flushed with 10 ml of 4 M NaCl containing 20 

mM NaPO4 buffer (pH 6.8) in order to reduce charged particles of the Sepharose CL-

4B thereby allowing hydrophobic interaction to occur. The 5 ml spore suspension was 

added to the top of the column and allowed to pass through the gel. After passing 

through the column, the eluent was collected, OD600 measured, and spore 

hydrophobicity percentage was calculated with formula used in BATH assay by taking 

an average of triplicate trials. 

 

3.2.7. Spore decoating treatment  

Purified C. perfringens spores at an OD600 of ~20 were decoated as described 

(Paredes-Sabja et al., 2009). Briefly, 1 ml of 50 mM Tris-HCl (pH 8.0), 1% (w/v) 

Sodium dodecyl sulfate, 50 mM Dithiothretiol, and 8 M Urea was added to the spore 

pellet and incubated at 37 °C for 90 min. After incubation, decoated spores were 

washed 10 times with sterile distilled water in order to isolate clear spores. BATH 

assay was preformed as described above in section 3.2.6. in order to validate the 

removal of the coat, spores were prepared for transmission electron microscopy 

(TEM) using sorvall ultramicrotome MT-2 for ultrasectioning. Sections were placed 

on the 300 mesh Cu grid and imaged with a Titan TEM made by FEI Co in Hillsboro, 

OR. 

 

3.2.8. Application of CIP procedure on C. perfringens spores 



                                            

 

44 

The CIP procedure employed in this work was described by Bremer (Bremer et 

al., 2006) with some modifications in order to evaluate whether the CIP wash steps 

were effective in removing adhered C. perfringens spores onto SS surfaces. We 

selected two representative FP (SM101 and NCTC8239) and 2 NFB (F4969 and 

NB16) isolates to validate the modified CIP regime. The SS chips (2 × 3 inches) were 

prepared and inoculated with spores as described in section 3.2.3. for every trial, four 

chips were incorporated, one chip as a control “no CIP” (spore inoculation; dry for 1 

hour) was treated with only distilled water at RT, and one chip as a second control to 

examine the effect of high temperature treatment (spore inoculation; dry for 1 hour) 

was treated with distilled water at 65 °C. The remaining SS chips (spore inoculation; 

dry for 1 hour) were treated with the caustic step (1% (w/v) NaOH at 65 °C) or the 

caustic and acid steps of a CIP regime (1% (w/v) NaOH at 65 °C and 1% (w/v) HNO3 

at 65 °C). After inoculating and drying, the SS chips were CIP placed in a sterile 

beaker containing of 1% (w/v) of NaOH solution at 65 °C and shaken by using a 

shaker bath (Orbit Shaker Bath, Lab-Line Inst, Inc., Melrose Park, IL, PA) for 10 min. 

The SS chips were then transferred to another sterile beaker containing sterile cold 

distilled water and shaken for 5 min, followed by treatment with 1% (w/v) of HNO3 at 

65 °C and shaken for 10 min. Finally, the treated chips were soaked, with shaking in 

sterile cold distilled water for 5 min. After each water-soaking step, SS chips were 

removed to determine the number of viable cells recovered after each step as described 

in 3.2.3. The experiments with the two control chips were performed simultaneously 
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following the CIP steps, but using sterile distilled water as the cleaning agent at two 

different temperatures (RT and 65 °C). In order to determine the number of viable 

cells, the SS chips were transferred to a sterile petri dish for bacterial enumeration by 

the technique described in section 3.2.3. Each test step was performed in a separate 

sterile beaker with 125 ml of solutions and shaking at 150 rpm. The experiment was 

performed in triplicate. 

 

3.2.9. Statistical analysis 

The analysis of variance procedures were performed using the statistical 

software SAS version 9.3 (SAS Inst. Inc., Cary, N.C., USA), and multiple 

comparisons of mean values were established by Tukey’s test at the significant level 

of 0.05. Error bars in all experiments represent the standard deviations.   
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3.3. Results 

3.3.1. Survival of C. perfringens on SS chips 

Spores of all tested strains survived on SS chip surfaces at RT and 4 °C for up 

to 48 h (Fig. 3.1 and Table 3.1, 3.2). The spore concentration remains approximately 

unchanged for up to 48 h of storage time, indicating that during this time, the heat-

activated spores maintained their dormancy, and only minor spore population 

germinated as reflected by the similarity in CFU counts obtained for dormant spores 

(Gray bars; Fig. 3.1) and total cells (Black bars; Fig. 3.1). Moreover, the adherent 

surviving spores on the SS chips throughout the storage times and under both 

conditions reached ~104 log CFU/cm2 to 105 log CFU/cm2 for all FP and NFB isolates 

tested. The final number of adhered spores onto SS chips was relatively similar (~5 

log10 CFU/cm2) among all strains (p > 0.05) at the end of storage period. However, the 

survival rate for NFB spores was slightly greater than FP spores (P > 0.05) at RT and 

4 °C (Table 3.1, 3.2). In contrast, vegetative cells of both FP and NFB isolates did not 

survive on the SS chip after 30 min of aerobic incubation at RT or 4 °C (data not 

shown). This could be attributed to a couple of factors such as aerobic conditions and 

loss of some resistance traits to survive in dry conditions (Hornstra et al., 2007; 

Wiencek et al., 1990).  

The adherence of C. perfringens spores onto SS chips was further confirmed 

by scanning electron micrographs of SS chips contaminated with spores of FP strain 

SM101 and NFB strain F4969 (Fig. 3.2). The adherence of C. perfringens spores 
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appeared to take place in single layer clusters attached together by extracellular 

materials (Fig. 3.2A-D). Collectively, our results demonstrate that spores of the C. 

perfringens FP and NFB isolates are capable of surviving on the model food contact 

surface for up to two days. 

 

3.3.2 Attachment of C. perfringens spores onto SS surface  

To test whether C. perfringens spores can adhere firmly to SS surfaces, spore-

contaminated SS chips were subjected to soaking in buffer (25 mM Na2HPO4 pH 7.0) 

and shaking (100 rpm for 10 min) before enumeration of CFU. SS chips were 

inoculated with ~107 CFU/ml of C. perfringens spores of each particular FP and NFB 

isolates in order to yield the initial spore contamination level of  ~6 log10 CFU/cm2 of 

SS after 1 h drying. As shown in Fig. 3.3, after the detachment procedure, a significant 

number of spores of each tested strains (~ >5 log10 CFU/cm2) remained attached to SS 

chips. The remaining spores represented the population that firmly attached to SS 

surface. Furthermore, a fraction of loosely adhered spores were detached from the 

chips, as ~3-4 log CFU/cm2, depending on strains, could be recovered from the 

soaking buffer. Collectively, these results highlight the persistence characteristics of 

the enterotoxigenic C. perfringens spores once attached onto the food contact surface 

and it is consistent with the fact that approximately 15% of food-related C. perfringens 

outbreaks have been linked to cross-contamination from dirty surfaces and equipment 

(McClane, 2007).  
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3.3.3. Spore and vegetative cell surface hydrophobicity 

As bacterial adhesion to solid surfaces has been linked to cell surface 

hydrophobicity, we next examined the hydrophobicity of vegetative cells and spores 

of C. perfringens FP and NFB isolates using the BATH assay. Our findings indicated 

that, for each strain, spores had significantly higher affinity to the hexadecane than 

vegetative cells (p < 0.05). Spores of strain SM101 exhibited the highest 

hydrophobicity (~89%) than spores of all tested strains (Fig. 3.4), whereas spores of 

NB16 and E13 strains exhibited the lowest hydrophobicity (~ 64%). Vegetative cells 

of four of six tested strains exhibited significantly low hydrophobicity (< 20%) with 

the exception of NCTC10239 and NB16 (Fig. 3.4).  

Next, we employed HIC with Sepharose CL-4B to measure the relative spore 

surface hydrophobicity. It was observed that spores tended to adhere to Octyl-

sepharose when passed through the column. Results obtained form HIC showed that 

spores of most tested strains also exhibited high hydrophobicity of >70% (Fig. 3.5), 

while strain E13 exhibited lowest hydrophobicity (55%). The percent hydrophobicity 

obtained from HIC was slightly lower than those obtained from BATH assay, but this 

difference was not statistically significant (p > 0.05). The reduced level of spore 

hydrophobicity measured by HIC assay might be a result of spore adhering to 

Sepharose gel matrix; thus, they did not pass through into the eluent. Overall, these 

results clearly show that C. perfringens spores are hydrophobic in nature and the 

degree of spore hydrophobicity is strain-dependent. 
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3.3.4. Hydrophobicity of decoated Spores 

Previous studies suggested that spore structures such as, spore coat or 

exosporium might play a role in adherence of spores to solid surfaces (Doyle et al., 

1984; Faille et al., 2002; Koshikawa et al., 1989). In order to determine the 

relationship between spore coat and the hydrophobicity, we examined the surface 

hydrophobicity of decoated spores of SM101, NCTC8239, F4969, and NB16 using the 

BATH assay and compared this to the surface hydrophobicity of intact spores. Results 

showed that intact spores had higher affinity to hexadecane than decoated spores.  The 

surface hydrophobicity of decoated spores varied among strains, but all strains showed 

~ 40% lower in percent hydrophobicity as compared to the values obtained from intact 

spores (Fig. 3.6). The transmission electron micrographs in Fig. 3.7 confirmed that the 

spore decoating treatment employed in this work was able to remove the spore outer 

coat in the representative C. perfringens FP strain SM101. Fig. 3.7A clearly shows the 

presence of outer coat layer in the intact spores, whereas this layer was absent in 

spores subjected to the decoating treatment (Fig. 3.7B). Therefore, the lack of spore 

coat could likely explain the partial reduction in degree of spore hydrophobicity 

thereby exhibiting the role of this particular spore’s structure or its composition in the 

establishment of hydrophobic characteristics.  

 

3.3.5. Effectiveness of modified CIP procedure on removing C. perfringens spores 
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 The effect of a modified CIP procedure on bacterial removal was determined 

against four representative C. perfringens FP  (SM101 and NCTC8239) and NFB 

isolates (F4969 and NB16).  

The bacterial numbers for each strain was standardized against the “no CIP” 

control chips and compared with chips treated either with NaOH or with NaOH + 

HNO3 (Fig. 3.8). The initial population of adhered spores onto the SS surfaces was ~ 

6 log10 CFU/cm2. The control chips “no CIP” exhibited small reduction of ~1 log10 

CFU/cm2 after applying CIP wash steps using only distilled water at RT and this could 

be likely caused by the removal via the physical force. Since CIP procedure depends 

on; chemical, physical, and thermal factors, it is imperative to evaluate whether 

applying only heat, would have any effects on the adhered C. perfringens spores. The 

CIP cleaning steps were followed using distilled water at 65 °C. This regime resulted 

in similar reduction of spores as “no CIP” control chips indicating that heat alone did 

not provide superior effect over water cleaning on removing adhered spores. Most 

importantly, effect of CIP cleaning steps, NaOH + HNO3 at 65 °C, on adhered spores 

of C. perfringens strains on the SS chips resulted in a complete inhibition (p < 0.05) in 

numbers of remaining survived cells. All tested strains exhibited a reduction of ~ 5 

log10 CFU/cm2 after applying the CIP wash steps on contaminated chips. Hence, these 

results suggest that the CIP agents and procedure used in this work was highly 

effective against C. perfringens spores adhered onto the SS chips. Consequently, the 

effect of each step of CIP regimen on adhered C. perfringens spores was as followed. 
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The effectiveness of NaOH alone in reducing the number of adhered spores was also 

compared to the control chips. Interestingly, there was no survival spores found 

following this particular step; thus, complete inhibition of attached spores onto chips 

was obtained with this treatment. Collectively, the data from this work show a strong 

impact of caustic wash NaOH towards the adhered C. perfringens spores onto the SS 

surfaces, and thus suggest that this modified CIP procedure can effectively apply to 

decontaminate and prevent cross-contamination from SS surfaces.  
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3.4. Discussion  

 In the food industry, adherence of microorganisms to surface found in 

manufacturing plants such as stainless steel, glass, and plastic has been controversial 

to food manufacturers from the viewpoints of controlling biofilm formation, 

maintaining quality of the products, ensuring safety of the consumer, and concerning 

over the emergence of microbial resistance to cleaning and sanitizing procedures 

(Andre et al., 2012; Simmonds et al., 2003). The focus of this study is to acquiring 

knowledge on the adherence of the enterotoxigenic C. perfringens spores onto SS 

surfaces as well as evaluating the effectiveness of typical CIP agents in removing 

adhered spores. 

Our current results demonstrated that spores of C. perfringens type A were 

able to maintain their survivability and remain firmly attached on SS surfaces under a 

given set of aerobic conditions (RT and 4 °C) up to 48 h. The adhesion extent of C. 

perfringens spores onto SS surfaces was found to be about 104 log CFU/cm2, which is 

in agreement with previously found adhesion extent of S. typhimurium, S. enteritidis 

and L. monocytogenes to SS surfaces (Bae et al., 2012; Casarin et al., 2014; Chia et al., 

2009). A similar adhesion extent of 102 log and 103 log CFU/cm2 was also found when 

L. monocytogenes and Salmonella spp., respectively, were adhered to plastic and glass 

surfaces (Chae and Schraft, 2000; Stepanović et al., 2004).  

Many researchers proposed that the event of bacterial adhesion to surfaces 

known to take place in two stages, an initial reversible attachment which is a weak 
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interaction between the bacteria and substratum, followed by a time dependent 

irreversible adhesion resulting from the anchoring of appendages and/or the 

production of extracellular polymers (Chmielewski and Frank, 2003; Frank, 2001; 

Marshall et al., 1971). However, in our study, when soaking and shaking the spore-

contaminated SS surfaces in the buffer, a portion of spores (~ 3 log10
 CFU/cm2) were 

detached from the SS surfaces, while the majority remained attached to the surfaces. 

These findings suggest that, some spores were loosely attached to the SS, whereas 

others attached more firmly to the SS and could not detach easily after soaking in 

buffer with shaking at 100 rpm for 10 min. The rational for variation in attachment 

capacity among spore population within the same strain is still unclear and this could 

be attributed to a single-cell difference in spore’s surface characteristics interacting 

with the inanimate surface. Furthermore, our results are consistent with previous 

findings in which the adhered cells of S. epidermidis and E. coli to SS could be 

removed by 82% and 35%, respectively, after receiving a whirlpool rinsing treatment 

(Ortega et al., 2008, 2010).   

 According to the literatures, the significance of the surface hydrophobicity is 

positively correlated to the adhesion capability of bacteria onto surfaces (Gilbert et al., 

1991; Hogt et al., 1983; Husmark and Rönner, 1992; van Loosdrecht et al., 1987; 

Wiencek et al., 1991). In the current study, spores of all six C. perfringens isolates 

exhibited a significantly higher hydrophobicity (p < 0.05) than the vegetative cells 

(Fig. 3.3). Similar observation was found when the hydrophobicity of Bacillus and 
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Clostridium spp. was measured by BATH assay used in this study and results reported 

that spores were ~ 67% - 80% more hydrophobic than the vegetative counterparts 

(Craven and Blankenship, 1987; Koshikawa et al., 1989), whereas B. subitils 168 

spores exhibited the lowest hydrophobicity of ~13% among the other spores of 

Bacillus spp. (Doyle et al., 1984). The earlier studies exhibited that vegetative cells of 

Bacillus and Clostridium spp. tend to have lower affinity to hexadecane as measured 

by BATH assay (Doyle et al., 1984; Koshikawa et al., 1989; Wiencek et al., 1990), 

which is in consistent with our results where vegetative cells of most tested isolates 

showed percentage hydrophobicity of < 20%, excluding strains NCTC10239 and 

NB16 that had higher level of hydrophobicity of ~ 50% (Fig. 3.3). As the controversial 

observation regarding degree of hydrophobicity and spore attachment capacity has 

been reported (Simmonds et al., 2003), we also measured C. perfringens spore 

hydrophobicity using an alternative method HIC assay. We found good correlation 

between the results obtained with BATH and HIC assays (P > 0.05); there was a slight 

variation in the percentage hydrophobicity of the corresponding strains but the index 

number for the strains was relatively consistent between the two methods.   

It has been suggested that the presence of the outer coat or the exosporium 

contributes to the hydrophobicity of the surfaces and enhance bacterial adhesion to 

organic (human adenocarcinoma cells) or inorganic (stainless steel) surfaces (Doyle et 

al., 1984; Joshi et al., 2012; Paredes-Sabja and Sarker, 2012). Studies on several 

Bacillus species found that the outer coat or the exosporium of the bacterial spores 



                                            

 

55 

possess significant amounts of proteins which play a role in the establishment of 

hydrophobicity unlike the vegetative cells that lack surface proteins (Doyle et al., 

1984; Kjelleberg, 1984; Matz et al., 1970). In this study, when we removed the spore 

coat by chemical treatments, the decoated C. perfringens spores exhibited significantly 

decreased hydrophobicity (p < 0.05) as compared to intact spores, suggesting that 

spore coat may play a role in spores’ hydrophobicity. Our result is in agreement with 

other studies with B. cereus T and B. megaterium ATCC 12872 in which a decreased 

adherence to hexadecane was observed when the spore exosporium was removed by 

chemical treatments (Koshikawa et al., 1989; Kutima and Foegeding, 1987). Our 

results in conjunction with previous findings support that the spore outer coat 

influences the hydrophobic interactions, which may influence in a reduction of spore 

adhesion onto SS surfaces. Therefore, knowledge of the structural properties of C. 

perfringens spore coat proteins will increase our understanding of the coat-specific 

protein that affects the hydrophobicity and adhesion to solid surfaces.  

CIP regime has been implemented by many food manufacturing plants as 

cleaning system to eliminate or inactivate biofilms formed by various food-related 

bacteria, such as Streptococcus thermophilus and Bacillus spp. (Flint et al., 1999; 

Parkar et al., 2004). Since the CIP system was difficult to mimic in our laboratory, a 

modified CIP regime that included cleaning conditions of sodium hydroxide followed 

by nitric acid at temperature of 65 °C was employed. Throughout this study, every 

cleaning treatment was performed in a shaker water bath with temperature control in 
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order to maintain similar condition as food manufacturer’s CIP regime. It was found 

that after alkaline (1% NaOH) and acid (1% HNO3) treatments, the number of 

bacterial spores were completely reduced to undetectable limit as compared to controls 

chips. However, very surprising result is that C. perfringens spores could not survive 

through an alkaline (1% NaOH) treatment. These findings were consistent over the 

course of 6 trials, each with all four strains tested (SM101, NCTC8239, F4969, and 

NB16). Thus, these results strongly indicate that caustic agent at typical concentration 

and temperature used in the food industry can be successfully applied to remove 

spores of C. perfringens type A attached onto SS surfaces. In contrast to our findings, 

the previous studies showed no significant effects of treatments with caustic and acidic 

agents against dairy biofilm developed onto SS surfaces (Bremer et al., 2006; Dufour 

et al., 2004; Flint et al., 1999). It is important to note that our experiment was 

conducted against attached spores of a single bacterial strain rather than bacterial 

biofilms, which is usually more resistant to cleaning and disinfecting agents (Faille et 

al., 2001; Flint et al., 1997; Peng et al., 2002).  

In conclusion, our study demonstrates the following findings: 1) C. perfringens 

type A spores adhered firmly onto the SS steel surfaces and survived under aerobic 

conditions at refrigerated and ambient temperatures up to 48 h of storage, unlike the 

vegetative cells which exhibited high sensitivity to aerobic conditions; 2) Spores 

exhibited higher level of hydrophobicity than vegetative cells, and the hydrophobicity 

degree demonstrated a positive correlation to spore adhesion capacity onto SS 
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surfaces; 3) The spore outer coat played an important role in the hydrophobicity of the 

spores; 4) The CIP cleaning agents successfully eliminated contaminated C. 

perfringens spores from the SS chips, and 1% NaOH was sufficient to decontaminate 

all attached spores from the SS chips in 10 min. 

Finally, since bacteria harbored in the biofilm is generally more resistant to 

cleaning and sanitizing regimes than planktonic cells, it is tempting to investigate 

whether the typical CIP procedure employed in the food industry is efficient in 

reducing or eliminating C. perfringens that embedded in biofilm matrix. Therefore, 

further studies are desired to evaluate the relationship between the spore structure and 

adhesion strength onto surfaces and the effectiveness of CIP system in removing C. 

perfringens biofilms from a variety of food contact surfaces.  
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  Figures 

  

Fig. 3.1. Survival of C. perfringens spores onto SS chips at RT and 4 °C. Spores of 
FP strain SM101 (A, B), and NFB strain F4969 (C, D) were inoculated onto SS chips 
and dried for 1 h. Survival was determined after different time point of incubation by 
swabbing and plating technique as described in Material and methods. Heat-treated 
spore suspension (grey bars) are the enumeration of the remaining dormant spores, 
non-heat treated spores (black bars) are the enumeration of total viable cells. Data 
were average of triplicate trials and error bars represent standard deviation. 
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Fig. 3.2. Scanning electron micrographs of C. perfringens spores attached onto SS 
chips. The SS chips were contaminated with spores of SM101 (A) and F4969 (B) and 
dried in aerobic conditions then analyzed by SEM. The magnified images of attached 
spores of SM101 (C) and F4969 (D) showing that the attachment occurs in a single 
layer of clusters.  



                                            

 

60 

  

Fig. 3.3. Attachment of C. perfringens onto SS chips.  Contaminated SS chips with 
spores of FP isolates (SM101, NCTC8239) and NFB isolates (F4969, NB16) were 
subjected for soaking and shaking procedure as described in Material and methods. 
The detached spores (grey bar) were counted by plating the buffer onto BHI agar, 
firmly attached spores onto SS surface (black bar) were counted by swabbing the 
surface and plating onto BHI agar. Data were the average of triplicate trials and error 
bars represent standard deviation. 
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Fig. 3.4. Hydrophobicity of C. perfringens spore and vegetative cell as measured 
by BATH assay. Different concentrations of hexadecane were added to suspensions 
of C. perfringens spores (black bars) and vegetative cells (grey bars) of FP strains 
SM101, E13, NCTC10239, and NCTC8239; NFB strains F4969, and NB16 and left 
for 15 min for partition. After partition forms by hexadecane, the aqueous phase was 
carefully measured and the percent hydrophobicity is the percent decrease of OD600   in 
the aqueous phase after partition. Data are the average of different concentrations of 
hexadecane and error bars indicate the standard deviation of triplicates trials. 
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Fig. 3.5. Hydrophobicity of C. perfringens spore as measured by HIC. Spore of C. 
perfringens FP strains SM101, E13, NCTC10239, and NCTC8239; NFB strains 
F4969, and NB16 were added to Sepharose columns prepared in pipettes plugged with 
glass-wool as described in Material and methods. The percent hydrophobicity was 
measured by the percent decrease of OD600 in the eluent after passing through 
Sepharose gel matrix in the column. Data are the average of triplicate trials and the 
error bars are the standard deviations from the mean. 
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Fig. 3.6. Hydrophobicity of intact and decoated C. perfringens spores. Spores of 
FP isolates SM101, E13, NCTC10239, and NCTC8239; NFB isolates F4969, and 
NB16 were decoated by chemical treatment as described in Material and methods. 
Intact spores (black bars) and decoated spores (grey bars) were assessed for the 
hydrophobicity characteristic by BATH assay. The percent hydrophobicity is the 
percent decrease of OD600 in the aqueous phase after partition from the hexadecane. 
Data were the average of different concentrations of hexadecane and error bars 
indicate the standard deviation of triplicates trials. 
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A B 

Fig. 3.7. Transmission electron microscopy images, showing ultrastructure of 
normal intact spores (A) and decoated spores (B) of SM101.The outer coat (indicated 
by arrow) was removed after applying decoating treatment on normal spores. Sorvall 
Ultramicrotome MT-2 was used for ultrathin sectioning, sections were placed in the 
300 mesh Cu grid and imaged with a Titan TEM made by FEI Co. in Hillsboro, OR. 
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Fig. 3.8. Effect of CIP regime on C. perfringens spores. Contaminated SS chips of FP 
isolates (SM101, NCTC8239) and NFB isolates (F4969, NB16) were subjected to CIP 
caustic and acidic agents. The populations of spores adhered onto SS chips initially 
(white bars), control chips “No CIP” (grey bars) treated with distilled water at RT, 
second control chip (black bars) treated with distilled water at 65 °C, chips treated with 
only NaOH (horizontal bars), and CIP applied chips (black and white bars) treated with 
NaOH + HNO3 were examined as described in Material and methods. Asterisks indicate 
no survival on stainless steel surfaces could be detected after treatment with NaOH only 
or NaOH followed by HNO3. Data are average of triplicate trials and error bars 
represent standard deviation. 
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Tables 

Table 3.1. The number of dormant spores (heat-treated) and total cell count (non heat-treated) of various strains of 
the enterotoxigenic C. perfringens adhered on stainless steel surfaces at room temperature  
 

 
Strain 

 

 0 h  1 h  3 h  6 h  24 h 

 NHSa HSb  NHSa HSb  NHSa HSb  NHSa HSb  NHSa HSb 

NCTC8239  4.53±0.08 4.5±0.09  4.39±0.19 4.27±0.17  4.60±0.16 5.25±0.61  4.59±0.25 4.53±0.56  4.45±0.1 4.44±0.4 

NCTC10239  4.42±0.11 4.35±0.05  4.89±0.33 4.41±0.08  4.88±0.43 4.85±0.48  4.56±0.1 4.39±0.15  4.38±0.02 4.08±0.13 

E13  4.63±0.46 4.48±0.36  4.36±0.22 4.13±0.19  4.20±0.27 3.99±0.27  4.48±0.21 4.20±0.42  4.45±0.1 4.18±0.07 

NB16  4.41±0.08 5.05±0.35  4.85±0.40 4.12±0.21  4.50±0.1 5.09±0.51  4.48±0.02 4.30±0.24  4.38±0.13 4.67±0.01 

 
The mean ± standard deviation of the heat-activated spore inoculum was between 6.81±0.48 and 6.26±0.07 log10 CFU/ml, which was used to artificially 
contaminate stainless surfaces. 
a is mean ± standard deviation of the number of total viable cells in log10 CFU/cm2 that was inoculated and dried on stainless steel surfaces for 1 h (the 
same stainless steel coupons used to examine the dormant spore counts). The number of total viable cells was determined immediately (0 h) and after 
indicated periods obtained from plating swabbing samples as described in Material and Methods. 
b is mean ± standard deviation  of the number of heat-activated spores in log10 CFU/cm2 that was inoculated and dried on stainless steel surfaces for 1 h.  
The number of dormant spores was determined immediately (0 h) and after indicated period after receiving heat treatment (75 °C, 20 min) to inactivate the 
germinating and vegetative cells as described in Material and methods. 
 

 



    

 

 
 
 
Table 3.2. The number of dormant spores (heat-treated) and total cell count (non heat-treated) of various strains of 
the enterotoxigenic C. perfringens adhered on stainless steel surfaces at 4 °C 

 

 
Strain 

 

 0 h  1 h  3 h  6 h  24 h 

 NHSa HSb  NHSa HSb  NHSa HSb  NHSa HSb  NHSa HSb 

NCTC8239  4.53±0.08 4.5±0.09  5.47±97 4.23±0.11  5.54±0.73 4.77±0.34  4.53±0.31 4.43±0.31  4.31±0.13 4.04±0.17 

NCTC10239  4.42±0.11 4.35±0.05  4.66±0.12 4.46±0.12  4.33±0.07 4.08±0.12  4.72±0.06 4.65±0.05  4.56±0.06 4.04±0.25 

E13  4.63±0.46 4.48±0.36  4.39±0.21 4.24±0.39  4.48±0.27 4.33±0.18  4.43±0.08 4.18±0.08  4.5±0.15 4.52±0.04 

NB16  4.41±0.08 5.05±0.35  4.48±0.12 4.59±0.31  4.93±0.64 4.29±0.06  4±0.13 4.60±0.07  4.2±0.16 4.38±0.20 

 
The mean ± standard deviation of the heat-activated spore inoculum was between 6.81±0.48 and 6.26±0.07 log10 CFU/ml, which was used to artificially 
contaminate stainless surfaces. 
a is mean ± standard deviation of the number of total viable cells in log10 CFU/cm2 that was inoculated and dried on stainless steel surfaces for 1 h (the 
same stainless steel coupons used to examine the dormant spore counts). The number of total viable cells was determined immediately (0 h) and after 
indicated periods obtained from plating swabbing samples as described in Material and Methods. 
b is mean ± standard deviation  of the number of heat-activated spores in log10 CFU/cm2 that was inoculated and dried on stainless steel surfaces for 1 h.  
The number of dormant spores was determined immediately (0 h) and after indicated period after receiving heat treatment (75 °C, 20 min) to inactivate the 
germinating and vegetative cells as described in Material and methods. 
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CHAPTER 4 

Conclusion 

 Clostridium perfringens is a Gram-positive, anaerobic and endospore forming 

bacterium that has the ability to produce at least 15 toxins. C. perfringens type A is 

one of the most important human GI pathogen that causes food poisoning, antibiotic-

associated diarrhea, sporadic diarrhea, and gas gangrene. This pathogenic bacterium is 

ubiquitously found in the environment, as highly resistant spores allowing them to 

survive under harsh conditions. Besides, under favorable growth conditions spores are 

able to germinate and grow rapidly into actively grown cells causing disease in human 

and animals. C. perfringens is a major concern to food industry due to its ability to 

adhere to surfaces commonly encountered in food processing plants and resistance to 

various lethal factors and disinfectants applied. Inactivating dormant spores has been 

very challenging to food industries; therefore understanding the mechanism of C. 

perfringens spore adhesion to surfaces and developing an effective strategy to 

inactivate the dormant spore is essential. 

 In this study, we evaluated the adhesion and survival of C. perfringens type A 

FP and NFB isolates onto SS chips as a model food contact surface, and its relation to 

surfaces hydrophobicity of C. perfringens. Also, we examined the efficacy of a 

modified CIP procedure to decontaminate C. perfringens type A FP and NFB isolates 

adhered onto SS chips. Results showed survival of C. perfringens spores on SS chips 
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up to 48 h under aerobic conditions unlike the vegetative cells that showed no survival 

rate on SS chips under aerobic conditions. Furthermore, C. perfringens spores 

exhibited significantly higher surface hydrophobicity than vegetative cells. However, 

removing the spore outer coat resulted in decrease in the surface hydrophobicity of C. 

perfringens spores, suggesting a role of outer coat in adhesion to surfaces.  The CIP 

wash steps shown to be effective on removing the adhered spores onto SS chips. After 

applying NaOH wash step, no survival spores could be detected from the SS chips, 

which indicate the sensitivity of C. perfringens spores to NaOH solution.  

Collectively, our current study provide valuable results that help developing a strategy 

to control cross-contamination of C. perfringens spores into food products, which 

should reduce the risk of C. perfringens-associated food poisoning outbreaks.  
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