
Jai Eun Jang

AN ABSTRACT OF THE THESIS OF

Computer Science

for the degree of Doctor of Philosophy in

presented on April 4. 1990

Title: Design and Analysis of Robust Algorithms for Fault Tolerant Computing

Abstract approved:

Redacted for Privacy

Bella Bose

We propose a new strategy to recognize the maximum subcube of size k in an n-

cube multiprocessor. This strategy will enhance the performance drastically so that our

algorithm will outperform the buddy system by a factor nCk, the gray strategy by nCk/2 and

Al-Dhelaan strategy by nCk/(k(n-k)+1) in cube recognition. We present a very efficient

processor allocation strategy which makes larger contiguous spaces for the new coming job

than the buddy, gray and the Al-Dhelaan strategies do. Furthermore, this new strategy is

suitable for static as well as dynamic processors allocation and it results in a less fragmen-

tation and higher fault tolerance. We also describe an efficient procedure for task migration

under the new strategy: 1) goal configuration under the new strategy; 2) node-mapping

between source and destination nodes; and 3) the shortest deadlock-free routing algorithm.

We describe an optimal fault-tolerant broadcasting algorithm in the hypercube in the

presence of n-1 faulty processors. This algorithm takes log2(N) +1 steps to broadcast the

message to all other processors. Our broadcasting algorithm is a procedure by which a

processor can pass a message to all other processsors in the network non-redundantly: This

procedure is important for diagnosis of the network, distribution agreement or clock

synchronization.

A simple yet efficient algorithm to broadcast in a Cube-Connected Cycles Network

containing faulty node/links is proposed. The algorithm is particularly useful in critical real-

time systems that can't tolerate the time overhead of identifying the faulty processors on-

line. The algorithm delivers multiple copies of the broadcast message through disjoint paths

to all the nodes in the system. The salient feature of the proposed algorithm is that the de-

livery of the multiple copies is transparent to the processes receiving the message and does

not require that the precesses know the identity of the faulty processors. The precesses on

non-faulty nodes that receive the message identify the original message from the multiple

copies using some scheme appropriate for the fault model used.

We describe the definition and theory of adjacent asymmetric error masking codes.

When these codes are used for short-circuit faults, they are capable of masking a single ad-

jacent asymmetric error in bus in LSIs. This can be used in minimizing the number of tran-

sistors in the decoder of the bus line circuits, i.e., the code have the minimum weight. The

bus lines can also be minimized. We systematically derive more codewords than those of

previously known codes and present a formula to find the total number of codewords for

each weight 2, 3 and 4 in the constant weight codes. When the weight is 2 in constant

weight code, we prove that the number of codewords obtained is maximum.

Design and Analysis of Robust Algorithms for

Fault Tolerant Computing

by

Jai Eun Jang

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed April 4, 1990

Commencement June 1990

APPROVED:

Redacted for Privacy

Assoc. Professor of Computer Science in charge of major

Redacted for Privacy

Chairman of Department of Computer Science

Redacted for Privacy

Dean of Graduate Sc(11 v

Date thesis is presented April 4, 1990

Typed by Jai Eun Jang for Jai Eun Jang

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor Professor Bella Bose for

the guidance, support, helpful discussion and encouragement throughout this research.

Also, I would like to extend my thanks and respect to other members in my Ph.D

committee: Professor Ted Lewis, Professor Toshi Minoura, Professor Pat Lenders and

Professor Christopher Mundt for their support, encouragement and unfailing cooperation

during my graduate study at OSU and during the development of this research.

I would like to acknowledge Oregon State University for giving me the opportunity

to pursue my Ph.D work and Army Headquarters of Republic of Korea for its financial

support.

I am very thankful for visiting professor, Won-Kyung Cho, for his helpful com-

ments and encouragement.

I am very thankful to Huan Keh, Seung-Jin Park, Sungwoon Choi, Hae-Sung

Kim, Inkyu Kim and Major Kwon for having good discussions and fun here.

Also, I am very thankful for my family for putting up with the pressure of my work

that comes with such research and for providing the warm and loving environment that is

so important for such an endeavor.

TABLE OF CONTENTS

1. Introduction 1

References 7

2. A New Approach to Processor Allocation and Fault-Tolerance

in an N-cube Multiprocessor 9

2.1 Introduction 9

2.2 Preliminaries and Background 11

2.3 Maximality of Subcube Recognition 16

2.4 A New Method to Allocate Processors 18

2.5 Analysis of Algorithm 23

2.6 A New Approach to Task Migration 25

2.7 Half-Task Migration Under Processor Failure 31

References 36

3. An Optimal Fault-Tolerant Broadcasting Algorithm for a Hypercube

Multiprocessor 38

3.1 Introduction 38

3.2 Preliminaries and Problem Statement 40

3.3 Previous Fault-Tolerant Broadcasting 41

3.4 Optimal Fault-Tolerant Broadcasting Algorithm 43

3.5 Analysis of Broadcasting Algorithm 57

References 60

4. Reliable Broadcasting Algorithm for a Cube-Connected Cycles

Network 62

4.1 Introduction 62

4.2 Preliminaries and Problem Statement 64

4.3 Proposed Broadcasting Algorithm 68

4.4 Performance of Algorithm Broadcasting 76

4.5 An Optimal Fault-Tolerant Broadcasting Algorithm 78

4.6 Analysis of Broadcasting Algorithm 91

References 96

5. Masking Adjacent Asymmetric Line Faults 98

5.1 Introduction 98

5.2 Masking Asymmetric Line Faults 99

5.3 Preliminaries and Defuntion 103

5.4 Code Construction 105

5.5 Comparison and Application 118

References 121

6. Conclusion 122

6.1 Summary 122

6.2 Future Research 123

Bibliography 125

Appendix A : AAEMC when n=12 & w=3 129

Appendix B : AAEMC when n=12 & w=3 130

LIST OF FIGURES

Figure Eagt

2.1 A 3-dimensional hypercube, Q3 11

2.2 A 4-dimensional hypercube, Q4 12

2.3 An example of hypercube fragmentation 26

3.1 Broadcasting in the presence of a single faulty processor 43

3.2 Broadcasting in a Q3 from the node 011 45

3.3 Broadcasting where 3 faulty processors under the source node in Q4 52

3.4 Broadcasting when middle node is non-faulty in Q4 5 4

3.5 Broadcasting in the presence of 3 faulty processors in different level

in Q4 55

3.6 Broadcasting when all-sons processors are faulty in Q4 5 6

4.1 CCC network with h=3 and s=3 (n=24) 66

4.2 CCC network with h=4 and s=3 (n=32) 66

4.3 Broadcasting multiple copies in a CCC 70

4.4 Broadcasting in a faulty CCC with h=3 and s=3 79

4.5 Broadcasting in a CCC with s=3 and h=3 from the node (011,01) 82

4.6 Broadcasting in a CCC with faulty nodes (011,1) and (010,0) 89

4.7 Broadcasting in a CCC with faulty nodes (011,0) and (011,2) 90

5.1 A typical model of bus line circuit 100

5.2 A bus line circuit with defect masking coding 101

5.3 An example of a masking single asymmetric fault 102

5.4 Hierarchical partition of constant weight codes 107

LIST OF TABLES

Table Page

2.1 Link connections to each processors without duplication in Q4 13

2.2 The number of subcube recognizable by the Buddy, Gray,

Al-Dhelaan and New strategy 18

2.3 Comparison among 4 different allocation strategies 22

2.4 Mask migration under the GC strategy and New strategy 28

4.1 Paths through which the nodes receive the broadcasting in a CCC 72

5.1 Number of codewords in each class when weight is 3 114

5.2 Number of codewords in each class when weight is 4 118

5.3 Comparison between Graham and Ref[15] and new result 119

5.4 Comparison of the number of bus lines 120

Design and Analysis of Robust Algorithms for

Fault Tolerant Computing

Chapter 1

Introduction

Fault tolerance is one of the principle mechanisms for achieving high reliability and

high availability in digital systems. The field of fault-tolerance ranges from failure mecha-

nisms in integrated circuits to the design of robust software[1,2].

High reliability in computer design was first achieved through so-called fault-avoid-

ance techniques:these involved computer design which used high quality, thoroughly tested

components. Sometimes simple redundancy techniques were employed to achieve limited

fault-tolerance.

The issue of organization and architecture of computers are key ones to the design

of fault-tolerant computers. In recent years the field of computer architecture has been in-

creasingly concerned with multiprocessors and distributed processing. It is expected that

the next generation of computers will consist of innovative interconnections of multiple

computing elements. Fault-tolerance issues in interconnecting multiple computing elements

therefore will inevitably receive increasing attention.

In this thesis we have contributed some results in these areas and in the rest part of

the chapter we briefly describe them.

When designing a large multiprocessor, one of the most important factors is the

topology of the communication structure among the processors.

One of the most popular topologies is the n-cube multiprocessors[3-13]. The hyper-

cube is a network of loosely coupled processors connected in such a way that two pro-

2

cessors, u and w, are linked if and only if the Hamming distance(u,w) = 1. Hypercube

multiprocessors have been drawing considerable attention due to their structual regularity

for easy construction and high potential for the parallel execution of various algorithms.

A task arriving at a hypercube multiprocessor must be assigned "optimally" to a

subcube in the multiprocessor for execution. Upon completion of execution, the subcube

used for the task must be released for later use. Efficient allocation and/or deallocation is a

key to its performance and utilization. The processor allocation in a hypercube multiproces-

sor consists of two steps:

1) determination of the size of the incoming task in terms of the number of proces-

sors needed in order to accommodate it.

2) recognition and location of subcube of accommodating the incoming task within

the hypercube multiprocessor. We want to maximize the utilization of available resources

and also minimize the inherent system fragmentation.

Three allocation strategies for n-cube multiprocessor are addressed: the buddy

strategy which is based on the buddy system, the GC strategy which uses single or multi-

ple Gray codes and the Al-Dhelaan strategy[6]. The Buddy system strategy is implemented

in [8], and the GC strategy is implemented on an NCUBE/six by the University of

Michigan Advanced Architecture Lab[4]. Due to special structure of the n-cube multipro-

cessor, the availability of some subcubes can't be detected by any of the above systems,

and processor utilization is thus degraded.

In chapter 2, we propose a new strategy to recognize the maximum subcube in a n-

cube multiprocessor. This strategy will enhance the performance drastically so that our al-

gorithm will outperform the buddy system by a factor nCk, the gray strategy by nCk/2 and

Al-Dhelaan[6] by nCk/(k(n-k)+1) in cube recognition.

We present a very efficient processor allocation strategy which makes larger con-

tiguous spaces for the new coming job than buddy, gray strategy and Al-Dhelaan[6] do.

3

Furthermore, this new strategy is suitable for static as well as dynamic processors alloca-

tion and it results in a less fragmentation and higher fault tolerance.

Also we describe an efficient procedure for the task migration under this new strat-

egy. 1) goal configuration, 2) node mapping between source and destination node, 3)

shortest deadlock-free routing algorithm.

And we describe the half-task migration in the presence of faulty processors. The

half-task migration is defined as follows: When 2k processors are allocated for the job in

an n-cube, we can have half-task migration from 2k-1 processors to another 2k-1 proces-

sors in order to continue the job in the case of processors failure. This approach has the

following advantages: 1) We don't have to have the extra processors to reconfigure[11]. 2)

It is easy and efficient to reconfigure the processors if the alternatives are chosen.

Broadcasting is an important means of communication among processors by which

a processor can pass data or control to all other processors in the network. This operation is

extremely important for diagnosis of the network, distributed agreement[13] or clock syn-

chronization[14]. Distributed agreement and clock synchronization can be achieved only if

there is no faulty node to deliver the message in the system[13-14]. This, however, is not

easy to achieve in the presence of faulty node/link because the faulty nodes can either omit,

corrupt, reroute, or alter information passing through them.

There are two possible approaches to overcome this problem. In the first approach,

each node keeps limited information about the faulty nodes in the system. Fault-tolerant

routing/broadcasting is achieved by going around the faulty nodes[7,16,21]. This approach

can be used only if it is possible to identify the faulty processors "on-line". Since the over-

head of identifying the faulty processors and passing the fault information to the other

nodes could be quite severe, this approach is not suitable for many real-time applications.

In the second approach, fault tolerance is achieved by sending multiple copies of the mes-

sage through disjoint paths[13,17,20]. The nodes that receive the message identify the

4

original message from the multiple copies by using some scheme that is appropriate for the

fault model, e.g., majority voting. The second approach has the advantage of not having to

identify the faulty processors.

Sullivan and Bashkov[12] developed an algorithm for broadcasting in the hyper-

cube. This algorithm was developed on the assumption of having no faulty processors. Al-

Dhelaan[7] developed an algorithm for broadcasting in the hypercube in the presence of

some faulty processors. The algorithm works if only one child processor is faulty under

any node in the broadcasting tree. Their algorithm does not make explicit use of the proper-

ties of the hypercube topology. Ramanathan and Shin[13] developed another algorithm for

the hypercube in the presence of faults which uses the second approach mentioned above.

In chapter 3, we describe an optimal fault tolerant broadcasting algorithm when n-1

processors are faulty. The proposed algorithm takes log2(N)+1 steps to broadcast a mes-

sage from one processor to all other processors. Our broadcasting algorithm is a procedure

by which a processor can pass a message to all other processsors in the network non-re-

dundantly: this message can either be information or control.

Cube-connected-cycles is a parallel network architecture proposed by Preparata and

Vuillemin[18]. The CCC can efficiently solve a large class of problems that include Fourier

transform, sorting, permutations, etc,. The operation of the cube-connected-cycles network

is based on the combination of piplining and parallelism, which leads to the following re-

sults[19]:

1. The number of connections per processor is reduced to three.

2. Processing time is not significantly increased with respect to that achievable on

the cube-connected network.

5

3. The overall structure complies with the basic requirements of the VLSI technol-

ogy: modularity, ease of layout, simplicity of communication among processors, simplicity

in timing and control of the entire system.

In chapter 4, we present two approaches mentioned earlier in the presence of faulty

node/link in the CCC. The first broadcasting algoritlun[17] delivers multiple copies of the

message to all nodes in the CCC through disjoint paths. The basic idea of our algorithm is

as follows. The node that wants to broadcast a message sends the message to all its neigh-

bors in the same ring. The neighbors in the same ring and the node initiating the message in

turn broadcast the message using a simple yet efficient algorithm. The algorithm executed

by the neighbors is coordinated such that the copies of the message received by a node have

traveled through disjoint paths. The good feature of the proposed algorithm is that the de-

livery of the multiple copies is transparent to the processes receiving the message and does

not require the processes to know the identity of the faulty processors. Depending on the

fault modes used, the algorithm can tolerate either s-1 or Ls/2J or Ls/3J node/link faults.

The algorithm completes in Ls/2J + (2s-1) + Ls/2] steps and 4s steps if each node can use

all and at most one of its outgoing links at a time respectively.

The second broadcasting algorithm[21] delivers a copy of message to all nodes

nonredundantly. The basic idea of our algorithm is as follows. The node that wants to

broadcast a message checks if its neighbor node is faulty or not. If the neighbor node is

faulty, the initiating node gives this information to its non-faulty neighbor node. This non-

faulty node broadcasts the message to the nodes to be broadcasted by faulty-node. We

prove that this algorithm is optimal. This algorithm tolerates 2 processors if two adjacent

nodes are faulty and s-1 rings or s-1 processors faults, otherwise. This optimal fault-toler-

ant broadcasting algorithm takes (5s+4)/2 steps.

6

In Chapter 5, we design efficient adjacent asymmetric error masking codes

(AAEMC) which are useful for masking adjacent bus lines in ROMs. We systematically

derive the number of codewords in AAEMC of constant weight, with weight 2, 3 and 4.

When these codes are used in VLSIs, they are capable of masking a single adjacent

asymmetric error in bus lines. Furthermore, using these codes we can minimize the

number of transistors in the decoder of the bus line circuits and the number of bus lines.

However a separate encoder circuit is needed which is not very complex.

7

REFERENCES

1. R. Negrini and M. G. Sami, Fault Tolerance Through Reconfiguration in VLSI and
WSI Arrays, MIT Press, 1989

2. Fault-Tolerant Computing: Theory and Techniques, Prentice-Hall, 1986

3. M. Chen and K.G. Shin, "Processor Allocation in an N-cube Multiprocessor Using
Gray Codes", IEEE Trans. Computer, Dec. 1987 pp. 1396-1407.

4. M. Chen and K.G. Shin, "Task Migration in Hypercube Multiprocessor", Proc.
16th Annual Intl Symp. on Computer Architecture. Jun 1989, pp. 105-111

5. B. Becker and H.U. Simon, "How robust is the n-cube?", in Proc. 27th Ann.
Symp. Foundations of Comp. Sci. Oct. 1986 pp. 283-291.

6. A. Al-Dhelaan and B. Bose, "A New strategy for Processor Allocation in an N-
cube Multiprocessor", Phoenix Conference on Computer and Communication, Mar
1989. pp. 114-118.

7. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Hypercube", Proc. The fourth Conf. on Hypercube Concurrent Comp. and
Applications, Monterey, Mar 1989. pp. 123-128.

8. NCUBE Corp, NCUBE/10: An Overview, Beverton, OR, Nov 1985

9. J. E. Jang, S. W. Choi and W. K. Cho, "A New Approach to Processor Allocation
and Task Migration in an N-cube Multiprocessor, Proceedings, International
Conference on Supercomputing, Nov, 1989. pp. 314-325.

10. J. E. Jang and W. K. Cho, "Maximality of Subcube Recognition and Fault
Tolerance in an N-cube Multiprocessor", Proceedings, 4th SIAM conference on
Parallel Processing for Scientific Applications, Dec, 1989.

11. M. Sultan and Rami Melhem, "Fault Tolerance and Reliable Routing in Augmented
Hyercube Architecture", 8th TEE Intl Phoenix Conference on Computer and
Communication, Mar, 1989. pp. 19-23.

12. H. Sullivan and T. R. Baskow, "A large scale homogeneous, fully distributed
parallel machine,I," Proc. Fourth Symp. Comp. Architecture, Mar. 1977, pp. 105-
117.

13. P. Ramanathan and K.G. Shin, "Reliable Broadcasting in Hypercube
Multicomputers", WEE Trans. on Comp. Dec 1988, pp 1654-1657.

14. L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals problem," ACM
Trans. Programming language System, pp. 382-401, Jul. 1982.

15. T. K. Srikanth and S. Toueg, "Optimal clock synchronization," J. ACM pp.626-
645, Jul.1987.

8

16. J. E. Jang, "Optimal Fault Tolerant Broadcasting Algorithm for Hypercube
Multiprocessor", Proceedings, 1990 ACM Computer Science Conference,
Feb, 1990. pp. 96-102.

17. J. E. Jang, "Reliable Broadcasting Algorithm in an Cube-Connected
Cycles Network", Proceedings. 9th International Phoenix Conference on
Computers and Communications, Mar, 1990

18. F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles, A Versatile
Network for Parallel Computation," Communication of ACM, pp. 30-39, May
1981.

19. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Cube-Connected Cycles Network", Proc. IEEE Pacific Rim Conference, May
1989, pp. 161-164.

20. T. K. Srikanth and S. Toueg, "Simulating authenticated broadcasts to derive simple
fault-tolerating algorithms," Tech. Rep. 84-623, Dep. Comp. Cornell Univ., Jul.
1984.

21. J. E. Jang, "Optimal Fault Tolerant Broadcasting Algorithm in an Cube-Connected
Cycles Network", Proceedings. in the PARBASE-1990, Mar, 1990. pp. 206-215.

22. Kazumitsu. Matsuzawa and Eiji. Fujiwara, "Masking Asymmetric Line Faults
using Semi-distance Codes", 18th FTCS, pp. 354-359

9

Chapter 2

A New Approach to Processor Allocation and Fault-Tolerance

in an N-cube Multiprocessor

2.1 Introduction

Hypercube multiprocessors have been drawing considerable attention due to their

structual regularity for easy construction and high potential for the parallel execution of

various algorithms. Numerous research efforts related to hypercube architectures, operating

systems, etc., have been undertaken[1-15]. The problem of processor recognition, al-

location, task migration and fault-tolerance in an n-cube is the subject of this chapter. A

task arriving at a hypercube multiprocessor must be assigned "optimally" to a subcube in

the multiprocessor for execution. Upon completion of execution, the subcube used for the

task must be released for later use. Efficient allocation and/or deallocation is a key to its

performance and utilization. The processor allocation in a hypercube multiprocessor con-

sists of two steps: 1) determination of the size of the incoming task in terms of the number

of processors needed in order to accommodate it, and 2) recognition and location of sub-

cube of accommodating the incoming task within the hypercube multiprocessor. We want

to maximize the utilization of available resources and also minimize the inherent system

fragmentation.

Three allocation strategies for n-cube multiprocessor are addressed: the buddy

strategy which is based on the buddy system, the GC strategy which uses a single or multi-

ple Gray codes and Al-Dhelaan strategy[8]. Due to special structure of the n-cube multipro-

cessor, the availability of some subcubes can't be detected by any of the above systems,

and processor utilization is thus degraded.

10

In this chapter we propose a new strategy to recognize the maximum subcube in a

n-cube multiprocessor. This subcube recognition algorithm can be done in both serial and

parallel and this method is analyzed. This strategy will enhance the performance drastically

so that our algorithm will outperform the buddy system by a factor nCk, the gray strategy

by nCk/2 and Al-Dhelaan[8] by nCk/(k(n-k)+1) in cube recognition.

Also we present a very efficient processor allocation strategy which makes larger

contiguous spaces for the new coming job than buddy, gray strategy and Al-Dhelaan[8] do.

Furthermore, this new strategy is suitable for static as well as dynamic processors

allocation and it results in a less fragmentation and higher fault tolerance.

Even though enough number of hypercube nodes are available for the incoming

job, allocation and deallocation of subcube usually result in a fragmented hypercube. The

fragmentation problem in a hypercube can be solved by task migration, i.e., relocating

tasks within the hypercube to remove the fragmentation. We describe a shortest deadlock-

free routing algorithm for task migration under the new strategy. 1) goal configuration, 2)

node mapping between source and destination nodes, 3) shortest deadlock-free routing

algorithm.

We describe the half-task migration in the presence of faulty processors. The half-

task migration is defined as follows: When 2k processors are allocated for the job in an n-

cube, we can have half-task migration from 2k-1 processors to another 2k-1 processors in

order to continue the job in the case of processors failure. This approach has the following

advantages: 1) We don't have to have the extra processors to reconfigure[15]. 2) It is easy

and efficient to reconfigure the processors if the alternatives are chosen.

This chapter is organized as follows. Section 2.2 introduces the necessary notation

and background. Section 2.3 will describe the new approach to recognize the maximum

subcubes in Qn. Section 2.4 will explain the new allocation strategy which is suitable for

static as well as dynamic processor allocation and results in a less system fragmentation,

more subcube recognition and higher fault tolerance. In section 2.5 we will describe the

11

parallel algorithm for processor allocation problem and this algorithm has a time complexity

of 0(nCk) . The time complexity of serial algorithm is 0(2knCk2n-k). Section 2.6 will de-

scribe an efficient procedure for the task migration under this new strategy. 1) goal config-

uration, 2) node mapping between source and destination node, 3) shortest deadlock-free

routing algorithm. Section 2.7 will describe an efficient procedure for the half-task migra-

tion under this new strategy.

2.2 Preliminaries and Background

A n-cube can be defined as follows:

Definition: An n-cube Qn is defined recursively as

a) Qo is a trivial graph with one node, and

b) Qn = K2 * Qn_i, where K2 is the complete graph with two nodes. Fig. 2.1 and

Fig 2.2 shows a Q3, and a Q4, hypercubes respectively.

A coding scheme with n bits is defined as a one-to-one mapping from an integer number

between 0 and 2n-1 to a binary representation with n bits. For example, the three bit binary

representation of 5 is B3(5) = 101.

000

010

100 101

001

Fig 2.1 A 3-dimensional hypercube, Q3

0 1 1

12

Fig 2.2 A 4-dimensional Hypercube, Q4

Gray codes, Gn, can be generated as follows. One starts with the sequence of the

two 1-bit numbers 0 and 1. This is a 1-bit Gray code. To build a 2-bit Gray code, take the

same sequence and insert a zero in front of each number, then take the sequence in reverse

order and insert a one in front of each number. In other words, we get the sequence

G2 = {00,01,11,10},

G3 ={000,001,011,010,110,111,101,100}

The gray code can be obtained from the corresponding binary number as follows[16].

gi = bi ® bi+i where 0<_i_ n -1

gn = bn

13

Definition: The Hamming distance between two hypercube nodes with addresses u = un

un_i.. ui and w = wnwn.i. .wi in a Qn is defined as

H(u,w)= I h(ui,wi), where h(ui,wi) = 1, if ui #wi
i=1

=0, if ui = wi

For example, if u = (10010) and v = (01011), then H(u,w) = 3.

The hypercube is a network of a loosely coupled processors connected in such a

way that two processors, u and w, are linked if and only if H(u,w) = 1, i.e., the indices of

neighboring processors differ by a power of 2. We can represent an n-cube using link list

structure. For example, a processor with address 0000(0) in Fig. 2.2 is linked with

0001(1), 0010(2), 0100(4), 1000(8) in Q4. In the same way we can represent all the con-

nections of Q4 in the Table 2.1, where each connection has no duplicated link.

address link(H1) # address link(H1)

0 0000 1,2,4,8 8 1000 9,10,12

1 0001 3,5,9 9 1001 11,13

2 0010 3,6,10 10 1010 11,14

3 0011 7,11 11 1011 15

4 0100 5,6,12 12 1100 13,14

5 0101 7,13 13 1101 15

6 0110 7,14 14 1110 15

7 0111 15 15 1111

Table 2.1 Link connections to each processor without duplication in Q4

Therefore we can represent all the connection of Qn with each address using link

list structure like Table 2.1. From the Table 2.1 we can find some interesting properties.

14

First of all, the number of link at each address is the same as the the number of 0's with

same address. The value of link in each address is sorted in ascending order and greater

than that of each address.

Let / be the ternary symbol set (0,1,x), where x is Don't Care symbol. Then ev-

ery subcube of an n cube can be uniquely represented by a string of symbols in S. By as-

signing all combinations of "0" and "1" to x, we can find all the partners for the job.

For example, when incoming job requires 23 processors with node "0", arbitrary 3 link are

chosen. If we choose processors (1,2,4) connected to address "0" node, then we have

(0000, 0001, 0010, 0100), that is (Oxxx) type. Thus, we can find all the partners,

(0110,0101,0011,0111), thus assigning (0000, 0001, 0010, 0100, 0110, 0101, 0011,

0111) for the incoming job to require 23 processors.

Let us define some notation to find all the partners directly from above table.

Let the first column which ranges 0 2n-1 in the link connection table be table_index.

Definition : There are r links per table_index in ascending order. Let p be the position in r.

Then partner(table_index, p) will give the corresponding value.

For example, partner(4, 2) = 6.

We have the following Lemmas from the characteristics of the link list table.

Lemma 2.1: For every combination pa and pb in the table_index where pb > pa, posi-

tion(pa) will be the p and pb will be new table_index. Then partner(pb,position(pa)) will be

the partner, where position(pa) is the position in r.

proof: All the codewords in the link column are constant weight codes which are Ham-

ming distance 1 from table_index. Therefore, they are Hamming distance 2 from each other

and H(table_index,pa) and H(table_index,pb) =1.Thus, H(partner(pb,position(pa)),pb) =

1 And H(partner(pb,position(pa)),table_index) = 2. So, H(partner(pb,position(pa)),pa) =

1. Partner(pb,position(pa)) gives the partner.

15

For example, when incoming job needs Q2 subcubes in Q4 with address 0, there

are 4C2 combinations, that is, (1,2) (1,4) (1,8) (2,4) (2,8) (4,8). Therefore we can find the

partners 3, 5, 9, 6, 10, 12, respectively.

Lemma 2.2 : While finding the partners, if there are two more links in the new

table_index, keep doing Lemma 2.1. Then we will find all the partners.

Proof: If there are one more links in the new table_index, there are one more partners.

This means we must find another partner to satisfy Hamming distance 1 for those links.

The other part is the same as Lemma 2.1.

For example, when incoming job needs Q3 subcubes in Q4 with address 0, there

are 4C3 combinations, that is, (1,2,4) (1,2,8) (1,4,8) (2,4,8). Let's get the partner when

we choose processors (1,2,4). We have the following partner processors: processor 3 for

processors (1,2), 5 for (1,4), 6 for (2,4), 7 for (5,6). Thus, we can recognize processors

(0,1,2,3,4,5,6,7) for Q3.

Lemma 2.3: When we have r links at each node with table_index we can recognize rCj

subcubes for the incoming 2i jobs where r>j.

proof: Let r and j be the number of link at each table-index and size j for the incoming

job 2j, respectively. When we have j combination in r, we can find the partners using

Lemma 2.1. And there are rCj ways to combine. Therefore we can recognize rCj subcubes

for the incoming 2i jobs.

For example in Table 2.1, node 0 has 4 links. When incoming job needs 22 sub-

cubes, there are 4C2 ways to recognize the subcubes. We can find the partners for each

connection. Therefore we have the following subcubes, which are {(0,1,2,3), (0,1,4,5),

(0,1,8,9), (0,2,4,6), (0,2,8,10), (0,4,8,12)).

This three Lemmas leads to the following important result.

16

Theorem 2.1: We can find all the partners to recognize the incoming subcubes Qk from

the link list table of Qn.

2.3 Maximality of Subcube Recognition

In this section we propose a new strategy that outperforms the buddy system by a

factor of nCk, the gray strategy by a factor of nCk/2 and Al-Dhelaan [8] by nCk/(k(n-k)+1)

in recognizing subcubes of size k in Qn. Now we are considering how many ways to rec-

ognize the subcubes for the incoming jobs.

Lemma 2.4: Total number of subcubes of Qn to recognize subcubes of size k for incom-
n-k

ing 2k jobs are nCn-j n-jCk
i4)

proof According to Lemma 2.2, there are nCk ways to recognize subcubes of size k. The

number of link, r, at each address is the same as the number of 0's in the table index. The

number, j, of 0's distribution in Qn is nCj where 05.j.n. In order to recognize the size k, j

must be equal or greater than k. So, the total number of subcubes of Qn to recognize sub-
n-k

cubes of size k is nCn-j n-jCk

For example, we have the following 0's distribution in Q4.

4C0 = 1 4C1 = 4 4C2 = 6 43 = 4 4C4 = 1

So there are 1 four 0, 4 three 0, 6 two 0, 4 one 0, 1 zero 0. When we examine the Table

2.1, we have 1 4-links, 4 3-links, 6 2-links, 4 1-link 1 0-link. According to Lemma 2.4,

the total number of subcubes to recognize the incoming 22 processors in Q4 is 4C4 4C2 +

43 3C2 + 4C2 2C2 = 24

Lemma 2.5: All the subcubes generated by the new approach are disjoint among them-

selves.

proof We choose every combination in each table index and then find the partner accord-

ing to the combination. partner(table_index,p) will search different value every time, since

every combination gives different table_index and p. Thus, all the subcubes are disjoint.

17

These Lemmas 2.4 and 2.5 lead to the following important result.

Theorem 2/: Total number of subcubes generated by Lemma 2.4 are maximum.

Proof: The number of distinct subcubes are nCk2n-k[3].
n-k

prove nCk2n4 = I nCn-j n-jCk
.i=0

n-kV n! (n-i)!
4d i!(n-i)! k!(n-i-k)!

.1=0
n-k

Therefore we can

n-k
/ nCn-j n-jCk =

j=1

= k! j!(n-j-k)!
I n! 1

.i41
n-k

n! V (n-k)!
k!(n-k)! Zd An -j-k)!

.K1
n-k

(n-k)!
nCk Zue j1(n-j-k)!

i4:1

We have the the binomial theorem as follows.
n

(a+b) n = I nCj an-ibi
i=0

n-k
n-k

= I n-kCj =-- I An +k)!
(n-k)!

.i4) i4)
n-k

Therefore, ne-k2" = / nCn-j n-jCk
.i=0

2n-k

Here is the example of Q2 in Q4, which shows 24 subcubes.

(0,1,2,3) (0,1,4,5,) (0,1,8,9) (0,2,4,6)

(0,2,8,10) (0,4,8,12) (1,3,5,7) (1,3,5,9)

(1,5,9,13) (2,3,6,7) (2,6,10,14) (2,3,10,11)

(3,7,11,15) (4,5,6,7) (4,5,12,13) (4,6,12,14)

(5,7,13,15) (6,7,14,15) (8,9,10,11) (8,9,12,13)

(8,10,12,14) (9,11,13,15) (10,11,14,15) (12,13,14,15)

18

The number of subcubes recognizable by each of the four strategies is presented in

Table 2.2, especially for 22 incoming jobs in Q4.

Qo Qk Qn

Number of distinct subcube 2" nCk2" = 24 1

The Buddy strategy 2" 2n-k = 4 1

The Gray Code strategy 2" 2n-k+1 = 8 1

Ref[8] 2" (k(n-k)+1)2" = 20 1

The New strategy 2" nCk2" = 24 1

Table 2.2 The number of subcube recognizable by the Buddy, Gray, Al-Dhelaan[8]

and New strategy.

2.4. A New Method To Allocate Processors

Node processors in an n-cube multiprocessor must be allocated to incoming tasks in

order to maximize processor utilization and minimize system fragmentation. First we will

briefly describe the known methods, the buddy strategy and the Gray strategy[3,8] and the

one described in ref[8]. Then we can describe the new processor allocation strategy which

outperforms the above three strategies. An example of the buddy, Gray, Al-Dhelaan[8] and

the new strategies is given in Table 2.3.

A. The Buddy Strategy,

Since there are 2" processor node in a Qn, 2" allocation bits are used to keep track

of the availability of all the nodes. An allocation bit with value 0 (1) is available (not avail-

able). The buddy strategy consists of two parts, processor allocation and processor relin-

quishment. The algorithm is given below.

19

Processor allocation :

Step 1 : Set k to the dimension of a subcube required to accommodate the request.

Step 2 : Determine the least integer a, Ocic_n-k-1-1-1 such that all the (3th allocation bits

are 0's where cakS05(a+1)2k-1.

Set all these bits to l's.

Step 3 : Allocate processors with address Bn((3) to the request, where a2k_115.(a+1)2k-1.

Processor Relinquishment :

Reset every pth allocation bits to 0, where Bn(p) is used in the subcube released.

This strategy can be explained by the completely binary tree. The level where the

root node resides is numbered 0, and the nodes in level i are associated with subcubes of

dimension n-i. When a Qk is needed, the buddy strategy searches for a region of allocation

bits with 0's whose addresses start with an integral multiple of 2k.

B. The Gray Strategy

Similar to the buddy strategy, the GC strategy can also be described by the

following two parts[3,81.

Processor allocation :

Step 1 : Set k to the dimension of a subcube required to accommodate the request.

Step 2 : Determine the least integer a, 0<a </n-k-1-1- 1 such that all the (b mod 2n)th

allocation bits are 0's, where a2k-15b5(a+2)2k-1-1.

Set all these bits to l's.

Step 3 : Allocate processors with address Gn(b mod 2n) to the request,

where a2k-1SKa+2)2k-1-1.

Processor Relinquishment :

Reset every pth allocation bits to 0, where Gn(p) is used in the subcube released.

20

This strategy also can be explained by the complete binary tree. This strategy rec-

ognizes 2n-k+1Qk within the n-cube multiprocessor and this is an improvement by a factor

of two over the buddy strategy.

C. Al-Dhelaan181

The path from the root of the tree to any node is that node's address. This address

corresponds to the subcube which consists of all the descendents processors (leaf node).

Note that in Q4 subcube 01, 01X or O1XX denotes the same subcube. Before describing

the algorithms some definitions are stated first.

Definition : The ath partner of ak.1,ak-2, aa+1,aa,aa-1, a0

defined as

ak_liak-2, aoc+1,aeoaa-i, a0, if aa = 0

for any 0a5_k-1 is

undefined if aa = 1.

The pth partner of Bk(i) is defined as BPk(i).

Definition For any integer a, 0<a.on-k+1_1, the node Bn_k+ i(a) is free if and only if all of

its descents are free. For example, for n=4 and k=2, the node 000 is free if and

only if the processors 0000, 0001 are free.

Processor allocation :

Step 1 : Set k to the dimension of a subcube required to accommodate the request.

Step 2 : Determine the least integer a, 0<a-2< n-k+1-1 such that Bn_k+i(a) is free and it

has a pth partner BPn_k_Fi(a) which is also free where 04.5.n-k. Take p as small

as possible.

Step 3 : Allocate these processors to the request and set their allocation bits to 1.

Processor Relinquishment :

Reset the allocation bits of all the processors that correspond to the descendents of the

nodes Bn- k +1(a) and BPn_k_Fi(a) to 0.

This strategy can recognize (n-k+1)2n-kQk cubes.

21

D. A New Strategy :

In this section we present a very efficient processor allocation strategy which makes

larger contiguous spaces for the new coming job than buddy, Gray strategy and Al-

Dhelaan[8] do. This is a significant improvement because in practical system it is normal to

have many small incoming jobs and large number of processors. Furthermore, this new

strategy is suitable for static as well as dynamic processors allocation and it results in a less

fragmentation and higher fault tolerance.

The new strategy can be described by the following two parts.

Processor Allocation:

Step 1 : Set k := Ibl, where lIjI is the dimension of a subcube required to accommodate the

request Ij.

Step 2 : Get one possible link combination(in order) in the link table and Find the partner

processors

Check if those processors are available or not

If operation succeed then go to step 3

else go to step 2

Step 3. Allocate nodes.

Processor Relinquishment :

Reset every allocation nodes.

This allocation strategy is different from 3 strategies mentioned earlier. Though all

three strategies can be explained by the binary tree, tree structure may not express all the

link connections in the n-cube. So, instead of using tree structure, we allocate the proces-

sors for the incoming job using index scheme from the link table.

Because of its enhanced subcube recognition ability, the new strategy can allocate

subcubes more densely at one end, thus making larger subcubes available at the other end

for future use. An allocation strategy is said to be statically optimal if a Qn using the strat-

22

k

egy can accommodate any input request sequence {10 iff E 211i1 where IIil is the
j=1

subcube dimension required by request h. The buddy and Gray strategies are statically op-

6=1[4]. Also the new strategy is statically optimal.

Theorem 2.3: The new strategy is statically optimal.

An example of the buddy, Gray, Al-Dhelaan[8] and the new strategies is given in

Table 2.3 where the input sequence is as follows.

II=Qo 13,11 15=Q1 17=Q0

12=Q2 14=Q0 16=Q2 18=Q1

Buddy system Gray system Ref[8] New system
O. 0000 --II 0000 ----Ii 0000 II 0000 ----Ii
1. 0001 ----13 0001 ----I3 0001 - - -- 13 0001 ----I2
2. 0010 ----I4 0011 ----I2 0010---- 12 0010 ----I3
3. 0011 ----17 0010 ----12 0011---- 12 0011 ----12
4. 0100 ----I2 0110 ----I2 0100 - -14 0100 ----I4
5. 0101 --I2 0111 ----12 0101 - - 15 0101 ----12
6. 0110 ----I2 0101 ----I4 0110---- 12 0110 ----I5
7. 0111 ----I2 0100 ----I5 0111 - 12 0111---- 12
8. 1000 ----I5 1100 ----I5 1000---- 16 1000 ----I6
9. 1001 ----I5 1101 ----17 1001---- 16 1001 ----I6
10 1010 ----I8 1111 ----I6 1010 - - - -16 1010 ----I6
11 1011 ----18 1110 ----I6 1011---- 16 1011 ----I6
12 1100 ----I6 1010 ----16 1100---- 17 1100 ----17
13 1101 ----16 1011 ----16 1101 - 15 1101 ----18
14 1110 ----16 1001 - - - -I8 1110-- 18 1110 ----I5
15 1111 ----I6 1000 ----I8 1111-- 18 1111 ----I8

Table 2.3 Comparison among 4 different allocation strategies

It can be observed that the new strategy outperforms the buddy strategy, the GC

strategy and Al-Dhelaan[8] in the first-fit search and will pack incoming request more

densely, thus making larger contiguous regions available than the buddy strategy, the GC

strategy and Al-Dhelaan[8] can.

23

The subcube recognition problems becomes more important when considering

some faulty processors. In these situations the new strategy does better than the above

strategies as illustrated in the following example.

Example: (Fault tolerance)

In a 4-cube multiprocessor if two nodes, one from (0000, 0001) and the other from

(1000, 1001) are faulty. Then neither the buddy system allocation strategy nor Gray code

strategy will be able to satisfy the requests { Ii=Q3, I2=Q2} but new strategy will satisfy

this. When (0000, 1000) are faulty, (1,3,5,7,9,11,13,15) for Q3 and (4,6,12,14) for Q2

are assigned.

When processor relinquishment is taken into account, the buddy strategy and the

GC strategy is shown to be poor in recognizing the availability of subcubes in the n-cube

multiprocessor, and the processor utilization is thus degrade. But the new strategy does

better than those strategies as illustrated in the following example.

Example: (Dynamic allocation)

Consider the request (I1=Qi, I2=Q2,I3=Qi, 14=Q3). Let processors{0,1) and

Processors { 4,5) be allocated for II and 13, respectively. If II and 13 released their pro-

cessors and others do not then using the buddy system strategy or the Gray code strategy a

request like {I5=Q2} will not be satisfied. But new strategy will combine the two released

Qis into a Q2 and allocate it to 15. When Ii and 13 released their processors, we can allocate

{0,1,4,5) for {I5=Q2}.

2.5 Analysis of Algorithm

In this section we describe the algorithm explained in previous sections. In se-

quential version of our algorithm, we get 0(2k * nCk 2n-k) time complexity. A formal

description of our algorithm as follows.

Algorithm allocation;

(tindex4); tindex<2subeubes; tindex++)

get_combination(Qn, Qk, tindex);

get_combination(Qn, Qk, tindex)

fmd all kinds of combination in tindex-th row in the link table;

(i1; i< rlink; i++) /* rlink is the number of links in the table index */

index4;
find_one_cube(0, tindex, n);

fmd_one_cube(pos,tindex, size) /* find the partners */

if (pos <size) (

if (pos == 0) {

path[index] = table[tindex][temp[pos]].no;

if (table[path[index]][0] == ON)

return(FAILURE);

index++;

if (index== exp(subcubes))

print path; /* print result when one cube is found */

return(find_one_cubes(pos+1,tindex,size);

}

else (

)

)

path[index] = table[tindex][temp[pos]].no;

if (table[path[index]][0].duty == ON)

return(FAILURE);

index++;

if(find_one_cube(0,table[tindex][temp[pos]].no, pos) == SUCCESS)

return(find_one_cube(pos+1,tindex,size));

else

return(FAILURE);

24

It can be parallelized resulting in 0(nCk) time complexity as shown below. A

further advantage of our parallel allocation algorithm is that they are dynamic and require

25

little storage. The algorithm is shown in c style with added constructs, "par" and "seq" like

those of the parallel language Occam. Here is the parallel version of our algorithm.

par (tindex;tindex<2n; tindex++)
get_combination(Qn, Qk, tindex);

get_combination(Qn, Qk, tindex)

seq
find all kinds of combination in tindex-th row in the link table;

par (i=0; i< rlink; 1++) /* rlink is the number of links in the table index */

index=0;

findone_cube(0, tindex, combination);

find_one_cube(pos,tindex, size) /* find the partners */

par
seq

path[index] = table[tindex][temp [pos]]. no;

index++;

if (index== Qk2)

print path; /* print result when one cube is found */

par(pos= 1 ;pos<size;pos++ 1)

path[index] = table[tindex] [temp [pos]]. no;

index++;

find one cube(table[tindex][combination[pos].no],pos);

2.6 A New Approach to Task Migration

Even though enough number of hypercube nodes are available for the incoming

job, allocation and deallocation of subcube usually result in a fragmented hypercube. That

is, they don't form the recognizable subcube to accommodate an incoming job. The frag-

mentation problem in a hypercube can be solved by task migration, i.e., relocating tasks

within the hypercube to remove the fragmentation.

26

Fig. 2.3 shows an example of a fragmented hypercube where four available

nodes{010,011,110,100} can't form a Q2 to be used: thus, when a task requiring a Q2 ar-

rives, it has to be either queued or rejected.

010

Fig. 2. 3 An example of hypercube fragmentation

0 1 1

Such fragmentation leads to poor utilization of hypercube nodes, thus limiting the

improvement achieved by the new strategy. Fragmentation problem in conventional mem-

ory allocation can be handled by memory compaction. Also the fragmentation problem in a

hypercube can be solved by task migration[4], i.e., relocating active tasks and compacting

those within the hypercube at one end in order to make enough subcubes available for the

incoming request. There is a close relationship between allocation strategy used and task

migration, because active tasks must be relocated to where allocation strategy can recog-

nize.

A collection of occupied subcubes is called a configuration. We first find the goal

configuration so that a given fragmented hypercube must change its position by relocating

27

active tasks. When a task is allocated to a subcube, the portion of the task located at each

hypercube node of this subcube is called a task module[4].

A moving step is called H(source node, neighboring node) = 1. The cost of each

task migration is then measured in terms of Hamming distance required while task migra-

tions between different pairs of source nodes and destination nodes are performed in paral-

lel. In order to move tasks in parallel, it is very important to avoid deadlock during task mi-

gration.

We formulate the node-mapping between each pair of source and destination node

in such a way that the Hamming distance(source,destination) is minimized and develop a

routing algorithm for shortest deadlock-free paths for task migration.

We assume that the hardware of the hypercube system under consideration is de-

signed in such a way that each hypercube node has separate input and output ports. So,

each node can receive a task module while sending another task module to its next hop.

One time unit is defined as each moving step which will take the same amount of time.

In the following section we shall determine the goal configuration, the node-map-

ping between the source and destination subcubes, and shortest deadlock-free paths for

task migration.

A. Determination of Goal Configuration

Since task migrations between different pairs of source nodes and destination nodes

are performed in parallel, it is very important to avoid any deadlock during the migration.

A deadlock might occur if there is a circular wait among nodes. To prevent this, a linear

ordering of hypercube nodes is established in such a way that a node with address

G(Bn(p)) sends its task module to another node with address G(Bn(q)) if and only if p>q.

Thus, we can avoid the any circular wait. The goal configuration without fragmentation can

be determined by the allocation algorithm developed in section IV.

Given a configuration of occupied subcubes, we do the following steps.

28

step 1: Label each task in the availability list with a distinct number

step 2: Relocate all tasks according to an increasing order of their labels.

We can compare the goal configuration without fragmentation between Ref[4] and

the new strategy developed in Section 2.4 in Table 2.4.

Gray strate y New strategy

Before After # Before After

0. 0000 -- task 1 0. 0000 -- task 1

1. 0001 -- task 4 1. 0001 -- task 2

2. 0011 task 1 task 2 3. 0010 -- task 1 -- task 3

3. 0010 -- task 2 2. 0011 -- task 2

4. 0110 task 2 7. 0100 task 4

5. 0111 -- task 2 6. 0101 -- task 2

6. 0101 -- task 2 -- task 3 4. 0110 -- task 3

7.0100 task 2 task 3 5. 0111 task 2

8. 1100 -- task 2 15. 1000 task 2

9. 1101 -- task 2 14. 1001 -- task 2

10. 1111 12. 1010 -- task 2

11. 1110 -- task3 13. 1011 -- task 2

12. 1010 -- task3 8. 1100 task 3

13. 1011 9.1101 task 3

14. 1001 task4 11. 1110

15. 1000 10. 1111 -- task 4

Table 2.4 Task migration under the GC strategy and New strategy

B. Node mapping Between Source and Destination Node

After the goal configuration is determined, each active task will be moved from its

source subcube to the destination subcube. The minimal number of moving steps required

to move a task from one node to another node can be determined by Hamming distance

between the two node locations.

29

We can define that the shortest distance between the source, p and destination, q

subcube is the Hamming distance(p,q). The order of source in the new strategy is not nec-

essarily the same as their corresponding destination nodes after the node-mapping. For ex-

ample, if we have the same order between the source and destination node for task 2, we

have the following node-mapping.

task 2 : 1000 -> 0001, H(p,q) = 2; 1001 -> 0011, H(p,q) = 2;

1010 -> 0101, H(p,q) = 4; 1011 -> 0111, H(p,q) = 2;

Therefore it will take 4 steps even though all moving can be done in parallel.

If we adjust the order in the goal configuration, we will reduce the steps. For ex-

ample, we have a different following node-mapping.

task 2 : 1000 -> 0001, H(p,q) = 2; 1001 -> 0101, H(p,q) = 2;

1010 -> 0011, H(p,q) = 2; 1011 -> 0111, H(p,q) = 2;

In this case all nodes have Hamming distance 2, resulting in 2 steps. Here, we want

to use the Theorem developed in [4]. The node-mapping between two subcubes recogniz-

able by the new strategy can be determined as follows: Suppose a=anan_i. .ai is the

source subcube and 13=bnbn_i. .b1 is the destination subcube. Let p and q be the dimen-

sion in which apE (0,1) and by =* and aq= * and bqE (0,1).

Theorem 2.4141 : Each source node u=unun_i . . . ui E a can be one-to-one mapped to

a destination node w=wnwn_i .w le 13 in such a way that

when i *p, wi = bi if bi E (0,1),

ui if ai = = *,

when i = p, Wp = up(negate) if wq =uq,

Up, if w *u
(1.

When modules of a task are migrated in parallel, the moving distance between two

nodes is equal to the number of Hamming distance between the source and destination node

of a task.

30

B. Determination of Shortest Deadlock-Free(SDF) Routing

Now we want to develop a routing method to move each task module from its

source node to its destination node. In order to avoid deadlock, a linear ordering among

hypercube nodes is needed such that each node can only move its task module to a node

with a lower address. So, we give all the nodes the value of Gray code to corresponding to

the original binary node.

If Gn(Bn(i)) and Gn(Bn(j)) are two nodes in a SDF path, then Gn(Bn(i)) is ahead

of Gn(Bn(j)) in the path iff i>j.

For example, (1111(10)->1101(9) - >1100(8) >0100(7)} is a SDF path in G4,

whereas (1111(10) -> 0111(5) -> 0101(6) -> 0100(7)) is not.

Once the node-mapping between each pair of source and destination subcubes is

determined, each source node appends to its task module the address of its destination

node. Each node can then determine the next hop on which to route a task module by the

algorithm below[4].

Step 1 : Each node compares the destination address d=dndn..i. . .diwith its own

address s=snsn..i. . .si from left to right. Let the j-th and k-th dimensions

be respectively the first and second dimensions in which they differ.

step 2: If si is even then send the task module to a neighboring node along the
i=k

k-th dimension

else send the task module to a neighboring node along the j-th dimension.

For example, suppose the source node is B4(15)= 1111 and the destination node is

B4(4) = 0100, then j=4 and k=2. The next determined by above algorithm is B4(13)=1101
3

since I si is odd. Then the next hop by the intermediate node B4(13)=1101 is B4(1100)
1=2

31

then final destination (0100). is reached. It can be verified that [1111(10) -> 1101(9) ->

1100(8) -> 0100(7)] is a SDF path.

Theorem 2.5141 The path determined by above algorithm is SDF.

To illustrate the entire process of task migration, consider the fragmented configu-

ration in Table 4. From above theorem, we obtain the goal configuration. By the node-

mapping scheme developed above, we have 0001->0000 for task 1,1000->0001, 1001->

0101, 1010->0011, 1011->0111 for task 2, 1100->0010,1101->0110 for task 3, 1111->

0100 for task 4. The SDF routing can then determined by above algorithm as follows.

task 1: 0001-> 0000

task 2: 1000 ->1001->0001, 1001->1101-> 0101,

1010 ->0010->0011, 1011->1111-> 0111

task 3: 1100 ->0100-> 0110->0010, 1101-> 0101-> 0111->0110

task 4: 1111 ->1101->1100->0100

2.7 Half-Task Migration Under Processor Failure

One approach to achieve fault tolerance is to decompose the hypercube structure

hierachially and add redundancy at several levels. This approach requires a global reconfig-

uration algorithm in which a global controller reconfigures a set of cross-bar switches. It

also does not take full advantage of the available hardware because a given module at a spe-

cific level may be replaced by a spare module even when most of its components are func-

tioning properly. Another approach to achieve fault tolerance where degraded performance

is not allowed is to initially designate only some of the processors as active and designate

the rest as spares that may cover for faulty processors. Such approach is only useful for

applications that require a number of processors less than the number of processors in the

available hypercube.

32

In this section we describe the half-task migration in the presence of faulty proces-

sors. The half-task migration is defined as follows: When 2k processors are allocated for

the job in an n-cube, we can relocate active tasks from 2k-1 processors to another 21(1 pro-

cessors in order to continue the job in case of processors failure. Note that there is a strong

dependence of half-task migration on the subcube allocation strategy used, since active

tasks must be relocated in such a way that the availability of subcubes can be detected by

the new allocation strategy.

The procedure can be done as follows: 1) determination of a goal configuration, 2)

the node-mapping between the source and destination subcubes, and 3) determination of

the shortest routing for moving half-task modules. This approach has the following advan-

tages: 1) We don't have to have the extra processors to reconfigure[15]. 2) It is easy and

efficient to reconfigure the processors if the alternatives are chosen.

We assume that the hardware of the hypercube system under consideration is de-

signed in such a way that each hypercube node has separate input and output ports. So each

node can receive a task module while sending another task module to its next hop. Each

moving step will take the same amount of time and will be used to define one time unit.

A. Goal configuration

When 2k processors are allocated for the job in an n-cube, we can relocate active

tasks from 2k-1 processors to another 2k-1 processors so as to continue the job in case of

processors failure. Given the configuration of 2k-1 faulty subcubes, the goal configuration

can be determined by the algorithm below. There are n-k alternatives for Qk in Qn.

Algorithm A2 : Determination of the goal configuration

A2 : (tindex; tindex<2n; tindex++)

choose smallest tindex in Qk

get_combination(Qn, Qk, tindex);

33

get_combination(Qn, Qk, tindex)

find every combination in tindex-th row in the link table;

(i4; i< rlink; i++) /* rlink is the number of links in the table index *1

index4;
find_one_cube(tindex, Q1, combination);

find_one_cube(tindex,size, combination)

path[index] = table[tindex][combination[0]].no;

index++;

if ((index ==Qk2) and (path is not faulty))

print path; 1* print result when one cube is found and non-faulty */

(pos=1; pos<size; pos++)

path[index] = table[tindex][combination[pos]].no;

index++;

find_one_cube(table[tindex][combination[pos]].no,pos);

For example, processors (0,1,4,5) are allocated for task which requires Q2 in Q4.

Let processors (4,5) be faulty during execution. We can replace processors (4,5) with

processors (2,3) or (8,9) . Thus we can have processors (0,1,2,3) or (0,1,8,9) in or-

der to continue the job. We check processors (2,3) and (8,9) in sequence if they are

available.

B. Node-Mapping

After the goal configuration is determined, 2k-1 processors will be moved from their

source subcube to the destination subcube. The minimal number of moving steps required

to move 2k-1 processors location to another location is determined by the Hamming dis-

tance between the two subcube locations.

We have the following theorem for the minimal number of moving steps required to

move a task from one subcube location to another.

Theorem 2.6 :, The order of source subcubes must be the same as their corresponding

destination subcubes after node mapping.

34

Proof : Let al a2 a3 . . .an be the 2k-1 faulty source subcubes and bi b2 b3 . . . bn be the

alternative 2k-1 destination subcubes and ci c2 c3 . . .cn be the 2k-1 remaining source sub-

cubes. There are 2k-1t ways to map from source subcube to the destination subcube. Here

we can find H(ai, ci) = 2, H(a2, c2) = 2, H(an, cn) = 2. Thus, in order to minimize the

moving steps, we must have H(bi, c1) = 2, H(b2, c2) = 2, 11(bn, cn) = 2. Therefore, we

have to move the half-task in the same order as their corresponding destination subcubes.

That is, al -> b1, a2 -> b2, an -> bn

Corollary 2.1: The maximum Hamming distance between source processor and

destination processor in half-task migration is 2.

According to above theorem, we can choose only one way which minimizes the

Hamming distance. For example, processors (2,3,6,7,10,11,14,15) are allocated for Q3.

Assume that processors (6,7) are faulty during the execution. Then according to the goal

configuration, we can find processors (8,9,12,13) available. Here we have 23-1! ways to

map from processors (2,3,6,7) to (8,9,12,13). If we choose 2->13, 3->9, 6->12, 7->8

respectively, then we have H(0010,1101)=4, H(0011,1001)=2, H(0110,1100)=2,

H(0111,1000)=4. Therefore it will take 4 steps even though all moving can be done in par-

allel. But according to the above theorem, we have H(0010,1000)=2, H(0011,1001)=2,

H(0110,1100)=2, H(0111,1101)=2. Thus, it will take only 2 steps.

C. Shortest Routing Procedure

Now we want to develop a routing method to move each half-task module from the

source node to its destination node. Once the node-mapping between each pair of source

and destination subcubes is determined, each source node appends to its task module the

address of its destination node. Each node can then determine the next hop on which to

route a half-task module by the algorithm below.

35

Step 1 : Each node compares the destination address d=dndn-i. .di with its own

address s=snsn-1. si from left to right. Let the j-th and k-th dimension

be respectively the first and second dimensions in which they differ.

Step 2: if the j-th dimension in the source processor is 0 then send the task

module to a neighboring node along the j-th dimension

else send it to a neighboring node along along the k-th dimension.

Theorem 2.7: The path determined by the above algorithm is the shortest safe-path.

proof : Let al a2 aj . . ak . .an be the source subcubes and b1 b2 bj . . bk . . bn be the

destination subcubes. In corollary 2.1, we described that the maximum Hamming distance

between source processor and destination processor is 2. Thus, when aj is 0, we have to

send the task along j-dimension.

For example, when processors (0,1,4,5) are assigned for Q2, processors (4,5)

are faulty during the execution. If we have half-task migration from processors (4) to (2)

and (5) to (3) in the goal configuration, then we have 0100 -> 0110 -> 0010 and 0101 ->

0111 -> 0011. If we don't follow the above procedure, we may have 0100 -> 0000 ->

0010 and 0101 -> 0001 -> 0011. Then we give unnecessary interrupt to processors (0,1).

36

REFERENCES

1. K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, New
York: McGraw_Hill, 1984

2. R. M. Chamberlain, "Gray codes, Fast Fourier Transformations and Hypercubes",
Parallel Computing, 6, 1988, pp. 225-233.

3. M. Chen and K.G. Shin, "Processor Allocation in an N-cube Multiprocessor Using
Gray Codes", IEEE Trans. Computer, Dec. 1987 pp. 1396-1407.

4. M. Chen and K.G. Shin, "Task Migration in Hypercube Multiprocessor", Proc.
16th Annual Intl Symp. on Computer Architecture. Jun 1989, pp. 105-111

5. M. Chen and K.G. Shin, "Embedment of interesting task modules into a
hypercube multiprocessor", in Proc. Second Hypercube Conf., Oct 1986, pp. 121-
129

6. B. Becker and H.U. Simon, "How robust is the n-cube?", in Proc. 27th Ann.
Symp. Foundations of Comp. Sci. Oct. 1986 pp. 283-291.

7. H. P. Kattesff, "Incomplete hypercubes", IEEE Trans. Computer, May 1988, pp.
604-608.

8. A. Al-Dhelaan and B. Bose, "A New strategy for Processor Allocation in an N-
cube Multiprocessor", Phoenix Conference on Computer and Communication, Mar
1989. pp. 114-118.

9. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Hypercube", Proc. The fourth Conf. on Hypercube Concurrent Comp. and
Applications, Monterey, Mar 1989, pp. 123-128.

10. P. Ramanathan and K.G. Shin, "Reliable Broadcasting in Hypercube
Multicomputers", IEEE Trans. on Comp. Dec 1988, pp 1654-1657.

11. Y. Saad and M.H. Schultz, "Topological Properties of Hypercubes", WEE Trans.
on Computer, Jul 1988, pp 867-872

12. J. E. Jang, S. W. Choi and W. K. Cho, "A New Approach to Processor Allocation
and Task Migration in an N-cube Multiprocessor", Proceedings, International
Conference on Supercomputing, Nov, 1989. pp. 314-325

13. J. E. Jang and W. K. Cho, "Maximality of Subcube Recognition and Fault
Tolerance in an N-cube Multiprocessor", Proceedings, 4th SIAM conference on
Parallel Processing for Scienctific Applications, Dec, 1989.

14. M. Sultan and Rami Melhem, "Fault Tolerance and Reliable Routing in Augmented
Hyercube Architecture", Proc, 8th IEEE Phoenix Int'l Conference on Computer
and Communication, Mar, 1989. pp. 19-23.

37

15. H. P. Kattesff, "Incomplete hypercubes", IEEE Trans. Computer, May 1988, pp
604-608.

16. Z. Kohavi, Switching and Finite Automata Theory, New York: McGraw-Hill,
1978

38

Chapter 3

An Optimal Fault-Tolerant Broadcasting Algorithm

for a Hypercube Multiprocessor

3.1 Introduction

Rapid advancing technology has made it possible for a large number of processing

elements(PEs) to be interconnected together on a single chip as a viable means of imple-

menting high performance integrated systems. A number of parallel architectures have been

proposed, such as hypercubes, meshes, trees and cube-connected-cycles(CCC)[1-4].

Among them, hypercube multiprocessors have been drawing considerable attention due to

their structual regularity for easy construction and high potential for the parallel execution

of various algorithms. And its architecture allows high level of concurrency and efficiency.

Numerous research efforts related to hypercube architectures, operating systems, etc., have

been undertaken[5-15, 20-21].

Most of the research effort on hypercube architecture has focused on the fault-free

situation. However, the increasing use of hypercube multicomputers for critical applica-

tions has made their fault tolerance an important issue. Efficient routing of message is a key

to the performance of a multicomputer system. Especially, the increasing use of multicom-

puter systems for reliability-critical applications has made it essential to design fault-tolerant

routing strategies for such systems. By fault-tolerant routing, we mean the successful

routing of messages between any pair of non-faulty nodes in the presence of faulty compo-

nents.

Broadcasting is an important means of communication among processors by which

a processor can pass data or control to all other processors in the network. This operation is

extremely important for diagnosis of the network, distributed agreement[16] or clock syn-

39

chronization[17]. Distributed agreement and clock synchronization can be achieved only if

there is no faulty node to deliver the message in the system[16-17]. This, however, is not

easy to achieve in the presence of faulty node/link because the faulty nodes can either omit,

corrupt, reroute, or alter information passing through them.

There are two possible approaches to overcome this problem. In the first approach,

each node keeps limited information about the faulty nodes in the system. Fault-tolerant

routing/broadcasting is achieved by going around the faulty nodes[9, 13]. This approach

can be used only if it is possible to identify the faulty processors "on-line". Since the over-

head of identifying the faulty processors and passing the fault information to the other

nodes could be quite severe, this approach is not suitable for many real-time applications.

In the second approach, fault tolerance is achieved by sending multiple copies of the mes-

sage through disjoint paths[14-15]. The nodes that receive the message identify the original

message from the multiple copies by using some scheme that is appropriate for the fault

model, e.g., majority voting. The second approach has the advantage of not having to

identify the faulty processors.

Sullivan and Bashkov[5] developed an algorithm for broadcasting in the hypercube.

This algorithm was developed on the assumption of having no faulty processors. Al-

Dhelaan[13] developed a broadcasting algorithm for the hypercube in the presence of some

faulty processors. However, their algorithm works if only one child processor is faulty

under any node in the broadcasting tree. Their algorithm does not make explicit use of the

properties of the hypercube topology. Ramanathan and Shin[14] developed another

algorithm for the hypercube in the presence of faults which uses the second approach men-

tioned above.

In this chapter, we develop an optimal fault tolerant broadcasting algorithm for the

hypercube multicomputers. In other words, our algorithm can tolerate n-1 processors fail-

ure in Qn and uses the first approach where each processor keeps a small amount of infor-

mation about other nodes.

40

This chapter is organized as follows. Section 3.2 describes the preliminaries, prob-

lem statement and notation used in this paper. Section 3.3 outlines the previous broadcast-

ing algorithm developed by Sullivan[5] and Al-Dhelaan[13]. Section 3.4 describes the pro-

posed an optimal fault-tolerant broadcasting algorithm. The algorithm developed in Section

3.4 is formally proved to be optimal and is evaluated in terms of steps required for com-

plete broadcasting in Section 3.5.

3.2 Preliminaries and Problem Statement

A n-cube can be defined as follows:

Definitionf181: An n-cube Qn is defined recursively as

a) Qo is a trivial graph with one node, and

b) Qn = K2 * Qn..i, where K2 is the complete graph with two nodes.

The problem addressed in this chapter can be easily stated as follows. Given 1) an

n-dimensional hypercube subject to node faults, 2) maximum n-1 node faults, develop a

broadcasting algorithm that satisfies the following condition.

Condition : If the node initiating the broadcasting is non-faulty, then all non-faulty

nodes in the hypercube must receive the message broadcasted by the initiating node.

We refer to the processors of a multiprocessor as nodes, and the communication

links connecting these processors as links. The processors communicate by sending mes-

sages over the links and this could be direct or indirect, i.e., through some intermediate

processors.

In our algorithm, we use two types of information to control the flow of the mes-

sage in the hypercube.

®i(s) : initiating node s sends the message to ith neighbor node by complement-

ing ith position bit.

J)(s) : initiating node s sends the message, " ®i(s) is faulty" to ®j(s)

We will show the example to use the above notation.

41

Example: Consider a hypercube of 3-dimension with eight nodes. The initiating node

000(0) can send a message to its 2nd neighbor, i.e., processor 100(4) by executing

2(000). Also, the processor 000(0) can send a message, "node 010(2) is faulty" to its

neighbor node 100(4) by executing 9(1,2)(000). Thus, node (1)2(000) gets the informa-

tion that the node 91(000) is faulty.

3.3. Previous Fault-Tolerant Broadcasting

We define N(T) to be the total number of nodes in the broadcasting tree.

Sullivan and Bashkov have devised an algorithm for broadcasting in the hyper-

cube[5]. This algorithm sends the message to all other nodes non-redundantly, which

means that broadcasted message is sent to each processor exactly once. The algorithm takes

log2(N) steps to broadcast the message. It works by sending a weight along with each mes-

sage; this weight is used to decide how the algorithm should continue broadcasting the

message from the receiving node.

The route that the broadcasted message will take can be shown using a tree where

the nodes and arcs of the tree correspond to the nodes and links of the hypercube respec-

tively. Furthermore, the root of the tree represents the source, i.e., originator of the broad-

casted message.

We will briefly describe the algorithm developed by Al-Dhelaan[13] which tolerates

the existence of some faulty processors.

Definition[13] : When any node receives a paired weight(i,j) it interprets it as:

1. Take i as the weight and send the message according to direction i.

2. Send the message with a singular weight i to your jth neighbor. i.e., execute

Send(message,(i,j)).

Example: Consider a hypercube of 3-dimensions with eight nodes. The processor 000

can send a message to its 2nd neighbor, i.e., processor 100, via the 2nd link with weight 1

by executing Send(message,1,2).

42

The algorithm starts at the source node using the following steps[13].

Generate the message

FOR j = 0 to (log2(N) -1) DO

IF for some i>j the ith neighbor is faulty

THEN Send (message,j,(j,i))

ELSE Send (messagej,j)

and the other processor needs to follow the steps using the following steps[13].

Extract the message and process locally

IF the node weight is paired

THEN BEGIN
Let the paired weight be (a,b)

Send (message, b,a)

Set weight to a

END

FOR j = 0 to (weight -1) DO

IF the ith neighbor is faulty

THEN Send(message, j,(j,i))

ELSE Send(message, j,j)

Their algorithm does not make explicit use of the properties of the hypercube

topology. It works only if there is one single faulty processor under any node in the broad-

casting tree. For example, Fig. 3.1 shows how a message would be broadcasted from

node 011 in a Q3 where node 111 is faulty. We can see that the nodes {101, 110, 100) un-

der the faulty node (111) can be re-broadcasted by the brother nodes (001, 010) of the

faulty node. Here we can show one problem that their algorithm can't satisfy. If node 111

and 001 are faulty, how does node 011 send the message to non-faulty nodes in the broad-

casting tree? We will describe the solution in section 3.4. Their algorithm gives all the

brother-nodes the burden of sending the message. In next section, we describe the algo-

rithm that gives only one brother the burden of sending the message and that can tolerate n-

1 nodes failure.

43

Faulty

Processor

Fig. 3.1 Broadcasting in the presence of a single faulty processor[13]

Re-

routing

3.4 An Optimal Fault-Tolerant Broadcasting

Our broadcasting algorithm is the same as the algorithm in Sullivan[5] except the

sequence of the message, which is in the reverse order. Our algorithm also takes log2(N)

steps to broadcast the message. The delivery mechanism proceeds in two phases. In the

first phase, the node initiating the broadcast sends the message to all its neighbors. In the

second phase, the neighbors use a "Coordinated" procedure to broadcast the message to all

the nodes. The sequence of directions used by these neighbors in their "Coordinated"

phases is coordinated in order to ensure that each node gets the broadcasting message in

sequence nonredundantly. A formal description of the algorithm is given below.

Algorithm Broadcast(s); /* s: initiating node */

begin
Generate the message

for 05i5.n-1 do begin
send the message from s to Elh(s).

Coordinated(Elh(s),i)

end;
end;

procedure Coordinated (m,k) /* m: initiating node; dk: starting direction */

begin
R := (m); /* R: set of nodes that have received the message */
for each node j e R

do
for k+15.15n-1 do begin

send the message from j to Elh(j);

if i <n-1 then
R :=R u { ®M)}; /* all receiving nodes are added */

end;
k := k+1;

R := R -{j}; 1* initiating node is deleted */

until R = empty;

end;

44

Let us explain the algorithm briefly. In the first phase, the source node initiating the

broadcasting sends the message to all its neighbors according to the i direction. In the sec-

ond phase, each neighbor node becomes initiating node and broadcasts the message to its

children nodes according to the new direction. Whenever a new child node is broadcasted,

it is added to its father node for another broadcasting. Finally, the initiating node is deleted

from the all node sets, thus remaining nodes send the message to its neighboring nodes

until there is no node to send the message further.

For example, Fig 3.2 shows the broadcasting of a message from source node 011

to all other processors in a Q3.

0

Fig 3.2. Broadcasting in a Q3 from the node 011

45

Given below is an example to illustrate the basic idea of the algorithm.

Example : Consider a Q3. Let node 011 initiate the broadcasting as shown in Fig. 3.2. In

the first phase, node 011 sends the its message to nodes 010, 001, 111. In the second

phase, node 010 uses procedure Coordinated to broadcast the message it received from the

node 011 to node 000 along di, then to node 110 along d2, and finally node 000 sends the

message to node 100 along d2. Similarily, node 001 sends the message to node 101 along

d2.

We describe some Lemmas that are needed to prove that the algorithm sends the

message to each node non-redundantly. First, we will describe the binomial tree.

Definition[19] : Binomial trees are defined as follows: For each k..0, we define class

Bk of ordered trees as follows:

1. Any tree consisting of a single nodes is a Bo tree.

46

2. Suppose that Y and Z are disjoint Bk_i trees for Then the tree obtained by

adding an edge to make the root of Y become the the leftmost offspring of the root of Z is a

Bk tree. All binomial trees having a given index are isomorphic in the sense that they have

the same shape. We have some properties of binomial trees.

Lemma 3.1[19] : Let Z be a Bk tree. Then

1. Z has 2k nodes.

2. Z has kCi nodes on level L

Lemma 3.2 : The broadcasting tree developed by the algorithm Broadcast is a binomial

tree.

Proof : The broadcasting tree developed by ®i(s) has the nodes in the procedure

Coordinated. The total number of nodes of the broadcasting tree developed by ®j(s) where
n-1 n-1

i+1511-1 is E 211-1-j. Thus, we have the the following equation, 2n-14 = I 2 - 1 -j
j=i+ 1 j=i + 1

where Also the initiating node s is connected to i(s) and 9j (s) where

i+ 1 fl-1. The new initiating node ®i(s) is connected to ei(eao) where

Therefore, the broadcasting tree developed by the algorithm Broadcast is a binomial tree.

Lemma 3.3: The nodes in the broadcasting tree are distinct among themselves.

Proof : First of all, all neighboring nodes of the originally initiating node are distinct in

algorithm Broadcast. In "Coordinated' procedure, m and dk is different whenever they are

invoked by the algorithm Broadcast. As the value i in k+1 changes, ®i(j) is also

changed. Thus, all nodes are distinct in the for-loop. Therefore, all nodes in the broadcast-

ing tree are distinct.

Now we want to prove the following important theorem.

Theorem 3.1: The algorithm Broadcast sends the message to all nodes nonredun-

dantly.

Proof: The fact that the algorithm sends the message to all nodes in the hypercube nonre-

dundantly can easily deduced from the following facts: a) In the broadcasting tree, each

47

node receives the message from exactly one node, its father. b) The maximum number of

nodes in a Qn hypercube are 2" nodes. c) From the Lemma 3.2, the broadcasting tree for

Q,, has 2" nodes, d) From the Lemma 3.3, all nodes in the broadcasting tree are distinct.

In the rest of this section we introduce a fault-tolerant broadcasting algorithm in the

presence of n-1 processors failure in Q,,. The basic idea of our algorithm is as follows.

The node s that wants to broadcast a message checks Oi(s) where 0.i.511-1 and sends the

message if it is non-faulty. Otherwise it sends 9(ii)(s). Then ®j(s) will be the new initiat-

ing node and send the message to the broadcasting tree developed by ®i(s) in the proce-

dure coordinated. The neighbors also follow the same procedure as the initiating node. A

formal description of the algorithm is given below.

Algorithm Broadcast(s);
begin

for
if

/* s: initiating node */

0<_i Sn-1 do begin

9i(s) is faulty then begin /* checking neighboring node *1
p := i+1;
true := 1;
while ((p 11-1) and (true)) do

begin
if .., (s) is non-faulty then /* another neighboring node *1

begin
while (p511-1) do begin

if 9p9i(s) is non-faulty then /* one of son-nodes
under faulty node *1

begin
send the M from s to eki,p)(s);

send the M from ®p(s) to 0 /(®AO);

Fault-Tolerant-Source(0 (9i(s)), i,p);
true := 0;

end;
else p:= p+1;

end;

if (true = 1) then /* father node and all its son nodes are
faulty */

begin
send the M from 9i(s) to s;

for i+1<jn-2 do begin

48

send the M from s to (1)(s)

All-Sons-Dead(EDj(s),i);
end;

end;

end;
else p := p+1;

end;
if (true = 1) then /* all ®i(s) nodes are faulty */

begin
send the M from 19i(s) to s;

for i+1<j5_n-2 do begin
send the M from s to 9j(s)
All-Sons-Dead(EDj(s),i);

end;
end;

else begin
send the M from s to 9i(s).
alive := EN(s);

Coordinated(Oi(s),i)

if younger-brother-nodes are faulty then
Younger-Brother-Dead(alive,i);

if all-sons-dead are faulty in the younger brother node then
Give the Information from the older-brother node to them.

end;
end;

end;

Let us explain this procedure briefly. First, the initiating node s checks its ®i(s)

where (31i5_n-1. If that node is faulty, then check i-Fi(s), ®i+2(5), e n-1(s). One of

them is non-faulty, s gives the information " ®i(s) node is faulty" to non-faulty node, that

is, e(i j)(s). Then non-faulty node, 19j(s), sends the message to one of son-nodes of

9i(s), which is non-faulty node and becomes the new initiating node to send the message

to the remaining nodes in the subtree under the fault-node. Here we have 2 more proce-

dures to handle : 1) In case that all son-nodes are faulty under the initiating node, which can

be shown in Fig. 3.6. 2) In case that i(s) is non-faulty but ®j(s) is faulty where j > i,

which can be shown in Fig. 3.4.

49

Now we can explain the Fault-Tolerance-Source procedure under the new initiating

node in case of node failure. At that time, the broadcasting tree under the faulty node is re-

organized. The direction of the new initiating node is different from fault-free broadcasting.

The number of son-nodes of the new initiating node is one less than that of the faulty node

because the original initiating node is faulty. Here we assume that there is no faulty node

under the new initiating node. In procedure Fault-Tolerance-Source, if the link of the new

initiating node is j, the direction is j+1, j+2, . j-1, where i is greater than faulty

direction

procedure Fault-Tolerance-Source(s',d,k); k : non-faulty direction
d : faulty direction */

begin

for k+1 mod n5iSk-1 mod n do
begin

if i > d then
Send the message from s' to 9gs);

end;
Fault-Coordinated(

end;
k-i(s'),k-i,k,d)

In this procedure its neighboring nodes are different from the normal broadcasting.

You will find the difference in Fig. 3.3 and Fig. 3.4. In Fig. 3.3, the new initiating node

0011 sends the message to 91(0011) and 63,2(0011) while the new initiating node 1001

sends the message to 92(1001) and 3(1001) in Fig. 3.4.

We will describe the procedure Fault-Coordinated, which is the procedure under the

new receiving node in case of initiating node failure. We assume that there is no faulty pro-

cessor, since fault checking routine is the same. The direction is as follows;

If the direction from the new initiation node is j, it broadcasts j+1, j+2, , bound,

where i is greater than faulty direction.

procedure Fault-Coordinated (m,k,bound,d) /* bound: non-faulty direction,
d: faulty direction */

R := (m); /* R: set of nodes that have received the message */
for each node j E R

do

begin

end;

for (k+1) mod n i.bound do begin /* k+1, k+2, . . . */
if i <> d then

send the message from j to 9i(j);
if i < bound then

R := R u (Di(j)); rk all receiving nodes are added *1
end;
k := k+1;
R := R -(j); /* initiating node is deleted *1

until R = empty;

50

First of all, we will show the different directions in the Fig. 3.3 and Fig. 3.4. In

Fig. 3.3, the direction is d2 -> d3 while the direction is d3 -> d1 in Fig. 3.4. Here, final

direction is the same as the non-faulty node direction. For example, d3 came from

3(1010) in Fig. 3.3, while d1 came from 91(1010) in Fig. 3.4. It depends on that

which node among non-faulty nodes becomes the new initiating node to send the message.

One of the son nodes of the faulty node becomes the initiating node and sends the message

to all the non-faulty nodes in the broadcasting tree.

When the initiating node is faulty, the subtree is reorganized under the new initiat-

ing node. In the binomial tree, Hamming distance between source node and son node is 1,

while Hamming distance is 2 among son-nodes. Since one of son-nodes becomes the new

initiating node, all its brother nodes can't receive the message directly from the new initiat-

ing node, leaving them the leaf nodes. We will show this example in Fig. 3.3.

Now we can explain the procedure that can handle the case where all son-nodes are

faulty. Then all younger brother-nodes become the initiating nodes. After they finished nor-

mal broadcasting procedure, all nodes except the initiating node send the message to ei(all-

nodes). We show the example in Fig. 3.6.

procedure All-Sons-Dead(m,i);

begin

finish normal operation using procedure "coordinated" ;

send the message from all-nodes to (all-nodes);

end;

51

We have another procedure Younger-Brother-Dead that can handle the case where

younger brother nodes are faulty. That means, the node s sends the message to a, i(s), be-

cause it is fault-free node, but in case that says) is faulty where j > i, 9i(s) sends the mes-

sage to the subtree under EDj(s). We can show the example in Fig. 3.4.

procedure Younger-Brother-Dead(m,i);

begin

finish normal broadcasting using procedure "Coordinated" ;

follow direction i until leaf node is reached;

send the message from leaf node to EDi(leaf node);

end;

We will show several examples that can tolerate n-1 processors failure and broad-

cast the message using our algorithm Broadcast. Those examples will start from the

initiating node. When n-1 nodes are faulty under the initiating node, at least one of them is

fault free. This will be the new initiating node and send the message to all the remaining

nodes under the faulty node. Fig. 3.3 shows the optimal fault-tolerant broadcasting of Q4

when 3 processors are faulty under the initiating node. In this example, only the youngest-

son node is non-faulty. Since this broadcasting tree is the binomial tree, the youngest-son

node is connected to one of nodes under the older-son nodes. Thus, it can send the

information to one of non-faulty node under the faulty node.

52

Faulty
Processor

Re-routing

\i41

These no
only through re-

Fig 3.3. Broadcasting where three faulty processors under the source node in Q4

Let us explain the above example briefly. The source node 1010 checks the 0(1010) and

finds the node faulty. Then it checks 91(1010) and ED2(1010) to find if they are faulty or

not. Finally 93(1010) is non-faulty, so source node 1010 gives "; %0(1010) is faulty" to

93(1010). Then 93(1010) gives the message to node (9093(1010)) = 0011 and calls the

53

Fault-Tolerance-Source procedure. Thus the node 0011 becomes the new initiating node

and sends the message to all the nodes in the subtree developed by original node ®0(1010).

Here, node 0011 sends the message to 91(0011). Next node 0011 and 91(0011) sends the

message to node 0111 and 0101 Finally node 0111, 0001 and 0101 will send the message

to node 1111, 1001 and 1101 along d3. Therefore, it takes 4 steps from node 0010 to node

1101. Similarily, when 1(1010) and es2(1010) are faulty, node (9103(1010)) = 0000

and (E13203(1010)) = 0110 will be the new initiating node, respectively and follow the

same routine as above. Here we can see all son-nodes {0011, 1111 and 1001} of 1000 will

be the leaf nodes after re-broadcasting.

We show the another optimal broadcasting example where only the middle node is

non-faulty in Fig. 3.4. When 0(1010) is faulty, the same routine as in Fig. 3.3 is exe-

cuted. So, the non-faulty node 1001 becomes the new initiating node and sends the mes-

sage to the subtree under 90(1010). Node 1001 will send the message to 0001 and 1101

using procedure Fault-Tolerance-Source. Node 1101 and 0001 sends the message to all the

remaining nodes using procedure Fault-Coordinated. On the other hand, the non-faulty

node 1000 is saved. When 92(1010) and 3(1010) are faulty, node (1010) gives the

information to 0(2,1)(1010) and 9(3,1)(1010). When 1(1010) receives the message of

(2,1)(1010), it becomes the initiating node and finishes the normal broadcasting

procedure, then calls the procedure Younger-Brother-Dead, where the direction 2 is

followed and the leaf node is complemented by direction 2. Node 0110 receive the

message through 1010 -> (92(1010) -> 3(2(1010)) in case of non-faulty broadcasting.

However, in case of node 92(1010) = 1110 is faulty, node 0110 receives the message

through 1010 -> 1(1010) -> ED 2(9 1(1010)) -> 30)203,10 mom ->

1(30)2((1010)))). Here, we know that 3(®2(1010)) is equal to

91)30920)10 mom).

Faulty
processor

lir Re-routing

54

Nodes-reached
by re-routing

Fig. 3.4 Broadcasting when middle node is non-faulty in Q4

We show another example where 3 processors are faulty in different levels in Fig.

3.5. When 191(1010) and 02(1010) are faulty, the same procedure as in Fig. 3.4 is

55

Fault node

ir Re-routing

Fig. 3.5 Broadcasting in the presence of 3 faulty processors in different level in Q4

executed. However, when ®1(;%0(1010)) is faulty, the same procedure coordinated is

called and .2(90(1010)) sends the message to (1,2)(91(1011)) and calls the fault-toler-

ance-source procedure, so node 1101 becomes the initiating node and sends the message to

all nodes 0101 and 0001. Node 1101 receive the message through 1011 -> 91(1011) ->

92(01(1011)) in case of non-faulty broadcasting and the message through 1011 ->

ED2(1011) -> i(92(1011)) in case of faulty node.

56

We show an another example where 3 processors are faulty under the initiating pro-

cessor in the subtree in Fig. 3.6. Here all son nodes are faulty and this example corre-

sponds to procedure all-sons-nodes. In that case, all its younger brother nodes become the

initiating nodes to send the message and finish the normal algorithm broadcasting and

complements the leaf nodes by the direction i derived from the initiating node. Node 1101

receives the information through 1010 -> 1011 -> 1001 -> 1101 in normal broadcasting.

When the node 1001 is faulty, the node 1101 receives the message through 1010 -> 1000

> 1100 -> 1101. The node 0001 receives the message through 1010 -> 1000 -> 0000 ->

0001. That is, all the nodes broadcasted by ®i(s) can receive the message from all the

nodes broadcasted by (1)(s) where i+15j5n-2. We shall prove this in next section.

Faulty
Processor

Re-routing

Fig. 3.6 Broadcasting when all-sons processors are faulty in Q4

57

3.5. Analysis of Broadcasting Algorithm

In this section we want to prove that our algorithm is optimal in case of n-1 nodes

failure. We need the following Lemmas to prove. First we start with the initiating node to

broadcast the message.

Lemma 3.4 : In broadcasting tree, if n-1 nodes are faulty under the initiating node s, then

we can send the message to one of son-nodes under the faulty node.

proof: The initiating node s checks the ei(s) where 0i5.n-1. Let us assume that only

®j(s) where 0<_j #in-1 is non-faulty. Let one son node be ej(Elh(s)) under Is). When

i(s) is faulty, s gives j)(s) to EDj(s). Node ej(s) gives the message to i(ej(s)) in the

algorithm Broadcast and i(Elys)) becomes the initiating node. If ®i(s) is non-faulty, the

message is sent through s -> ®i(s) -> Ely9i(s)). However, when i(s) is faulty, the mes-

sage is sent through s -> ED j(s) -> j(s)). Here, we find j(ED i(s)) is equal to

ei(EDj(s)). Therefore we can reach one of sons in the faulty node.

For example, if nodes 1010, 1000 and 1110 are faulty, the non-faulty node 0010

sends the message to nodes 0011, 0000 and 0110, respectively in Fig 3.3.

When the initiating node is faulty, one of the son-nodes will receive the message

from one of the initiating node's brother node and will be the new initiating node to send

the message. Then we have the following Lemma.

Lemma 3.5 : In broadcasting subtree, if one of son-nodes is non-faulty, then it can be

the initiating node to send the message to all other processors.

proof : Let the initiating node s be faulty and ®i(s) be non-faulty. The EN(s) receive the

information, "s is faulty". Then ®i(s) calls the procedure Fault-Tolerance-Source and be-

comes the new initiating node s' and sends the message to its neighbors in the next level

and calls the procedure coordinated. At that time, since H(s' ,Oh(s)) = 2, s' can't broad-

cast directly to *(5'). Thus, when the broadcasting tree is reorganized, all the brother-

nodes of s' receives the message from their son-nodes. That is, ®i(s) must be leaf nodes

when procedure Fault-Tolerance-Source is called.

58

For example, node 0011 becomes the initiating node and send the message to nodes

0111 and 0001 in Fig. 3.5. Those nodes send the message to all the subtrees through pro-

cedure coordinated. Here we can see that the nodes 1111 and 1001 which are brother nodes

of node 0111 are leaf nodes

We can see the another example in Fig. 3.6, which shows all nodes 1110, 1000,

1011 are faulty under node 1011. In that case, node 1011 gives the information, "all his

son-nodes are faulty", to all his brother-nodes. Then all his younger brother-nodes become

the initiating nodes and broadcast the message to the non-faulty nodes under node 1011 by

complementing direction 0 of leaf nodes. We formally prove the result indicated by the

above example.

Lemma 3.6 : In broadcasting subtree, if all son-nodes are faulty or initiating node and its

all son nodes are faulty, then the initiating node's all younger brother-nodes can be

initiating nodes to send the message to all the processors under the faulty node.

proof : Let s', m and m' be initiating node, ®p(s) and Oi(s') respectively. Let 49i(m)

where 05..in-1 be faulty. If ®i(m) is non-faulty, the the son j(ei(m)) of ®i(m) will

receive the message through s' -> ::p(s') -> ei(Op(s) ->49j(9i(ep(s))). Since ®i(m)

is faulty, m give the information, "ei(m) is faulty" to s' and s' to m'. Thus, m' sends the

message to j(m') and finally to p(j(10). So, if i(m) is faulty, the the son

9j(EDi(m)) of i(m) will receive the message through s' -> 9j(s) -> ej(9i(s) ->

9p(EDj(IEDi(s))). Here, EHj(Elh(p(0)) is equal to p(9j(EN(s))). Therefore, any son

node under all faulty nodes can receive the message from the grand-father's younger broth-

ers.

Lemma 3.7 : In a broadcasting tree, left(right) subtree of the initiating node are mapped

directly to right(left) subtree by one step.

proof : According to Lemma 3.2, the broadcasting tree developed by the algorithm

Broadcast is a binomial tree. All binomial trees having a given index are isomorphic in the

59

sense that they have the same shape. Therefore, we can map left(right) subtree to right(left)

subtree by one step.

All the above Lemmas 3.4, 3.5, 3.6 and 3.7 lead to the following theorem.

Theorem 3.2: Our broadcasting algorithm tolerates the failure of n-1 processors.

Proof: From Lemma 3.4, the initiating node to send the message can tolerate n-1 proces-

sors failure. This Lemma corresponds to algorithm Broadcast and All-Brothers-Dead.

From Lemma 3.5, if one of the son-nodes is non-faulty, it becomes the new initiating node

and sends the message to all the non-faulty nodes in the sub-broadcasting tree. This Lemma

corresponds to procedure Coordinated. From Lemma 3.6, if all sons are faulty, all of

initiating node's younger brothers can be the initiating nodes and each sends the message to

all the non-faulty nodes in the sub-broadcasting tree. This corresponds to procedure All-

Sons-Dead. Finally, these Lemmas can be applied to any level of subtrees. Therefore, our

algorithm can tolerate the loss of n-1 processors.

In the rest of this section, we will evaluate the performance of algorithm Broadcast

in terms of the number of steps required to complete the message delivery. It is shown in

Theorem 3.3 below that the fault-tolerant delivery can be completed in n+1 steps. We are

not considering the steps to send the information, the (ii)(s).

Theorem 3.3 : Our optimal fault-tolerant broadcasting algorithm needs n+1 steps.

Proof : When the node initiating the broadcast (say s) sends the message, it checks i(s)

and gives the j(s) to 19(0(s). Then, Ws) gives the message to one of the sons of ei(s),

which will be the new initiating node and sends the message to all non-faulty nodes in the

same step as the normal broadcasting tree. That is, we need one more step from the new

initiating node to its brother node when the subtree under the faulty node is reorganized.

Therefore, we need n+1 steps in this optimal fault-tolerant broadcasting algorithm.

60

REFERENCES

1. F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles, A Versatile
Network for Parallel Computation," Communication of ACM, pp. 30-39, May
1981.

2. J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984

3. J. E. Jang,"Optimal Fault Tolerant Broadcasting Algorithm in an Cube-Connected
Cycles Network", Proc. Int'l Conference on Databases, Parallel Architectures and
its applications (PARBASE-1990), Mar, 1990. pp. 206-215.
(To appear as a chapter in a book published by IEEE)

4. H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. on
Computers, pp. 153-161, Feb. 1971.

5. H. Sullivan and T. R. Baskow, "A large scale homogeneous, fully distributed
parallel machine" Proc. Fourth Symp. Comp. Architecture, Mar. 1977, pp. 105-
117.

6. J. E. Jang, S.W. Choi and W.K. Cho, "A New Approach to Processor Allocation
and Task Migration in an N-cube Multiprocessor", Proc, Supercomputing 89',
Nov. 1989. pp.314-325.

7. M. Chen and K.G. Shin, "Processor Allocation in an N-cube Multiprocessor Using
Gray Codes", IEEE Trans. Computer, Dec. 1987 pp. 1396-1407.

8. M. Chen and K.G. Shin, "Task Migration in Hypercube Multiprocessor", Proc.
16th Annual Int'l Symp. on Computer Architecture. Jun 1989,

9. M. Chen and K.G. Shin, " Adaptive Fault-Tolerant Routing in Hypercube
Multicomputers" To appear in IEEE Trans. on Computers, 1989

10. B. Becker and H.U. Simon, "How robust is the n-cube?", in Proc. 27th Ann.
Symp. Foundations of Comp. Sci. Oct. 1986 pp 283-291.

11. H. P. Kattesff, "Incomplete hypercubes", IEEE Trans. Computer, May 1988, pp
604-608.

12. A. Al-Dhelaan and B. Bose, "A New strategy for Processor Allocation in an N-
cube Multiprocessor", Phoenix Conference on Computer and Communication, Mar
1989. pp. 114-118.

13. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Hypercube", Proc.The fourth Conf. on Hypercube Concurrent Comp. and
Applications, Monterey, Mar 1989, pp. 123-128.

14. P. Ramanathan and K.G. Shin, "Reliable Broadcasting in Hypercube
Multicomputers", WEE Trans. on Comp. Dec 1988, pp 1654-1657.

15. Y. Saad and M.H. Schultz, "Topological Properties of Hypercubes", IEEE Trans.
on Computers, Jul 1988, pp 867-872

61

16. L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals problem," ACM
Trans. Programming language System, pp. 382-401, Jul. 1982.

17. T. K. Srikanth and S. Toueg, "Optimal clock synchronization," J. ACM pp.626-
645, Jul.1987.

18. N. Deo, Graph Theory with applications to Engineering and Computer Science,
Prentice-Hall, 1974.

19. M. R. Brown, "Implementation and Analysis of Binomial Queue Algorithms",
SIAM J. Comput, Vol. 7, Aug. 1978, pp 298-319.

20. J. E. Jang and W.K. Cho, "Maximality of Subcube Recognition and Fault-
Tolerance in an N-cube multiprocessors", Proc. 4th SIAM Conference on Parallel
Processing, Dec, 1989.

21. J. E. Jang, "An Optimal Fault Tolerant Broadcasting Algorithm foe a Hypercube
Multiprocessor", Proc.1990 ACM Computer Science Conference, Feb, 1990. pp.
96-102.

62

Chapter 4

Reliable Broadcasting Algorithm for a Cube-Connected

Cycles Network

4.1 Introduction

Rapid advancing technology has made it possible for a large number of processing

elements(PEs) to be interconnected together on a single chip as a viable means of imple-

menting high performance integrated systems. A number of parallel architectures have been

proposed, such as hypercubes, meshes, trees and cube-connected-cycles(CCC)[1-4].

Several of these interconnections are well suited to VLSI implementation due to their

structural regularity.

Cube-connected-cycles is a parallel network architecture proposed by Vuillemin[1].

The CCC can efficiently solve a large class of problems that include Fourier transform[5],

sorting[6], permutations, etc,. Unfortunately, the cube[5-6] is not readily usable for VLSI

design since each processor in a k-dimensional cube is connected to k other processors[7-

8,15]. The operation of the cube-connected-cycles network is based on the combination of

piplining and parallelism, which leads to the following results[12]:

1. The number of connections per processor is reduced to three.

2. Processing time is not significantly increased with respect to that achievable on

the cube-connected network.

3. The overall structure complies with the basic requirements of the VLSI technol-

ogy: modularity, ease of layout, simplicity of communication among processors, simplicity

in timing and control of the entire system.

Broadcasting is an important means of communication among processors by which

a processor can pass data or control to all other processors in the network. This operation is

63

extremely important for diagnosis of the network, distributed agreement [9] or clock

synchronization[10].

Distributed agreement and clock synchronization can be achieved only if there is no

faulty node to deliver the message in the system. This, however, is not easy to achieve in

the presence of faulty node/link because the faulty nodes can either omit, corrupt, reroute,

or alter information passing through them.

There are two possible approaches to overcome this problem. In the first approach,

each node keeps limited information about the faulty nodes in the system. Fault-tolerant

routing/broadcasting is achieved by going around the faulty nodes[11-12]. This approach

can be used only if it is possible to identify the faulty processors "on-line". Since the

overhead of identifying the faulty processors and passing the fault information to the other

nodes could be quite severe, this approach is not suitable for many real-time applications.

In the second approach, fault tolerance is achieved by sending multiple copies of the

message through disjoint paths[13-14]. The nodes that receive the message identify the

original message from the multiple copies by using some scheme that is appropriate for the

fault model, e.g., majority voting. The second approach has the advantage of not having to

identify the faulty processors during the normal operation of the system. This advantage is

especially important in many critical real-time applications.

In this chapter, we present both approaches. The first broadcasting algorithm deliv-

ers delivers multiple copies of the message to all nodes in the CCC through 3 disjoint

paths. The basic idea of our algorithm is as follows. The node that wants to broadcast a

message sends the message to all its neighbors in the same ring. The neighbors in the same

ring and the node initiating the message in turn broadcast the message using a simple yet

efficient algorithm. The algorithm executed by the neighbors is coordinated such that the

copies of the message received by a node have traveled through disjoint paths. The good

feature of the proposed algorithm is that the delivery of the multiple copies is transparent to

the processes receiving the message and does not require the processes to know the identity

64

of the faulty processors. Depending on the fault modes used, the algorithm can tolerate

either s-1 or Ls/2J or Ls/3J node/link faults. The algorithm completes in Ls/2J + (2s-1) +

Ls/2J steps and 4s steps if each node can use all and at most one of its outgoing links at a

time respectively.

The second broadcasting algorithm delivers a copy of message to all nodes nonre-

dundantly. The basic idea of our algorithm is as follows. The node that wants to broadcast

a message checks if its neighbor node is faulty or not. If the neighbor node is faulty, the

initiating node gives this information to one of non-faulty son-nodes of the faulty node.

This non-faulty node broadcasts the message to the non-faulty nodes in the subtree under

the faulty-node. This algorithm tolerates 2 processors failure if the neighbor nodes are

faulty and s-1 rings or s-1 processors faults, otherwise.

This chapter is organized as follows. Section 4.2 describes the preliminaries, prob-

lem statement and the notation used in this paper. Section 4.3 describes the proposed algo-

rithm which is composed of delivery mechanism and reception mechanism. We evaluate the

performance of the proposed algorithm in terms of steps required for completion for differ-

ent communication capabilities at each node in Section 4.4. An optimal fault tolerant broad-

casting algorithm is described in Section 4.5. Section 4.6 evaluates the performance of

algorithm in Section 4.5 in terms of steps to broadcast in case of s-1 processors failure and

proves that this algorithm is optimal.

4.2 Preliminaries and Problem Statement

The cube-connected-cycles as proposed by Preparata and Vuillemin [1] is a network

of identical processing elements (PEs) each having three interconnection ports. Each link

connecting two PEs can be used for the bidirectional transmission of data. The entire sys-

tem can be synchronized either locally or globally. A general version of the CCC had been

proposed in which some of the PEs have two ports while the others have three. In order to

describe the interconnections for the generalized CCC network, we assume that the num-

65

ber of PEs is n=h*2s for hzs. The PEs are grouped into 2s cycles, each cycle consisting of

h PEs. We define s be the dimension of the CCC. Each PE has an address that can be

expressed as a pair (1,p) of integers where 1 refers to the address of the cycle to which a PE

belongs, and p refers to the address of the PE within the cycle. Here 1= 0,1,2 ... 2s4 and

p = 0, , h-1. The PEs with p = 0, . . , h-1 have three interconnection ports: F,B,L (for

forward, backward and lateral) whereas the PEs with p = s, . . , h-1 have only F and B

ports. The generalized CCC connection is given formally as follows:

F(1,p) is connected to B(l,(p +1) mod h)

B(1,p) is connected to F(1,(p-1) mod h)

L(l) is connected to L(1+ e2P,p)

where e =1-2bitp(1): bite means the pth bit of 1.

To provide an intuitive feeling for the topology, a CCC with h=3, s=3 and h=4,

s=3 is illustrated in Figure 4.1 and 4.2 respectively. In this paper we treat that s is the same

as the h.

Each ring in a CCC can be uniquely represented by an n-bit address in such a way

that the address of the adjacent ring nodes differ in exactly one bit. For convenience, we

will number the bits in an address of a ring in the CCC from right to left as 0 to s-1. If two

adjacent ring differ in their ith bit, then they will be said to be in direction i with respect to

each other. For example, the ring with address U=111 will be said to be in direction 1 with

respect to node w=101 and vice versa, that is, 91(U) = W, where e means exclusive-OR

operation. It is clear from this definition there are s distinct ring directions in a CCC, de-

noted by do, d1, . ds_. The node in direction i with respect to the node u will be denoted

by ei(u).

001

Fig. 4.1 CCC network with h=3 and s=3 (n=24)

0 1 1
Fig. 4.2 CCC network with h=4 and s=3 (n=32)

000

0 1 0

000

0 1 0

66

67

We can easily state the problem to solve in this paper as follows.

Given 1) an s-dimensional CCC subject to node/link failures, 2)there are a maximum of t

node/link faults in the CCC, and 3) the identity of the faulty node/link is not known, the

problem is to develop a broadcasting algorithm that satisfies the following condition.

Condition: If the node initiating the broadcasting is non-faulty, then all the non-

faulty nodes in the CCC must agree on the message broadcasting by the initiating node.

As shown below in Example 1, the condition is not always easy to satisfy in the

presence of faulty node/link. We will first present a broadcasting algorithm that delivers

multiple copies of the message through disjoint paths and then determine the maximum

number of faults t that the algorithm can tolerate for different fault models. The proposed

algorithm is suitable for applications that cannot tolerate the time overhead of identifying the

faulty processors, which could in general be quite long.

Example 1: Consider the CCC shown in Fig 4.1. Suppose node (0,0) initiates a

broadcasting using the following algorithm.

Step 1: Node (0,0) sends the message to node (1,0).

Step 2: Nodes (1,0) and (0,0) simultaneously send the message to nodes { (1,1),

(1,2)) and (0,1) respectively.

Step 3: Node (1,1) and (0,1) simultaneously send the message to nodes (3,1) and

(2,1) respectively.

Step 4: Nodes (3,1), (2,1) and (0,0) simultaneously send the message to nodes

{ (3,0), (3,2)), { (2,0), (2,2)) and (0,2) respectively.

Step 5: Nodes (0,2), (1,2), (2,2) and (3,2) simultaneously send the message to

node (4,2), (5,2), (6,2) and (7,2) respectively.

Step 6: Nodes (4,2) and (5,2) and (6,2) and (7,2) simultaneously send the message

to nodes { (4,0), (4,1)), { (5,0), (5,1)), { (6,0), (6,1)) and { (7,0), (7,1))

respectively.

Now suppose node (1,0) is faulty. Then, at the end of the algorithm, nodes (1,1),

(1,2), (3,1), (3,0), (3,1), (5,0), (5,1), (5,2), (7,0), (7,1), (7,2) may have received either

an incorrect message or no message at all, therefore the condition is violated.

68

4.3 Proposed Broadcasting Algorithm

There are two kinds of mechanisms in any broadcasting algorithm: the delivery and

the reception of messages. The "message delivery" is compromised of algorithms used by

the nodes to deliver multiple copies of the broadcasting message to all nodes. In the pro-

posed algorithm, s copies of the message are correctly delivered to all nodes if there are no

faults in the system, where s is the dimension of the CCC. However, in the presence of

faults, some of the s copies may either get lost or corrupted.

The "message reception" is comprised of algorithms used by the nodes to interpret

and identify the correct information from the multiple copies. The identification of the

correct information from the multiple copies is strongly dependent on the fault model used.

Section 3-A and 3-B describe the delivery and reception mechanism.

A. The Delivery Mechanism

The delivery mechanism proceeds in two phases. In the first phase, the node initi-

ating the broadcasting sends the message to all its neighbors in the same ring and to its

neighbor in the adjacent ring applying Si to the source node. In the second phase, the

neighbors in the same ring and the node initiating the message use "coordinated" procedure

to broadcast the message to all the nodes. The sequence of directions used by these

neighbors in their "coordinated" phase is coordinated in order to ensure that each node gets

the broadcasting message through s disjoint paths. A formal description of the algorithm is

given below.

Algorithm broadcasting(A(l,p)) /* A : initiating node */

begin
if (each node can use all its outgoing links at a time) then

for 15d4h/21 do

send message from A(l,p) to A(l,p + i mod h) /* forward in the ring */
for 15i4.11/2i do

send message from A(l ,p) to A(l,p - i mod h) /* backward in the ring */

else (each node can use at most one of its outgoing links at a time)

69

for 1515h-1 do begin

send message from A(1,p) to A(1,p + i mod h) /* forward in the ring */

for 05i5s-1 do begin
send message from A(l,i) to A(i/, i);

Coordinated (A(Elh/, i), i+1)

end;
end;
procedure Coordinated (m(p,q), k) /* m : initiating node, dk : starting direction */

begin
for 05i5s-1 do begin

if (each node can use all its outgoing links at a time)

for 1Sid-11/21 do begin

send message from A(l,p) to A(l,p + i mod h) /* forward */
for 1151_11/2_1 do begin

send message from A(l,p) to A(l,p i mod h) /* backward */

else (each node can use at most one of its outgoing links at a time)

for 1 5i5h- 1 do begin

send message from A(l,p) to A(l,p + i mod h) /* forward */

R = (m); /* R: set of rings that have received the message */
for each ring E R

begin
Adjacent_Ring = (1.1.i mod s())}

Calculate the position for the processor to connect two

rings using the definition of interconnection of CCC

send message from j.position to Adjacent_Ring.position;

R = R u Adjacent_Ring

end;
end;

end;

In the absence of faults, each node gets s identical copies of the message in the

above algorithm. This is because the nodes get one message in each of the "coordinated"

sequences initiated by the s neighbors of A. It is shown later in Theorem 4.1 that the paths

through which a node receives the s copies of the message are disjoint. Given below is an

example to illustrate the basic idea of the algorithm.

70

Fig. 4.3 shows the broadcasting example of the multiple copies by executing the

above algorithm for the CCC. Node (000,1) is the initiating node.

Fig. 4.3 Broadcasting multiple copies in a CCC

71

Example 2: Consider the CCC in Fig 4.1. Let node (0,0) initiate the broadcasting. In the

first phase, node (0,0) sends its message to nodes (0,1), (0,2) in the same ring and to

nodes (1,0), (2,1), (4,2) in the adjacent rings. In the second phase, nodes (1,0), (2,1),

(4,2) use coordinated recursive doubling to broadcasting the message they received from

node (0,0) to all other nodes in the CCC. In its "Coordinated" procedure, node (1,0) first

sends message to nodes (1,1), (1,2) in the same ring, then find the adjacent ring along di

be 3 and the nodes (1,2) and (3,1) be connected, so node (1,1) sends the message to node

(3,1), which sends message to nodes (3,0), (3,2). Then nodes (1,2) and (3,2) send the

message along d2 to the adjacent ring nodes (5,2) and (7,2) respectively, which send the

message nodes (5,0), (5,1) and nodes (7,0), (7,1) respectively, and finally nodes (1,0),

(3,0), (5,1), (7,1) send the message along d0 to the adjacent ring nodes (0,0), (2,0), (6,0),

(4,0), resulting in 1(0,1), (0,2)), ((2,1), (2,2)), ((6,1), (6,2)), ((4,1), (4,2))

respectively. Similarly, node (2,1) and node (4,2) uses d2 -> d0 -> di and do -> di -> d2

as the sequence of the directions so as to find the adjacent ring in its "Coordinated"

procedure.

We next prove some Lemmas that are needed to prove that all the nodes in the sys-

tem receive the same multiple copies of message.

Lemma 4.1 : All the nodes in the algorithm Broadcasting are s*h*2s.

Proof : Let A(1,p) be the node initiating the broadcasting and R be the set of rings. A(l,p)

sends the message to its neighbors in the following order: A(e01, p), A(®O, p),

A(Os_il, p). The neighbors use "Coordinated" procedure, where they send the message to

the all nodes in the same ring and "OiSs-1" and "R = R u Adjacent_Ring" make the total
s-1

number of nodes be 1 + 2i = 2s. Therefore, the total number of nodes are s*h*2s.

i=34

Table 4.1 shows the disjoint paths through which nodes (1,0) (7,2) receive their

messages where the initiating node is (1,0).

72

Path via
Node Node (1,0) Node (2,1) Node (4,2)

(1,0) 0,0) (2,1)(2,0)(3,0)(3,1)(1,1) (0,2)(4,2)(4,0)(5,0)

(5,2)(1,2)

(1,1) 0,0)(1,0) (2,1)(2,0)(3,0)(3,1) (0,2)(4,2)(4,0)(5,0)

5,2)(1,2)

(1,2) 0,0) (2,1)(2,0)(3,0)(1,1) (0,2)(4,2)(4,0)

(5,0)(5,2)

(2,0) 0,0)(1,0)(1,1)(3,1)(3,0) (2,1) (0,2)(4,2)(4,1)

(6,1)(6,2)(2,2)

(2,1) 0,0)(1,0)(1,1)(3,1) (0,1) (0,2)(4,2)(4,1)

3,0)(2,0) (6,1)(6,2)(2,0)

(2,2) 0,0)(1,0)(1,1)(3,1) (2,1) (0,2)(4,2)(4,1)(6,1)

3,0)(2,0) (6,2)

(3,0) 0,0)(1,0)(1,1)(3,1) 12,1)(2,0) (0,2)(4,2)(4,0)(5,0)

(5,1) (7,1)(7,2)(3,2)

(3,1) 0,0)(1,0)(1,1) 1/42,1)(2,0)(3,0) (0,2)(4,2)(4,0)(5,0)

(5,1) (7,1)(7,2)(3,2)

(3,2) 0,0)(1,0)(1,1)(3,1) (2,1)(2,0)(3,0) (0,2)(4,2)(4,0)(5,0)

(5,1) (7,1)(7,2)

(4,0) 0,0)(1,0)(1,2)(5,2) (2,1)(2,2)(6,2)(6,1)(4,1) (0,2)(4,2)

(5,0)

(4,1) 0,0)(1,0)(1,2)(5,2)(5,0)(4,0)(2,1)(2,2)(6,2)(6,1) (0,2)(4,2)

(4,2) 0,0)(1,0)(1,2)(5,2) ;2,1)(2,2)(6,2)(6,1)(4,1) (0,2)

5,0)(4,0)

(5,0) 0,0)(1,0)(1,2)(5,2) (2,1)(2,2)(6,2)(6,1)(7,1) (0,2)(4,2)(4,0)

(7,0)

(5,1) 0,0)(1,0)(1,2)(5,2) '2 1)(2 2)(6 2)(6 0)(7 0) '0 2)(4 2)(4 0)(5 0)

(7,1)

(5,2) 0,0)(1,0)(1,2) (2,1)(2,2)(6,2)(6,0)(6,0) (0,2)(4,2)(4,0)(5,0)
(7,0)(7,1)(5,1)

(6,0) 0,0)(1,0)(1,1)(3,1) (2,1)(2,2)(6,2) (0,2)(4,2)(4,1)

3,2)(7,2)(7,0)(6,0)

(6,1) 0,0)(1,0)(1,1)(3,1) (2,1)(2,2)(6,2) (0,2)(4,2)(4,1)

3,2)(7,2)(7,0)(6,0)

(6,2) 0,0)(1,0)(1,1)(3,1) (2,1)(2,2) (0,2)(4,2)(4,1)(6,1)

3,2)(7,2)(7,0)(6,0)

(7,0) 0,0)(1,0)(1,1)(3,1) (2,1)(2,2)(6,2)(6,0) (0,2)(4,2)(4,0)

3,2)(7,2) (5,0)(5,1)(7,1)

(7,1) 0,0)(1,0)(1,1)(3,1) (2,1)(2,2)(6,2)(6,0)(7,0) (0,2)(4,2)(4,0)(5,0)

3,2)(7,2) (5,1)

(7,2) 0,0)(1,0)(1,1)(3,1)(3,2) (2,1)(2,2)(6,2)(6,0)(7,0) (0,2)(4,2)(4,0)(5,0)

(5,1)(7,1)

Table 4.1 Paths through which the nodes receive the broadcasting

In the table, columns 2, 3 and 4 indicate the path through which the node in column 1
receives its message in the procedure "Coordinated" initiated by the nodes (1,0), (2,1),

(4,2).

73

Lemma 4.2: The nodes in the algorithm Broadcasting are distinct.

Proof : In "Coordinated" procedure, m and dk is different whenever they are invoked by

the algorithm Broadcasting. As the value i in OSiSs-1 changes, Adjacent_Ring = 631k+i

mod s (j)) is also changed. Therefore, all nodes are distinct in the for-loop.

These Lemmas lead to the following important results.

Theorem 4.1 : Algorithm Broadcasting sends the same multiple copies of message to all

modes in the system.

Proof: The total number of nodes in CCC are h*2s According to the Lemma 4.1 and

Lemma 4.2, each node receives the s copies of the message.

It is important to note that if the neighbors of the initiating node do not coordinate

the sequence of directions in "Coordinated" procedure, then some nodes will not receive

their copies of the message through disjoint paths. If two or more copies are reviewed

through non-disjoint paths, then a single faulty node could corrupt more than one copy of

the message. As we will see later in Section 3-B, this could cause severe problems in

identifying the original from the multiple copies.

The following example illustrates the effect on the paths of the multiple copies if the

neighbors of the initiating node in the same ring do not adhere to the sequence of directions

in order to find the adjacent ring specified in algorithm Broadcasting.

Example 3: Suppose that node (2,1) in Fig 4.1 does not adhere to the sequence of di-

rections specified in algorithm Broadcasting. Let the sequence of directions used by node

(2,1) be do -> d2 ->d1. Then it is easy to verify that node (7,2) will receive one message

from node (0,0) through nodes (0,1) -> (2,1) -> (2,0) -> (3,0) -> (3,2) ->(7,2) and the

other message from node (0,0) through nodes (1,0) -> (1,1) -> (3,1) -> (3,2) -> (7,2),

i.e., node (7,2) receives messages from node (0,0) through paths that are not disjoint.

In the rest part of this section, we formally prove the results indicated by Example2

and 3. Let R refer to the "coordinated" phase of ®i(A) in the above algorithm. Let Pi(q)

74

denote the path through which node q receives a copy of the message in Ri. Define Pi(q) n

Pj(q) to mean the set of nodes common to both Pi(q) n Pj(q).

Theorem 4.2: In algorithm Broadcasting, all paths are disjoint, that is, Pi(q) nPj(q) = 0,

for all nodes q and 05i,js - 1, i#j.

Proof : Suppose not. Then, there are exist q, j and k such that Pi(q) n Pj(q) # 0. Without

loss of generality, one can assume that j4). Let r e Pi(q) n Po(q). It follows from 1) all di-

rections in Ro are distinct, and 2) do is the final direction in R0. So, H(A,q) = H(A,r) +

H(r,q) where r E P0(q). Using similar reasoning, H(A,q) = H(A,r) + H(r,q) where r E

Pi(q). Even though the Hamming distance is the same, the direction i to make the Hamming

distance same is different. So, r can not be set of nodes common to both Pi(q) n Pj(q).

Contradiction.

For example, Hamming distance of the ring node between node (0,1) and node

(7,1) is 3. But, node (7,1) receive the message through 000 -> 001 -> 011 -> 111 in R0,

000 -> 010 -> 110 -> 111 in Ri, 000 -> 100 -> 101 -> 111 in R2-

B. The Reception Mechanism

As mentioned earlier, the reception mechanism strongly depends on the fault model

used. In this section, we will consider the reception mechanism for different kinds of fault

models. Since the identity of the faulty component is not known, it is impossible to

distinguish between node and link failures. Thus, we will treat them to be equivalent.

Let us consider the simple omission faults, i.e., a faulty node either sends the mes-

sage correctly or does not send any message at all. A faulty processor or a faulty link at

that node could have resulted in this case. Since copies that arrive at the receiving node are

not corrupted, the original message can be identified from any node of the received copies.

So, the broadcasting is guaranteed to satisfy the Condition in Section 3.2, if there are fewer

than s faults. Hence, the maximum number of faults that algorithm Broadcasting can

tolerate is s-1 in the case of simple omission fault model.

75

If the faulty nodes can corrupt the messages passing through them, then the re-

ception mechanism is more complicated. Let us consider the case when the faulty nodes do

not corrupt the message maliciously, i.e., non-Byzantine faults[9]. In this case, the original

message can be identified from the received copies by using simple majority voting, i.e.,

the information in a received message is considered correct if the receiving node has Is/21

copies of that information. However, since all the copies do not arrive at the same time,

majority voting is not as simple as in the tightly synchronous situation. The receiving

processor can assume the broadcasting is complete and perform the necessary voting only

if they can establish a quorum. There are two alternative ways of establishing a quorum

[13]. A simple way to establish a quorum is to wait unti112s/31 copies of the broadcasting

message arrive before majority voting. Since copies passing through faulty nodes may not

arrive at al1,12s/31 or more copies will arrive only if there are fewer than or equal to is/3°

faults in the system. Therefore, with this approach for establishing quorum, algorithm

Broadcasting can tolerate a maximum of Ls/3i faults.

An alternative approach[13] for establishing a quorum is to maintain a count of

identical copies received. This approach can tolerate more faults than the first approach but

has additional overhead for determining the establishment of a quorum. A quorum is

established when there are at least1s/21identical messages. As a result, with approach, al-

gorithm Broadcasting can tolerate a maximum of Ls/2i faults.

Finally, the worst situation is when the faulty processors can exhibit Byzantine be-

haviour, i.e., they can behave in any arbitrary manner including omitting, corrupting,

rerouting, and even lying[9]. This case is not similar to the non-Byzantine case if we are

interested in satisfying only condition Cl. However, if we are interested in using the pro-

posed algorithm for broadcasting in distributed agreement or clock synchronization algo-

rithms, then we can tolerate a maximum of Ls/3..1 faults [9-10].

As shown above, the algorithm Broadcasting can tolerate the number of faults and

the receiving mechanism depends on the fault model used.

76

4.4 Performance of Algorithm Broadcasting

In this section, we will evaluate the performance of algorithm Broadcasting in terms

of the number of steps required to complete the delivery mechanism. It is shown in

Theorem 2 and 3 below that the delivery of the multiple copies can be completed in either

Ls /2i + (2s-1) + Ls/2i or 4s steps depending on the communication capability of each

node.

If each node can send a message through at most one outgoing link at a time, then

the algorithm requires a total of { (h-1)(s+2)+(s+1)) steps. The node initiating the broad-

casting sends the message to all its neighbors in the same ring in the first h-1 steps. The

neighbors start their coordinated recursive doubling immediately after receiving the

message. The last ring to receive the message uses the last s+1 steps for its recursive dou-

bling. To prove that is is feasible to complete the algorithm in { (h-1)(s+2)+(s+1)) steps,

we have to prove that in every step each node has at most one message to send out. Each

node will have at most one message to send only if the node initiating the broadcasting

sends the message to its neighbors in the same ring in the following order: A(l,p) ->

A(1,p+ 1) -> A(1,p+2) -> -> A(l,p +(h -1)). Each ring sends the message to its neighbor ring

in the following order: A(l,p) -> A(efo/, p) -> A(®21, p) -> -> A(Os-il, p).

Theorem 4.3: Let A(l,p) be the node initiating the broadcasting. If 1) each node can use a

maximum of one outgoing link at a time, 2) A(l,p) sends the message to its neighbors in the

same ring in the following order: A(l,p) -> A(1,p+ 1) -> A(1,p+2) -> -> A(l,p +(h -1)), 3)

A(l,p) sends the message to its neighbor ring in the following order: A(l,p) -> A(00/, p)

-> A(2/, p) -> -> p), 4) the neighbors use coordinated recursive doubling as per

Algorithm broadcasting immediately upon receiving the message from A(l,p), then all

nodes will receive the s copies of the message in 4s steps.

Proof: In the first phase, the node initiating the broadcasting sends the message to all its

neighbors in the same ring in the first h-1 steps. It takes one step from the initiating ring to

next ring, A(l,p) -> A(00/, p). Again it sends the message to its neighbor nodes in the

77

same ring. So, the node initiating the broadcast sends the message to all its neighbor ring in

h-l+h steps. In the second phase, there are s steps and s rings from the initial ring to final

destination ring to receive the message, since order is followed as A(4901, p) -> A(921, p)

-> -> A(Os..11, p). Thus, the steps in the second phase are s+s(h-1). Therefore, the

algorithm requires a total of 4s steps.

In contrast, if a node can send messages through all its outgoing links and also re-

ceive from all its incoming links simultaneously, then algorithm Broadcasting requires only

Ls /2J + (2s-1) + Ls/2J steps. In the first step, the source node A sends the message to all its

neighbors in the same ring. In the next s steps, the neighbors use the "Coordinated"

procedure in algorithm Broadcasting to deliver the message to all nodes. The following

theorem proves that there is no contension for the same link at any node during the entire

course of the algorithm.

Theorem 4.4: Let A(1, p) be the node initiating the broadcasting. If a node can receive

and send messages simultaneously in all its incoming and outgoing links, respectively, then

algorithm Broadcasting requires Ls/2J + (2s-1) + Ls/2J steps.

Proof : The node to send the message to its all neighbor nodes in a same ring takes r(h-

1)/21 steps. There are s+1 steps to find the farest ring in algorithm Broadcasting. Suppose

not. Then, there exists a step s in which a node p that has to send more than one message

in the same direction, say, j. Without loss of generality, we can assume that the messages

are from the recursive Coordinated initiated by rings A(001, p) and A(EHi/, p). This implies

in step s-1 of recursive Coordinated both rings A(63101, p) and A(il, p) send the message

in the same direction. Contraction. That implies that there are s+1 rings. Therefore,

algorithm Broadcasting requires only Ls/2J + (2s-1) + Ls/2J steps.

For example, Node (110,0) will receive the message through initiating node

(000,1) -> (000,0) -> (001,0) -> (001,1) -> (011,1) -> (011,2) -> (111,2) -> (111,1) ->

(110,1) -> (110,0) in Fig. 4.3.

78

4.4 An Optimal Fault-Tolerant Broadcasting Algorithm

In this section, we present and analyze an efficient broadcasting algorithm for the

CCC network that will enable any processor to send the message to all other processors

nonredundantly. Then we develop an optimal fault-tolerant broadcasting algorithm which

can tolerate s-1 rings or s-1 processors in CCC.

In our algorithm, we use three types of information to control the flow of the mes-

sage in the CCC.

- : initiating node s(1,p) sends the message to ith ring neighbor node by

complementing ith position bit.

(j)1,p) : initiating node s(l,p) sends the message, " s(E)il,p) is faulty" to

s(®il,p) where 05_j#is-1.

-s((1, 41' /), (p±i,p)). : initiating node s(l,p) sends the message, "s(l,p±i) is faulty" to

s(El)p/,p). This case corresponds to the node failure in the same ring.

We will show the example using the above notation.

Example: Consider a CCC of 3-dimension with 24 nodes in Fig. 4.1. The initiating node

(0,1) can send a message to its 2nd ring neighbor, i.e., processor (4,1) by executing

s(920,1) . Also, The processor (0,1) can send a message, "node (100,1) is faulty" to its

neighbor ring node (010) by executing s(H)(2,1)0,1). Thus, the ring node 13)1000 gets the

information that the ring node E1)2000 is faulty. The node (0,1) sends the information, "node

(0,2) is faulty", to the node (2,1) by executing s((0,91000), (2,1)).

The route that the broadcasted message will take can be shown using a tree where

the nodes and arcs of the tree correspond to the nodes and links of the CCC respectively.

Furthermore, the root of the tree represents the source.

Al-Dhelaan[12] have developed an algorithm for broadcasting in the CCC. This

algorithm sends the message to all other nodes non-redundantly, meaning that broadcasted

message is sent to each processor exactly once. Their fault-tolerant broadcasting algorithm

works only if all the processors in one ring are faulty. The algorithm does not make explicit

79

use of the properties of the CCC topology. We will show the fault-tolerant broadcasting

example developed by Al-Dhelaan[12] in Fig. 4.4

Faulty
ring

Fig. 4.4 Broadcasting in a faulty CCC with h=3,s=3

Let us explain the algorithm briefly. Initiating ring 011 finds the ring 001 faulty.

So, ring 011 gives the information to ring 001 and 111, which send the message to ring

000 -> 100 and 110 respectively. Here when one ring is faulty, the two non-faulty rings

80

are used to broadcast the message, while our algorithm to be shown in the next section uses

only one ring.

We define N=h*2s to mean the total number of nodes in a CCC. Also for the

broadcasting tree T, we define N(T) to be the number of nodes in such a tree.

Our broadcasting algorithm proceeds in two phases. In the first phase, the node

initiating the broadcasting sends the message to all its neighbors in the same ring and sends

the message to the node in the neighbor ring. In the second phase, the neighbor rings use

procedure "coordinated" recursively to find the next neighbor ring according to the di-

rection received from the initiating ring and broadcast the message to all the nodes in the

subtree. The sequence of directions used by these neighbors in their "Coordinated" phases

is coordinated in order to ensure that each ring gets the broadcasting message in sequence.

A formal description of the algorithm is given below.

Algorithm Broadcast(A(l,p)); /* A: initiating node */
begin

Generate the message
for 15_,i4h- 1/21 do

send message from A(1,p) to A(1,p + i mod h) /* forward in the ring */
for 1 i4h-1/2_1 do

send message from A(1,p) to A(1,p i mod h) /* backward in the ring */
for 05..i_s-1 do begin

send message from A(l,i) to A(9i/, i); /* send the neighbor ring */

Coordinated (A(EV, i), i+1)
end;

end;

procedure Coordinated (m(p,q),k) /* m: initiating node; dk: starting direction */
begin

for 0 s-1 do begin
for 15i4h- 1/21 do

send message from m(p,q) to m(p,q +i mod h) /* forward in the ring */
for 15id_h-1/2i do

send message from m(p,q) to m(p,q -i mod h) /* backward in the ring */
R := {m); /* R: set of rings that have received the message */
for each ring j e R

do

end;
end;

81

for k+15i5n-1 do begin
Adjacent_Ring = f9i mod s(1))
Calculate the position(po) for the processor to connect two

rings using the definition of interconnection of CCC
send message from j.q to EDi(j).po;

for 1i51-11-1/21 do

send message from i(j).po to EDi(j).(po+i mod h)

for 15.4h-1/2i do
send message from EDi(j).po to EDi(j).(po-i mod h)

if i < s-1 then
R := R v {EDi(j)}; /* all receiving rings are added */

end;
k := k+1;
R := R -{j}; /* source ring is deleted */

until R = empty;

Let us explain the algorithm briefly. In the first phase, the initiating node sends the

message to its neighbor nodes in the same ring using "send message from A(1,p) to A(/,p-ici

mod h)" and its neighbor ring node using "send message from A(l,i) to A(EDi/, i)".

In the second phase, each neighbor ring node becomes initiating node and broad-

casts the message to its children ring nodes according to new direction. Whenever new

child ring is broadcasted, it is added to its father ring for another broadcasting. Finally

initiating ring is deleted from the ring set, thus the remaining rings send the message to its

neighboring rings until there is no ring to send the message. In case that a ring receives the

direction s-/, there is no ring to broadcast.

For example, Fig. 4.5 shows the broadcasting of a message from source node

(011,1) to all other processors in a CCC. Given below is an example to illustrate the basic

idea of the algorithm.

Example : Consider the CCC in Fig 4.5. Let node (3,1) initiate the broadcasting. In the

first phase, node (3,1) sends the its message to nodes (3,0) and (3,2). Then node (3,1),

(3,0) and (3,2) sends the message to neighbor ring node (1,1), (2,0) and (7,2)

82

Fig 4.5 Broadcasting in a CCC with s=3, h=3 from the node (011,01)

respectively. In the second phase, node (2,0) sends to (2,1) and (2,2) and uses the

procedure coordinated to broadcast the message it received from the ring 3 to ring 0 along

d1, then ring 6 along d2 , and finally ring 0 sends the message to ring 4 along d2.

Similarly, ring 1 sends the message to ring 5 along d2. This processing is done continually

until there is no ring to send the message, which means that the ring set becomes the

empty.

83

We describe some Lemmas that are needed to prove that the algorithm sends the

message to each node non-redundantly. First, we will describe the binomial tree in [16].

Definition[16] : Binomial trees are defined as follows: For each kO, we define class

Bk of ordered trees as follows:

1. Any tree consisting of a single nodes is a Bo tree.

2. Suppose that Y and Z are disjoint Bk_i trees for Ic..1. Then the tree obtained by

adding an edge to make the root of Y become the the leftmost offspring of the root of Z is a

Bk tree. All binomial trees having a given index are isomorphic in the sense that they have

the same shape. Binomial tree has the following properties.

Lemma 4.1[16] : Let Z be a Bk tree. Then

1. Z has 2k nodes.

2. Z has kCl nodes on level 1.

When we think all processors in a ring as one node, we have the following

Lemmas.

Lemma 4.2[17-18] : The broadcasting tree developed by the algorithm Broadcast is

binomial tree.

For this sake, we have the following corollary.

Corollary 4.1. Let N(T) be a Bs tree for CCC. Then

1. N(T) has h*2s nodes.

2. N(Ti) has h *sCl nodes on level 1.

Lemma 4.3[17-18]: The nodes in the broadcasting tree are distinct among themselves.

Now we want to prove the following Theorem.

Theorem 4.5117-181: The algorithm Broadcast sends the message to all nodes in the

system nonredundantly.

Al-Dhelaan[12] also developed an fault-tolerant broadcasting algorithm which

works if all processors in a ring are faulty. In the rest of this section we describe a fault-

tolerant broadcasting algorithm in the presence of s-1 node failure in a CCC.

84

The basic idea of our algorithm is as follows. The node s(l,p) that wants to

broadcast a message checks s(l, p±i) in the same ring. If s(l, pii) are faulty, s(l,p) give the

information,"s(/, pli) are faulty", to s(E8p/, p), that is, s((/, p/), (p±i,p)). That node

becomes be the new initiating node and sends the message to non-faulty nodes under s(l,

po.). If s(®i/, p) where 05i5s-1 in different ring is faulty, s(l,p) give s(9(i,j)/, p)) if s(1:131/,

p) is non-faulty where i+1<jSs-1. Then s(j/, p) becomes the new initiating node and

sends the message to the other nodes in the broadcasting tree developed by s(i1, p) in the

procedure Coordinated. The neighbor rings in the subtree also follow the same procedure

as the initiating ring. Later, we consider one case that all his son-neighbor-rings are faulty,

resulting in all its brother-rings to become the initiating rings and to send the message. A

formal description of the algorithm is given below.

Algorithm Broadcast(A(1,p)); 1* A: initiating node *1
begin

Generate the message
for 1 i5111-1/2-1 do

if A(l,p i mod h) is faulty then
begin

send the message from A(l,p) to A((1,9p/), (p+i,p));

send the message from A(1: /,p) to A(p/,p + i mod h);
send the message from A(9p/,p + i) to A(®i(19p/),p + i);

fault-tolerant-source(A(i(1),p + i),i,p)
end

else send message from A(l,p) to A(l,p + i mod h) 1* forward in the ring *1
for 15.i4h-1/2.1 do

if A(l,p + i mod h) is faulty then
begin

finish normal broadcasting;
find new ring by complementing pth position of final ring;
broadcast the neighbors in the same ring;

end
else send message from A(l,p) to A(l,p - i mod h) /* backward in the ring *1

for 0 i5s-1 do begin
if A(®i/, i) is faulty then

begin
p i+1; true := 1;
while ((p t.1-1) and (true)) do

begin

if A(®R/, i) is non-faulty then
begin

if A(Elh(pl),i) is non-faulty then
send the M from A(l,p) to A(09(4)/, i);
Send the message from A(Op/, i) to A(®i(®pl),i);

Fault-tolerant-source(A(EDi(®pl),i));
true := 0;

end;
else p := p+1;

end;
if (true = 1) then /* all i(s) rings are faulty */

begin
send the message from A(EIV, i) to A(l,p);

for i+ln-2 do begin
send the M from A(1,p) to A(09j/, i);

All-Sons-Dead(A(9j/, i),i);
end;

end;
else

end;
end;

send message from A(l,i) to A(E1N1, i); /* send the neighbor ring *1

alive := ,/, i);

Coordinated (A(9i/, i), i+1)

if younger-brother-rings are dead then
Younger-Brother-Dead(alive,i);

85

Let us explain this procedure briefly. First, the initiating node A(l,p) checks its

neighbor A(l,p -i). If it is faulty, node A(1,p) sends this information to A((l, p/), (p+i,p)).

When A(®pi,p) receives the information, "A(l,p -i) is faulty", it sends the message to its

neighbor node, A(p/,p+i), in the same ring and finds its new neighbor ring,

A(9i(p/),p+i)), under A(l,p -i). Finally, A(Op/,p+i) sends the message to

A(i(Op/),p+i)), which will be the new initiating ring and sends the message to all non-

faulty nodes. Second, when its neighbor A(l,p +i) is faulty, the younger brother rings of

faulty ring will not receive the message. Since all rings are in the binomial tree, the younger

brother rings will receive the message from rings in the next level, so A(ep/,p) will finish

normal broadcasting then leaf ring can send the message to the younger brother rings of

86

faulty ring by complementing direction p. Third, when its neighbor ring, A(El)i/, i), is

faulty, A(l,p) checks A(p/, i) where i+15pSs-1. If one of them is non-faulty, send the

message from A(9p/, i) to A(Elh(9p1),i), which becomes the new initiating ring and the

sends the message to all non-faulty nodes. Here we have 2 more procedures to handle : 1)

In case that all son-rings are faulty under the initiating ring. 2) In case that A(i/, i) is non-

faulty but A(9j/, i) is faulty where j > i.

Fig. 4.6 will show the example of fault-tolerant broadcasting when s-1 nodes are

faulty in the same ring. Fig. 4.7 will show the example of fault-tolerant broadcasting when

s-1 nodes are faulty in the different ring.

Now we can explain the Fault-Tolerance-Source procedure under the new initiating

ring in case of ring failure. At that time, the broadcasting tree under the faulty ring is re-

organized. The direction of the new initiating ring is different from fault-free broadcasting.

The number of son-rings of the new initiating ring is one less than that of the faulty ring

because the original initiating ring is faulty. Here we assume that there is no faulty ring

under the new initiating node.

procedure Fault-Tolerance-Source(s',d,k); 1* s': ring, k : non-faulty direction
d : faulty direction *1

begin
if k * n-1 then

begin
for 15.i5n do

if (k-i) mod n > d then
Send the message from s' to k-i mod n(s');

end;
else begin

for 15i5n-1 do
if i>d then

Send the message from s' to 09i(s);
end;

Fault-Coordinated(Ok-i(s),k-i,k,d)
end;

87

We will describe the procedure Fault-Coordinated, which is the procedure under the

new receiving ring in case of initiating ring failure. We assume that there is no faulty ring,

since the fault checking routine is the same. Here, the direction is also different from the

procedure Coordinated.

procedure fault-coordinated (m,k,bound,d) /* bound: non-faulty direction,
d: faulty direction */

begin
R := {m }; /* R: set of rings that have received the message *1
for each node j E R

do
for (k-1) mod n _iSbound do begin /* k-1, k-2, . . . */

if i <> d then
send the message from j to j(j);
if i < bound then

R := R v {9i(j)}; /* all receiving nodes are added */
end;
k := k+1;
R := R -(j); /* initiating node is deleted */

until R = empty;
end;

It depends on that which non-faulty node becomes the new initiating node to send

the message. Here we find an interesting direction of message in the procedure fault-

coordinated. The initiating ring s sends the message to 63,i(s) where 05in-1. When the

node ®j(s) receives the message, "the ®i(s) is faulty", we have the following 2 directions.

1) if j=n-1, then the direction is the same as the normal broadcasting: do -> di ->

. . . -> dn_i excluding the di.

2) if j#11-1, then the direction is d(j-k) mod n where 1c5_n excluding the di

When the initiating ring is faulty, the subtree is reorganized under the new initiating

ring. In the binomial tree, Hamming distance between source-ring and son ring is 1, while

Hamming distance is 2 among son-rings. Since one of son-rings becomes the new initiat-

ing ring, all its brother-rings can't receive the message directly from the new initiating ring,

leaving them the leaf rings.

88

Now we can explain the procedure that can handle in case of all son rings are

faulty. Then all younger brother-rings become the initiating rings. After they finished

normal broadcasting procedure, all rings except initiating ring send the message to EDp(all-

rings). This example corresponds that ring 000 and ring 110 are faulty in Fig 4.6. In this

case ring 100 receives the message from ring 101.

procedure all-sons-dead (D(l,p));
begin

finish normal operation using "coordinate" procedure;
send the message from all-nodes to , (all-nodes);

end;

We have another procedure that can handle in case of all brother nodes are faulty.

This example corresponds that ring 001 and ring 111 are faulty in Fig 4.6. In this case ring

101 receives the message from ring 001 -> 010 -> 000 -> 100 -> 101.

procedure Younger-Brother-Dead(D'(m,i));
begin

finish normal broadcasting using procedure Coordinated;
follow i direction until leaf ring;
send the message from leaf ring to i(leaf ring);

end;

In the rest of the section we will show several examples that can tolerate s-1 pro-

cessors failure and broadcast the message using our algorithm Broadcast. First of all, when

s is 3 in a CCC, we can show the optimal fault-tolerant routing in the presence of 2 proces-

sors failure under the initiating node in Fig. 4.6.

Let us explain the basic idea of the algorithm in Fig. 4.7. We assume that node(1,1)

and node(2,0) be faulty. Node s(011, 1) is the initiating node to send the message and sent

the message to node (011,0) and (011,2). When it checks the neighbor ring node using

s(8 0011, 0) and finds that it is faulty, it checks another neighbor using s(1011, 1) and

finds that it is also faulty. So, s(011, 1) gives the information to s(9(0,2)011, 2), which

sends the message to node (7,1) and (7,0). Then those send the message to the neighbor

rings { (0(02011))=1101 and MI(02010)=101), which will become the new initiating

89

rings and send the message to all the non-faulty rings, (100,010) and 001, originally de-

veloped by ring s(0011, 0) and s(8 1011, 0) respectively. Here, node(2,2) and node(1,2)

sends the message to node(2,1) and node(1,0) respectively. Finally ring 100 sends the

message to ring 000 according to direction 2.

0 Faulty processor

Fig. 4.6 Broadcasting in a CCC with faulty nodes (001,1) and (010,0)

O

90

Faulty processor

Re-routing

by Re- routingRe-routing

Fig. 4.7 Broadcasting in a CCC with faulty nodes (011,0) and (011,2)

Another example shown in Fig. 4.7 is to have 2 nodes failure in the same ring un-

der the initiating node. Let node s(3,1) be the initiating node and node(3,0) and (3,2) be

91

faulty. When the node(3,1) sends the message to node (011,0) and (011,2), it finds them

to be faulty. So, node (011,1) give the information to sa011,91(011), (0,0)) and

s((011,E11(011), (2,2)). When the older brother ring is faulty, ring 001 sends the message

to 90(001) according to direction 0, which will be the new initiating ring to send the

message to ring ®1(000) and (13,2(000) according to direction 1 and 2 respectively in the

procedure Fault-Tolerant-Source. Finally ring 010 sends the message to ring (1)2(010) ac-

cording to direction 2 in the procedure Fault-Coordinated. When the younger brother ring

is faulty, follow the broadcasting tree until the direction is the same as the direction 2 and

the ring 111 under the faulty node receives the message from the leaf ring by

complementing 91(104 We will formally prove this in the next section.

4.6. Analysis of Broadcasting Algorithm

First, we will evaluate the performance of Algorithm Broadcast in terms of the

number of steps required to complete the delivery mechanism. It is shown in Theorem 4.6

below that the delivery of the message can be completed inr(h-1)/21-1-s(14(h-1)/21) steps.

Theorem 4.6 : Algorithm Broadcast takes F(h-1)/21+s(l+r(h-1)/21 steps to send the

message to all nodes in a CCC.

proof : Let A(l,p) be the node initiating the message. In the first phase it sends the mes-

sage to its neighbor node through A(/, p.h) in the same ring where If it sends the

message simultaneously, it will take rh-1/21 steps. In the second phase, A(l,p) sends the

message to its neighbor ring in the following order: A(0/, p), A(11, p), . . A(/, p). It

will take s steps from source ring to final destination ring and 1(h-1)/21 steps is required

in each ring. Therefore, the total number of steps from the source node to fmal destination

node is F(h-1)/21+s(114- (h -1)/21) steps.

In the rest of this section we want to prove that our algorithm is optimal in case of

s-1 nodes failure. We have the following Lemmas in order to prove. First we start with the

initiating node to broadcast the message. We know that all nodes in a ring are faulty, it is

92

the same as one ring failure. Our algorithm doesn't care how many nodes failure in a ring.

The thing to be considered is that the faulty nodes are in a same ring or different ring. If we

can reach the non-faulty ring, we can send the message to non-faulty nodes in a ring. Thus,

we consider the ring faults.

Lemma 4.4 : In broadcasting tree, if s-1 ring are faulty under the initiating ring s, then

we can send the message to one of son-node under the faulty node.

proof: Let A be the ring initiating broadcast. Ring A checks the ®i(s) where OSiSs-1. let

us assume that only ®j(s) where 05j*i_c.s-1 is non-faulty. Let one son ring be j(9i(s))

under Elh(s). When i(s) is faulty, s gives 9(j j)(s) toffys). Ring ®j(s) gives the message

to i(ej(s)) in the algorithm Broadcast and EDi(EDj(s)) becomes the initiating ring. If ej(s)

is non-faulty, the message is sent through s -> ®i(s) -> (DJ(*(s)). However, when i(s)

is faulty, the message is sent through s -> ®j(s) -> i(9j(s)). Here, we find ring

EDj(ei(s)) is equal to ring Oi(9j(s)). Thus we can reach one of son-rings in the faulty ring.

For example, if rings 010 and 001 are faulty, non-faulty ring 111 sends the

message to 110 and 101, respectively in Fig. 4.6.

When the father ring is faulty, one of the son rings will receive the message from

one of the father's brother rings and will be the new initiating ring and the broadcasting tree

is reorganized. The message is sent to the non-faulty ring under the faulty father ring. Then

we have the following Lemma.

Lemma 4.5 : In broadcasting subtree, if one of son rings is non-faulty, then it can be the

initiating ring and send the message to all other rings in the same broadcasting subtree.

proof : Let the initiating ring s be faulty and ®i(s) be non-faulty. The 9i(s) receive the

information, "s is faulty". Then ®i(s) calls the procedure Fault-Tolerance-Source and be-

comes the initiating ring s' and sends the message to its neighbors in the next level and

calls the procedure Coordinated. At that time, since H(s' , j(5')) = 2, s' can't broadcast

directly to EN(5'). Thus, when the broadcasting tree is reorganized, all the brother-rings of

93

s' receives the message from their son-rings. That is, ®i(s) must be leaf rings when the

procedure Fault-Tolerance-Source is called.

For example, ring 110 becomes the new initiating ring and sends the message to

rings 100 and 010 in Fig. 4.7. Those nodes send the message to all the subtrees through

procedure fault-coordinated. Here we can see that the ring 001 and 010, brother rings of

ring 111, became the leaf rings. sends the message to ring 000.

Now we can prove the procedure that can handle in case that all son rings are faulty

except the initiating ring. In that case, all younger brother rings become the initiating rings.

Lemma 4.6 : In broadcasting subtree, if all son-rings are faulty, then the initiating ring's

all younger brother-rings can be initiating rings and send the message to all non-faulty rings

under the faulty son-rings..

proof : Let s', m and m' be initiating ring, 00') and 9i(s) respectively where ifpfn-

1. Let 9i(m) where 0 in-1 be faulty. If i(m) is non-faulty, the son EDj(EDi(m)) of

i(m) will receive the message through s' -> EDp(S') -> i(9p(s) -> 9j(9i(ep(s))).

Since ®i(m) is faulty, m gives the information, "EDi(m) is faulty" to s' and s' to m'. Thus,

m' sends the message to j(m') and finally to p(j(111')). So, if ®i(m) is faulty, the the

son
.1(

i(m)) of i(m) will receive the message through s' -> i(s) -> EIti(i(s) ->

ep(j(9i(s))). Here, 4:8j(esi(s9p(s'))) is equal to Op(9j(EDi(s))). Thus, any son ring

under all faulty ring can receive the message from the grand-father's younger brother-rings.

Lemma 4.7 : In broadcasting tree, if s-1 nodes are faulty in the same initiating ring

s(l,p), then we can send the message to one of grandson-rings under the faulty node.

Proof : Let s(l,p -i) be faulty. Then s(Op_i(/),p-i) will not receive the message. The

s(l,p) sends the message to s(9p(1),p). Thus, s(e)p(/),p) will send the message to s(49p_

i(9p(1)),p)) which is the one of son rings of s(p_i(/),p-i). So, s(Op_1(Op(0),p)) sends

the message to s(5.p_i(1),p-i). Therefore, s(p(9p_i(9p(/)))) under faulty ring is equal to

the s(Op_i(1)) under non-faulty ring.

94

For example, we have 2 nodes failure in a initiating ring in Fig. 4.7. If there is no

faulty node, the ring 010 will receive the message from ring 011 directly, whereas ring 010

receive the message through 011 -> 001 -> 000 -> 010 under faulty node.

Lemma 4.8 : In a broadcasting tree, left(right) subtree rings of the initiating ring are

mapped directly to right(left) subtree rings by one step.

proof : Let the ring in a CCC be the node in a Hypercube. Then according to Lemma

3.2, the broadcasting tree developed by the algorithm Broadcast is a binomial tree. All

binomial trees having a given index are isomorphic in the sense that they have the same

shape. Therefore, we can map left(right) subtree rings to right(left) subtree rings by one

step.

All the above Lemmas 4.4, 4.5, 4.6, 4.7 and 4.8 lead to the following theorem.

Theorem 4.7: Our broadcasting algorithm tolerate s-1 processors or s-1 rings failure.

Proof: From Lemma 4.4, the initiating ring to send the message can tolerate s-1 rings

failure. This Lemma corresponds to algorithm Broadcast and Younger-Brother-Dead. From

Lemma 4.5, if one of son-rings is non-faulty, it becomes the new initiating ring and sends

the message to all the non-faulty rings in the sub-broadcasting tree. This Lemma corre-

sponds to procedure Coordinated. From the Lemma 4.6, if all son rings are faulty, all

initiating node' younger brother rings can be the initiating rings and send the message to all

the non-faulty rings in the sub-broadcasting tree. This corresponds to procedure All-Sons-

Dead. Finally, according to Lemma 4.7, if s-1 nodes are faulty in a ring, we can send the

message to non-faulty nodes in CCC. These Lemmas can be applied to any level of

subtrees. Therefore, our algorithm can tolerate s-1 processors.

In the rest of this section, we will evaluate the performance of algorithm Broadcast

in terms of the number of steps required to complete the message delivery. It is shown in

Theorem 4.8 below that the fault-tolerant delivery can be completed in n+1 steps. We are

not considering the steps to send the information, "the 9(j i)(s)".

95

Theorem 4.8: Our optimal fault-tolerant broadcasting algorithm needs 1+2* r(h-1)/21

+ s(14(h-1)/21) steps.

Proof : When the ring to initiate the broadcast (say s) send the message, it checks ®i(s)

and give the ®j(s) to ED(ii)(s). Then, ®j(s) gives the message to one of sons of 9i(s),

which will be the new initiating ring and sends the message to all non-faulty rings as the

same step as the normal broadcasting tree. And according to Lemma 4.8, we need one

more step for non-faulty node to send the message to another non-faulty node and each ring

takes r(h-1)/21. Therefore, we need 1+2*r(h-1)/21+s(14(h-1)/21) steps in this optimal

fault-tolerant broadcasting algorithm.

96

REFERENCES

1. F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles, A Versatile
Network for Parallel Computation," Communication of ACM, pp. 30-39, May
1981.

2. J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984

3. P. Banerjee, S. Y. Kuo, W. K. Fuchs, "Reconfigurable Cube-Connected Cycles
Architecture", 1986 IEEE

4. H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. on
Computers, pp. 153-161, Feb. 1971.

5. R. M. Chamberlain, "Gray codes, Fast Fourier Transformations and
Hypercubes,"Parallel Computing, 6, 1988, pp. 458-473.

6. D. Bitton , D. DeWitt, D. Hsiao and J. Menon, "A taxonomy of Parallel Sorting,"
Computing Surveys, Vol. 16, Sep 1884, pp. 458-473

7. C. L. Seitz, "The Cosmic Cube," Commun. Ass. Comput. Mach. Vol. 28, Jan
1985, pp. 22-33.

8. M. Pease, "The Indirect Binary n-Cube Microprocessor Array," IEEE Trans. on
Computers May 1977, pp. 458-473.

9. L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals problem," ACM
Trans.Programming language System, pp. 382-401, Jul. 1982.

10. T. K. Srikanth and S. Toueg, "Optimal clock synchronization," J. ACM pp.626-
645, Jul. 1987.

11. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Hypercube," Fourth Conf. on Hypercube Concurrent Comp. and Applications,
Mar. 1989, pp. 123-128.

12. A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for
the Cube-Connected Cycles Network", Proc. WEE Pacific Rim Conference, May
1989, pp. 161-164.

13. P. Ramanathan and K. G. Shin, "Reliable Broadcast in Hypercube
Multiprocessor", IEEE Trans. on Computers, Dec. 1988, pp. 1654-1657.

14. T. K. Srikanth and S. Toueg, "Simulating authenticated broadcasts to derive simple
fault-tolerating algorithms," Tech. Rep. 84-623, Dep. Comp. Cornell Univ., Jul.
1984.

15. A. Al-Dhelaan and B. Bose, "A New strategy for Processor Allocation in an N-
cube Multiprocessor", Phoenix Conference on Computer and Communication, Mar
1989. pp. 114-118.

97

16. M. R. Brown, "Implementation and Analysis of Binomial Queue Algorithms",
SIAM J. Comput, Vol. 7, Aug. 1978, pp 298-319.

17. J. E. Jang,"Optimal Fault Tolerant Broadcasting Algorithm foe a Hypercube
Multiprocessor", Proc.1990 ACM Computer Science Conference, Feb, 1990. pp.
96-102.

18. J. E. Jang,"Optimal Fault Tolerant Broadcasting Algorithm in an Cube-
Connected Cycles Network", Proc. Intl Conference on Database, Parallel
Architectures, and their Applications(PARBASE-90), Mar, 1990. pp. 206-215.

19. J. E. Jang,"Reliable Broadcasting Algorithm for a Cube-Connected Cycles
Netwoork", Proc. the 9th Annual Phoenix Intl Conference on Computers and
Communications, Mar, 1990

98

Chapter 5

Masking Adjacent Asymmetric Line Faults

5.1. Introduction

Error correcting/detecting codes have been extensively discussed for improving the

reliability of computer systems and communication networks and memory units[1-16].

The type of error statistics which occur in memory, logic, and arithmetic units are

many and varied. We can broadly classify them as symmetric, asymmetric, and unidirec-

tional errors.

Symmetric errors: The error statistics are said to be symmetric when both 1 -> 0

and 0 -> 1 errors can occur simultaneously in a data word.

Asymmetric errors: When the errors in a data word are only one type, say 1 -> 0,

these error statistics are called asymmetric. In this case the other type of errors, say 0 -> 1,

will never occur in any data word.

Unidirectional errors: When the error statistics in a data word are 0 -> 1 or 1 -> 0

errors, but both types of errors do not appear simultaneously in a word, these are called

unidirectional errors , but the decoder does not know a priori the type of errors.

These unidirectional and asymmetric error codes have been proposed for power

supply failure, stuck-at fault in shift register memories[10] and self-checking logic sys-

tems[14]. According to the fault analysis of the ROMs[15], the probability of short-circuits

faults to adjacent bus lines is larger than the probability of open-circuit faults. When adja-

cent asymmetric error masking codes are used for short-circuit faults, they are capable of

masking single adjacent asymmetric error in bus lines in LSIs.

This paper was initiated by Kazumitsu[15] which announced that theoretic analysis

and the systematic derivation of adjacent asymmetric error masking codes(AAEMC) remain

99

as future studies. In this paper, when the weight is 2, 3 and 4 in the constant weight codes,

we develop the AAEMC using systematic methods and analyzed those codewords and de-

rived an equation to get those codes, especially formally proved the maximality of AAEMC

when weight is 2. We want to minimize the number of transistors in the decoder of the bus

line circuits.

This chapter is organized as follows. Section 5.2 describes the definition of mask-

ing asymmetric line faults. Section 5.3 describes the background and the notation used in

this chapter. Section 5.4 describes the method used to develop the adjacent asymmetric er-

ror masking codes when the weight is 2, 3 and 4 and the formula to derive the number of

codewords. Section 5.5 evaluates the performance and compares our results with the pre-

vious results.

5.2. Masking Asymmetric Line Faults

In this section we will briefly describe the masking asymmetric line faults men-

tioned in [15]. In recent microprocessor LSIs, the area of bus lines has been increasing as

word bit length increase. These lines commonly connect circuit elements, e.g., processing

elements and memory elements. Thus, defects or faults in these lines seriously influence

the LSI yield and reliability.

Fig. 5.1 shows a typical model of the bus line circuit. Information signals are sent

on parallel bus lines. Several circuits elements, shown in Fig. 5.1 as circuit A to circuit X,

which operate function such as AND and selection, work at positions on the bus lines to

obtain the information from all or part of these lines. For example, in a memory address

decoder of RAM or ROM LSIs, address information is sent on address bus lines, and only

one decoder gate (AND gate), i.e., only one circuit element, is activated according to the in-

formation for a memory unit. In this model. since the bus lines are often very long and oc-

cupy large chip areas in LSIs, the bus lines are vulnerable to manufacturing defects or

100

noises. Therefore, technologies which tolerate these defects or faults are necessary to im-

prove LSI yield and reliability.

bus lines

circuit A circuit B circuit X

Fig. 5.1 A typical model of bus line circuit

Fig. 5.2 shows a bus line circuits with defect masking, which consists of lines L,

encoder E, and circuits elements, do to dn_i. Input information I is encoded into a code C

by the encoder E, and then C is sent to the bus line L. The code C is designed to tolerate

bus line faults. Each circuit element acts to mask these line faults as well as to operate the

function that is originally required. Therefore, we call set of these circuit elements as de-

coder D. Finally, we can get correct outputs of this bus line circuits.

In the bus line L, short-circuit and open-circuit defects often occur. These defects

change the signal line into several levels, i.e., high, low, or medium. However, by con-

trolling the bus driver and the bus terminal gate the level of faulty line can always be made

either high or low. For example, for short-circuit defects in the bus lines, the bus drivers

are designed to maintain a high level on all bridged lines.

For a short-circuit defects, the bus driver is designed to work in two steps. In the

first step, the driver discharges the bus line. In the second step, the driver charges the bus

line when the input signal level is high.

Information I

ir

101

bus line L

Encoder E

n

Code C

V= (x0 x1. . xn-1

Decoder D

dO dl m -

Fig. 5.2 A bus line circuit with defect masking coding

When the levels is low, the driver makes its output impedence high to maintain the bus line

at a low level. Therefore, even if there is a short-circuit defect in the bus lines, the bridged

lines are always charged up by the driver, i.e., maintained at a high level.

Such a fail-safe design achieves asymmetry in errors. The probability of 1-errors (1

is changed to 0) is made extremely small compared with 0-errors (0 is changed to 1). These

defects can also make the line level only low by controlling the construction of the bus

driver and the bus terminal gates. In this paper, we will mainly concentrate on 0-errors.

These asymmetric faults can be masked by new coding techniques. Fig. 5.3 illus-

trates an example of a bus line circuit which can mask single asymmetric 0-errors in the bus

lines. The decoder D consists of AND gates do to d3 corresponding to codewords Vo to V3

in code C, i.e., {Vo,V 1 ,V2,V3} C. Because each gate has transistors at the bus line

where the element of the codeword is '1', the gate is only activated by receiving the corre-

102

sponding codeword. Here we consider the circuit elements of this bus line circuit, e.g., de-

coder gates do to d3, as AND gates.

Information I

VO VO'

1 1
bus lines

x

x1 0 0

x2 1 1

x3 0 X

0 Id1 id2 113

x4 0 0

Encoder E
Decoder D

short-circuit defect

Codeword
Vo = (10100) V1= (01010) V2 = (00101) V3 = (10001)

{VO,V1,V2,V3} E C

Fig. 5.3 An example of a masking single asymmetric fault

This circuit can work correctly, even if there is a single asymmetric 0-error in the

bus lines. For example, we assume that information I is given and then encoded into code-

word Vo = (10100). Furthermore, we assume that one 0-error occurs in the fourth line X3.

The codeword V0 is changed into Vo' = (10110). However, only one AND gate do, which

would originally be activated only by V0 if there is no fault, is activated, because Vo' has

l's at the position where VO has 'l's. The other AND gates di to d3 can't be activated for

V0', because Vo' has at least one '0' at the position where V1 to V3 have '1'. Hence one

asymmetric line fault never causes faulty activation and therefore it can be masked.

103

Generally, since the bus lines are coded into an asymmetric error masking code, no

wrong circuit output is given even in the presence of bus faults. This masking technique

has the big advantage that no additional circuits, except for bus terminal gates and addi-

tional bus lines, are needed for masking these faults. That is, the output of the bus line cir-

cuit is always correct without explicitly using an error correction circuit.

5.3. Preliminaries and Definition

We briefly review the error correcting capabilities of binary block codes for sym-

metric and asymmetric errors. We start with the following concepts.

Let X and Y be two n-tuples over GF(2) = (0,1). We denote the number of 1 -> 0

crossovers from X to Y by N(X,Y).

For example, when X = (110110) and Y =(001110), then N(X,Y) = 2 and N(Y,X)

= 1. Note that in general N(X,Y) * N(Y,X).

It is well known that the concept of Hamming distance is useful in discussing the

symmetric error correcting/detecting abilities of codes. This is defined below. Without loss

of generality, we will always assume the type of the asymmetric error to be 0 -> 1.

Definition : The Hamming distance between two n-tuples X and Y, denoted by D(X,Y),

is defined as the number of positions in which the two words differ.

In terms of 1 -> 0 crossovers, we can express the Hamming distance between two

n-tuples X and Y as

D(X,Y) = N(X,Y) + N(Y,X).

Definition : A vector X = (xi x2 . . .xn) is said to cover another vector Y = (yiy2 . . .yn)

whenever yi = 1, xi = 1 for all i =1,2, . .. n. When neither covers the other, they are

called unordered.

definition1151 :, A code is defined as an error masking code, asymmetric 0-error mask-

ing code, if for all X E C, the erroneous word X', i.e., X' = X +E, E : 0-error pattern,

104

never covers any other codewords in C.

Definition I A code is defined as an adjacent asymmetric error masking code if for all X

E C, the erroneous word X', i,e., X'= X + E, E:0-error pattern adjacent to 1, never occurs

any other codewords in C, i.e., a 0-error can occur only if that 0 is adjacent to a '1'.

For example, the following set of codewords express an adjacent asymmetric error

masking codes with n = 6 and w = 2.

Vo = (1 0 1 0 0 0)
V1 = (0 1 0 1 0 0)
V2= (001010)
V3= (000101)
V4=(100010)
V5= (010001)

If there is a bridging 0-error at the first and second bits in Vo then the erroneous

word will be Vo' = (1 1 1 0 0 0), the second bit '0', adjacent to the first bit '1', is changed

to '1'. The erroneous word Vo' never covers any other code words.

Definition : Crossover positions, Cp(X,Y), are defined to be the set of positions in

which 1 -> 0 or 0 -> 1 crossover occurs. The starting position is 1 from the leftmost in a

codeword.

For example, Let X be (101000) and Y be (100010). Then Cp(X,Y) = (3,5).

Definition : When Cp(X,Y) is (i,j), Cp(X,Y)+1 is (i+1,j+1) and Cp(X,Y)-1 is (i-1,j-1).

For example, Cp(X,Y) ± 1 = (2,4,6)

A code C is defined as an error masking code, more exactly as an asymmetric '0'-

error masking code, if " X E C, the erroneous word X', i.e., X' = X e E, E:'0'-error

pattern, never covers any other codewords in C.In case of masking single asymmetric er-

ror, we can use the constant weight codes proposed by Graham[16].

For completeness we prove the following theorem which gives the necessary and

sufficient conditions for an adjacent asymmetric error masking codes.

Theorem 5.1: A code C is capable of masking an adjacent asymmetric error codes iff it

satisfies the following condition :

105

for all X,Y e C with X Y implies

either N(X,Y) z 2 and N(Y,X) z 2

or the value of Cp(X,Y)±1 is '0' where Cp(X,Y)+1 5 n and Cp(X,Y)-1

proof : 1) When N(X,Y) z 2 and N(Y,X) z 2, then X and Y have the following type of

codewords.

X =.... 1 1 0 0

Y =. .0 0 1... 1

If there is single 0-error occurs in X, X can't cover Y. Also if there is single 0-error occurs

in Y, Y can't cover X. So the condition holds according to the definition.

2) When the value of Cp(X,Y) + 1 and Cp(X,Y) - 1 is '0' , then X and Y have the

following type of codewords.

X= 0 1 0 0 0 0 . . .

Y= 000 0 1 0 . . .

i j

Here Cp(X,Y) = (i,j). So, Cp(X,Y) + 1 is (i+1,j+1) and Cp(X,Y) - 1 is (i-1,j-1). The '0'

in the position j in X can't change to 1 according to the definition. So, X can't cover Y.

The '0' in the position i in Y can't change to 1. So, Y can't cover X. Therefore the condi-

tion holds.

In the previous example, if there is 0-error in V4, V4' will be one of the following

codewords; (1 10 0 1 0), (1 0 0 1 1 0) and (1 0 0 0 1 1). However, V4' never covers any

other code words.

5.4. Code Construction

The adjacent asymmetric error masking codes developed in this section are constant

weight codes. We can derive the AAEMC when the weight is 2, 3 and 4 in the constant

weight codes. First let us define some notations used in this section.

Let E and 0 be the position of 1 is even and odd from the rightmost in the code-

word respectively. We say that code word X is the type Ei if X has exactly i ones in even

106

positions and codeword X is the type Onj if X has exactly j ones in odd positions. Let i and

j be the number of 1 bits in even positions Ei and the number of 1 bits in the odd positions

0j, respectively. We represent a sequence of l's in a codeword by EO, 0E0, EEEE and

EOEO, etc., depending on the weight. If the number of 1's are neighbored in the code-

word, we can express it as OE, Fes(, E0E, etc., and EOEO if they are neighbored in EO

and another EO position.

We can design the asymmetric error masking codes using the 1 or 3 level partition

of w-out-of-n code when w is 2 or (3 and 4) respectively. Let all the constant codes with

weight w be group G. We can partition this group G into Gi subclass where 05i5rw/21.

We can repartition this subclass into G; ,j subclasses for each subclass. Finally we can

repartition this subclass into Gii,k subclasses. The hierarchical structure of these partitions

is shown Fig. 5.4.

First we can partition w-out-of-n codes as follows: In level 1, the codewords are di-

vided into 2 or 3 subgroups according to the weight. When the weight is 2 and 3, we have

only two subclasses, ED and E2. But when the weight is 4, we have three subclasses, E0,

E2 and E4.

We can't have the codewords with E1 or E3 among codewords with E0, E2 and

E4, because they can cover each other when the adjacent asymmetric error occurs. For ex-

ample, codeword X=(10101000) has 0 number of even position, and codeword

Y=(11100000) has 1 number of even position. If X becomes (11101000), then X covers

Y. Thus, they can't be the same codewords. We will prove this in Lemma 2 below. In

level 2, when the weight is 3 or 4, we can repartition this subclass E2 according to the po-

sition of remaining l's. When the weight is 3, we repartitions the subclass, E2, into

(EEO, EOE, OEE} subclasses. When the weight is 4, we repartitions the subclass, E2,

into {EEO°, EOEO, OEEO, EOOE, OEOE, OGEE} subclasses. In the third level, we can

repartition this subclasses according as the numbers of l's are neighbored in the codeword.

107

For example, EEO subclass is divided into 2 subclasses, EEO and Ems. We can describe

the third level more clearly in the next subsection.

Let us examine some properties at each level. First of all, We have the following

Lemmas when the group G is partitioned in level 1.

Lemma 5.1: The Hamming distance between code with E21 and code E2i in level 1 is at

least 4 where 05.i,jiw/21 and i*j.

proof: We partition the w-out-of-n codes according to Eli in level 1. Without loss of gen-

erality, we assume i is 0. We have the codewords with E0 and E2J. Here, H(E0, Eli) 4,

since Ok = W- E0 .2, which means at least there are 2 ones in odd position in E0.

Fig. 5.4. Hierarchical partition of constant weight codes

108

Lemma 5.2: The codeword Gi with E21 covers the code Gj with E2a1 in level 1 when

adjacent asymmetric error(AAE) occurs.

proof: We have that H(Gi,Gj) = 2. When AAE occurs in , Gi + AAE covers G.

When AAE occurs in Gj, Gj + AAE covers Gi. That is, when H(GiA) = 2, the code-

words are as follows;

Gi

Gj ;

. . . 1 0 . . .

. . . 0 1

When AAE occurs in Gi, Gi+ AAE covers Gj: the codewords are as follows.

+ AAE : . . . 1 1 . . .

Gj ; 0 1

When AAE occurs in Gi, Gj + AAEi covers Gi: the codewords are as follows.

Gia : . . . 1 0 . . .

Gib +AAE 1 1 . . .

Lemma 5.1 and 5.2 lead the following important Theorem.

Theorem 5.2 : we can take only E2i subclass for AAEMC in level 1.

In level 2, each subclass has the same numbers of even position and odd position,

but the order is different. Here, there is some relationship among the subclass Gi,j, that is

Gi,ra 0, where 0.m,nj.

Lemma 5.3: Even though H(Gi,m, G La) is 2, they can't cover each other if they are not

adjacent.

proof: When H(Gi,m, Gi,n) = 2, we have the following two cases.

1) When they are adjacent, they cover each other if AAE occurs.

: . . . 1 0

Gj; 0 1 . . .

2) when they are not adjacent, they don't cover each other even though AAE oc-

curs.
:

Gj: 0 . . . 1 . . .

109

According the Lemma 5.2, we have to repartition again subclasses in level 2, de-

pending on that '1' in the odd position and '1' in the even position is adjacent or not. Here,

we will prove that each codewords in Gioc is the adjacent asymmetric error masking

codes in Theorem 5.3.

Theorem 5.3: Each codewords in the Gii,k is the AAEMC.

proof: According to Lemma 5.3, when the number of l's in odd and even positions are

not adjacent, they don't cover each other even though AAE occurs. This satisfies the condi-

tion 1 of Theorem 5.1. Thus, we can choose those codewords for AAEMC. Also, we can

choose the subclass for AAEMC with same form of positions, which have the adjacent

positions. This satisfies the condition of Theorem 5.2.

We have the following example to satisfy Theorem 5.3.

case 1) If H(Gi jjn, Gi j,n) = 2 and the position of 1 is not adjacent, then we have the fol-

lowing codewords. Therefore, they don't cover each other even if we have AAE.

1101000 . . .

1100010 . . .

case 2) If H(Gi thm, = 4 and position of 1 is different, then we have the following

codewords. Therefore, they don't cover each other even if we have AAE.

01110 . . .

0111 . . .

Section IV-A, IV-B and N -C describe the AAEMC when the weight is 2 , 3 and 4

respectively.

A. When weight = 2

In constant weight codes the total number of codewords with length n and weight 2

are
(n2).

Among them we must choose some codewords to satisfy Theorem 1. we can

choose codewords with Es3 and E2 from the Theorem 2. Let us describe the algorithm to

generate the adjacent asymmetric codes using systematic method; The procedure is as fol-

lows.

110

step 1. start 000 . . . 0101 ; i = 3 (second '1' position)

step 2. rotate to the left direction until second '1' arrives at the first position

step 3. advance second '1' to the i = i + 2 position

step 4. check whether i = n when n is odd

i = n - 1 when n is even

step 5. if not, go to step 2.

For example, we will construct the AAEMC with n =8 and w =2.

00000101
00010001
01000001
00001010
00100010
10000010
00010100
01000100
00101000
10001000
01010000
10100000

Let us check these codes generated by above method. All the codewords are E0 and

E2 from the rightmost position. That satisfies the Theorem 1 and Theorem 2.

The following theorem gives the total number of codewords.

Theorem 5.4 : The total number of codewords generated using above method are
((n/21) (1_11/2J)

2) 2 r
proof : Let the code length be n and the weight be 2. We have the following codewords

for each case.

1) E0 : p/21) The number of cases when two '1' are located in odd position.
2

2) E2 : 22J) The number of cases when two '1' are located in even position.(I-

For example, when n= 9 and w =2 we have the following codewords.

1) E0 :
(51/21).

(5) = 10 2) E2 : (6/2-I)= (4) = 6.) 2 2 2

Therefore there are 16 codewords.

111

We have an recurrence relation of codewords between the code lengths. Let n be the

length of codeword and the codewords be F(n,2). Let n-2 be the length and the code-

words be F(n-2,2). Then we can derive F(n,2) from F(n-2,2). We have the following re-

currence equation form the codewords.

Theorem 5.5: Let F(n,2) be the total number of codewords. Then we have the following

recurrence relation.

F(n,2) = F(n-2,2) + (n-2)

proof : As the code length is increased by 2 from the code length n-2, we can have 1

more codeword whenever we take step 2 in the above algorithm. This process repeats until

10100...0. this case corresponds n-2 times. Therefore, we have n-2 more codewords than

F(n-2,2).

For example, when n = 11 and n = 8 we have the following codewords.

(11,2) = (9,2) + (11 -2) = 16 + 9 = 25

(8,2) = (6,2) + (8 2) = 6 + 6 = 12

The maximality of the codewords are considered in the following Theorem.

Theorem 5.6 : The codewords described above are maximum number of codewords.

Proof : Let us analyze the total codewords with (3). We can divide the codewords into

6 subgroups according to the position of l's: EE, 00, E0, OE, E_Q, Q. According to

Theorem 5.2, we have chosen subgroups with EE and 00. If not, we can add at least one

codeword from E0, OE, Ea, OE However, any codeword from E0, OE, Ea, DE can't

join the subgroups with EE and 00, because if the AAE occurs in the codeword, it violates

the Theorem 5.1. Contradiction.

112

B. When weight = 3

First of all, we considers when code length n is greater than 9. When n is less than

9, it corresponds to the special case. According to Theorem 2, We have the following sub-

classes for the 3-out-of-n code in level 1 and level 2.

Gia : Goo = 000
Gi : Gip = EEO G 1 1 = EOE G12 = OEE

We have the following subclasses in level 3 according to the neighboring position.

Go : Goo = 000
G1 : Gip = EEO : Gioo = EEO, Gioi = ELQ

Gil = EOE : Glio = ME. Giii = EQE G112 = EQL
G113 = EOE

O12= OEE : G120 = QEE G121= OEE

Here we are faced with the problem to find the more AAEMC. So, we can divide

Gi j,k group into 2 subclasses, odd and even, according to the number of neighboring in

the codewords. The Odd classes is composed with 1 neighboring in the codeword.

Odd subclass Even subclass

G1,0,0 = EEO G1.1.0 = EOE G1,0.1= EEO G1.13 = EOE

Gii,i = EOE G1,1,2 = EOE 61,2,1 = OEE

G1,2,0 =QEE

From the above table, we can see all the codewords in the odd subclass can be cov-

ered by those of even subclasses if the AAE occurs. Also we know more codewords in

even subclass. Therefore, we can choose the codewords in the even subclass.

Theorem 5.7: We can choose G0,0,0, G1,0,1, G1,1,3 and G1,23, subclasses for

AAEMC.

proof: According to Theorem 5.1, we know that G0,0,0 is the AAEMC, which is unre-

lated with Gi,x,y where x,y means don't care symbol. We have the following relations to

satisfy the Theorem 1 among the subclasses. H(EEO, EOE) LI., H(EEO, OEE) zt,

H(EOE, OEE) z4. Therefore, G0,0,0, G1,0,1, 01,1,3 and G1,2,1 are AAEMC

113

Next, we are considering the number of codewords in each subclass. When we add

up all of them, they will be the total number of codewords to satisfy AAEMC.

Theorem 5.8 : We can have the equation to have AAEMC for each subclass.

1. G0,0,0 = 000: m21).

n nIEEO : I V+1)
jj=6by2 iby2 '

n n

EOE: I E d---Vi+i)
jj=8by2 iby2 '

n n

OEE : I I (m+1)
j=7by2 i=jby2

2. G1,0,1 =

3. G1,1,3 =

4. G1,2,1 =

p r o o f : In case of 000 : The number of cases t o locate the odd positions are En/21. There-

fore, we can choose (n i 2 1)
. In the case of EEO : First codeword will be . . . 101001. That

3

means, the minimum number of bits are 6. The leftmost 1 in the codeword is shifted to left
n

even position, which will give I (IVI+l) codewords. then middle 1 shifted, finally

i=jby2
n n

leftmost 1 is shifted. Therefore we have I d-11,41+1) codewords. In case of
jj=6by2 iby2 '

EOE and OEE same procedure is applied.

Therefore we have the following corollary.

Corollary 1: if n9, the total number of codewords of AAEMC is as follows:

Total number of AAEMC = Codewords with (000 + EEO + EOE + OEE).

For example, when n=16 and w=3, we have the following codewords.
n n

(1-11= 56, I I (V-14.1) = 56,
3) j=6by2 i=jby2

114

n n n nE E 35, , d.1-12-1,J+1)= 35.
j=8by2 i=jby2 j=7by2 i=jby2

Therefore, 56 + 56 + 35 + 35 = 182 codewords.

Now we are considering the other case which n is less than 9.

1. n = 6 : 000, OOE
2. n = 7 : 000, OOE
3. n = 8 : 000, 00E, 0E0

We show the number of codewords in each subclass when n is 6-11 in Table 5.1.

Gi Gi,j Gita Vlin. code length
6 7 8 9 10 11

0 000 000 5 1* 4* 4* 10* 10* 20*
1 EEO OOE 4 3* 3* 6* 6 10 10

OOE 6 1 1 4 4* 10* 10*
EOE EOE 4 2 2 3 3 4 4

EOE 6 1 1 3 3 6 6
EDE_ 6 1 1 3 3 6 6
EOE 8 0 0 1* 1* 4* 4*

OEE OEE 5 1 3 3 4 6 10
OEE 7 0 1 1 4* 4* 10*

2 EEE ERR 6 1 1 4 4 10 10
TOTAL AAEMC 4 7 11 19 28 44

Table 5.1. number of codewords in each subclass when w =3.

We can show the AAEMC codewords in Appendix 5-I when n=12 and w=3.

C. When weight = 4

First of all, we consider when the code length n is greater than 12. When n is less

than 12, it corresponds to the special case. According to Theorem 5.2, We have the follow-

ing subclasses for the 4-out-of-n code in level 1 and level 2.

Go : Goo = 0000

Gi : G10 = EE00 G11= EOEO G12 = ()EEO G13 = EOOE

G14 = OEOE G15 = OOEE

G2 : Gm = EEEE

115

We have the following subclasses in level 3 according to the neighboring position.

01,0 : G1,0,0 = EEQO G1,0,1= EEOO

G1,1: 01,1,0 = EOEO 61,1,1= EOEO 01,1,2 = EOEO

01,1,3 = EOEO 01,1,4 = EOM 01,1,5 = EEO

G1,1,6= EMO G1,1,7 = EOEO

G1,2: 01,2,0 = OEEO G1,2,1= OEF_Q Giaa= QUO
G1,2,3 = ()EEO

01,3: Gi,3,0 = EOO E G1,3,1= EODE G1,32 = MOE

013,3 = EOOE

01,4: 01,4,0= OEOE G1,4,1= OEOE 01,42 = OEOE

01,4,3 = OEOE GiAA = OEM 01,4,5 = SLOE

G1A,6 = OEQE G1,4,7 = OEOE

G1,5: G1,5,0 = ODEE 61,5,1= OGEE

We can divide Gij,k group into 2 subclasses according to the number of neighbor-

ing in the codewords.

Odd subclass Even subclass

01,0,0= EEO G 1 1 = EOEO G1,0,1= EEOO 01,1,0 = EOEO

G1,1,2 = EOEO

,I,

01,1,4 = EQEQ 01,1,3 = EOEO, G1,1,7= EOEO

01,1,5= EOEO 01,1,6= EMO 01,2,0 = ()EEO 01,2,3 = OEEO

G1,2,1= OEM 01,22 = DUO G1,3,0 = EOOE 01,3,3 = EOOE

G1,3,1= EOM G1,3,2= MOE 01,4,0 = OEOE 01,4,3 = OEOE

01,4,1= OEQE 01,42 = OEQE 01,43 = OEOE G1,5,1= OGEE

01,4.4 = OEM G1,4,5= g_EoE

01.4.6= OEOE 01,5,0 = 00EE

From the above Table, we can see all the codewords in the odd subclass can be

covered by those of even subclasses if the AAE occurs. Therefore we can choose only sub-

classes in the even subclasses. Among all the even subclasses, we can choose subclasses

which don't have the neighboring l's. Then we have the following Theorem.

116

Theorem 5.9 : We can choose G1,0,1, G1,1,7 , G1,2,3, G1,3,3, G1,4,7, G1,5,1 subclass

for AAEMC.

proof: We have the following relations to satisfy the Theorem 5.1 among the subclasses.

Hamming distance among all the subclasses is at least 4. Thus, they are AAEMC.

After we choose some subclasses according to above Lemma, we have only G1,1,0,

G1,1,3, G1,2,0, G1,3,0, G1,4,0, G1,4,3 subclasses left. In order to get more codewords,

we have chosen the following subclasses.

(EOEO & OEOE), (EOEO & EOOE), OEOE, & OEEO) are neighbored each

other. So, if AAE occurs, they will cover each other. Thus, we can't take both. When we

check the number of codewords in each case, (EOEO > OEOE), { EOEO > E00E),

(OEOE > OEEO) So we have chosen EOEO EOEO and OEOE

Next, we are considering the number of codewords in each subclass. When we add

up all of them, they will be the total number of codewords to satisfy AAEMC.

Theorem 5.10: We can have the equation for each subclass to satisfy AAEMC.

1. Go = EEEE :
(L11/42-I)

n n

2. Gisu = EE00 : E E d. m+1)
j=8by2 i=jby2

n n

3. G1,1,7 = EOEO : E E (L 21i +1)
j=10by2 i=jby2

n n

4. G1,2,3 = OEEO : E E (1_114J+1)
j=9by2 i=jby2

n n

5. G1,4,7 = OEOE : E n
j=11by2 i=jby2

n n

6. G1,5,1= OGEE : E E 21J +1)
j=9by2 iby2j

7. Gi,ip = EQEQ . LIV-J+ 1

n

8. G11,3= EOEO : I (Ln-2-1--IF])
i=6by2

n

9. GIA,3= OEOE:: I (L 2'J+1)
i=7by2

n n

10. G1,3,3= EOOE : 1 E
j=10by2 i=jby2

11. G2 = 0000: (nf1)

(C-Iiii+i)

117

proof: The same procedure as the weight is 3.

Therefore we have the following corollary.

Corollary 2: if n.?_12, the total number of codewords of AAEMC is as follows:

Total number of AAEMC = Codewords with (E0E0+ EOEO + OEOE: + EEEE +

EEOO + EOEO + EOOE + OEEO + OEOE + OOEE + 0000)

For example, when n=16 and w=3, we have the following codewords.

EEEE = 70, EEOO = 70, EOEO = 7, EOEO = 21, EOEO = 35

EOOE = 35, OEEO = 35, OEOE: = 15, OEOE = 15, OGEE = 35, 0000 = 70.

Therefore, the total number of codewords are 408.

case 2) When n < 12, we select the following codewords.

1. n = 8 : 0000, EEOO, EOEO, EOEO, EQE0, QUO, EOQE, OEOE, OQEE, EEEE

2. n = 9 : 0000, EOEO, EOEO, QEEO, EOQE, (VIE, EEEE

3. n = 10 : 0000, EOEO, EOEO, DEE°, EOQE, ()DEE, EEEE
4. n = 11 : 0000, EEOO, EOEO, EOEO, EOEO, OEEO, OEOE, OEOE, EOQE,

OGEE, EF.F.F.

118

We show the number of codewords when n is 8 - 13 in Table 5.2.

Gi G;,; Gi.; jc Min. code length
8 9 10 11 12 13

0 0000 0000 7 1* 5* 5* 15* 15 35
1 EEOO EEOO 6 4 4 10 10 20 20

EEOO 8 1* 1 5 5* 15 15
EOEO EOEO 4 3* 3* 4* 4* 5 5

EEO 6 3 3 6 6 10 10
EOM) 6 3* 3* 6* 6* 10 10
EOM 8 1 1 4 4 10 10
EQM 6 3 3 6 6 10 10
EQEO 8 1* 1 4 4 10 10
E0E0 6 1 1 4 4 10 10
EOEO 10 0 0 1 1* 5 5

OEEO ()EEO 5 3 6 6 10 10 15
D_EE0 7 1* 4* 4* 10 10 20
OEM 5 1 4 4 10 10 20
OEEO 9 0 1 1 5* 5 15

EOOE EOOE 6 3 3 6 6 10 10

MOE 8 1 1 4 4 10 10
EOOE 8 1* 1* 4* 4 10 10
EOOE 10 0 0 1 1* 5 5

OEOE OEOE 5 2 3 3 4 4 5
OEOE 7 1 3 3 6 6 10
OEOE 7 1* 3 3 6* 6 10
Q_EOE 9 0 1 1 4 4 10
OEOE 9 1 3 3 6 6 10
OEOE 9 0 1 1 4 4 10
OEM 9 0 1 1 4 4 10
OEOE 11 0 0 0 1* 1 5

OGEE 00EE 7 1* 4* 4* 10 10 20
OGEE 9 0 1 1 5* 5 15

2 EEEE FERE 8 1* 1* 5* 5* 15 15

TOTAL CODE 14 21 35 54 87 135

Table 5.2. number of codewords in each subclass when w =4.

For example, we can show the AAEMC codewords in Appendix 5-11 when

n is 12 and weight is 4.

5.5. Comparison and Application

From the codewords obtained from the section 5.4, we can compare our results

with previous results obtained by simulation[15] in Table 5.3.

119

Graham's table New result ref[15]
n\w 2 3 4 2 3 4 2 3 4
4 2' 2
5 2 4 4 2 4 2
6 3 4 6 4 6 4
7 3 7 9 7 7 9 7 7
8 4 8 14 12 11 14 12 11 14
9 4 12 18 16 19 21 16 15 20
10 5 13 30 20 28 35 20 23 33
11 5 17 35 25 44 54 25 33 50
12 6 20 51 30 60 87 30 49 73
13 6 26 65 41' 85 135
14 7 28 91 53 110 201
15 7 35 103 66 146 291
16 8 37 140 80 182 408

Table 5.3 Comparison between Graham and ref[15] and new result

From the table 5.3, we can get a large number of codewords compared to those of

random asymmetric masking codes and those of previous result.

For masking single asymmetric faults, the adjacent asymmetric error code is

needed. The number of codewords should be equal to or larger than the number of circuit

outputs. i.e., 16 and 32 in the bus line circuits. The code length and the weight should be

small in order to reduce the number of bur lines and transistors. According to the fault

analysis of the ROM, the probability id short-circuit faults to adjacent bus lines is larger that

the probability of random short-circuit faults or open-circuit faults. Therefore, the adjacent

asymmetric error code is needed.

We have to clarify the code conditions necessary for masking line faults economi-

cally and with better yield.

1. To minimize the number of transistors in the decoder of the bus line circuit shown in

Fig. 5.3 the codes should have minimum weight.

2. To minimize the number of bus lines, the number of codewords should be maximum.

3. Consideration is needed about the fault cases of bridging faults in the bus lines that

cause to adjacent asymmetric errors.

120

From the above conditions, we can compare the number of bus lines in ordinary

bus line circuits with the number of bus lines in fault-tolerant bus line circuits having adja-

cent error masking codes with weight w in Table 5.4. It should be noted that there are

cases, marked with * in the table, in which the number of bus lines in fault-tolerant bus line

circuits is smaller than that in ordinary bus line circuits.

Number of circuits

outputs M (k=1024) 16 32 64 128 256 512 lk 2k 4k

Number of bus line in
ordinary bus line circuit 8 10 12 14 16 18 20 22 24

Number of bus lines (w=2) 9 13 15 19 26

in fault- tolerant (w=3) 9 11 13 15

bus line circuit (w=4) 9 10 12 13* 15* 17* 19* 21* 23*

Table 5.4 Comparison of the number of bus lines

Also we can reduce a lot of transistors with AAEMC codes. For example, When

M = 256, we need 256 * 8 transistors in ordinary bus line circuit, while 256*4 transistors

in adjacent fault-tolerant bus line circuit when the weight is 4.

121

REFERENCES

1. W.W. Peterson and E. J. Weldon, Error Correcting Codes, Cambridge, MA:
M.I.T. Press, 1972.

2. E. R. Berlekamp, Algebraic Coding Theory, New-York: McGraw-Hill, 1968

3. C. V. Freiman, "Optimal Error Detection Codes for Completely Asymmetric Binary
Channels,", Infor. & Contr., vol 5, pp 64-71, 1962

4. J. M. Berger, "A note on Error Detecting Codes for Asymmetric Channels.", Infor.
& Contr., vol 4, pp 68-73, Mar. 1961

5. B.Bose and D.J. Lin, "Systematic Unidirectional Error-Detecting Codes", WEE
Trans. on Computers, vol. C-34, pp. 1026-1032, Nov. 1985.

6. H. Dong, "Modified Berger Codes for Detection of Unidirectional Errors," IEEE
Trans. on Computers, pp. 572-575, Jun 1984.

7. N. K. Jha and M. B. Vora, "A Systematic Code for Detecting t-unidirectional
Errors.", 17th FTCS., pp. 96-10, 1987

8. B. Bose, "Burst Unidirectional Error-Detecting Codes," IEEE Trans. on
Computers, pp. 350-353. Apr. 1986

9. B. Bose, "Burst Unidirectional Error-Correcting Codes," 19th FTCS pp. 350-
353. Apr. 1989

10. B. Bose and T.R.N.Rao, "Unidirectional Error Codes for Shift-Register
Memories", WEE Trans. on Computers, pp 575-578, Jun. 1984

11. B. Bose and D. K. Pradhan, "Optimal Unidirectional Error Detecting/Correcting
Codes," IEEE Trans. on Computer. pp. 564-568, Jun. 1982

12. D.J. Lin and B.Bose, "Systematic Unidirectional Error-Detecting Codes", IEEE
Trans. on Computers, vol. C-34, pp. 1026-1032, Nov. 1989.

13. S.D. Constantin and T.R.N.Rao, "On the Theory of Binary Asymmetric Error
Correcting Codes", Infor. & Contr. pp 20-26, Jan. 1979

14. M.A. Marouf and A.D. Friedman, "Design of Self-Checking Checkers for Berger
Codes", Dig. 8th Annu. Int. Sym. Fault-Tolerant Comput., pp 179-184, 1978

15. Kazumitsu. Matsuzawa and Eiji. Fujiwara, "Masking Asymmetric Line Faults
using Semi-distance Codes", 18th FTCS, pp. 354-359

16. R.L.Graham and N.J.A. Slone, "Lower Bounds for Constant Weight Codes",
IEEE Trans. on Information Theory, pp 37-41, Jan. 1980

Chapter 6

Conclusion

6.1 Summary

122

In chapter 2, we proposed a new strategy to recognize the maximum subcube in an

n-cube multiprocessor. This subcube recognition algorithm can be done in both serial and

parallel and analyzed. This strategy will enhance the performance drastically so that our

algorithm will outperform the buddy system by a factor nCk, the gray strategy by nCk/2 and

Al-Dhelaan strategy by nCk/(k(n-k)+1) in cube recognition. We present a very efficient pro-

cessor allocation strategy which makes larger contiguous spaces for the new coming job

than buddy, gray strategy and Al-Dhelaan strategy do. Furthermore, this new strategy is

suitable for static as well as dynamic processors allocation and it results in a less fragmen-

tation and higher fault tolerance. Also we describe an efficient procedure for task migration

under the new strategy: 1) goal configuration under the new strategy 2) node-mapping

between source and destination node 3) the shortest deadlock-free routing algorithm.

. .
iIn chapter 3, we developed a new broadcasting algorithm in an N-cube multipro-

cessors using a binomial tree. This algorithm takes log2(N) steps to broadcast all the pro-

cessors. Our broadcasting algorithm is a procedure by which a processor can pass a mes-

sage to all other processsors in the network non-redundantly: this message can either be in-

formation or control. We describe an optimal fault tolerant broadcasting algorithm when n-

1 processors are faulty in Qn. And we proved that this algorithm is optimal formally. This

algorithm takes log2(N)+1 steps to broadcast the message to all non-faulty processors.

123

In chapter 4, a simple yet efficient algorithm to broadcast in a in a Cube-Connected

Cycles Network containing faulty nodes/links was proposed. The algorithm is particularly

useful in critical real-time systems that cannot tolerate the time overhead of identifying the

faulty processors on-line. The algorithm delivers multiple copies of the broadcast message

through disjoint paths to all the nodes in the system. The salient feature of the proposed al-

gorithm is that the delivery of the multiple copies is transparent to the processes receiving

the message and does not require the processes to know the identity of the faulty proces-

sors. The processes on nonfaulty nodes that receive the message identify the original mes-

sage from the multiple copies using some scheme appropriate for the fault model used. The

algorithm completes in Ls/2J + (2s-1) + Ls /2J steps if each node can simultaneously use all

of its outgoing links. But if each node cannot use more than one outgoing link at a time,

then the algorithm requires 4s-2 steps.

In chapter 5, we developed the AAEMC using systematic methods and analyze

those codewords when the weight is 2, 3 and 4 in the constant weight codes. We derived

an equation to get those codes, especially proved the maximality of AAEMC and found an

interesting recurrence relation between code length when weight is 2.

When these codes are used for short-circuit faults, they are capable of masking a

single adjacent asymmetric error in bus lines in LSIs. This can be used in minimizing the

number of transistors in the decoder of the bus line circuits, i.e., the codes have the mini-

mum weight. Also the bus lines can be minimized.

6.2 Future Research

A few problems are generated from this thesis and are left open. For future re-

search, we have the following problems to explore:

124

From Chapter 2:

- We will try to develop some processor allocation strategies for other

interconnection networks.

- We will find a new approach for dynamic processor allocation in hypercube

machine.

From Chapter 3 and 4:

- We will develop an efficient fault tolerant broadcasting algorithm in the incomplete

hypercube.

- Better routing and Broadcasting Algorithm in Incomplete hypercube

From Chapter 5:

- We will try to find the adjacent asymmetric error masking codes when the weight

is greater than 4 in constant code.

125

Bibliography

A. A1- Dhelaan and B. Bose, "A New strategy for Processor Allocation in an N-cube
Multiprocessor", Phoenix Conference on Computer and Communication, Mar 1989. pp.
114-118.

A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for the
Hypercube", Proc.The fourth Conf. on Hypercube Concurrent Comp. and Applications,
Monterey, Mar 1989, pp. 123-128.

A. Al-Dhelaan and B. Bose, "Efficient Fault Tolerant Broadcasting Algorithm for the
Cube-Connected Cycles Network", Proc. IEEE Pacific Rim Conference, May 1989, pp.
161-164.

J. R. Armstrong and F.G. Gray, "Fault Diagnosis in a Boolean n Cube Array of
Microprocessors", IEEE Trans. on Computers Aug. 1981, pp. 587-590.

P.Banerjee, S.Y. Kuo, W. K. Fuchs, "Reconfigurable Cube-Connected-Cycles
Architecture", Proc, of IEEE, 1986, pp. 286-291.

B. Becker and H.U. Simon, "How robust is the n-cube?", in Proc. 27th Ann. Symp.
Foundations of Comp. Sci. Oct. 1986 pp. 283-291.

J. M. Berger, "A note on Error Detecting Codes for Asymmetric Channels.", Infor. &
Contr., vol 4, pp 68-73, Mar. 1961

E. R. Berlekamp, Algebraic Coding Theory, New-York: McGraw-Hill, 1968

D. Bitton , D. DeWitt, D. Hsiao and J. Menon, "A taxonomy of Parallel Sorting",
Computing Surveys, Vol. 16, Sep 1984, pp. 458-473

B.Bose and D.J. Lin, "Systematic Unidirectional Error-Detecting Codes", IEEE Trans. on
Computers, vol. C-34, pp. 1026-1032, Nov. 1985.

B. Bose, "Burst Unidirectinal Error-Detecting Codes," IEEE Trans. on Computers, pp.
350-353. Apr. 1986

B. Bose, "Burst Unidirectinal Error-Correcting Codes," 19th FTCS pp. 350-353. Apr.
1989

B. Bose and T.R.N.Rao, "Unidirectional Error Codes for Shift-Register Memories",
IEEE Trans. on Computers, pp 575-578, Jun. 1984

B. Bose and D. K. Pradhan, "Optimal Unidirectional Error Detecting/Correcting Codes,"
IEEE Trans. on Computer. pp. 564-568, Jun. 1982

M. R. Brown, "Implementation and Analysis of Binomial Queue Algorithms", SIAM J.
Comput, Vol. 7, Aug. 1978, pp 298-319.

M. Chen and K.G. Shin, "Processor Allocation in an N-cube Multiprocessor Using Gray
Codes", IEEE Trans. Computer, Dec. 1987 pp. 1396-1407.

126

M. Chen and K.G. Shin, "Task Migration in Hypercube Multiprocessor", Proc. 16th
Annual Intl Symp. on Computer Architecture. Jun 1989, pp. 105-111

M. Chen and K.G. Shin, "Adaptive Fault-Tolerant Routing in Hypercube Multicomputers"
To appear in IEEE Trans. on Computers, 1989

R. M. Chamberlain, "Gray codes, Fast Fourier Transformations and Hypercubes", Parallel
Computing, 6, 1988, pp. 458-473.

S.D. Constantin, T.R.N.Rao, "On the Theory of Binary Asymmetric Error Correcting
Codes", Infor. & Contr. pp 20-26, Jan. 1979.

N. Deo, Graph Theory with applications to Engineering and Computer Science,
Prentice-Hall, 1974.

H. Dong, "Modified Berger Codes for Detection of Unidirectional Errors," IEEE Trans. on
Computers, pp. 572-575, Jun 1984.

C. V. Freiman, "Optimal Error Detection Codes for Completely Asymmetric Binary Chan-
nels,", Infor. & Contr., vol 5, pp. 64-71, 1962

R.L.Graham and N.J.A. Slone, "Lower Bounds for Constant Weight Codes", IEEE
Trans. on Information Theory, pp 37-41, Jan. 1980

J. E. Jang, S. W. Choi and W. K. Cho, "A New Approach to Processor Allocation and
Task Migration in an N-cube Multiprocessor", Proc. International Conference on
Supercomputing, Nov, 1989. pp. 314-325.

J. E. Jang and W. K. Cho, "Maximulity of Subcube Recognition and Fault Tolerance in an
N-cube Multiprocessor", Proc. 4th SIAM conference on Parallel Processing, Dec 1989.

J. E. Jang,"An Optimal Fault Tolerant Broadcasting Algorithm for a Hypercube
Multicomputers", Proc.1990 ACM Computer Science Conference, Feb. 1990, pp. 96-
102.

J. E. Jang, "Reliable Broadcasting Algorithm in an Cube-Connected Cycles Network",
Proc. 9th International Pheonic Conference onComputers and Communications, Mar.
1990, pp. 3-9.

J. E. Jang, "Optimal Fault Tolerant Broadcasting Algorithm in an Cube-Connected Cycles
Network", Proc. Intl Conference on Databases, Parallel Architecures and their applications
(PARBASE-1990), Mar, 1990. pp. 206-215.
(To appear as a chapter in a book published by IFF.E)

J. E. Jang and B. Bose, "Efficient Broadcasting Algorithm for an Incomplete Cube-
Connected Cycles Network", To appear in the Proc. 5th Distributed Memory Computing
Conference, Apr, 1990.

J. E. Jang and B. Bose, "A New Approach to Fault Tolerant Broadcasting Algorithm for
an Cube-Connected Cycles Network" To appear in the Proc. 5th Distributed Memory
Computing Conference, Apr, 1990.

J. E. Jang and B. Bose, "Masking Adjacent Asymmetric Line Faults", To be published.

127

N. K. Jha and M. B. Vora, "A Systematic Code for Detecting t-unidirectional Errors", 17th
FTCS., pp. 96-10, 1987

H. P. Kattesff, "Incomplete hypercubes", IEEE Trans. Computer, May 1988, pp. 604-
608.

Dongseung Kim, "Supercube: A Generalized Hypercube with Shared and Private
Memories Using Multiple Spanning Buses", The 4th Conf. on Hypercube Concurrent
Computers and Applications, Mar. 1989.

K. Matsuzawa and Eiji. Fujiwara, "Masking Asymmetric Line Faults using Semi-distance
Codes", 18th FTCS, pp. 354-359, Jun. 1988.

L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals problem," ACM Trans.
Programming language System, pp. 382-401, Jul. 1982.

D.J. Lin and B.Bose, "Systematic Unidirectional Error-Detecting Codes", IEEE Trans. on
Computers, vol. C-34, pp. 1026-1032, Nov. 1989.

M. Livingston andQ. F. Stout, "Fault Tolerance of Allocation Schemes in Massively
Parallel COmputers", Proc. 2nd Symp. Frontiers of Massively Parallel Computation, pp
491-494. Oct. 1988.

M. Livingston and Q. F. Stout, "Parallel Allocation Algorithms for Hypercubes and
Meshes", Proc. 4th Conf. on Hypercube Concurrent Computers and Applications,
Monterey, CA, Mar 1989.

M.A. Marouf and A.D. Friedman, "Design of Self-Checking Checkers for Berger Codes",
Dig. 8th Annu. Int. Sym. Fault-Tolerant Comput., pp 179-184, Mar 1978.

NCUBE Corp, NCUBE/10: An Overview, Beverton, OR, Nov 1985.

R. Negrini and M. G. Sarni, Fault Tolerance Through Reconfiguration in VLSI and WSI
Arrays, MIT Press, 1989.

M. Pease, "The Indirect Binary n-Cube Microprocessor Array," IEEE Trans. on
Computers May 1977, pp. 458-473.

D. K. Pradahan, Fault-Tolerant Computing: Theory and Techniques, Prentice-Hall, 1986.

W.W. Peterson ans E. J. Weldon, Error Correcting Codes, Cambridge, MA: M.I.T.
Press, 1972.

F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles, A Versatile Network for
Parallel Computation," Communication of ACM, pp. 30-39, May 1981.

P. Ramanathan and K.G. Shin, "Reliable Broadcasting in Hypercube Multicomputers",
IEEE Trans. on Comp. Dec 1988, pp. 1654-1657.

Y. Saad and M.H. Schultz, "Topological Properties of Hypercubes", IEEE Trans. on
Computers, Jul 1988, pp 867-872.

C. L. Seitz, "The Cosmic Cube," Commun. Ass. Comput. Mach. Vol. 28, Jan 1985, pp.
22-33.

128

T. K. Srikanth and S. Toueg, "Optimal clock synchronization," J. ACM pp.626-645,
Jul.1987.

H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. on Computers,
pp. 153-161, Feb. 1971.

M. Sultan and Rami Melhem, "Fault Tolerance and Reliable Routing in Augmented
Hyercube Architecture", Phoenix Conference on Computtr and Communication, Mar,
1989. pp. 19-23.

H. Sullivan and T. R. Baskow, "A large scale homogeneous, fully distributed parallel
machine," Proc. Fourth Symp. Comp. Architecture, Mar. 1977, pp. 105-117.

J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.

Appendices

129

Appendix A

AAEMC when n=12 & w=3

1 000000010101 51 000001001010
2 000001000101 52 000100001010
3 000100000101 53 010000001010
4 010000000101 54 000100100010
5 000001010001 55 010000100010
6 000100010001 56 010010000010
7 010000010001 57 000100101000
8 000101000001 58 010000101000
9 010001000001 59 010010001000
10 010100000001 60 010010100000
11 000001010100
12 000100010100
13 010000010100
14 000101000100
15 010001000100
16 010100000100
17 000101010000
18 010001010000
19 010100010000
20 010101000000
21 000000101001
22 000010001001
23 001000001001
24 100000001001
25 000010100001
26 001000100001
27 100000100001
28 001010000001
29 100010000001
30 101000000001
32 001000100100
33 100000100100
34 001010000100
35 100010000100
36 101000000100
37 001010010000
38 100010010000
39 101000010000
40 101001000000
41 000010010010
42 001000010010
43 100000010010
44 001001000010
45 100001000010
46 100100000010
47 001001001000
48 100001001000
49 100100001000
50 100100100000

130

Appendix B

AAEMC when n=12 & w=4

1 000010101010 46 000000001111
2 001000101010 47 000000111100
3 100000101010 48 000011110000
4 001010001010 49 001111000000
5 100010001010 50 111100000000
6 101000001010 51 000000110011
7 001010100010 52 000011000011
8 100010100010 53 001100000011
9 101000100010 54 110000000011
10 101010000010 55 000011001100
11 001010101000 56 001100001100
12 100010101000 57 110000001100
13 101000101000 58 001100110000
14 101010001000 59 110000110000
15 101010100000 60 110011000000
16 000001010101 61 001001001001
17 000100010101 62 100001001001
18 010000010101 63 100100001001
19 000101000101 64 100100100001
20 010001000101 65 100100100100
21 010100000101 66 000001100110
22 000101010001 67 000110000110
23 010001010001 68 011000000110
24 010100010001 69 000110011000
25 010101000001 70 011000011000
26 000101010100 71 011001100000
27 010001010100 72 010010010010
28 010100010100 73 000101001010
29 010101000100 74 010001001010
30 010101010000 75 010100001010
31 000010100101 76 010100100010
32 001000100101 77 010100101000
33 100000100101 78 000100101001
34 001010000101 79 010000101001
35 100010000101 80 010010001001
36 101000000101 81 010010100001
37 001010010001 82 010010100100
38 100010010001 83 001001010010
39 101000010001 84 100001010010
40 101001000001 85 100100010010
41 001010010100 86 100101000010
42 100010010100 87 100101001000
43 101000010100
44 101001000100
45 101001010000

