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PARAMETER ESTIMATION IN A STOCHASTIC 
MODEL OF OCEAN CURRENTS 

INTRODUCTION 

In recent years an ever increasing emphasis has been placed 

on the study of the physical properties of the ocean, and great ad- 

vances have been made in the techniques and procedures used to 

obtain quantitative information about these physical phenomenon. 

Parallel to this, there has been considerable advancement in the 

field of statistics on the theory of Stochastic processes, 

Because of the similarity of the mobile nature of the physical 

ocean to the basis for the theory of Stochastic processes, it seems 

only natural that this analytical approach be used to obtain a better 

understanding of the physics of the ocean. 

This thesis deals with the problem of estimating the parameters 

of a model of ocean currents by statistical analysis of data obtained in 

the study of subsurface currents off the coast of Oregon. 

The above mentioned data was obtained in 1962 during a study 

by Paul M. Maughan of the Oceanography Department, Oregon State 

University. The purpose of this study was to ascertain the velocity 

of the currents at various depths by indirect observation using a 

float type current measuring instrument, the parachute drogue. 

The final estimate of the speed and direction of the current at 
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any /given depth was made using only the initial and final positions of 

the parachute drogue and the elapsed time between. Such variability 

existed in the path followed by the drogue and in the measurements 

of its position that there is some question as to the confidence with 

which this estimate of velocity can be utilized. 

It is the aim of this thesis to make use of the observed path of 

the parachute drogue and its variations to obtain estimates of current 

velocity. 
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SOURCES OF THE DATA 

The experiment conducted by Maughan involved the following 

equipment and procedure: 1 

Equipment 

1. The Oregon State University Oceanography department's 

research ship, the R. V. Acona, equipped with a Loran 

positioning system as well as shipboard radar. 

2. A reference buoy and sufficient line to anchor it to the 

bottom. 

3. An adequate number of parachute drogues (hereafter 

referred to as drogues) to make possible the measurement 

of several currents at varying depths simultaneously. The 

drogues used consisted of three main sections: 1) a surface 

float or surface drogue equipped with a radar reflector and 

a blinking light, 2) a 28 -foot parachute canopy rigged so 

that it would develop in the current, and weighted so that 

it would sink, and 3) a 5/32 -inch cable connecting the para- 

chute to the surface float and consequently suspending the 

parachute at the depth of interest. 

1 For a more detailed description of the experiment consult Maughan 
(7, p. 7 -11). 
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Procedure 

1. The reference buoywas anchored to the bottom in the area 

where current measurements were to be taken, and its 

position was fixed by Loran. 

2. The drogues were launched in the immediate area of the 

reference buoy which allowed any movement of the drogues 

to be observed with relation to a semistationary position. 

3. At regular intervals (if possible) the location of the drogue 

with respect to the reference buoy was determined by ship- 

board radar. Whenever possible this was done with the ship 

located at the reference buoy. However, in cases when the 

surface drogue was not visable from this position due to 

high seas or darkness, it was necessary to leave the refer- 

ence position and hunt for the drogue. If it was found its 

position was fixed by Loran. 

The obvious principle in this type of procedure is that the cur- 

rent at the depth of the parachute will carry the parachute with it. 

Consequently, the surface float, being fairly rigidly attached to the 

parachute, will follow. However it is also obvious that there can be 

large discrepancies between the measured distance and direction the 

surface float travels during any given time interval, and the distance 

and direction the current, at the depth of interest, travels during 
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the same time interval. 

These discrepancies stem from two sources: The failure of 

the parachute to follow the current exactly because of turbulence and 

friction, and the failure of the reference buoy and the surface float 

to stay fixed relative to the reference anchor and parachute respec- 

tively, due to the action of friction within the water and wind above 

the surface. 

Fortunately, theoretical corrections can be made for the above 

mentioned discrepancies caused by friction and the wind. These cor- 

rections can be made from the velocity of the wind and of the various 

currents acting at different depths, at the time of the observation,on 

the surface float and reference buoy and their respective cables. It 

should be noted that except under abnormal conditions these correc- 

tions are small. 

The plot of the adjusted positions, however, still appears to 

have considerable variations from the straight line flow that would be 

expected when considering the subsurface currents over short dis- 

tances in the open ocean. Part of this variation can be accounted for 

by the periodic rotational effect of the tides. However, the magnitude 

of these effects is not known for the locality of interest, and correc- 

tions cannot be made. The remaining variation may be described as 

random fluctuation associated with the forces in the physical ocean. 
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A STOCHASTIC MODEL FOR THE POSITION OF THE DROGUE 

A random phenomenon that arises through a process which is 

developing in time in a manner controlled by probabilistic laws is 

called a stochastic process (9, p. 7). A stochastic process is mathe- 

matically defined as a collection of random variables { ' (t), t e T} . 

In the present model the random variables {(D (t), t E T} are 

position vectors of the surface float. The surface float positions of 

interest are its positions at times to, t1, t2, , to with (ti) being 

the position at time t.. 

The space in which the positions are located is the two - 

dimensional space of the surface of the ocean, therefore, the random 

variable (t) is a two -dimensional vector, 

1 (t) X(t) - (Y(t)) 

Let us define random variables 

2) Oxi = X(ti) - X(ti 
- 1), 

and 

3) Ayi = Y(ti) - Y(ti - 1). 

These random variables are the increments of change in posi- 

tion in the X and Y directions respectively from time ti to ti. 

Let us also define 

... 
i 



4) ti = t. - t1 
- 1 

as the time interval associated with the random variables ¿x. and 
1 

Hereafter the random variables X(t) and Y(t) will be referred 

to as positions and the random variables Ox. and Dyi will be 

referred to as displacements. 

In the first approximation the local motion of a small volume 

of water is the sum of a linear current D(t), and a periodic current 

T(t). 

5) .(t) = D(t) + T(t), 

7 

where (D(t), D(t), and T(t) are two- dimensional vectors. 

Assuming the current velocity is constant over the range of 

interest, the linear current, D(t), is a function of the current velocity, 

E and time; 

6) 

with X and Y components, 

7) 

D(t) = t µ 

Dx(t) = p, t, 

Dy(t) = µyt. 

The periodic current, T(t), is the sum of periodic effects caused 

by the attraction of the sun and the moon. Along the Pacific coast of 

yi 

Y Y 

o 



the United States complicated tidal currents are found, representing 

a combination of several tidal effects corresponding to tides of differ- 

ent periods. In most instances a good approximation of the observed 

condition is obtained by superimposing the tidal effects of one single 

semidiurnal period of length 12 lunar hours and one single diurnal 

period of length 24 lunar hours (10, p. 573). 

Defining f(1)x (t) as the semidiurnal and f (2)4) as the diurnal 

tidal components in the X direction and f(1)(t) and f(2)(t) similarly 
Y Y 

for the Y direction, and ß(1) P(2), P(1) and P(2) as constants of 
x x y y 

magnitude, T (t) and T (t) can be expressed as, 
x y 

8) 

and 

9) 

T(t) = 13(1) f(1)(t) + 13(2) f(2)(t), x x x x x 

T (t) = ß(1) f(1)(t) + ß(2) f(2)(t 
Y Y Y Y Y 

Hence it is concluded that the mean increments of displacement 

from t. =1 to ti in the X and Y directions are, 

(1) ,(1) (1) (2) (2) (2) 10) E(Axi)=µxAti+ßx rfx (ti) fx (ti-1)] x x (ti)-fx (ti )]' 
and 

11) E(Ayi) = µ Ati+ p (1)rf(1)(tl) -f(1)(t1)] + ß(2)rf(2)(tl) - f(2)(tl-1)] . 

Y Y Y Y Y Y Y 

respectively, where E( ) equals the expected value of (). 

In the theory of stochastic processes and its applications, a 

fundamental role is played by the Wiener process in that it provides 

model for Brownian motion (9, p. 26 -29). The notion of Brownian 

8 

- x i x 

o. 
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motion involves the ceaseless motion of a particle immersed in a gas 

or liquid. This motion is explained by continual bombardments or 

impacts upon the particle by the action of the force field of the sur- 

rounding medium. 

Let B(t) denote the displacement (from a starting point) after 

time t of a particle in Brownian motion. By definition let B(0) = O. 

The displacement of a particle over a time interval (s, t) which is 

long compared to the time between impacts, can be regarded as the 

sum of a large number of small displacements caused by an equal 

number of impacts. Next, the assumption is made that the motion of 

the particle is due entirely to these very frequent and irregular im- 

pacts or forces from the surrounding medium. Mathematically this 

can be interpreted as saying the stochastic process, B(t), has inde- 

pendent increments. 

By the Central Limit Theorem, whenever a random variable 

Z is the sum of a large number of independent random variables, all 

of which have the same distribution with mean µ and finite variance 

U2, the distribution of Z* = (Z - EZ) /0" approaches the normal dis- 

tribution as n, the sample size, increases without limit (5, p. 168). 

It is therefore assumed that the random variable B(t) - B(s) 

is normally distributed. 1 Furthermore, it can be assumed 

1 A more elegant presentation of necessary and sufficient con- 
ditions that B(t) - B(s) be normally distributed is given by Theorem 
7. 1 of Doob (2, p. 420). 
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that B(t + h) - B(s + h) is normally distributed for all h >. 0 

since it is supposed that the probability law associated with the ob- 

served particle displacements over any given time interval (s, t) 

should depend upon the length of the time interval, t - s, for s < t, 

and not upon the time at which the observation was begun. This fore- 

going assumption describes B(t) as a process of stationary independ- 

ent increments. 

This leads to the definition of a Wiener process. A stochastic 

process {B(t), t >0} is said to be a Wiener process if: 

(i) {B(t), t > 0} has stationary independent increments; 

(ii) For every t >0, B(t) is normally distributed; 

(iii) For all t >0, E(B(t)) = 0; 

(iv) B(0) = 0. 

Since B(t) has independent increments, and B(0) = 0, to state 

the probability law of the stochastic process B(t) it suffices to state 

the probability law of the increment B(t) - B(s) for s < t. B(t) 

B(s) has been assumed to be normally distributed, and therefore 

B(t) is normally distributed and its probability law is determined by 

its mean and variance. It follows that 

12) E(B(t) - B(s)) = 0, 

and 

s,t> 

- 

0, 
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Var(B(t) - B(s)) = 02(t - s), 

where 0"2 is some positive constant. 

s, t, > 0, 

To illustrate how the problem at hand is mathematically 

similar to the Wiener process, the following approach is taken. 

The fundamental premise of the notion of Brownian motion is 

that ceaseless irregular impacts act upon the particle in motion as 

a result of the force field of the surrounding medium. It is stated 

by Sverdrup, Johnson, and Fleming (10, p. 471), that the ocean 

currents are, 

...characterised by numerous eddies of different 
dimensions by which small fluid masses are constantly 
carried into regions of different velocity. It is this 
completely irregular type of motion which is called tur- 
bulent flow.... The very character of the turbulent flow 
is such that rapid fluctuations of velocity take place in 
all localities, and no steady state motion exists if atten- 
tion is paid to individual particles of the fluid. 

The velocity field at any point in the ocean can then be represented as 

the vector sum of two different velocities: V representing the average 

velocity at the point in question during a long period of time, and y' 

representing the instantaneous turbulent velocity at that point. 

Let a three -dimensional coordinate system be fixed with respect 

to the current moving at a velocity V with the (X, Y) plane parallel to 

the ocean surface. Consequently the coordinate system will be fixed 

with respect to the current in the locality of this point. If the para- 

chute of the drogue is, at time t = 0, placed at the (0,0,0) position 
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of the coordinate system the force field acting on it is the same above 

mentioned force field caused by the turbulent nature of the water. 

This will cause the parachute to generally tend to follow the current 

while wandering in a random manner due to the irregular eddies. 

Since the total force field is a result of numerous small eddies 

of presumed random direction and magnitude, the motion of the para- 

chute with respect to the coordinate system is therefore similar to 

the motion described by the Wiener process. 

It can also be expected that a similar condition of turbulence 

exists in the vicinity of the reference buoy and the surface drogue. 

As a result there will be a random irregular motion of the reference 

buoy with respect to its anchor and of the surface drogue with respect 

to the parachute. 

The forces due to the turbulence of the water acting on the 

parachute, buoy, and drogue, however, are not the only forces acting 

on the system. Friction or drag, due to the motion of the reference 

buoy and drogue cables with respect to the surrounding water, cause 

variations in the buoy and drogue positions with respect to the actual 

position of the reference anchor and the parachute. Similarly the 

effect of the wind can cause the above described variations in buoy 

and drogue positions. As previously noted, theoretical corrections 

can be made to compensate for the bias introduced by these effects. 

Quite naturally, there will be errors in these corrections yet if 
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average wind velocities and drag forces are used in the corrections, 

there will tend to be both over corrections and under corrections of 

varying magnitudes, and consequently, somewhat irregular or random 

errors. 

It can therefore be seen that the actual horizontal distance 

between the initial position of the reference buoy (the position where 

the drogue was launched) and the water particle on which the coordi- 

nate system was fixed can vary considerably from the horizontal 

distance between the reference buoy and the surface drogue at the 

time of observation. This variation, a function of the many random 

variations as described above, is assumed to follow the probability 

law associated with Brownian motion and more specifically the 

Wiener process. This probability law is stated thusly: The correct- 

ed increments of change in position of the surface drogue with respect 

to the reference buoy are normally distributed with mean vectors 

14) E(Ax.) = µ A t. + 
1 x 1 

j= 1 

2 

fXj) (t.) fXj) (ti-1)j' 

15) E(Ayi) = µyAt, + ßÿj) [Pi' (t.) fÿj) (t. ) 

j= 1 

and variances 

. 
Xj) 

2 

- 

- 
Y Y Y 
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16) Var (0 x.1 ) 
1 

= Var (Dy.) = 
2 

A t1. 
, 

where 2 is some constant inherent in the random fluctuations of 

the ocean. 
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INTRODUCTION OF MEASUREMENT ERROR 

The following development concerns the joint probability dis- 

tribution of the observed displacements of the surface drogue associ- 

ated with the previously defined time intervals A ti, i = 1 , 2, ... ,n. 

Let us associate the X and Y components of the position 

vector CO withthe E -W and N -S directions respectively 

where E(Ox.), E(Ayi), Var(Oxi) and Var(Ayi) are as defined in 

equations [ 14] , [ 15] and [ 16] . 

In order to prevent unnecessary repetition, until otherwise 

noted the following analysis will concern only the displacements in 

the X or E -W direction realizing that the displacements in the Y 

or N -S direction would be treated similarly. 

As defined ¿xi = X(ti) - X(ti -1) represents the actual E -W 

horizontal component of displacement and not the observed displace- 

ments. Let Axt be an observed displacement, or simply the 
ith 

observation, and defined by 

17) Ax1 = [X(ti) + E1] - [X(tl-1) + 
E1-1] 

where Ei is the measurement error associated with fixing the ith 

position of the surface drogue. 

As an approximation, the distribution of the measurement 

error E is assumed prescribed by the probability law, 

- 

t 
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18) e NI (0, T2), 

where T2 is some constant inherent in the measurement equipment. 

This assumption of normality is based on the supposition that 

the measurement error is the sum of many small random errors 

associated with the mechanical and electrical fluctuations of the 

measuring instrument. Then by the Central Limit Theorem the 

distribution of the measurement error approached the Normal 

distribution. 

Assuming that the displacements and the measurement errors 

are statistically independent it is concluded that the joint distribution 

of the observations, 0x., i = 1, 2, ... , n, is Multivariate Normal with 

19) E(Oxi) = µx(0 ti) + 

and 

20) 

21) 

where 

(j) fXj) 
- fxj) (ti) ' 1 

cov(Ox'i , Llx!) = 

02A t. + 2 T2, 

- T2, 

0 , 

i = j, 

i= jt1, 
otherwise. 

Using matrix notation the model can be expressed as, 

iv 

j= 1 

( 

}JI 

Al = Y (fá + W x 
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Ax is nxl, and is a column 

X is nxp, and is a matrix 

vector of observations, 

of known constants, 

}ß is pxl, and is a column vector of unknown 
parameters, and 

is nxl, and is the observation error vector. 

From the above it follows that 

22) W N N (0, X) 

where 

23) = 0-2 + T2 

with lE' being a diagonal matrix of D t.' s and 

with components 

being a matrix 

(24) h.. = 2 6.. 
- 

(6. j-1 + si, j+1)' i' j 
= 

1, 2, . . . , n, 

where 6.. is the kronecker delta. 
1J 

W 

a 

, 

El 

J J 
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REDUCTION TO CANONICAL FORM 

From the preceding discussion we see that the observations are 

correlated and that their variances are the sum of two variances 

A ti 
0.2 and 2 

T2. The covariance of each displacement is - 
T2 with 

its adjacent displacement and zero with all others. The existing co- 

variances between observations can be removed, and the statistical 

problem reduced to a canonical form by use of the following theorem 

proved in (1, p. 341). 

Theorem 1 

Given W a positive semidefinite matrix and A a positive 

definite matrix there exists a nonsingular matrix F such that, 

25) 

and 

26) 

= ED, 

F" F = II, 

where BD is a diagonal matrix of the roots of the characteristic 

equation 

27) I ::. - XAI = 0. 

It has been shown in (3, p. 67) that the roots of the nth degree 

equation, 

A 

1F' D 1F 



-X 

-1 

28) 0 

0 

are 

-1 0 ... 0 

-A -1 0 

-1 -X . 0 

19 

29) X = -2 

It follows directly 

v 
= 

1,2,...,n. 

degree equation 

0 0 

-1 0 

cos 
+1 , 

that the nth 

2-X -1 

-1 2-X 

30) ',It I 0 -1 2-X e . . 0 

has roots 

31) 2 - v= 1,2,...,n, 2 cos n+ 1 

and that ;.; is positive definite. 

Therefore, since 'IP is diagonal with positive values there 

exists a linear transformation which will produce a new set of ran- 

dom variables which are uncorrelated. Letting these transformed data 

be designated in matrix notation by the nxl vector the trans- 

formed model can be expressed as, 

32) = 
Z* AB* 

+ W, 

where 

o 0 -1 

= 0 

= 

Xv 
= 

0 -1 2 -X 

= 0 

n 

0 0 

vn 

zt 

411, ,, 

OX. 

1181 - 



33) 

with 

34) 

where 

IID = 

1 0 

0 A 

0 

2 

WM NI ( 0, MM), 

= 02 II+T2HD, 

0 
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Although it has been established that there exists a transforma- 

tion matrix IF that will diagonalize the variance -covariance matrix 

of the observed displacements, the actual construction of such a 

matrix requires further analysis. 

In the case when the At 
i 

are equal 

36) 

where 

37) A. = X *At = 2 - 2 cos n+ 1 

-X* = 

Therefore the equation of interest, 

38) ( ;:; - A * 'ZC = 0 

- X II) 

i- 1,2,...n. 

0 

0 X 
n 

( :., 

1 

11ì$ 
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In the general case when the At. are not all equal the roots of 

equation [ 38] are the roots of the equation 

40) 
i 
2-AIII =0. 

In this case the roots may be found by numerical analysis with 

the aid of a computer. 

Given the characteristic roots, we now exhibit the matrix F 

that produces the diagonal matrix of these roots by transformation 

of the matrix. 

Theorem 2 

If Z is a nxn nonsingular, symmetrical matrix with distinct, 

nonzero characteristic roots X 
v 

, v = 1, 2, ... , n, then the nxn matrix 

P whose columns are the n normalized characteristic vectors 

associated with the n characteristic roots of 
I 

Z - X II I =0 is 

orthogonal. 

Proof 

Let X and X be the characteristic vectors associated with 
v 

the characteristic roots X and X respectively. 
v 11 

By definition 

41) Z X =X X . 
v v v 

1 

I 

,., 

11 

ar- l P 1C- 



Premultiplying this identity by X' , 

T1 

42) X' Z X = X X' X . 

T1 v v n y 

Also by definition 

43) ZZ = X X 
T1 71 71 

and premultiplying by X' 
v 

, 

44) Z' Z X = X X' X 
7-1 

Transposing both sides of equation [ 44] 

45) X' Z' Z 
v 

= X Z' Z , 
1 

and given that Z' = Z, 

46) X' Z' X = X' ZX = X X' X =X X' X 

However, since 

47) 

it follows 

48) 

X X 
v 

, for ri y, 
r) 

0, for ri # v , 

, for ri = v . 
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Therefore the matrix P whose columns are the characteristic 

vectors X , v = 1,2,,... ,n, is orthogonal. 

By defining 

49) 

with 

, 

v n n v 

11 

# 

Z'Z = ( 
r) v 

. 

51 51 

1 v v '1 v 51 1 v v ' 

7C-z)II,-á 



0 0 N/0 tl 
0 N/At2 0 

50) 

o o . t 
n 

the characteristic equation 

51) - X 
* 

II I = 0 

23 

is of the form considered in theorem 2. Hence the matrix P whose 

columns are the characteristic vectors associated with equation [ 51] , 

and are defined by, 

52) = X 
v v 

is an orthogonal matrix. 

Letting 
i 

53) F =1r 2 
RD 

it follows from 
i i 

54) F' F _ P' 1r-2 11' Tr Z P = flD = = II 

that 

55) Hr' lr flr = II. 

Also it follows from 

56) Hr' ;:, F = P' T z ;., T-2 = P' 

tha t 

57) = D, 

hc 

i 
Ti = 

V 

P ' P 

i i 
IFD 

. . 

1 P° 

PZ X 

IF' PP 



since 

58) 

24 

171 0 . 0 

o X2 . . o 

from equation [ 45] and [48]. 

Therefore, F of equation [ 53] 

0 0 . . X n 

is the matrix that will transform 

the variance -covariance matrix # of equation [ 23] into canonical 

form. 

Remembering that the above was concerned only with data in the 

X or E -W direction equal consideration must be given to the data in 

the Y or N -S direction. 

Since the transformation matrix Ws was a function of the 

and T matrices and the resulting characteristic roots, and since 

the and ir matrices are identical for both sets of data, the F 

matrix that is used to transform the E -W data will also be used to 

transform the N -S data. 

This above presented consideration treated the case where the 

characteristic roots (equation [40]) are distinct. This will be the case 

when the At., i = 1, 2, ... , n, are constant and even in the majority i 
of cases when they are not as can be seen from the equation of the 

roots. 

If the situation arises that - X I = 0 has nondistinct 

roots, theorem 2 will not hold. However, the existence of a 

1111*(3c, 2, = IlD 

;.; 

a 

11. 

. . 

. 

HE 
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nonsingular transformation IF that will reduce the variance - 

covariance matrix to canonical form is established by theorem 1. It 

is easily shown that the subspaces generated by equation [ 52] upon 

substitution of each of the distinct values of A are mutually orthogo- 

nal, and the development of explicit formulas for generation of a set 

of mutually orthogonal characteristic vectors is straightforward. 

The ability to transform the displacement in such a way that 

the variance -covariance matrix is diagonal allows the probability 

density function of the transformed observations to be written as, 

.4 

59) f(Ox 
* 

,Oxn; Dyl, ° yn' 

1 

(2Trn/2 n 2 2,k i 
exp 

II II (CT +Td..)2 
11 

i=1 

i 
2 

...,ßp) 

m 
P/2 * 

(Ax. - ß.X..) 
3=1 13 

* 
(0" + T2 dii) J 

P r * 2 n (yi =p/2+1 ß Yi,j 
4 

i=1 ( 0"2 + T2 dii) 
..... 

In the above equation 6,x.ß and Dy. are the transformed 
]. 

observations, ß1, ... , ßp are the unknown parameters in the E -W 

direction and (3p/2 +1, .. , ßp are the unknown parameters in the 

N -S direction. Also X.r. and Y.1j . are the transformed known con - 

stants associated with the mean velocity of the current and the tidal 

effects in the E -W and the N -S directions respectively. d.. is the 
11 

v 

* : 
ßl, 

r- 
.. 

n E 
1 

i=1 
._ 

,k 

13 1 

m 

t 
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ith characteristic root that is associated with the 

Since the present problem includes only two periodic tidal 

fluctuation terms for each direction, p is equal to 6. From the model 

(equations [ 14] and [ 15] ) ß and ß are µx and µy , and (32, ß3, 

(1) (2) (1) (2) 
ß5 

and 
ß6 

are 
ßx , ßx , ßy and ßy , respectively. The X 

matrix, (equation [21]), of known constants has elements 

= A t. , 
1 

60) Xi2 = cos (wl ti - 11)1) - cos 
(wl ti-1 - (I)1), 

Xi3 = cos (w2 ti - 42) - cos 
(w2 ti -1 - 42), 

where w1, w2, 14)1 and 
42 

are the periods and phase angles of the 

tidal components in the E- Wdirection. Similarly the counterpart of 

the matrix X for the data along the Y axis, the ' matrix,has 

elements, 

Yil = At. , 

61) Yi2 = cos (w3 ti - 3) - cos 
(w3 ti - 3), 

Yi3 = cos (w4 ti - 4) - cos (w4 ti -1 - (1)4), 

where w3, w4, 
3 

and .4)4 are the periods and phase angles of the 

tidal components in the N -S direction. It will be noted that 

w 
1 

w 
3 24 (if time is in lunar hours) - 244 (if time 

is in solar hours), 

ith observation. 

Xil 

i 

-1 (I) 

= 

Y 
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and w2 
= CO4 = 12 

(if time is in lunar hours) - 12 42 (if time is 

in solar hours). 

To compute the phase angles comparison may be made with 

observed tidal currents off San Francisco Bay (10, p. 573). The 

phase angle 
(1)1 

is that angle to compensate for the time difference 

between the time the drogues were launched and the time when the 

semidiurnal tidal component is a maximum in the E -W direction. 

Since the time interval between highest high tide and the maximum 

tidal component in this direction is known for the region off San 

Francisco Bay, by calculating the difference between highest high 

tide in the observation region and the time the drogues were launched, 

plus the difference between highest high tide at San Francisco and in 

the observation area, the phase angle can be obtained. Likewise (02, 

43 and (1)4 are obtained for their respective directions and tidal 

periods. 

Care must be taken to be consistent in the type of hour (lunar 

or solar) used in these computations and to use the value of in 

equation [63] that is consistent with the units that time is measured in. 

The constants X`', and Y., are then the ij elements of the 

transformed X and "7 matrices defined by 

62) X = flr' X, 

4 

i 13 
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and 

63) 

Also the transformed observations ¿xi and Ay. are the ith ele- 

ments of the transformed vectors A* and A by, 
x y 

, 
64) Am = F' Ax, 

x x 

and 

65) A*" = F' A . 

Y Y 

le = Hr' Y. 

defined 
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ESTIMATION OF PARAMETERS 

The problem of making point estimates of 8 . , j = 1 , 2, ... ,p, 

of parameters 8. deals with finding functions 8. = h.(x1,x2, ... ,xn) 
J J 

of a random sample of n observations x , x2, .. . , xn from 

f(x; 01,02' ...0p). The criterion for selecting any given set of 

functions is that the resulting parameter estimates be the "best" pos- 

sible in that they are the closest values obtainable by known methods 

to the actual parameter value in terms of mean square error. This 

is to say that the estimates obtained from functions 

8j = h.(x1 ,x 
2' 

..`. , xn), j = 1,2, ... ,p, using a large number of ran- 

dom samples of n observations from f(x; 81 , 82, ... , 8 
P 

) are 

grouped closer to the actual value of the parameters than estimates 

obtained using any other set of functions 8. = g.(xt,x2, ... ,x n) from 
J J 

f(x; 81,82,...,8 ). 
P 

By the transformation of the variance -covariance matrix to 

canonical form the estimation problem at hand has been reduced to 

a regression problem. This being .the case, there are two 

basic methods by which estimates can be obtained: The method 

of Least Squares (3, p. 36 -37) and the principle of Maximum Likeli- 

hood (8, p. 153 -154). 

The principal advantage of the method of Least Squares is that 

the frequency function of the " errors" need not be known. Yet in 

J 

J 



30 

many cases unbiased and consistent estimates may be obtained, and 

under the conditions of statistical independence and equal variances, 

as prescribed by the Gauss Markoff theorem (6, p. 32), minimum 

variance estimates can be obtained. 

If the observations are independent with equal variances which 

will be the case when 

66) A 
i 

= X(n; At., . . . , t n 
) i = 1, 2, i 

are constant, not only can minimum variance unbiased esti- 

mates be obtained but the variance of the estimates can be 

estimated. 

The estimates and their variances can be obtained from the 

following formulas: 

*r 
67) X X ) X A, 

and 

68) Var (qß) = (62 + KT2)(X -1 

where 0-2 + KT2 is the common variance of the observations and 

X and A are matrices as defined in equations [ 62] and [64]. 

It therefore follows that confidence intervals can be constructed 

for the estimates. 

69) Pr {ßj - ßjI < ta[Var(ßj)]2} r= 1 - a, j " 1,2,...,p, 

is the confidence statement associated with the confidence level 

p ' -1 

X *) 

i 
r a 

. 
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1 - a, where Var (ß) is the jj element in the matrix in equation [68], 

and where 62 + K T2 is the variance of the transformed random 

variables which can be found by general analysis of variance 

procedures. 

The principle of Maximum Likelihood can be used as an esti- 

mation procedure when the observations do not have common variance 

as long as the density function is known. 

There is no general argument that will show that the maximum - 

likelihood estimates are the best estimates possible for a given 

sample size. However, they do have at least three desirable large 

sample properties: 

1. Consistency. An estimate 9 
n 

of a vector -valued parameter 

is said to be a consistent estimate if the probability that 

On - 0 I > e converges to zero as n becomes large for 

every e > O. fin is the estimate of 0 based on a large 

sample size of n. 

2. Asymptotic normality. The distribution of (0 0) 

approaches a multivariate normal distribution with mean 

vector zero and variance -covariance matrix r where 

70) a2 
a0. a0. 

(in f(xl , 0 . . , On)) 
1 

3. Asymptotic efficiency. The ratio of the mean square error 

J 

- 

J 

E 
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for any component of 9 to that of any other estimate of 

that component, is asymptotically no greater than unity. 

It can be shown (6, p. 26) that if the observations are independ- 

ent and normally distributed with common variance, the estimates ob- 

tained by the method of Least Squares are identical to the estimates 

obtained by the principle of Maximum Likelihood. 

In this particular problem the probability density of the trans- 

formed observations (equation [ 59)) is known, and either the Least 

Squares or Maximum Likelihood procedure may be utilized. However, 

since the observations are generally not distributed with common 

variance (equation [34)), using the Least Squares procedure will not 

necessarily result in minimum variance estimates. The principle of 

Maximum Likelihood does, however, guarantee asymptotically 

efficient estimates. 

Consequently, in this case it seems somewhat more desirable 

to employ the principle of Maximum Likelihood to obtain the esti- 

mates. 

The actual procedure of maximizing the likelihood function 

f (A xi , .. , ' yi ' ' yn ' ß 
1 ' ' ' , ß ) involves the following 

set of p + 2 nonlinear equations with p + 2 unknowns: 

71) ainf B.Qnf B.Qnf ainf 
862 ~ a 

7 - 
a ß 

= aß = 
ainf 
aß 

o 

n 

P 

. 

= - ... . 
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The solutions of these equations will be designated 0"2, T2, 

ßl, ... , p , and are the maximum- likelihood estimates of the unknown 

parameters of equation [59]. The computations required to solve 

these equations are somewhat formidable and require a high -speed 

computer. 

As it has been previously pointed out, maximum - likelihood 

estimates are asymptotically efficient with this asymptotic variance 

as stated in equation [70] . Consequently confidence statements can 

be developed concerning the estimates by using the estimates in 

equation [70] to estimate the asymptotic variance. In the situation 

where the least squares estimates are appropriate, equation [69] is 

used. 

In any particular situation, equation [70] will be quite complex 

and solution will require the use of a computer. In practice this 

would be done at the same time that the estimates themselves are 

computed. 

P 
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