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Branching Random Walk and Probability Problems from Physics

and Biology

1 Introduction

This thesis presents results for a class of branching random walks and explores

connections with a related polymer model known as the tree polymer. A model

for honey bee site-selection is also presented. I want to emphasize that the lat-

ter is not a branching random walk model, but does incorporate some elements

from branching processes in general (and random spatial movement), and these

connections will facilitate some results.

Branching processes have a long and rich history in both pure and applied areas,

and they have been applied extensively to models in the life sciences. Indeed, the

subject began with Galton’s study of the extinction of noble family lines [22]. I do

not recount it all here. However, Kingman’s work on the branching random walk

in [27] is very relevant, as are certain later developments. Taking this as starting

point, I provide a brief account of the early branching random walk theory initiated

by Kingman and substantially carried forward by Biggins and others, and discuss

some recent and pertinent results.

The basic object is the one-dimensional branching random walk in discrete time.

A single particle, the ancestor, is initially at the origin. At time 1 the particle dies,

simultaneously giving birth to some number of new particles according to some

offspring distribution. Consistent with the language of genealogy, particles that
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give rise to other particles are called parent particles or simply parents, and the

particles they generate child particles or children. Each of the child particles

position themselves on the real line independently according to some point process

describing displacements from the parent. The child particles repeat this process,

and the process continues as long as particles are alive.

The event that a positive number of particles are alive in every generation is

called the survival set or ultimate survival. By a standard theorem, this event

has positive probability if and only if the underlying Galton-Watson process, the

branching process obtained by ignoring the spatial distribution of particles, is

supercritical, i.e. the mean number of offspring per particle exceeds one. Super-

criticality will be frequently assumed.

One of the main investigations on the branching random walk concerns the

asymptotics of its spreading speed. To state results, suppose P is the probability

measure for the process, E its expectation, and Z the point process in R. Let

Z(n) be the set of positions of the nth generation particles and let B(n) denote the

rightmost particle in Z(n). Biggins [11] generalized the work in [27] to prove a law

of large numbers for B(n),

B(n)

n
→ Γ a.s., (1.0.1)

where Γ is a constant, under the condition that κ(φ) ∶= log ∫ eφzEZ(dz) < ∞ for

some φ > 0. The speed Γ can be computed by

Γ = sup{a ∶ κ∗(a) < 0} = inf
θ

{κ(θ)
θ

}
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where κ∗(a) = supθ{θa−κ(θ)} is the Fenchel dual of κ [8]. An early version of this

result was also shown by Hammersley in [20].

In a paper published the following year, Biggins [5] proved a Chernoff-type

theorem characterizing particle growth in the intervals [na,∞). Assume there is

a φ > 0 such that κ(φ) < ∞. Then for all a ≠ Γ, 1
n log (Z(n)[na,∞)) converges to

either −κ∗(a) (if κ(a) ≤ 0) or −∞ (if κ(a) > 0). In mean, the convergence is to

−κ∗(a), except possibly at one a. The previous result on the speed of the rightmost

particle follows immediately from this theorem and the properties of κ∗. Both this

result and (1.0.1) generalize to the multitype case, although for the Chernoff-type

result this was established much later, again by Biggins [9].

The rate of convergence to Γ has also been extensively studied. Biggins [7]

proved that B(n)−nΓ→ −∞ almost surely if and only if there is some 0 < ν <∞ such

that κ(ν) = νΓ, assuming displacements larger that Γ have positive probability.

An important special case not covered by this result is considered by Dekking

and Host [18]: if {Xn} is the minimal displacement of a supercritical branching

random walk with non-negative, integer-valued displacements, then Xn converges

to an a.s. finite random variable X. Under a moment condition, they prove that

the centered sequence {Xn −E(Xn)} is tight. In the case of the simple branching

random walk with 0-1 displacements, each having probability one-half, Grill [19]

has proven that the support of the walk is eventually, almost surely, an interval

[K,n − L], for finite random variables K and L. This result will be extended in

chapter 3.
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Certain martingales arise frequently in the analysis of the branching random

walk. The so-called additive martingale is Wn = ∑∣x∣=n exp(−zx), where zx denotes

the position of a child labeled x and ∣x∣ = n means x is in generation n. Since it

is non-negative, it converges to an a.s. finite random variable. For convergence in

mean, there is a Kesten-Stigum type result shown by Biggins in [6]: if EW1 > 0,

then Wn converges in L1 if and only E(W1 log+W1) < ∞. In this case, E(W ) =

1, so the limit W is non-zero. The derivative martingale, introduced in [10], is

defined by Dn = ∑∣x∣=n zx exp(−zx). The branching random walk is said to be in

the boundary case if EW1 = 1 and ED1 = 0. In this case, a very recent result in [2]

has established convergence in probability, under integrability conditions, for the

ratio of the additive and derivative martingales:

lim
n→∞

n−
1
2
Wn

Dn

= ( 2

πσ2
)

1/2
in probability,

for the positive constant σ2 ∶= E [∑∣x∣=1 z
2
xe

−zx]. The result cannot be strengthened

to almost sure convergence [2]. This will be the key to proving the main result in

chapter 2.

For tree polymers, self-contained introductions to the notation and precise def-

initions are found in the relevant chapters, so I do not repeat them here in de-

tail, but simply outline the main ideas. The vertices of a complete binary tree

T = ∪∞n=0{−1,1}n are equipped with i.i.d. copies of a strictly positive mean-one

random variable X. Take products of these variables down a single path of the

tree to level n, and let Zn be the sum of all such products scaled by 2−n. Zn
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converges a.s. to a random variable Z, and by a theorem established by Kahane

and Peyrière [26], Zn → Z > 0 a.s. if and only if E(X lnX) < ln 2, and Zn → Z = 0

a.s. otherwise. Bolthausen [13] introduced the terms weak disorder and strong

disorder, respectively, to describe this dichotomy.

These notions have analogues in the theory of multiplicative cascades. Suppose

T is the metric space consisting of the complete b-ary tree, b ≥ 2, equipped with

the ultrametric that assigns the distance between two tree paths to be b−m, where

m is the smallest tree level at which the two paths no longer coincide. Multi-

plicative cascades are the positive T -martingales (introduced in [25]) represented

multiplicatively via martingale ratios [45]. The factors are non-negative mean one

random variables, referred to as generators of the cascade. The Kahane-Peyrière

theorem applies to multiplicative cascades with i.i.d. generators, the homogeneous

independent cascades. If X denotes the generator, as above with tree polymers,

then the cascade is said to a.s. survive if and only if the condition for weak dis-

order holds, and to a.s. die out otherwise (strong disorder). Using size-biasing

techniques, Waymire and Williams provide an entirely probabilistic proof of the

Kahane-Peyrière theorem, and provide an extension to dependent cascades, see

[43], [44], [45].

Returning to the tree polymer, a sequence of random probability measures

probn on the space of tree polymer paths will be defined by norming the products

down paths in a natural way, leading immediately to convergence questions and the

extent of dependence on disorder type. It is well-known that probn converges to an

a.s. unique limit in the case of weak disorder [46]. For strong disorder the question
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is open, but the special case of critical strong disorder, i.e. E(X lnX) = ln 2, is

taken up in chapter 2. Critical strong disorder for the tree polymer corresponds to

the boundary case for the branching random walk. Defining (S)n to be the path

position at level n (sum of the ±1 path coordinates), another natural problem is

to prove a central limit theorem similar to the classical theorem for the simple

symmetric random walk, but with respect to the measures probn. In [46], under

a mild additional assumption, this was shown in the full range of weak disorder:

n−
1
2 (S)n a.s. converges weakly to a standard normal distribution. In chapter 3, an

a.s. central limit theorem is established for a simple branching random walk that

is easily related to a certain tree polymer, and there is no dependence on disorder

type in this very special case.

Tree polymers are naturally related to branching random walks in the following

manner. A product of i.i.d. positive random variables down a tree polymer path

to level n can always be expressed as the exponential of the sum of the logarithms

of those variables. The sum in the exponent may be regarded as the sum of n i.i.d.

displacements. In the discrete-time branching random walk, this is the position of

one of the nth generation offspring particles. Via this connection, results for the

branching random walk may be applied to tree polymers and vice versa.

More generally, polymer models usually refer to directed lattice polymers on the

d+ 1 dimensional integer lattice, which are modeled by random path distributions

in N × Zd [46]. The first coordinate directs the path, ensuring that the polymer

paths are self-avoiding. For tree polymers, the directed paths are the polygonal

paths of a binary tree. Tree polymers were considered in [14] in the analysis of
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directed lattice polymer models [46]. More information in this connection can be

found in [46].

The organization of this thesis is as follows. The second chapter is based on

a paper published in the Journal of Applied Probability [24]. It investigates con-

vergence of probability measures on tree polymers. Almost sure convergence to

a polymer probability in the infinite volume limit is easily obtained under weak

disorder. The main goal is to prove, by exploiting certain connections with the

branching random walk, convergence in probability for the critical strong disorder

case. The third chapter, based on a preprint manuscript, establishes a central

limit theorem and a result on connectivity of the support of a simple branching

random walk, and relates the results to tree polymer models in an effort to un-

derstand the effects of disorder type. The fourth chapter contains a branching

process model for site-selection in honey bee swarms. Its goal is to gain insight

into the collective-decision making process, and investigate conditions under which

the swarm makes optimal choices. The model involves branching growth in time

and random movement in space, similar to a branching random walk, but the usual

branching random walk requirement of i.i.d. displacements to determine spatial

movement is replaced by a more realistic assumption.
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2 Tree Polymers in the Infinite Volume Limit at Critical Strong

Disorder

2.1 Introduction and Preliminaries

Polymers are abstractions of chains of molecules embedded in a solvent by non-self-

intersecting polygonal paths of points whose probabilities are themselves random

(reflecting impurities of the solvent). In this connection, tree polymers take ad-

vantage of a particular way to determine path structure and their probabilities as

follows.

Three different references to paths occur in this formulation. An ∞-tree path

is a sequence s = (s1, s2, . . .) ∈ {−1,1}N emanating from a root 0. A finite tree path

or vertex v is a finite sequence v = s∣n = (s1, . . . , sn), read “path s restricted to

level n”, of length ∣v∣ = n. The symbol ∗ denotes concatenation of finite tree paths;

if v = (v1, . . . , vn) and t = (t1, . . . , tm), then v ∗ t = (v1, . . . , vn, t1, . . . , tm). Vertices

belong to T ∶= ⋃∞
n=0{−1,1}n, and can be viewed as unique finite paths to the root

of the directed binary tree T equipped with the obvious graph structure. We also

write

∂T = {−1,1}N

for the boundary of T . The third type of path, and the one of main interest to

polymer questions, is that of the polygonal tree path defined by n→ (s)n ∶= ∑n
j=1 sj,
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n ≥ 0, with (s)0 ∶= 0, for a given s ∈ ∂T .

∂T is a compact, topological Abelian group for coordinate-wise multiplication

and the product topology. The uniform distribution on ∞-tree paths is the Haar

measure on (∂T,B), i.e.

λ(ds) = (1

2
δ+(ds) +

1

2
δ−(ds))

N
.

Let {Xv ∶ v ∈ T} be an i.i.d. family of positive random variables on (Ω,F , P )

with EX <∞; we denote a generic random variable with the common distribution

of Xv by X. Without loss of generality we may assume that EX = 1. Define a

sequence of random probability measures probn(ds) on (∂T,B) by the prescription

that

probn(ds) << λ(ds)

with

dprobn
dλ

(s) = Z−1
n

n

∏
j=1

Xs∣j

where

Zn = ∫
∂T

n

∏
j=1

Xs∣jλ(ds) = ∑
∣s∣=n

n

∏
j=1

Xs∣j2
−n.

Observing that {Zn ∶ n = 1,2 . . .} is a positive martingale, it follows that

Z∞ ∶= lim
n→∞

Zn

exists a.s. in (Ω,F , P ). According to a classic theorem of Kahane and Peyrière
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[26] in the context of multiplicative cascades, and Biggins [11] in the context of

branching random walks, one has the following dichotomy:

P (Z∞ > 0) = 1 ⇐⇒ EX lnX < ln 2

P (Z∞ = 0) = 1 ⇐⇒ EX lnX ≥ ln 2.

The a.s. occurence of the event [Z∞ > 0] is refered to as weak disorder and that

of [Z∞ = 0] as strong disorder ; see Bolthausen [13]. In particular, the critical case

EX lnX = ln 2 is strong disorder. In the case of tree polymers one may view the

notions of weak/strong in terms of a disorder parameter defined by EX lnX and

relative to the branching rate, ln 2.

In this chapter some new insights into a few delicate problems for the case of

strong disorder are provided.

2.2 Tree Polymers under Weak Disorder

To set the stage for contrast, we record a rather robust consequence of weak dis-

order.

Theorem 2.2.1. Under weak disorder, there is a random probability measure

prob∞(ds) on (∂T,B) such that a.s.

probn(ds)⇒ prob∞(ds)

where ⇒ denotes weak convergence.
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Proof. Define λn(ds) = Znprobn(ds), n = 1,2, . . .. By Kahane’s T -martingale the-

ory, e.g. [25], λn(ds) converges vaguely to a non-zero random measure λ∞(ds) on

(∂T,B) with probability one. By definition of weak disorder Zn → Z∞ > 0 a.s.,

thus we obtain

probn(ds) = Z−1
n λ(ds)⇒ Z−1

∞ λ∞(ds) a.s.

Notice that in the case of no disorder, i.e. X = 1 a.s., one has

probn(ds) = λ(ds) ∀n = 1,2, . . . .

Moreover, under λ(ds), the polygonal paths are simply symmetric simple random

walk paths, where the probability theory is quite will-known and complete. For

example, the central limit theorem takes the form

lim
n→∞

λ({s ∈ ∂T ∶ (s)n√
n

≤ x}) = 1√
2π
∫

x

−∞
e−ξ

2/2dξ.

For probability laws involving convergence in distribution, one may ask if the CLT

continues to hold a.s. with λ(ds) replaced by probn(ds). This form of universality

was answered in the affirmative by Waymire and Williams in [46] for weak disor-

der under the additional assumption that EX1+δ < ∞ for some δ > 0. Problems

involving limit laws such as a.s. strong laws, a.s. laws of the iterated logarithm,

etc, however, require an infinite volume probability prob∞(ds) for their formula-

tion. While the preceding theorem answers this in the case of weak disorder, the
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problem is open for strong disorder. Moreover, it has been speculated by Yuval

Peres (private communication) that probn(ds) will a.s. have infinitely many weak

limit points under strong disorder. However, in the case of critical strong disorder

we show that a natural infinite volume polymer exists and is related to the finite

volume polymers through limits in probability.

2.3 Tree Polymers at Critical Strong Disorder

In this section we show the existence under critical strong disorder, i.e., assuming

EX lnX = ln 2, of an infinite volume polymer probability prob∞(ds) that may be

viewed as the weak limit in probability of the sequence probn(ds), n ≥ 1, in the

sense that its characteristic function is the limit in probability of the corresponding

sequence of characteristic functions of probn(ds), n ≥ 1.

For v ∈ T , v = (v1, . . . , vm), say, let

∆m(v) = {s ∈ ∂T ∶ si = vi, i = 1, . . . ,m}, ∣v∣ =m.

Since T is countable there are countably many such finite-dimensional rectangles

in ∂T .
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For m > n, note that

probn(∆m(v)) = ∫
∆m(v)

dprobn
dλ

(s)λ(ds)

= ∫
∆m(v)

Z−1
n

n

∏
j=1

Xs∣jλ(ds)

= Z−1
n ∫

∆m(v)

n

∏
j=1

Xv∣jλ(ds)

= Z−1
n

n

∏
j=1

Xv∣j ⋅ 2−m.

For example,

prob1(∆m(v)) = Z−1
1 Xv∣12−m, Z1 =

X+ +X−
2

=
Xv∣12−(m−1)

X+ +X−

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X+2−(m−1)

X++X−

, v∣1 = +1

X−2−(m−1)

X++X−

, v∣1 = −1.

∑∣v∣=m prob1(∆m(v)) = 1 since there are 2m such v’s, half of which have v1 = +1

and the other half have v1 = −1.

For m ≤ n, ∣v∣ =m, we have

probn(∆m(v)) = Z−1
n ∫

∆m(v)

n

∏
j=1

Xs∣jλ(ds)

= Z−1
n

m

∏
j=1

Xv∣j ∑
∣t∣=n−m

n−m
∏
j=1

X(v∗t)∣j2
−n

= Z−1
n (

m

∏
j=1

Xv∣j2
−m)Zn−m(v),
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where

Z0(v) = 1, Zn−m(v) = ∑
∣t∣=n−m

n−m
∏
j=1

X(v∗t)∣j2
−(n−m).

In particular, Zn = Zn(0), where 0 ∈ T is the root.

Note that

Zn = ∑
∣u∣=m

∑
∣t∣=n−m

m

∏
j=1

Xu∣j2
−m

n−m
∏
j=1

X(u∗t)∣j2
−(n−m)

= ∑
∣u∣=m

Zn−m(u)
m

∏
j=1

Xu∣j2
−m.

Thus, letting ak = 1/
√
k, k ≥ 1,

probn(∆m(v)) =
Dn−m(v)∏m

j=1Xv∣j2−m
Zn−m(v)

an−mDn−m(v)

∑∣u∣=mDn−m(u) (∏m
j=1Xv∣j2−m) Zn−m(u)

an−mDn−m(u)

Ð→
D∞(v)∏m

j=1Xv∣j2−m

∑∣u∣=mD∞(u) (∏m
j=1Xv∣j2−m)

where (i) the convergence to D∞(v) is the almost sure limit of the derivative mar-

tingale obtained by Biggins and Kyprianou in [10], and (ii) limn→∞
Zn−m(v)

an−mDn−m(v) = c >

0 is the limit in probability at critical strong disorder recently obtained by Aidékon

and Shi in [2]. The constant c = ( 2
πσ2 )1/2, for σ2 = E{X(ln(X))2}−(E{X ln(X)})2 >

0, does not depend on v ∈ T . Aidékon and Shi [2] also point out that the almost

sure positivity of D∞(v) follows from [10] and [1]. The sequence ak = k−
1
2 , k ≥ 1, is

referred to as the Seneta-Heyde scaling.
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Remark 2.3.1. For each v ∈ T , there is a set N(v) of probability zero such that

D∞(v,ω) = lim
n→∞

Dn(v,ω), ω ∈ Ω/N(v).

Since T is countable, the set N = ⋃v∈T N(v) is still a P -null subset of Ω. The almost

sure convergence of the derivative martingales is essential to the construction of

prob∞ given in the lemma below.

We now define

prob∞(∆m(v), ω) =
D∞(v,ω)∏m

j=1Xv∣j(ω)2−m

∑∣u∣=mD∞(u,ω) (∏m
j=1Xu∣j(ω)2−m)

for ω ∈ Ω/N .

Lemma 2.3.2. prob∞(∆m(v), ω) extends to a unique probability on (∂T,B) for

each ω ∈ Ω/N .

Proof. We use Caratheodory extension, taking careful advantage of the fact that

the sets ∆(v), v ∈ T , are both open and closed subsets of the compact set ∂T .

For ω ∈ Ω/N , prob∞(⋅, ω) extends to the algebra generated by {∆(v) ∶ v ∈ T}

by addition. Since ∂T is compact and the rectangles are both open and closed,

countable additivity on this algebra must hold as a consequence of finite additivity;

i.e. if ⋃∞
i=1 ∆(vi) is contained in the algebra generated by {∆(v) ∶ v ∈ T}, then

⋃∞
i=1 ∆(vi) is closed, hence compact, and its own open cover, i.e. ⋃∞

i=1 ∆(vi) =

⋃li=1 ∆(vil) for some finite subsequence {ij}lj=1 of {1,2, . . .}.
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Theorem 2.3.3. At critical strong disorder, for each finite set F ⊆ N

̂probn(F ) ⇒ ̂prob∞(F ) in probability,

where p̂robn, n ≥ 1, p̂rob∞ denote their respective Fourier transforms as probabilities

on the compact abelian multiplicative group ∂T for the product topology.

Proof. The continuous characters of the group ∂T are given by

χF (t) =∏
j∈F

tj for finite sets F ⊆ N.

In particular there are only countably many characters of ∂T . From standard

Fourier analysis it follows that we need only show that limn→∞EprobnχF = Eprob
∞
χF

in probability for each finite set F ⊆ N. Let m = max{k ∶ k ∈ F}. Then for n >m,

EprobnχF = ∫
∂T=⊍∣v∣=m∆m(v)

χF (s)
dprobn
dλ

(s)λ(ds)

= ∑
∣v∣=m

(∏
j∈F

vj)Z−1
n (0)

m

∏
j=1

Xv∣j2
−m ∑

∣t∣=n−m

n−m
∏
j=1

X(v∗t)∣j2
−(n−m)

= ∑
∣v∣=m

(∏
j∈F

vj)
m

∏
j=1

Xv∣j2
−mZn−m(v)

Zn(0)

= ∑
∣v∣=m

(∏
j∈F

vj)
m

∏
j=1

Xv∣j2
−m

Dn−m(v) Zn−m(v)
an−mDn−m(v)

∑∣u∣=m∏m
j=1Xu∣j2−mDn−m(u) Zn−m(u)

an−mDn−m(u)

Ð→ Eprob
∞
χF ,

where the convergence is almost sure for terms of the form Dn−m and in probability
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for those of the form Zn−m/(an−mDn−m) as n→∞.

2.4 Diffusivity Problems at Strong Disorder

With regard to the aforementioned a.s. limits in distribution of polygonal tree

paths, Waymire and Williams in [46] also obtained a.s. limits of the form

lim
n→∞

lnEprobne
r(S)n

n
= F (r)

under both weak and strong disorder. Let us refer to these as almost sure Laplace

rates in reference to the Laplace principle of large deviation theory.

In the case of weak disorder the universal limit is F (r) = ln cosh(r), in a neigh-

borhood of the origin, otherwise independent of the distribution of X. In addition

to being independent of the distribution of X within the range of weak disorder,

this universality of Laplace rates is manifested in the coincidence with the same

limit obtained for X ≡ 1, i.e., for simple symmetric random walk.

For an illustrative case of strong disorder, consider X = eβZ−
β2

2 , where Z is

standard normal and β ≥ βc =
√

2 ln 2. Then from [46], it follows that a.s. in a

neighborhood of the origin that

F (r) = r tanh(rh(r)) + β2h(r) − ββc,
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where h(r) is the uniquely determined solution to

β2h2(r) + 2rh(r) tanh(rh(r)) − 2 ln cosh(rh(r)) = β2
c ;

also see [46] (Sec 6, Cor 2, 2010) for the general formulae in the case of strong

disorder. In particular, the universality of the Laplace rates breaks down, even at

critical strong disorder. A graph of F (r) computed from MATLAB is indicated in

Figure 2.1 for the strong disorder case of β = 2βc.

Figure 2.1: Graph of the function F for various β.

Using the equations defining F (r) one may easily verify that F (0) = 0, F ′(0) = 0

and F ′′(0) = 2ββc−β2
c

β2 . While these specific calculations follow directly from the gen-

eral results of [46], from here one is naturally lead to speculate that the asymptotic
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variance under strong disorder is obtained under diffusive scaling by
√
n precisely

as

σ2(β) = 2ββc − β2
c

β2
, β ≥ βc.

(To avoid potential confusion, let us mention that other forms of polymer scalings

appear in the recent probability literature under which the polymer is referred

to as “superdiffusive”even in the context of weak disorder; e.g., in reference to

wandering exponents in [4].) In particular this formula continuously extends the

weak disorder variance σ2(β) ≡ 1, β < βc, across β = βc. In any case, this quantity

is a basic parameter of the rigorously proven limit F (r).
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3 Simple Branching Random Walk and an Associated Tree

Polymer

3.1 Introduction

In this chapter we present results for the simple branching random walk and an

associated tree polymer model. The simple branching random walk is a discrete

time, discrete space branching random walk on the space N0 ∶= {0,1,2, . . .} of non-

negative integers. A single particle is initially at zero, and at each time step a

deterministic number of particles b ∈ {2,3, . . .} is generated per particle. b is fixed

throughout the process. Each particle moves independently, either remaining at

its parent’s location with probability q, or moving right one unit with probability

p = 1 − q.

Denote by Wn,k the number of particles (walkers) at location k at time n. The

evolution of the distribution (counts) of particles Wn ∶= {Wn,k ∶ k = 0,1, . . . , n}, n =

0,1,2, . . . , can be described by the following simple recursion. Suppose that for

each n ≥ 0, Yn+1 = {Yn+1,k ∶ k = 1,2, . . .}, and Y′
n+1 = {Y ′

n+1,k ∶ k = 1,2, . . .} denote

mutually independent i.i.d. sequences of Bin(2,q), and Bin(2,p), respectively, dis-

tributed random variables and independent of Wn. Then, letting W0,0 = 1, and
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making the the convention that Wn,−1 ∶= 0 for any n, one has

Wn+1,k =
bWn,k

∑
j=1

Yn+1,j +
bWn,k−1

∑
j=1

Y ′
n+1,j. (3.1.1)

Notice that in the case p = q = 1/2, letting wn+1 = b−(n+1)Wn+1 the prediction

ŵn+1,k = E(wn+1,k∣wn,k ∶ k = 0,1, . . . , n) satisfies

ŵn+1,k = wn,k +wn,k−1. (3.1.2)

More generally, it also follows easily for any n, b ≥ 2, p ∈ [0,1], that the expected

value of the random probability distribution Qn ∶= {wn,k ≡ Wn,k

bn ∶ k = 0,1, . . . n},

is a (deterministic) binomial distribution with parameters n, p, not depending on

b ≥ 2. Building on the familiar triangle recursion

(n + 1

k
) = (n

k
) + ( n

k − 1
) (3.1.3)

for the binomial coefficients, (3.1.2) provides an interesting version of a noisy Pas-

cal’s triangle (SPT) property for the (normalized) numbers of branching random

walkers.

The motivation for this chapter is based on connections of the simple branching

random walk with tree polymers and multiplicative cascades. Such connections are

generally well-known, but this particular choice has virtues that may be useful in

efforts to understand effects of disorder. To set this up will require a minimal

amount of notation and a few basic facts and results about tree polymers.
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For the context of tree polymers we fix b = 2. Denote a directed binary (ge-

nealogical) tree by T = ⋃∞
n=0{−1,1}n. Define the boundary of T by ∂T = {−1,1}N,

with the product topology. An ∞-tree path is denoted by s = (s1, s2, . . .) ∈ ∂T . We

will also refer to finite tree paths s = (s1, . . . , sn) ∈ T /{0} of length ∣s∣ = n, and for

s = (s1, s2, . . .) ∈ ∂T , we use the notation s∣n ∶= (s1, s2, . . . , sn), read “s restricted

to n”, to truncate.

We will define a sequence of probability measures for ∞-tree paths in ∂T which

are dependent on the realization of a random environment, defined on the vertices

in T by a collection {Xv ∶ v ∈ T} of i.i.d., mean one, strictly positive random

variables on a probability space (Ω,F , P ). Denote by X a generic random vari-

able having the common distribution of each Xv; X is referred to as the polymer

weights. The polymer probability measures are defined with respect to the infi-

nite product measure λ(ds) = (1
2δ+(ds) +

1
2δ−(ds))

N
on (∂T,B), by the sequence of

Radon-Nikodym derivatives given by

dprobn
dλ

(s) = Z−1
n

n

∏
j=1

Xs∣j,

where the partition function Zn normalizes to a probability by

Zn = ∫
∂T

n

∏
j=1

Xs∣jλ(ds) = ∑
∣s∣=n

n

∏
j=1

Xs∣j2
−n.

The sequence of probability measures probn(ds) is called the tree polymer on

(∂T,B).

The specific model to be analyzed in the present chapter is the tree polymer
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defined by path weights distributed as

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eβ with probability pβ = 1
1+eβ

e−β with probability qβ = eβ

1+eβ

(3.1.4)

Here β is a fixed real number parameter but, since X is invariant under β → −β,

there is no loss of generality in restricting attention to β ≥ 0. The partition function

Zn of the tree polymer with this choice of polymer weights is related to the simple

branching random walk Wn = {Wn,k ∶ k = 0,1, . . . , n}, n ≥ 0, with probabilities

p = pβ ≤ 1/2 and q = qβ ≥ 1/2 by the following proposition whose verification is left

to the reader.

Proposition 3.1.1. For β ∈ R and the polymer weight (3.1.4), one has for any

n ≥ 0 that

probn(ds) =W −1
n e2βHn(s)λ(ds),

where Hn(s) = #{i ∈ {1, . . . , n} ∶ X(s∣i) = eβ} is the position of the walker defined

by genealogy s at time n, and

Wn =
n

∑
k=0

Wn,ke
2βk = 2neβnZn.

The notions of weak disorder and strong disorder, e.g., see Bolthausen [13],

provide a well-known dichotomy between tree polymer environments. To describe

them, first note that it is easily verified that the sequence of partition functions

Z1, Z2, . . . is a positive martingale, so by martingale convergence the limiting ran-
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dom variable Z∞ ∶= limn→∞Zn exists a.s. in (Ω,F , P ). By positivity of the envi-

ronment, [Z∞ = 0] is a tail event, so by Kolmogorov’s zero-one law, P (Z∞ = 0)

must equal zero or one. Kahane and Peyrière [26] for multiplicative cascades, and

(independently) Biggins [11] for branching random walks, established the following

dichotomy:

P (Z∞ > 0) = 1 ⇐⇒ EX lnX < ln 2

P (Z∞ = 0) = 1 ⇐⇒ EX lnX ≥ ln 2.

In the first case where [Z∞ > 0] a.s., the environment is said to be in a state of

weak disorder, whereas if [Z∞ = 0] a.s., the environment is in a state of strong

disorder. Note that the deterministic environment X ≡ 1 a.s., i.e., β = 0, can be re-

garded informally as the “weakest” of the weak disorder regimes. The tree polymer

paths in this case are just the simple symmetric random walk paths distributed as

probn(ds) ≡ λ(ds).

Remark 3.1.2. As a matter of terminology, multiplicative cascades are said to

survive or die out according to whether the martingale limit Z∞ is positive or not.

For branching random walks, the case of critical strong disorder EX lnX = ln b is

referred to as the boundary case.

In general one may view the selection of a (finite) path S of length n from

probn(ds) as follows: Let Pn,j denote the (random) collection of all branching

random walk paths that end at j at time n, for j = 0,1, . . . , n. Select the position

Hn(S) = j with probability Wn,je2βj/Wn, j = 0,1,2, . . . , n and then, given Hn(S) =
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j, pick a path S = s from Pn,j uniformly with probability 1/Wn,j.

The disorder of the tree polymer defined by (3.1.4) is easily computed as

EX lnX = β(1 − 2pβ) = β tanh(β
2
). (3.1.5)

In particular, there is a critical value 0 < βc < ∞ such that weak disorder occurs

for 0 ≤ β < βc and strong disorder for β ≥ βc ≈ 1.25.

While disorder type has obvious consequences for the asymptotic behavior of

the partition functions Zn, and polymer path distributions, see [2], [21], [46], [24],

for example, one of the main results of this chapter show that it is of no consequence

to an almost sure central limit theorem approximation to the (normalized) random

probability distribution Qn of walkers.

The closest work to that presented in this chapter that we know is that of

Grill [19] establishing the almost sure connectivity of the support of the sim-

ple symmetric branching random walk, i.e., p = 1/2 with b > 2, (supercritical

branching). In fact [19] permits a random offspring distribution, so long as the

genealogy is supercritical as a Galton-Watson branching process. In the context

of multiplicative cascades one may check that for p = 1/2 and b > 2, the positive

martingales Mn(λ) = ( b2)−n(1 + eλ)−n∑
n
k=0 e

λkWn,k have the survival property that

Mn(λ)→M∞(λ) > 0 a.s. for any choice of λ ∈ R, or ‘weak disorder’ property.
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3.2 The Support of Z

In [19] the connectivity of the support of the simple (symmetric) branching random

walk is established. In this section we provide an extension to asymmetric simple

branching random walk. In particular we consider a (deterministic) branching

number b ≥ 3 and p ≠ 1/2, as [19] covers the case p = 1/2. While this extends

to supercritical Galton-Watson trees with offspring distribution having mean b,

treatment of this generality only complicates the notation for the purposes here.

The technique is to exploit the recursive properties of the branching random

walk in ways similar to that of [19], and others. Using the notation from [19],

define Kn ∶= inf{k ∶Wn,k > 0} and Ln ∶= inf{` ∶Wn,n−` > 0}. Monotonicity in n over

the sets on which the infimum is taken implies that both limits

K = lim
n→∞

Kn and L = lim
n→∞

Ln

exist, but may be infinite. In [19] it is observed that by symmetry (p = q = 1/2),

Kn and Ln have the same distribution, and therefore both K and L are a.s. finite

since extinction of the genealogical tree is impossible. In fact, it follows from

standard results on the position of the rightmost particle, e.g., see [11], [27], [20]

that limnLn = ∞ a.s. for β ≠ 0, so that L = ∞ in the non-symmetric case.

Nonetheless, as we will now show, one may still obtain the a.s. connectivity of the

support as follows.

Theorem 3.2.1. Suppose p ∈ (0,1) and max{p, q} < αb ∶= b−1

b−1+b
1
b

. Then almost
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surely, eventually,

{k ∶Wn,k > 0} = [Kn, n −Ln].

Remark 3.2.2. Note the hypothesis max{p, q} < αb implies b ≥ 3 since α2 =
√

2 −

1 < 1
2 . For b ≥ 3, one can easily verify that 1 − αb > 1

b , so max{p, q} < αb also

implies min{bp, bq} > 1. As in [19], both the number of particles at zero and

the number of particles at the rightmost possible location n in generation n are

supercritical Galton-Watson branching processes. In the context of multiplicative

cascades (3.1.4) one has EX lnX = βeβpβ − βe−βqβ = β(qβ − pβ) < β < ln b, since

b/(1 + eβ) > 1. That is, the cascade survives, or in the language of polymers, the

disorder is weak. The extent of connectivity with respect to the full range of weak

disorder and strong disorder remains open.

We begin with some lemmas.

Define, as in [19], pn,k = P(Wn,k = 0), and qn,k = P(Wn,j = 0 for all j ≤ k). Let

F (z) denote the generating function of the offspring distribution. By a well-known

recursion, also used in [19], we have

pn+1,k = F (qpn,k + ppn,k−1) (3.2.1)

and the same recursion holds for the probabilities {qn,k}.

Lemma 3.2.3 (Spatial Unimodality). For any p ∈ (0,1) and any integer n ≥ 2,

there exists an integer kn,0 < kn < n, satisfying

pn,0 ≥ . . . ≥ pn,kn ≤ . . . ≤ pn,n. (3.2.2)
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The sequence {kn} is non-decreasing.

Proof. For any generating function F (z), one easily computes p2,0 = F (qF (p)+p),

p2,1 = F (qF (p)+pF (q)), and p2,2 = F (q +pF (q)). Since F (z) ∈ (0,1) for z ∈ (0,1),

we obtain p2,0 ≥ p2,1 ≤ p2,2.

Now suppose (3.2.2) holds for an arbitrary integer n ≥ 2 with associated location

kn. The recursion (3.2.1) immediately implies both

pn+1,0 ≥ . . . ≥ pn+1,kn and pn+1,kn+1 ≤ . . . ≤ pn+1,n+1.

If pn+1,kn ≥ pn+1,kn+1, set kn+1 = kn + 1. Otherwise set kn+1 = kn. The result follows

by induction.

Lemma 3.2.4 (Eventual Temporal Monotonicity). Let p ∈ (0,1). For each integer

k, there exists an integer n0(k) depending on k such that pn,k is non-decreasing in

n for n ≥ n0(k).

Proof. Since pn,−1 = 1 for any n ≥ 0, it follows immediately from the recursion

(3.2.1) that p0,0 ≤ p1,0 ≤ p2,0 ≤ . . .. Moreover, if n0(k) is such that pn0(k),k ≤

pn0(k)+1,k ≤ . . . for a given k, and there exists some n0(k + 1) ≥ n0(k) such that

pn0(k+1),k+1 ≤ pn0(k+1)+1,k+1, then (3.2.1) also implies pn0(k+1),k+1 ≤ pn0(k+1)+1,k+1 ≤ . . ..

This will establish the result by induction.

We now show that the required time n0(k + 1) exists. If not, then there is

a k and a time n0(k) such that pn0(k),k+1 > pn0(k)+1,k+1 > pn0(k)+2,k+1 > . . . and

pn0(k),k ≤ pn0(k)+1,k ≤ . . .. By monotonicity, pk ∶= limn→∞ pn,k exists, and therefore
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h(m) ∶= pn0(k)+m,k − pn0(k)+m−1,k ↓ 0 as m→∞. Then for m ≥ 2,

pn0(k)+m,k+1 = F (qpn0(k)+m−1,k+1 + ppn0(k)+m−1,k)

< F (qpn0(k)+m−2,k+1 + ppn0(k)+m−2,k + ph(m − 1))

= pn0(k)+m−1,k+1 + [F (qpn0(k)+m−2,k+1 + ppn0(k)+m−2,k + ph(m − 1))

− F (qpn0(k)+m−2,k+1 + ppn0(k)+m−2,k)]

∶= pn0(k)+m−1,k+1 + εm.

Since F is strictly increasing and continuous, the numbers εm are positive and

εm ↓ 0 as m→∞. Thus for sufficiently large m we have pn0(k)+m,k+1 ≤ pn0(k)+m−1,k+1,

contrary to hypothesis.

The following result is not used in the proof of Theorem 3.2.1, but is recorded

for possible independent value.

Proposition 3.2.5 (Infinite Monotone Sequences). Let p ∈ (0,1) and n ≥ 2. Let

kn be the integer obtained from Lemma 3.2.3. Then there exists a minimal non-

negative integer m such that pn+m,kn ≥ pn+m,kn+1.

Proof. If kn+1 = kn, then m = 0.

By Lemma 3.2.4 there is an integer ñ = n0(kn) such that pñ,kn ≤ pñ+1,kn ≤

pñ+2,kn ≤ . . .. If there is a non-negative integer n′ ≤ ñ such that pn+n′,kn ≥ pn+n′,kn+1,

then m is the smallest such integer.
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Otherwise, we can find a positive integer m′ such that

pn+n′+m̃,kn < pn+n′+m̃,kn+1 for m̃ = 1, . . . ,m′. (3.2.3)

Applying the recursion (3.2.1) repeatedly, using (3.2.3), and applying properties

of generating functions, we obtain

pn+n′+m′,kn+1 = F (qpn+n′+m′−1,kn+1 + ppn+n′+m′−1,kn)

< F (pn+n′+m′−1,kn+1)

< . . .

< F (m′)(pn+n′,kn+1).

For sufficiently large m′, one therefore obtains

pn+n′+m′,kn+1 − pn+n′+m′,kn < F (m′)(pn+n′,kn+1) − pn+n′,kn ≤ 0. (3.2.4)

Thus the set of all possible integers m′ satisfying (3.2.3) must be finite. Denoting

the largest such integer by m̃, we obtain m = ñ + m̃.

Proof of Theorem 3.2.1. We first prove the following bound: Suppose n ≥ 2 and

0 ≤ k ≤ kn, where {kn} are the locations obtained from Lemma 3.2.3. Then there

is a constant ρ < 1 such that

pn,k − qn,k ≤ ρn.

Define dn,k = pn,k − qn,k. By the recursion (3.2.1) and the corresponding recursion
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for {qn,k}, we obtain

dn+1,k = F (qpn,k + ppn,k−1) − F (qqn,k + pqn,k−1).

The mean value theorem produces a z for which

dn+1,k = F ′(z)(qdn,k + pdn,k−1), qqn,k + pqn,k−1 ≤ z ≤ qpn,k + ppn,k−1.

Using Lemmas 3.2.3 and 3.2.4, noting in particular that n0(0) = 0 by the first part

of the proof of Lemma 3.2.4, we have

z ≤ qpn,k + ppn,k−1 ≤ qpn,k−1 + ppn,k−1

= pn,k−1 ≤ pn,0 ≤ p0 ∶= lim
n→∞

pn,0.

The process we consider here has generating function F (z) = zb. By monotonicity

of F ′(z) for positive z, we obtain

dn+1,k ≤ F ′(p0)(qdn,k + pdn,k−1). (3.2.5)

p0 is the extinction probability for the Galton-Watson branching process Wn,0 that

records the number of particles remaining at zero. The probability generating

function for this process is

g(z) = (p + qz)b.

By a well-known result, p0 is the minimum solution of the fixed-point equation
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g(z) = z. By taking the bth root and rearranging, we get the equation

qz − z 1
b + p = 0.

Let y = z 1
b and write the equation in the form

qyb − y + p = 0.

Factoring yields

(y − 1)(qyb−1 + qyb−2 + . . . + qy − p) = 0.

Set the second factor equal to zero and write it in the form

b−1

∑
j=1

yj = p
q
. (3.2.6)

A non-trivial extinction probability p0 exists by supercriticality. (Note that bq > 1

by the remark after the theorem.) Since 0 < p0 < 1 and y = p
1
b
0 (for the root

corresponding to p0), we also have 0 < y < 1. Together with (3.2.6), this gives the

bound

(b − 1)yb−1 < p
q
,

which implies

p0 < ( p

(b − 1)q
)

b
b−1

.
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Using the fact that z ≤ p0 and F ′(z) = bzb−1, we obtain

F ′(z) < b( p

(b − 1)q
)
b

.

One can verify that the right-hand side evaluates to 1 when p = αb and q = 1 − αb.

Thus for q > 1 − αb, one has p < αb and therefore γ1 ∶= F ′(z) < 1.

We now claim that

dn,k ≤
⎛
⎜⎜
⎝

n

k

⎞
⎟⎟
⎠
γn−k1 (3.2.7)

for each fixed k ≤ n and all n. Note that d0,k ≡ 0 for any k. By induction, we have

dn+1,k ≤ γ1(qdn,k + pdn,k−1)

≤ γ1

⎛
⎜⎜
⎝
q

⎛
⎜⎜
⎝

n

k

⎞
⎟⎟
⎠
γn−k1 + p

⎛
⎜⎜
⎝

n

k − 1

⎞
⎟⎟
⎠
γn−k+1

1

⎞
⎟⎟
⎠

≤ γ1

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

n

k

⎞
⎟⎟
⎠
γn−k1 +

⎛
⎜⎜
⎝

n

k − 1

⎞
⎟⎟
⎠
γn−k1

⎞
⎟⎟
⎠

= γn+1−k
1

⎛
⎜⎜
⎝

n + 1

k

⎞
⎟⎟
⎠
.

We used the fact that 0 < γ1, p, q < 1 to drop those factors in the third line; a

standard identity for binomial coefficients gives the fourth.

The theorem can now be established essentially using arguments in [19], which

we present here (with appropriate modifications) for completeness.
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By (3.2.7), we can find α > 0 and γ2 < 1 such that for k < αn,

dn,k ≤ γn2 .

For αn ≤ k ≤ kn, iterate to obtain

pn,k = (qpn−1,k + ppn−1,k−1)b ≤ (pn−1,k−1)b ≤ (pn−k,0)bk ≤ pbk0 ≤ pbαn0 .

Thus for αn ≤ k ≤ kn we have

dn,k ≤ pn,k ≤ γn3 ,

where γ3 ∶= pbα0 < 1. Hence we may take ρ = max{γ2, γ3} to conclude dn,k =

pn,k − qn,k ≤ ρn for n ≥ 2 and 0 ≤ k ≤ kn.

We now use this bound to complete the proof. Let An denote the (possibly

null) event that Wn,k = 0 for some k satisfying Kn ≤ k ≤ kn. In probability, An is

equal to the event Bn that Wn,k = 0 and Wn,k−1 > 0 for some k satisfying 0 ≤ k ≤ kn.

Thus

P(An) = P(Bn) ≤ ∑
0≤k≤kn

(pn,k − qn,k) ≤ nρn.

This implies that ∑n P(An) <∞, so by Borel-Cantelli I P(An i.o.) = 0.

We have shown that [Kn, kn] is a.s eventually occupied. By the remark after

the statement of the theorem, bp > 1. Considering the process in which the roles of

p and q are reversed, the corresponding process recording the number of particles
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remaining at zero is also supercritical. The left-most occupied position of this

process is Ln, and n−Ln is the right-most occupied position in the original process.

Moreover, the two-sided monotone property in Lemma 3.2.3 also holds for this

process: the two sides reverse roles, and the central locations {kn} are maintained.

The proof that [Kn, kn] is a.s. eventually occupied can therefore be repeated

(essentially) to conclude that [kn, n −Ln] is also a.s. eventually occupied.

3.3 A Central Limit Theorem

The goal of this section is to prove a CLT for the random distributions Qn. To

this end we introduce the following notation for the moment-generating functions:

Q̂n(t) ∶=
n

∑
k=0

ekt
Wn,k

bn
, t ∈ R.

Theorem 3.3.1. For any p ∈ (0,1), there is a t-neighborhood of the origin such

that, P -almost surely,

e−nptQ̂n (
t

√
npq

)Ð→ e
t2

2 .

That is, the distributions Qn, centered and scaled, converge weakly to to a standard

normal distribution with P -probability one.

Remark 3.3.2. The moment-generating function of the binomial distribution with

parameters n and p is mn(t) = ∑n
k=0 e

kt(n
k
)pkqn−k. The usual central limit theorem
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may be expressed accordingly as

e−nptmn (
t

√
npq

)Ð→ e
t2

2

and clearly holds for the expected polymer (i.e., annealed model).

We now define

Mn(t) ∶=
Q̂n(t)

(q + pet)n
.

It will be useful to write Q̂n in the form

Q̂n(t) =Mn(t)(q + pet)n.

The following proposition is easily checked and left to the reader.

Proposition 3.3.3. For any t ∈ R,

1. Mn(t) is a mean-one non-negative martingale with respect to {Fn}, and

2. M ′
n(t) is a mean-zero martingale with respect to {Fn}.

Since Mn(t) is non-negative for each t, it converges a.s. and for each t to a

non-negative random variable, say M∞(t). If Mn(t) is also uniformly integrable,

then by a standard result (see for example Theorem 3.5 of [12]) we conclude that

M∞(t) is integrable and in fact

1 ≡ EMn(t)Ð→ EM∞(t),
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so that EM∞(t) = 1.

We now prove the following sufficient condition for uniform integrability of

Mn(t).

Theorem 3.3.4. For any 0 ≤ p ≤ 1, supn ∣∣Mn(t)∣∣L2(Ω) <∞ for all t in a neighbor-

hood of the origin.

Proving the theorem requires analysis of the cross-moments E[Wn,kWn,jb−2n],

which we carry out in the following lemmas. For convenience we introduce the

following notations:

1. We define

µ
(n)
kj ∶= E[Wn,kWn,jb

−2n].

Note that we clearly have symmetry in µ
(n)
kj : µ

(n)
k,j = µ

(n)
j,k .

2. If g is any function on N0 ×N0, then let

Bg(k, j) ∶= Eg(Kk,Jj) ≡ q2g(k, j)+qpg(k−1, j)+pqg(k, j−1)+p2g(k−1, j−1)

denote the induced “branched average” of g with respect to the indicated

distribution of the pair of random variables (Kk,Jj), k, j ≥ 0.

3. We use the notation b(k;n, p) ∶= (n
k
)pkqn−k for binomial probabilities and we

define

hn(k, j) ∶= b(k;n, p)b(j;n, p). (3.3.1)

It is convenient to define b(k;n, p) = 0 for k < 0 and k > n.
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We begin by developing a recursive formula for the cross-moments µ
(n)
kj via

µ
(n)
kj = E[E(Wn,kWn,jb

−2n∣Fn−1)].

Considering the cases k = j, ∣k − j∣ = 1, and ∣k − j∣ ≥ 2 separately leads to the

following lemma.

Lemma 3.3.5. Let µn denote cross moments µ
(n)
kj as a function of k, j. For all

n ≥ 1 and all k, j ∈ N0,

µ
(n)
kj = Bµn−1(k, j) + fn(k, j)

where

fn(k, j) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b−npq(b(k;n − 1, p) + b(k − 1;n − 1, p)) if k = j

−b−npqb(k ∧ j;n − 1, p) if ∣k − j∣ = 1

0 if ∣k − j∣ ≥ 2.

Proof. Case 1. Assume ∣k − j∣ ≥ 2. In this case Wn,k and Wn,j are conditionally

independent given Fn−1, since particle displacements per time step are at most one
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unit. Thus

E[Wn,kWn,jb
−2n∣Fn−1] = b−2nE[Wn,k∣Fn−1]E[Wn,k∣Fn−1]

= b−2n(bqWn−1,k + bpWn−1,k−1)(bqWn−1,j + bpWn−1,j−1)

= b−2(n−1)(q2Wn−1,kWn−1,j + qpWn−1,kWn−1,j−

+pqWn−1,k−1Wn−1,j + p2Wn−1,k−1Wn−1,j−1).

Then

µ
(n)
kj = E[E[Wn,kWn,jb

−2n∣Fn−1]] = Bµn−1(k, j).

Case 2. Let ∣k − j∣ = 1, k ≥ 1, and suppose without loss of generality that

j = k−1. Let Y1, Y2, . . . be i.i.d. b(1, q) random variables and let Y ′
1 , Y

′
2 , . . . be i.i.d.

b(1, p) random variables that are independent of the variables {Yi}. Then Wn,k−1

can be expressed as

Wn,k−1 =
bWn−1,k−1

∑
i=1

Yi +
bWn−1,k−2

∑
r=1

Y ′
r .

Unlike the previous case, Wn,k and Wn,k−1 are not conditionally independent. How-

ever, the number of particles ζ(n, k) displaced rightward to k in the time step n−1

to n is related to the number remaining at k − 1 in the same time step by the

relation

ζ(n, k) = bWn−1,k−1 −
bWn−1,k−1

∑
i=1

Yi.

Suppose Y ′′
s are i.i.d. b(1, q) random variables that are independent of {Yi} and
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{Y ′
r }. Then we can express

Wn,k =
bWn−1,k

∑
s=1

Y ′′
s + ζ(n, k).

The product Wn,kWn,k−1 can then be expressed as

Wn,kWn,k−1 =
bWn−1,k−1

∑
i=1

bWn−1,k

∑
s=1

YiY
′′
s + bWn−1,k−1

bWn−1,k−1

∑
i=1

Yi

−
bWn−1,k−1

∑
i=1

Y 2
i − 2∑∑i1<i2Yi1Yi2 +

bWn−1,k−2

∑
r=1

bWn−1,k

∑
s=1

Y ′
rY

′′
s

+bWn−1,k−1

bWn−1,k−2

∑
r=1

Y ′
r −

bWn−1,k−2

∑
r=1

bWn−1,k−1

∑
i=1

Y ′
rYi.

Taking conditional expectation with respect to Fn−1 gives

E[Wn,kWn,k−1∣Fn−1] = b2q2Wn−1,k−1Wn−1,k + b2qZ2
n−1,k−1 − bqWn−1,k−1

−q2(b2Z2
n−1,k−1 − bWn−1,k−1) + b2pqWn−1,k−2Wn−1,k

+b2pWn−1,k−1Wn−1,k−2 − b2pqWn−1,k−2Wn−1,k−1

= b2q2Wn−1,kWn−1,k−1 + b2pqZ2
n−1,k−1 + b2pqWn−1,kWn−1,k−2

b2p2Wn−1,k−1Wn−1,k−2 − bpqWn−1,k−1.

Finally, multiply by b−2n and take expectations to get

µ
(n)
k,k−1 = Bµn−1(k, k − 1) − b−npqb(k − 1;n − 1, p).

Case 3. Suppose k = j ≥ 1. Let the random variables {Yi} and {Y ′
r } be defined
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as in case 2. Write Wn,k as

Wn,k =
bWn−1,k

∑
i=1

Yi +
bWn−1,k−1

∑
r=1

Y ′
r .

Squaring this expression gives

W 2
n,k =

bWn−1,k

∑
i=1

Y 2
i + 2∑∑i1<i2Yi1Yi2 + 2

bWn−1,k

∑
i=1

bWn−1,k−1

∑
r=1

YiY
′
r

+
bWn−1,k−1

∑
r=1

(Y ′
r )2 + 2∑∑r1<r2Y

′
r1Y

′
r2 .

Taking conditional expectations with respect to Fn−1 gives

E[W 2
n,k∣Fn−1] = bqWn−1,k + (b2W 2

n−1,k − bWn−1,k)q2 + 2b2qpWn−1,kZn−1,k−1

+bpWn−1,k−1 + (b2W 2
n−1,k−1 − bWn−1,k−1)p2.

Multiply by b−2n, take expectations and apply the symmetry µ
(n)
k,k−1 = µ

(n)
k−1,k to get

µ
(n)
kk = Bµn−1(k, k) + b−n(q − q2)b(k;n − 1, p) + b−n(p − p2)b(k − 1;n − 1, p).

Since q − q2 = q(1 − q) = qp and, similarly, p − p2 = pq, we have

µ
(n)
kk = Bµn−1(k, k) + b−npq(b(k;n − 1, p) + b(k − 1;n − 1, p)).

This is the formula claimed for k ≥ 1. When k = 0, b(k − 1;n − 1, p) = 0, so the

formula also holds for k = 0.
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The recursions established in Lemma 3.3.5 lead to a general formula for the

cross-moments µ
(n)
kj as follows.

Lemma 3.3.6. For any n ≥ 0 and any k, j ∈ N0, we have

µ
(n)
kj = hn(k, j) + γ(n)

kj ,

where

γ
(n)
kj = Cov(Wn,kb

−n,Wn,jb
−n)

=
n−1

∑
m=0

m

∑
l1=0

m

∑
l2=0

hm(l1, l2)fn−m(k − l1, j − l2)

=
n−1

∑
m=0

fn−m ∗ hm(k, j),

for the functions fn defined in Lemma 3.3.5, hn at (3.3.1), and provided the middle

sum is defined to be zero when n = 0.

Proof of Lemma 3.7. The proof is by induction on n, making repeated use of the

Pascal triangle recursion (3.1.3) for binomial coefficients. The base cases are trivial,

since for n = 0 we have, by definition, µ
(0)
kj = 1 if k = j = 0 and µ

(0)
kj = 0 otherwise,

and these also hold for the claimed formula.

Suppose n ≥ 1 and assume the formula holds for n − 1 and all k, j ∈ N0. Let γ

denote the function of n, k, j with values γ
(n)
kj . By Lemma 3.3.5,

µ
(n)
kj = Bµn−1(k, j) + fn(k, j)

= Bhn−1(k, j) +Bγn−1(k, j) + fn(k, j).



43

One may check that the functions hn have the following property with respect to

branched averaging:

hn(k, j) = Bhn−1(k, j) (3.3.2)

This accounts for the first term in the claimed formula. Using this and some

reindexing in l1 and l2, one has

Bγn−1(k, j) =
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

q2hm(l1 + 1, l2 + 1)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

+
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

qphm(l1, l2 + 1)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

+
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

pqhm(l1 + 1, l2)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

+
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

p2hm(l1, l2)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

=
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

Bhm(l1 + 1, l2 + 1)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

=
n−2

∑
m=0

m

∑
l1=−1

m

∑
l2=−1

hm+1(l1 + 1, l2 + 1)fn−1−(m+1)(k − (l1 + 1), j − (l2 + 1))

= γ
(n)
kj − fn(k, j).

The asserted formula now follows immediately.

The convolution representation of the covariances will be particularly useful for

the proof of Theorem 3.3.4, when expressed in terms of bivariate-moment gener-

ating functions, denoted by ĥm(s, t) and f̂n−m(s, t), using the following lemma.
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Lemma 3.3.7.

ĥm(s, t) = (q + pes)m(q + pet)m

f̂n−m(s, t) = pq(1 − es − et + es+t)b−(n−m)(q + pes+t)n−m−1

+q(e−(s+t) − 1)b−(n−m)(pe2t)n−m.

Proof. For ĥm(s, t) = ∑m
k,j=0 e

ksejthm(k, j) we have

m

∑
k,j=0

eksejthm(k, j) = (
m

∑
k=0

eksb(k;m))(
m

∑
k=0

ektb(k;m)) = (q + pes)m(q + pet)m.

For the computation of f̂n−m(s, t) we we take advantage of the fact that it is

supported on the set

Ln−m ∶= {(k, k), (k + 1, k), (k, k + 1) ∶ k = 0,1, . . . , n −m − 1}⋃{(n −m,n −m)}.

Then, with a little algebra, one has

f̂n−m(s, t) =
n−m−1

∑
k,j=0

eksejtfn−m(k, j) + e(n−m)(s+t)fn−m(n −m,n −m)

=
n−m
∑
k=0

ek(s+t)fn−m(k, k) +
n−m−1

∑
k=0

etek(s+t)fn−m(k, k + 1)

+
n−m−1

∑
k=0

esek(s+t)fn−m(k + 1, k) + e(n−m)(s+t)fn−m(n −m,n −m)

= pq(1 − es − et + es+t)b−(n−m)(q + pes+t)n−m−1

+q(e−(s+t) − 1)b−(n−m)(pe2t)n−m.
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Proof of Theorem 3.3.4. Reverse the order of summation and apply properties of

convolution to obtain

∣∣Mn(t)∣∣2L2(Ω) = EQ̂2
n(t)

(q + pet)2n

=
∑n
k,j=0 e

(k+j)thn(k, j)
(q + pet)2n

+
∑n
k,j=0 e

(k+j)tγ
(n)
kj

(q + pet)2n

= (∑n
k=0 e

ktb(k;n))2

(q + pet)2n
+
∑n
k,j=0∑n−1

m=0 e
(k+j)tfn−m ∗ hm(k, j)

(q + pet)2n

= 1 + ∑
n−1
m=0

̂fn−m ∗ hm(t, t)
(q + pet)2n

= 1 + ∑
n−1
m=0 f̂n−m(t, t)ĥm(t, t)

(q + pet)2n
.

From Lemma 3.3.7 we have

ĥm(t, t) = (q + pet)2m

f̂n−m(t, t) = pq(1 − et)2b−(n−m)(q + pe2t)n−m−1 + q(e−2t − 1)b−(n−m)(pe2t)n−m.

Substituting these transforms into the previous expression gives

∣∣Mn(t)∣∣2L2(Ω) = 1 + pq(1 − e
t)2

q + pe2t

n−1

∑
m=0

( q + pe2t

b(q + pet)2
)
n−m

+ q(e−2t − 1)
n−1

∑
m=0

( pe2t

b(q + pet)2
)
n−m

< 1 +C ′
∞
∑
m=1

rm +C ′′
∞
∑
m=1

( pe2t

b(q + pet)2
)
m

,
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where r ∶= q+pe2t
b(q+pet)2 , C ′ ∶= supt {

pq(1−et)2
q+pe2t }, and C ′′ ∶= supt {q(e−2t − 1)}. C ′ and

C ′′ are both finite for t in a bounded interval. Since pe2t

b(q+pet)2 < r, we will have

∣∣Mn(t)∣∣2L2(Ω) < ∞ if r < 1 for t restricted to a bounded interval. If p = 1 then

r = 1
b < 1, and we may restrict t to any bounded neighborhood of the origin.

Suppose p < 1. Let c be a positive integer and consider t in the interval [−2−c,2−c].

Then

r < q + pe−(c−1)

b(q + pe−2−c)2
< 1 − p(1 − e−2−(c−1))

be−2−(c−1)
< e

2−(c−1) + p
b

.

The second inequality holds since (q + pe−2−c)2 > ((q + p)e−2−c)2 = e−2−(c−1) . Since

p < 1 and b ≥ 2, we may choose c sufficiently large so that r < 1. Thus

∣∣Mn(t)∣∣2L2(Ω) < 1 + (C ′ +C ′′)
∞
∑
m=1

rm <∞.

The middle quantity is independent of n, so we obtain supn ∣∣Mn(t)∣∣L2(Ω) <∞.

We now establish a similar bound for the derivative martingale.

Theorem 3.3.8. For any 0 ≤ p ≤ 1, supn ∣∣M ′
n(t)∣∣L2(Ω) <∞ for all t in a neighbor-

hood of the origin.

Proof. Write the derivative martingale in the form

M ′
n(t) =

Q̂′
n(t) − nαQ̂n(t)
(q + pet)n

,
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where α ∶= pet

q+pet . Then

E(M ′
n(t))2 = E(Q̂′

n(t))2 − 2nαEQ̂′
n(t)Q̂n(t) + n2α2E(Q̂n(t))2

(q + pet)2n
.

To compute this expectation we use the bivariate moment-generating function

̂fn−m ∗ hm(s, t) =
n

∑
k,j=0

eksejtfn−m ∗ hm(k, j) = f̂n−m(s, t)ĥm(s, t).

By straightforward computations similar to those used in the proof of the previous

theorem, we have the following:

E(Q̂′
n(t))2 = n2α2(q + pet)2n +

n−1

∑
m=0

∂2

∂s∂t
̂fn−m ∗ hm(t, t)

EQ̂′
n(t)Q̂n(t) = nα(q + pet)2n +

n−1

∑
m=0

∂

∂s
̂fn−m ∗ hm(t, t)

E(Q̂n(t))2 = (q + pet)2n +
n−1

∑
m=0

̂fn−m ∗ hm(t, t)

Now, since

n2α2(q + pet)2n − 2nα(nα(q + pet)2n) + n2α2(q + pet)2n = 0,

we can express E(M ′
n(t))2 as

∑n−1
m=0 ( ∂2

∂s∂t
̂fn−m ∗ hm(t, t) − 2nα ∂

∂s
̂fn−m ∗ hm(t, t) + n2α2 ̂fn−m ∗ hm(t, t))

(q + pet)2n
.
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Applying properties of convolution and differentiating,

∂2

∂s∂t
̂fn−m ∗ hm − 2nα

∂

∂s
̂fn−m ∗ hm + n2α2 ̂fn−m ∗ hm

= ∂2f̂n−m
∂s∂t

ĥm + ∂f̂n−m
∂s

∂ĥm
∂t

+ ∂f̂n−m
∂t

∂ĥm
∂s

+ f̂n−m
∂2ĥm
∂s∂t

−2nα
∂fn−m
∂s

ĥm − 2nαf̂n−m
∂ĥm
∂s

+ n2α2f̂n−mĥm.

Let α2 = pe2t

q+pe2t . Computing derivatives and evaluating at (s, t) = (t, t), we obtain

∂2

∂s∂t
̂fn−m ∗ hm(t, t) − 2nα

∂

∂s
̂fn−m ∗ hm(t, t) + n2α2 ̂fn−m ∗ hm(t, t)

= b−(n−m)pq(q + pe2t)n−m−1(q + pet)2m[(1 + e2t) + (2 − 4et + 3e2t)(n −m − 1)α2

+(1 − 2et + e2t)(n −m − 1)(n −m − 2)α2
2

−2(n −m)α(1 − et + e2t) − 2(n −m)α(1 − 2et + e2t)(n −m − 1)α2

+m2α2(1 − 2et + e2t) − 2nmα2(1 − 2et + e2t) + n2α2(1 − 2et + e2t)]

+q(e−2t − 1)b−(n−m)(pe2t)n−m(q + pet)2m[(n −m)2e−2t

+2mα(n −m)e−t +m2α2 − 2nα(n −m)e−t − 2nmα2 + n2α2]

≤ C1(n −m)2b−(n−m)(q + pe2t)n−m(q + pet)2m

+C2(n −m)2b−(n−m)(pe2t)n−m(q + pet)2m,

where C1 ∶= pq((1+2e2t)(1+α2)2+(1−et)2α2)
q+pe2t and C2 ∶= q(e2∣t∣ − 1)(e−t + α)2.
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Finally, we combine these bounds with previously obtained expressions to get

∣∣M ′
n(t)∣∣2L2(Ω)

= E(M ′
n(t))2

=
∑n−1
m=0 ( ∂2

∂s∂t
̂fn−m ∗ hm(t, t) − 2nα ∂

∂s
̂fn−m ∗ hm(t, t) + n2α2 ̂fn−m ∗ hm(t, t))

(q + pet)2n

≤ C1

n−1

∑
m=0

(n −m)2 ( q + pe2t

b(q + pet)2
)
n−m

+C2

n−1

∑
m=0

(n −m)2 ( pe2t

b(q + pet)2
)
n−m

≤ (C1 +C2)
n

∑
m=1

((m 1
m)

2
r)

m

.

As shown in the previous theorem, for each p there is a positive integer c such that

r < 1 whenever t ∈ [−2−c,2−c]. Moreover, C ∶= supt∈[−2−c,2−c]{C1 + C2} < ∞. Since

m
1
m → 1 as m → ∞, there is a fixed positive integer d such that whenever m ≥ d,

we have m
1
m r < 1. Thus we may define r′ = d 1

d r < 1, so that for any t ∈ [−2−c,2−c]

and n > d we have

∣∣M ′
n(t)∣∣2L2(Ω) ≤ C

d−1

∑
m=1

((m 1
m)

2
r)

m

+C
n

∑
m=d

(r′)m <D +C
∞
∑
m=d

(r′)m <∞,

where D ∶= C∑d−1
m=1 ((m

1
m)

2
r)

m

. The number D +C∑∞
m=d(r′)m is independent of

n, so for t ∈ [−2−c,2−c] we have supn ∣∣M ′
n(t)∣∣L2(Ω) <∞.

We can now prove the central limit theorem.

Proof of Theorem 3.3.1. For a given p ∈ (0,1), choose a sufficiently large posi-

tive integer c such that, as established in the previous two theorems, we have
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supn ∣∣Mn(t)∣∣L2(Ω) < ∞ and supn ∣∣M ′
n(t)∣∣L2(Ω) < ∞ for t ∈ [−2−c,2−c]. Then for t

in this interval, the convergence of Mn(t) to M∞(t) is uniform. This implies in

particular that M∞ is P -a.s. continuous at t = 0. Thus we obtain

e−nptQ̂n (
t

√
npq

) =Mn (
t

√
npq

) e−npt (q + pe
t

√
npq )

n

Ð→M∞(0)e t
2

2 = e t
2

2

which suffices to prove the claimed CLT.

Returning to the polymer model, we have shown that in a region of weak dis-

order (see the remark after Theorem 3.2.1), the polymer endpoints do not fracture

in the limit. More precisely, the polymer endpoints are a.s. distributed over a

random interval [Kn, n −Ln] such that each point of the interval contains at least

one particle. Regardless of disorder type, if one suitably centers and scales the dis-

tribution of particles then the asymptotic distribution of particles is a.s standard

normal.

By an application of a now standard result of [11] [27], [20] for branching

random walk, the speed limn→∞Kn/n of the leftmost particle is zero. As for the

rightmost particle, n−Ln, its speed is a.s. determined for β ≠ 0 by the almost sure

limit

lim
n→∞

Ln
n

= 1

1 + eθ∗−β
, (3.3.3)

where θ∗ ≡ θ∗(β) is the unique positive solution to θ∗eθ
∗−β = (1 + eθ∗−β) ln(2qβ(1 +

eθ
∗−β)).

In the case of the simple symmetric random walk with b > 2, the rightmost
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particle travels at unit speed making limn→∞
Ln
n = 0. In fact, as noted at the

outset, Grill [19] shows that Ln → L < ∞ a.s., and that the particles are almost

surely eventually distributed at each point of an interval [K,n −L] in such cases.

Regarding the role of βc in such results, it follows by application of results on

tree polymers [16], [46], that the respective limits

lim
n→∞

ln∑n
k=0Wn,ke2βk

n
and lim

n→∞

ln∑∣s∣=nW
−1
n er∑

n
j=0 sj+2βHn(s)

n
(3.3.4)

exist almost surely, with a distinctive change in structure at β = βc. For example,

the former a.s. limit coincides with the speed of the right-most particle in the case

of strong disorder, illustrating an aspect of polymer localization, and the latter

coincides with the diffusive limit for symmetric random walk in the weak disorder

range of β < βc. General formulae are available for all values of β above and below

criticality for both limits, see [16], and [46], respectively.

Beyond this, such effects of disorder on the support of Wn,k/bn reside in more

detailed analysis of the particle counts Wn,k at the walker positions Hn(s), s ∈

{−1,1}n. In the case of non-lattice branching random walk, results recently ob-

tained in [30] for the case of critical strong disorder, also referred to as the ‘bound-

ary case’ in the branching random walk literature, show that the limiting walker

locations centered at the left most particle comprise a Poisson cluster (decorated)

point process. In this regard, it remains an interesting open problem to determine

the existence of an a.s. weak limit point of the sequence probn(ds) under strong

disorder. See [24] for related results in the case of critical strong disorder.
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4 Branching for a Decision: A Site-Selection Model for Honeybee

Swarms

4.1 Introduction

It has long been observed that honeybees will swarm in the late spring and early

summer. After an existing hive has outgrown itself, the mother queen and about

half the worker bees leave the hive and swarm for the purpose of choosing a new

site [39], [42], employing a small fraction of so-called scout bees (typically several

hundred) to carry out the process [42]. The earliest work on how the swarm goes

about making a decision was done by Lindauer [28],[29]. He observed three basic

elements of the process. First, bees can communicate the quality and location of

a potential site by means of a behavior termed waggle-dancing. Second, bees may

cease to dance for a site they currently favor, switching to a different site after

observing another bee dancing for it. Third, eventually all the bees appear to be

dancing for just a single site. Shortly after this occurs, the swarm flies en masse

to the chosen site. This suggests a certain “democratic” aspect to the process.

Seeley has informally termed the process “Honeybee Democracy,” the title of his

excellent popular work on the subject [38].

Field investigations on the mechanisms of this process continued many decades

later in [39]. In particular, they ruled out a high mortality rate as the primary
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way that bees stop dancing for the sites that are not ultimately chosen, implying

that dancing bees either simply stop dancing or switch and dance for another site.

The tendency of scout bees to stop dancing over time and the capacity to switch

allegiance has also been observed in [37]. Scout bees reduce their waggle-dancing

over time until they are no longer dancing at all, and the reduction, on average,

is linear [37]. Both these mechanisms will be important features of the model to

follow.

The early work of Lindauer seemed to imply that scout bees somehow arrived

at a consensus. Later studies cast doubt on this hypothesis. In [41], four swarms

were presented with five nest-boxes (sites of high and roughly equal quality) and

with only one such box, in paired trials. In the five-box trials, scouts were dispersed

among the five boxes, and the swarm’s decision was significantly delayed compared

to the one-box cases. Also see [40]. Results like these point to an alternative: the

quorum-sensing hypothesis. This asserts that once a sufficient number of scouts are

dancing for some site, the swarm chooses it, even if other scouts are still dancing

for different sites [42]. The model incorporates this hypothesis.

Another well-studied aspect of the site-selection process, although not the focus

here, is the mechanism by which the swarm flies to the chosen site. Only a minority

of the swarm’s population are scouts, yet all the bees in the swarm manage to fly

to the new site. In [3], support is provided for the so-called“vision hypothesis,”

whereby the scouts with information on site-location streak through the swarm in

the direction of the site in order to communicate that information to the other

bees. Strong support for this hypothesis is also found in [36].
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Finally, we mention some of the other modeling approaches that have been

taken for the site-selection process. In [15], the spread of site-information among

bees is modeled with a system of ODEs in a similar manner to the spread of an

infectious disease in a population. Myerscough in [32] developed a Leslie matrix

model in which dances age, reproduce themselves, and die. The model predicts

that the single best site will be found, although observation has shown that this

does not always happen [29], [39]. In [33], an individual-based simulation model is

constructed to explore how tuning various behaviors leads to a workable balance

between speed and accuracy of the decision-making. Another individual-based

model is found in [23], the key feature of which is that bees first attempt to find a

dance to follow, but become scouts if they fail to find one. This allows the swarm

to potentially increase the number of bees looking for new sites if there is a dearth

of high-quality sites known to the swarm. Lastly, in [35], a density-dependent

Markov process models the site-selection. Its main conclusion is that a swarm will

choose the better of two low-quality sites more consistently than the better of two

high-quality sites.

The model presented here is an individual-based model that shares some fea-

tures with standard models for branching processes and the random walk. It is

not a branching random walk, since the usual assumption of i.i.d. displacements

from the parent (dancing bee) is not made. Indeed, the capacity of dancing bees

to switch to a new site after being influenced by the dances of the other bees is a

central part of the model. Crucially, these switching decisions should not depend

on the site for which the bee is currently dancing. Moreover, the tendency of bees
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to eventually stop dancing makes it is necessary to track the time since a bee first

departed at the level of the individual bee.

4.2 General Setup and Assumptions

The following minimal notation will aid in describing the assumptions below:

1. Sites are enumerated 0 < 1 < 2 < . . . < n according to increasing quality, with 0

reserved for bees that are not dancing for a site. The enumeration is merely

for convenience and labeling purposes. The only information conveyed by

being at site of a given value is its quality relative to the other sites; the

value does not indicate its absolute quality nor how much better or worse it

is than the other sites.

2. Time is denoted by t and takes the discrete values 0,1,2, . . ..

3. The number of scouts dancing for site i at time t is denoted by Nt(i).

The model assumptions are now described in detail:

1. Initial exploration distribution: Scout bees in their initial explorations find

a potential site according to a distribution Q0, fixed for each scout and

throughout the process. Q0 is meant to encode the relative difficulty in

finding the various sites. This idealization is probably not too crude, since

the site-selection process occurs over at most several days [42].

2. Quorum-sensing: the site-selection process stops at the time step during

which some site has garnered support greater than or equal to some fixed
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number M . In the event of a tie the higher quality site is selected. This last

rule is of course arbitrary, simply made for convenience.

3. Waggle-dance communication: Site-quality and location is communicated to

other potential dancers in swarm by waggle-dances performed when a scout

returns. Scouts either dance for the found site or not according to its quality

and how many time steps have passed since it first left the swarm. The

quality of each site is a positive integer.

4. Dances cease: Following [39], it is assumed that dancing bees eventually stop

dancing. A scout will dance for a higher-quality site for more time steps than

one of lower-quality. A scout that does not dance for a lower-quality site at a

given time step may still dance for one of higher-quality at a later time step.

5. Random-observation, switching and branching-recruitment: It was observed

in [17] that potential “recruits,” i.e. bees observing dances, will follow a

dance at random. Moreover, a bee currently dancing for some site may

switch allegiance and begin dancing for another [39]. These observations are

incorporated into assumptions about the behavior of scouts and potential

recruits. Let pfollow ∈ [0,1].

(a) With probability pfollow, a returning scout will choose another dancing

bee’s site to investigate. Denote the total number of bees dancing at a

given time step t by Nt, so that Nt = ∑i≠0Nt(i). By another assumption

below, it will always be the case that Nt > 0. At time t, the recruit is
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assumed to randomly select the dance to follow according to the random

distribution

Qt ∶= {pi ∶ pi =
Nt(i)
Nt

, i = 1, . . . , n} .

(b) With probability 1 − pfollow, the returning scout convinces a random

number of new bees (not from the population of current dancers) to

investigate her site. The number is determined by a fixed offspring

distribution Doff.

(c) Note: With pfollow = 1, every bee observes another bee at each time step.

With pfollow = 0, a bee never switches allegiances. Intermediate values

of pfollow allow both mechanisms to operate.

6. Scouts per time step: For simplicity, it is assumed that some fixed number c

of scouts embark at each time step.

7. Time-synchronization: Scouts are assumed to explore, dance, and possibly

convince others in a single step. New followers or initial scouts repeat this

in the next step.

4.3 The General Process

The process evolves in discrete time according to the following general construct.

1. At time t = 0, c initial explorers (scouts) independently find sites according

to Q0. Upon returning to the swarm, they dance for the sites they find,

making their information available to other scouts.
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2. At times t ≥ 1, c new scouts are dispatched, in the same manner as at time

t = 0. Dancing scouts examine sites communicated to them in the previous

step and dance for these sites (or not) according to site-quality and the

tendency to cease dancing. Bees determine a site to examine depending on

their status:

(a) Scouts follow the initial observation distribution Q0,

(b) new bees following a dancing bee investigate the “parent bee’s” site,

and

(c) currently dancing bees that switch allegiance choose a site according to

the random distribution Qt.

3. The process continues in this manner until a quorum is reached, i.e. Nt(i) ≥

M for some i and some t, and this t is the smallest t for which this condition

is satisfied.

See Figure 4.1 for a schematic diagram of a single time-step.

4.4 Mathematical Formulation

The purpose of this section is to specify the model precisely. Let n be a positive

integer. Define a stochastic process, the bee process, by

{Bt(r) ∶ r ∈ N, t ∈ N0}
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Original bee dances at time t + 1 if
its new site’s quality is high enough.

Figure 4.1: Schematic diagram of one time-step

on a probability space (Ω,F , P ) taking values in the state space S ∶= N0×{0,1, . . . , n}.

For i ≠ 0, Bt(r) = (t0, i) conveys that the bee labeled r is dancing for site i at time

t, having first embarked at time t0 ≤ t. If bee r has not initially embarked at

time t, then Bt(r) = (0,0). If i = 0 and the scout has embarked by time t, then

Bt(r) = (t0,0). If a bee is at site 0 at any given time, she has either not yet

embarked or will not dance for any site, having first embarked too many steps ago.

Denote the number of scouts that have embarked by time t (inclusive) by η(t).

Suppose c is some positive integer. Initial scouts embark at time t = 0. For t ≥ 1,

the scouts labeled η(t − 1) + 1, . . . , η(t − 1) + c embark at time t.

Let q = (q1, . . . , qn), qk ∈ N, be a vector of positive integers coding the quality of

the sites. For convenience we require q1 ≤ . . . ≤ qn. qk = d means any scout that has

embarked fewer than d steps ago has the capacity to dance for site k. Any scout

that embarked more than max{qk} steps ago will not dance for any site. Suppose
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Q0 = (b1, . . . , bn) denotes the initial exploration distribution, with bi > 0 for all i.

Define for i ≥ 1

Nt(i) =∑
r∈N

1 [Bt(r) = (t0, i) and t0 + qi > t] ,

i.e. Nt(i) is the number of bees dancing for site i at time t. The right-most

condition accounts for the dance-ceasing behavior of individual bees, depending

on when they first embarked.

Let pfollow ∈ [0,1]. Suppose Xt(r) are i.i.d. 0,1-valued random variables,

P (Xt(r) = 0) = pfollow and P (Xt(r) = 1) = 1 − pfollow, which are independent of

all other random variables in this model.

1. If Xt(r) = 1, a given bee r at time t chooses a new site to explore according

to the probabilities pij(t, r) which give the probability that a bee r dancing

for site i at time t dances for site j at time t + 1. Define

pi0(t, r) = 1 if Br(t) = (t0, i) and t0 + qi ≤ t

pij(t, r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bj if Bt(r) = (t,0),

Nt(j)
∑nk=1Nt(k)

if ∑n
k=1Nt(k) > 0 and j ≥ 1

2. If on the other hand Xt(r) = 0, then the bee r at time t convinces dt(r) new

scouts to investigate her site. dt(r) takes values in N0 according to some

common offspring distribution Doff .

Suppose M ∈ N is the quorum-sensing threshold. Define TM = inf{t ∶ Nt(j) ≥

M for some j}. Then the process will terminate at time TM in a decision in favor
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of site j if

j = max
k

{k ∶ NTM (k) ≥M}.

4.5 Reaching a Quorum

This section provides some conditions under which a quorum is guaranteed. Call

a quorum threshold M ≥ 0 attainable if P (Nt(i) ≥ M for some t, i) > 0. The

following result partially characterizes the attainable threshold levels:

Theorem 4.5.1. For the bee process with parameters c, pfollow, offspring distri-

bution Doff , quality vector q = (q1, q2, . . . , qn), and initial observation distribution

Q0:

1. If pfollow = 1, then a threshold M is attainable if and only if M ≤ cmaxi{qi}.

2. If pfollow < 1 and (1 − pfollow)E(Doff) ≤ 1, then thresholds satisfying M ≤

cmaxi{qi} are attainable.

3. If pfollow < 1 and (1−pfollowE(Doff)) > 1, then any threshold M is attainable.

Moreover, in cases one and three,

P (Nt′(i) ≥M for some i and some t′) = 1. (4.5.1)

Proof. For the first statement, suppose k is such that qk = maxi{qi}, i.e. k is the

highest quality site. Denote the set of bees at time t that embarked fewer than

qk steps ago by Rt(k). These are precisely the bees that could dance for site k
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at t, and for any t′ ≥ qk, we clearly have ∣Rt(k)∣ = cqk. Thus M ≤ cmaxi{qi} is

necessary. To see that it is also sufficient, we first show that for some t′ ≥ qk we

have pik(t′, r) > 0 for all bees r ∈ Rt′(k). Initial scouts independently dance for

sites according to Q0, so the probability that no initial explorer dances for site k

for any time step t ≥ qk is clearly zero. Thus, almost surely, there is a t′ ≥ qk such

that at least one scout is dancing for site k at t′, and therefore pik(t′, r) > 0. Since

M ≤ cqk, we have

P (Nt′+1(k) ≥M) ≥ P (Nt′+1(k) = cqk) ≥ pcqkik > 0. (4.5.2)

For the second statement, one may repeat the sufficiency argument above with

pfollowpik in place of pik.

To prove the third statement, consider the following branching process obtained

from the original process: a single initial scout begins dancing for a site i. With

probability 1 − pfollow, this scout convinces some number of other new scouts to

dance for site i according to Doff , or convinces zero new scouts with probability

pfollow. Each new scout independently repeats this process. This is an ordinary

Galton-Watson branching process which is supercritical by hypothesis, so its ex-

tinction probability is less that one. Since each initial scout initiates its own such

branching process independently of all the others, and there are infinitely many

initial scouts, the overall population of dancers survives almost surely, and thus

grows without bound almost surely by standard results on supercritical GW pro-

cesses. It is clear that the original process grows at least as fast as this collection
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of Galton-Watson processes, since all scouts dance for at least one time step in the

original process. Therefore ∑jNt(j)→∞ as t→∞, and since the number of sites

is assumed to be finite, any M is attainable.

(4.5.1) is obvious in the third case. For the first case, independence and an

infinite number of initial scouts guarantee that there are a.s. an infinite number

of time points t′ for which (4.5.2) holds, and the probabilities pik(t′, r) are always

at least (cqk)−1 for r ∈ Rt(k).

4.6 Simulations and Discussion

In this section the factors influencing the swarm decision-making process are ex-

plored using computer simulations. The parameter space is large, and all per-

mutations cannot possibly be explored. Nevertheless, the following scenarios will

illustrate the most important features of the model. The code for the simulation

is recorded in an appendix.

Two basic scenarios and some more specialized simulations are considered.

The quality vector q and initial exploration distribution Q0 are held fixed for

each scenario, since these encode environmental information for the most part.

The other parameters tune the behavioral mechanisms of individual bees. These

will be varied to assess how well the model performs in choosing the best site.

The offspring distribution will be assumed Poisson with parameter λ. Most of

the analysis below deals with the trade-off between speed and accuracy, and the

optimal choice will mostly be achieved by intermediate values of the parameters
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pfollow and the branching parameter λ. It is still useful however to consider the

model for extreme values of these parameters to better understand its behavior.

4.6.1 Scenario 1

The simulated swarm is presented with 4 sites of acceptable quality and a single

higher quality site. A quality vector of q = (10,10,10,10,15) and a uniform initial

exploration distribution are used. We first consider the model for the extremes

pfollow = 0 and pfollow = 1, choosing λ = 1 in the first case. Both are run with c = 3

initial scouts per time step and a quorum threshold of M = 80.

For the model with pfollow = 1, support for the best site quickly builds when

bees stop dancing for the lesser quality sites, and settles at a level just below its

maximum cq5 = 45 (see Figure 4.2). The quorum of M = 80 is not attainable, so a

Figure 4.2: Scenario 1 with pfollow = 1 (best site dotted).
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quorum is never reached. This is the main limitation of the pfollow = 1 case. The

process arrives at a quorum for only a relatively narrow range of quorum values.

For the other extreme with pfollow = 0, bees cannot switch allegiance from one

site to another, and support will tend to build exponentially for all sites when the

parameter λ is large (see Figure 4.3). The process tends to end in a decision for a

Figure 4.3: Scenario 1 with pfollow = 0 and λ = 1 (best site dotted).

random site that gets off to an early lead. Small values of λ that keep a quorum

from being reached before bees stop dancing for inferior states do perform better,

but not optimally.

For the most part, the general behavior of these extreme cases is similar for

all scenarios. It is evident that an effective balance should be sought between the

parameters pfollow and λ. For any pfollow < 1, increasing the branching rate λ will

speed up the process, but λ is not the only parameter that does. Increasing the
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number of scouts c that embark per time step or decreasing the quorum threshold

M will also have this effect. To evaluate the speed versus accuracy trade-off,

the simulation was run 30 times for each pfollow ∈ [0.1,0.9] and λ ∈ [0.1,1], in

increments of 0.05. In some instances, where computation time is an issue, smaller

intervals were used. Quorum thresholds of M = 20,80 and scouts per time step of

c = 3,10 were tested. These choices were made simply to compare the effects of

relatively high and low values of each of these parameters in a manageable way,

and they will suffice to test the model. Both the mean time to quorum and the

proportion of trials for which the best site was selected are considered. Contour

plots display the results, (see Figures 4.4 through 4.11).

Figure 4.4: Scenario 1 best site proportion with M = 20 and c = 3.
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Figure 4.5: Scenario 1 mean time to quorum with M = 20 and c = 3.

Figure 4.6: Scenario 1 best site proportion with M = 80 and c = 3.
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Figure 4.7: Scenario 1 mean time to quorum with M = 80 and c = 3.

Figure 4.8: Scenario 1 best site proportion with M = 20 and c = 10.
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Figure 4.9: Scenario 1 mean time to quorum with M = 20 and c = 10.

Figure 4.10: Scenario 1 best site proportion with M = 80 and c = 10.
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Figure 4.11: Scenario 1 mean time to quorum with M = 80 and c = 10.

The most prominent feature of these plots is the loss of accuracy in selecting

the best site as the speed of the process is increased in any way. The effect due to

the difference in scouts per time step is small, but decreasing the quorum threshold

has a much larger effect. Smaller values of the branching parameter λ appear to

allow for close to optimal decisions across a large range of both pfollow values and

quorum thresholds. This is important for two reasons. One, the switching behavior

governed by pfollow may not occur a very large percentage of the time in swarms.

Two, the quorum threshold is not necessarily restricted to a narrow range in an

actual swarm.

Increasing the quorum threshold appears to result in an improvement in accu-

racy for λ values that are not too large. Large values magnify early leads and an

increase in the threshold will typically just delay a decision in favor of the leading
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site, rather than allowing support for a potentially superior site to build before a

quorum is reached. This effect does occur for the values of pfollow and λ that are

closer to optimal. Fixing c = 10, pfollow = 0.8, and λ = 0.2 and considering quorum

thresholds between 0 and 100 demonstrates this effect. See Figure 4.12. Each

point is a fraction of the total number of times the model was run (30) for each

threshold level.

Figure 4.12: Scenario 1 effect of increasing quorum threshold with c = 10, pfollow =
0.8, λ = 0.2.

At the larger threshold level, the best site is selected a high percentage of the

time for a wider range of λ values. Although increasing the threshold increases the

mean time to quorum overall, a larger λ will mitigate this effect, and Figures 4.10

and 4.11 show that the increase in mean time to quorum due to an increase in λ

will not result in a significant loss in accuracy.
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4.6.2 Scenario 2

In this scenario the effect of making the best site harder to find is investigated.

As noted in the introduction, field studies have shown that the best site is not

always chosen by the swarm, and a potential reason for this is that the best site is

found too late in the decision-making process, or not found at all. All parameters

from scenario 1 are retained except the initial exploration distribution, which is

defined to be Q0 = (0.24,0.24,0.24,0.24,0.04). Typical simulation runs for the

high threshold, M = 80, at both c = 3 and c = 10 are included in Figures 4.13

and 4.14. See Figures 4.15 through 4.22 for the analysis of pfollow versus λ. The

corresponding plot showing the effect of increasing the quorum threshold is in

Figure 4.23.

Figure 4.13: Scenario 2 typical run with M = 80, c = 3 (best site dotted).
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Figure 4.14: Scenario 2 typical run with M = 80, c = 10 (best site dotted).

Figure 4.15: Scenario 2 best site proportion with M = 20 and c = 3.
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Figure 4.16: Scenario 2 mean time to quorum with M = 20 and c = 3.

Figure 4.17: Scenario 2 best site proportion with M = 80 and c = 3.
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Figure 4.18: Scenario 2 mean time to quorum with M = 80 and c = 3.

Figure 4.19: Scenario 2 best site proportion with M = 20 and c = 10.
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Figure 4.20: Scenario 2 mean time to quorum with M = 20 and c = 10.

Figure 4.21: Scenario 2 best site proportion with M = 80 and c = 10.
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Figure 4.22: Scenario 2 mean time to quorum with M = 80 and c = 10.

Figure 4.23: Scenario 2 effect of increasing quorum threshold with c = 10, pfollow =
0.8, λ = 0.3.
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For the most part the performance in scenario 2 for the low threshold, M = 20, is

quite poor. Although the best site is selected frequently for values of λ and pfollow

in the lower right of Figure 4.15, this is mostly due to M = 20 being relatively

close in value to cq5 = 45, so behavior is similar to the model with pfollow = 1

(no branching). Increasing the number of scouts per time step drives performance

down drastically, in contrast to scenario 1. This is likely due to an excess of early

recruitment in favor of the relatively easy to find sites.

In the range of λ and pfollow values that lead to a high probability of choosing

the best site, a good site that is difficult to find will delay reaching a quorum. This

appears to be the main effect. This is also confirmed by Figure 4.23. Increasing the

quorum threshold increases the chance that the swarm chooses the best site, but

larger thresholds and longer times are required to achieve near perfect selection.

4.6.3 A Possible Quorum Limit

It is easy to speculate on the basis of Figures 4.12 and 4.23 that the probability of

selecting the best site should approach 1 as M →∞. If a result like this is true, it

will only be for values of E(Doff) that are large enough to ensure that the total

number of dancing bees grows without bound. The condition (1−pfollow)E(Doff) >

1 certainly guarantees this, since the initial scouts at each time step each initiate

a process that grows at least as fast as a supercritical GW process. However, the

larger the value of E(Doff), the more likely it is that an early lead will determine

the selection for any threshold. Figure 4.24 shows the effect of increasing the
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quorum threshold using the parameters from scenario 1 with c = 10, pfollow = 0.8,

λ = 5, and a maximum threshold of 300. Thirty simulations were run at each

Figure 4.24: Effect of increasing the quorum threshold with c = 10, pfollow = 0.8,
λ = 5.

quorum level. The graph shows a slight improvement in accuracy, on average, for

quorum thresholds near the middle of the simulated range, but then it appears to

level off. This certainly does not prove that the result cannot hold, but it does

suggest that it may only be true for an intermediate range of pfollow and E(Doff)

values.

4.7 Conclusion

This model has largely confirmed the speed versus accuracy trade-off in collective

decision-making by the swarm. The single most effective way to improve the
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accuracy of swarm decisions is to increase the quorum required to make a decision

and thereby increase the time required to make it, all other factors being equal.
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5 Conclusion

This thesis studied the branching random walk and tree polymers, and exploited

the connections between them to study the implications of disorder type. In chap-

ter two, an infinite volume polymer probability was shown to exist as the weak

limit in probability of the sequence of finite volume polymer probabilities in the

case of critical strong disorder. This extended results on well-known a.s. infinite

volume limits for weak disorder. In chapter three a central limit theorem for the

simple branching random walk was shown to hold regardless of the disorder type

of its corresponding polymer. A result on the almost sure connectivity of its sup-

port was also established, extending known results. The major open problem is

to determine the existence of the a.s. weak limit point(s) for the sequence of tree

polymer probabilities probn under strong disorder.

In chapter four the trade-off between speed and accuracy in optimal decision-

making by honeybee swarms was demonstrated with an individual-based stochastic

model that incorporates features of standard branching process models. Collective

decision-making processes of this kind are by no means limited in either application

or general interest to honeybee site selection. The recent work in [34] studies

similarites in the key features of cognition in the brains of vertebrates and swarms

of honeybees. The work in [31] analyzes several models in this direction, comparing

the ability of social insects to make optimal decisions with optimal decision-making
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in primate brains. Much work remains to be done in this area.
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A Code for Swarm Simulation

This is the code for running a single trial of the site-selection model in chapter 4.

Other files were also used to generate the results, but they were mainly auxiliary.

The simulation was written in MATLAB v7.7.0.

function [N,B]=bee_democracy2bp(

n,q,Q_0,M,m,wc,l,cutoff,type,parameter,follow)

% Branching version: bees are either initial explorers, or

% some number of bees, determined by the offspring distribution,

% follow a bee currently dancing for a given site, OR dancing

% bees, rather than branching, may at random choose another

% bee to follow (according to proportional distribution) according

% to the follow parameter (a probability)

% the parameter l is no longer used in this version: set l=0

N=zeros(1,n+1); % initial support matrix

% (dist. of *dancing* bees)

B=[0,0,0,0]; % initial bee data matrix

% (initialize first row for while loop)

t_0=[0]; % initialize first-departure tracker

t=0; % initialize time step

c=0; % initialize bee counter
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% infinte swarm for this branching version

while (t < cutoff) && (sum(sum([N(:,2:n+1)-M >= 0]))==0)

% calculate random distribtion

N(t+1,1)=sum([B(:,2)==0])-1;

for i=1:n

% current population for site i

N(t+1,i+1)=sum((B(:,2).*(B(:,4) > 0)==i));

end

% get random distribution

DIST=random_dance_distribution(n,B,Q_0);

% dancing bees branch or follow another bee

% for loop does not run in initial iteration of while loop

[rows,cols]=size(B);

for k=1:rows-1

siteSum=sum(N(t+1,2:n+1));

if siteSum - 1 > 0

if rand < l

B(k+1,:)=[k+1,0,t,0];

% lost bees at site 0, 0 waggles

% scouts follow a dancing bees with prob follow

else

if rand < follow

i=chooseSite(DIST);
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w=waggle(q,i,m,t,t_0(k+1));

B(k+1,2)=i;

B(k+1,4)=w;

else

% with prob 1-follow

% dancing bee recruits followers

i=B(k+1,2);

w=waggle(q,i,m,t,t_0(k+1));

B(k+1,4)=w;

if w>0

b=offspring(type,parameter);

% number of followers

for x=1:b

c=c+1; %increment bee counter

i=B(k+1,2);

w=waggle(q,i,m,t,t);

B(c+1,:)=[c i t w];

t_0(c+1)=t;

end

end

end

end

end
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end

% dispatch water-cooler scouts

for j=1:wc

c=c+1; % increment bee counter

i=chooseSite(Q_0); % pick a random site according to Q_0

w=waggle(q,i,m,t,t); % get initial waggle-number for site

B(c+1,:)=[c i t w]; % populate a row with a new bee’s data

t_0(c+1)=t;

end

t=t+1; % increment time step

end % end for main while loop

end % end function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function w=waggle(q,i,m,t,t_0)

w=max(q(1,i+1)-m*(t-t_0),0);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function DIST=random_dance_distribution(n,B,Q_0)

for i=1:n % current population for site i

D(i)=sum((B(:,2)==i).*B(:,4));

end

danceSum=sum(D);
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if danceSum>0

DIST=[0,D]/danceSum;

else

DIST=Q_0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function s=chooseSite(distribution)

cdist=cumsum(distribution);

findindex=cumsum((rand < cdist));

s=find((findindex==1))-1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b=offspring(type,parameter)

switch type

case ’Poisson’,

b=poissrnd(parameter);

otherwise,

b=1;

end

end




