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Five U.S. high performance research reactors (HPRRs) are currently part of an international non-

proliferation program with the objective of ultimately converting their highly enriched uranium 

(HEU) fuel to a new high density, low enriched uranium (LEU) fuel while still maintaining their 

reactor kinetic and thermal hydraulic performance. A uranium-molybdenum (U-Mo) alloy is 

under development as the proposed LEU fuel. This prototypic fuel must be qualified through the 

relevant regulator (either the Department of Energy (DoE) or Nuclear Regulatory Commission 

(NRC)) prior to its implementation in the HPRRs. One particular aspect of this qualification 

being investigated is the hydro-mechanical integrity of the fuel elements during typical operation 

conditions; with emphasis on coolant-clad reactions. Due to the highly turbulent flow conditions 

which produce extreme viscous forces over the plate type fuel elements found in the HPRRs, 

interfacial reactions regarding the prototypic fuel are of concern for the fuel’s qualification. One 

issue associated with coolant-clad interactions is the onset mechanical fuel plate instability 

induced by the flow field. This phenomenon has the potential to induce sufficient plate 

membrane stresses to challenge the hydro- and thermo-mechanical integrity of the elements. In 

this study, a flow induced vibration model is developed to characterize elastic plate motion of a 

single HPRR fuel plate in an attempt to address plate instability concerns associated with HPRR 

elements. 
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Predicting Mechanical Instability of a Cylindrical Plate under Axial Flow Conditions 

1 INTRODUCTION 

The Global Threat Reduction Initiative (GTRI), previously known as the Reduced 

Enrichment for Research and Test Reactors (RERTR) program, was established in 1978 

by the Department of Energy (DoE). One of the primary missions of this program has 

been to develop a substitute fuel of higher-density, low enriched uranium (LEU), which 

is not suitable for weapon use [1]. As of August 2009, approximately 48 research reactors 

have been converted from highly enriched uranium (HEU) to LEU fuel of the 129 that 

the GTRI has set out to convert by 2018 [2]. Among the remaining reactors awaiting 

conversion are numerous facilities that currently employ fuels which contain uranium 

loadings much larger than that currently available in LEU form [3]. Reactors which fall 

in this category are considered high performance research reactors (HPRRs). 

 

The Convert Branch of the National Nuclear Security Administration (NNSA) GTRI is 

currently working to develop very-high uranium density fuels for research reactors which 

currently do not have economically feasible LEU fuel available for their conversion (the 

HPRRs) [3]. There are five U.S. Reactors that fall under the HPRR category including 

the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of 

Standards Reactor (NBSR) at the National Institute of Standards and Technology, the 

Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, 

the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), and the High 

Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL).  

 

The development of prototypic research reactor fuel has been centered around two 

objectives including (1) the continued reactor performance characteristics currently held 

by each facility while, (2) meeting all reactor specific safety requirements [4]. To meet 

these objectives two uranium-molybdenum (U-Mo) alloy fuel designs are being 

investigated, a dispersion design and a monolithic design [5].  
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The fuel meat in current dispersion fuel elements consists of a fuel powder dispersed in a 

matrix material [4]. The uranium loading of this fuel type is limited by the amount of 

material that can be packed into the fuel meat region and by the uranium density of the 

fuel phase. Research reactor fuel comprised of uranium-silicide (U3Si2) in an aluminum 

matrix has been licensed by the Nuclear Regulatory Commission (NRC) at a uranium 

loading of 4.8 gU/cm3, providing the highest uranium density currently available for 

research reactor applications [4]. Attempts to raise the fuel loading of dispersion fuel 

have focused on increasing the fraction of fuel phase in the fuel meat region and on 

changing the fuel phase to an alloy which contains a higher uranium density [4]. 

Increased loadings for U3Si2 have resulted in experimentally demonstrated loadings of 6 

gU/cm3. Using a U-Mo alloy powder in a high-volume fraction dispersion fuel plate has 

yielded uranium loadings of up to 8.5 gU/cm3, both of which are still too low to produce 

fission rate densities sufficient to meet the fuel development program’s reactor 

performance objective. However, the monolithic fuel form has been identified as a 

promising very-high density fuel type that is appropriate for research reactor applications 

producing fuel loading up to 15.3 gU/cm3 [4]. This fuel design consists of a monolithic 

U-Mo alloy foil as shown in Figure 1-1. 

 

 

Figure 1-1: Comparison of dispersion and monolithic fuel types 
(a) dispersion cross sectional view and (b) monolithic cross sectional view 

 

The five U.S. HPRRs are entirely unique in their designs, from their integral system 

components to fuel element (Figure 1-2) and plate geometry. Figure 1-3 presents a 

generalized representation of each unique fuel plate geometry type found in the U.S. 

HPRRs. Each of these geometric forms presents its own unique set of challenges from 

fuel fabrication processes, to safety analyses, and operations. Although the GTRI 

program and its goals address all five U.S. HPRRs, this study will use the ATR as a 

reference case, as its fuel plate geometry is that of a cylindrical plate. 

(a) (b) 
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Figure 1-2: Comparison the five U.S. HPRR elements 
 

 

 

 

 

 

 

 

 

Figure 1-3: Cross sectional view of U.S. HPRR fuel plate geometry types 
(a) MITR, (b) ATR, MURR, NBSR, (c) HFIR 
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1.1 Motivation 

Significant progress has been made recently regarding the micro-structural performance 

of very-high density U-Mo alloy fuel [6-14]. However, additional study of the 

macroscopic behavior of these elements must be examined before the fuel can be fully 

implemented [15]. One critical area of study is the behavior of reactor specific fuel 

elements under prototypic thermal hydraulic conditions [15, 16]. The prototypic 

conditions under discussion include all current operational safety limit bounds of the 

HPRRs. The critical areas of focus associated with fuel-specific mechanical integrity 

under thermal hydraulic conditions based on the methods used to qualify the HEU fuel 

currently employed in the ATR include: 

 

 Pressure deflection tests [17]:  

o Static single plate testing to confirm the effect of membrane forces on the 

laminate fuel plate. 

o Static fuel element side plate spring ratei testing to evaluate membrane 

force of the side plates. 

o Static full element tests to confirm analytical procedures as well as to 

evaluate mechanical performance. 

o Dynamic hydraulic pressure deflection testing to evaluate hydraulic 

weakening. 

 
 Thermal distortion tests [18]:  

o Single plate testing to examine the extent of thermally induced fuel plate 

rippling and plastic deformation.  

o Fuel element testing to identity mechanical stability of fuel element under 

thermal loading.  

 Hydraulic buckling tests [17, 19]:  

o Hydraulic buckling testing to incrementally measure fuel plate and 

element plastic deformation caused by extreme axial pressure gradients. 

                                                 
i  Spring rate: Force required to compress a linear spring (side plate in this instance) one inch. 
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o Channel blockage testing to create temporal artificial channel blockages 

causing extreme axial pressure drops. 

o Vibration and fatigue testing in order to identify key harmonics associated 

with the fuel against provided flow rates. 

 

 Burnout tests [20-22]:  

o Single plate tests under iso-thermal and iso-flux conditions to determine a 

characteristic critical heat flux correlation. 

 
 Heat transfer tests [23]: 

o Single subchannel tests under iso-thermal and iso-flux conditions to 

determine a characteristic heat transfer coefficient correlation. 

o Single plate tests under iso-thermal and iso-flux conditions at various gage 

pressures and aluminum alloys to determine oxide layer growth rate 

correlations. 

 
 Flow instability studies [24-28]: 

o Lumped parameter subchannel studies to determine onset of flow 

instability during steady state mixed convection and accident scenario 

conditions. 

 

Although these critical areas of focus  rigorously characterize the macroscopic behavior 

of fuel plates and elements under thermal, hydraulic, static, and dynamic loads, previous 

fuel qualification studies have not directly addressed fuel surface roughness effects on the 

hydro- and thermo-mechanical integrity of the fuel elements. Surface roughness 

variability was eliminated from previous HPRR fuel qualification programs by strict fuel 

fabrication criteria and acceptance requirements set forth by the facilities’ quality 

assurance programs (QAPs) [21].  

 

As a requirement of the ATR’s QAP, all elements received from the fuel fabricator must 

pass receipt inspection to verify critical tolerances (including surface roughness 
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specifications) prior to insertion into the core. However, post-cycle visual examination of 

numerous elements has revealed several cases outside these tolerances although no 

abnormal observations were made during the cycle operation.  On a few occasions, 

failure has occurred. A statement from the ATR Upgraded Final Safety Analysis Report 

(UFSAR), acknowledges this claim [20] pp. 4-30: 

 

 “A limited number of fuel plate failures (i.e., breach of the fuel plate cladding 

leading to fission product release) have been encountered over the years of 

operation, and the failure trends in recent years have been favorable. . .” 

continuing, “From reactor start-up in December 1969 through November 1974, a 

total of 55 fuel elements exhibited evidence of cladding failures as determined by 

post-cycle visual examination. Most of the defects were described as ‘pimples,’ 

which occurred in areas of thin cladding, and were caused by breaches of the 

cladding, allowing stagnant water to become entrapped next to the fuel. The 

cause of the breaches may have been micro-cracks in the thin cladding.” 

Furthermore; “Five confirmed leaky fuel elements have been destructively 

examined to determine the cause of the failures. In each case, the leaks were 

believed to have been caused by pinhole failures, which resulted from pitting 

corrosion.” 

 

Although the above statement postulates one likely cause of these fuel element failures, 

there is no definitive evidence that shows pitting corrosion was the only direct parent 

phenomenon producing pinhole failures, or micro-cracks, in the fuel element cladding. 

There are numerous mechanisms which are plausible for the ignition of a single micro-

crack, including cyclic material fatigue. One of these plausible mechanisms is that of 

flow induced vibration (FIV) [29]. FIV has not explicitly been determined an irrelevant 

issue in previous analyses regarding the ATR fuel element, although it has been shown 

through demonstration in both experimental studies that an ATR element is mechanically 

stable under hydraulic loads which significantly exceed that observed during normal 

operations [20]. 

 



 

7 

FIV is caused by fluid instability due to the reaction of a rigid body against a hydraulic 

load and can occur over a wide spectrum of frequencies depending on geometric and 

hydraulic conditions of a prescribed system. Therefore, if FIV spurs the birth and 

propagation of a single micro-crack on a fuel plate, the crack growth rate and lifecycle 

becomes highly nonlinearly (stiffly) coupled with the plate vibration onset by the fluid 

flow. Coupling this phenomenon to other phenomenon typical of aluminum clad fuel 

plates including fuel clad oxidization and pitting corrosion makes identification of a 

single mechanism of failure nearly impossible to determine for fuel clad breach. 

 

Much investigation has been directed toward pitting corrosion and clad oxidization, while 

little attention has been given to FIV. This phenomenon has been regarded as inherently 

insignificant due to the structural design (cylindrical plate) of the (ATR) element 

assuming the most likely cause of failure is plastic deflection of the fuel plates caused by 

the coolant at a critical flow velocity [29]. Previous studies of flat plate fuel elements 

have shown that FIV can occur at flow velocities approximately half that of the critical 

flow velocity prediction [30], thus producing unexplored regions in fuel element 

structural stability which may be of importance to the safety of these high performance 

reactors. 

1.2 Objectives 

The objective of the work presented in this document is to create a semi-numerical model 

to assess FIV of cylindrical plates. The purpose of this study is to further the 

understanding of FIV of shells (cylindrical plates) in fluid media and assess how 

hydraulic loads created by the flow field relate to the mechanical stability of plate type 

fuel elements when compared to currently used static equilibrium models for the 

prediction of mechanical instability. This work is performed in the following four steps: 

 

1. Compare plastic plate deformation prediction methods of cylindrical plate type 

geometry (of ATR element geometry) using current safety analysis methods. 
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2. Develop a three dimensional FIV model for axial flow over a cylindrical plate 

based on ATR type fuel element geometry. 

 

3. Employ the developed vibration model and compare the criticality of plastic plate 

deflection safety criteria used in current safety analyses to the fatigue of a 

cylindrical fuel plate over a fuel element life cycle. This fatigue information will 

be explicitly calculated using the natural frequencies (eigenvalues) and modal 

shapes (eigenfunctions) produced from the FIV model. 

 

4. Assess the pressure fields which are most likely to cause FIV in geometry 

representative of an ATR element and provide a relation between plate 

dimensional characteristics and the onset of mechanical instability for range of 

pressure values along the axial and radial direction of the plate. 

1.3 Document Overview 

This document is organized as follows: 

Chapter 1:  Introduction – Introduction to the topic and motivation for the work 

presented on behalf of the study under discussion. 

 

Chapter 2:  Survey of Literature – Background information, a survey of available 

literature on plate vibration models and flow fields that onset mechanical 

instability. 

 

Chapter 3:  Advanced Test Reactor Overview – High level overview of the ATR and 

its relation to the significance of predicting mechanical instability of 

cylindrical plates under axial flow conditions. 

 

Chapter 4:  Analysis of Static Plate Divergence – Overview of Miller’s method for 

prediction of critical velocity, extending his methods to additional 

boundary condition cases, and lastly comparing Miller’s critical velocity 
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against that developed by Smith for various geometries and boundary 

conditions. 

 

Chapter 5:  Model and Methodology – Comprehensive description of plate dynamic 

module, flow module, and methods used to couple these models to produce 

a FIV model for axial flow over a cylindrical plate. 

 

Chapter 6:  Results and Discussion – Presentation of system model results and 

discussion of the phenomena that are captured as a part of this study’s work 

which have been neglected in previous studies by direct comparison. 

 

Chapter 7:  Conclusions – Concluding remarks and observations relative to this 

dissertation work and of future work areas to improve the simulation tool 

and extend its applicability to other reactor fuel element geometry types. 

 

This document concludes with lists of referenced works, nomenclature and symbols, and 

appendices with additional details not contained within the chapters. 
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2 SURVEY OF LITERATURE 

Stability of plates under axial flow conditions has been examined by many investigators 

under both hydro-elasticii and -plasticiii conditions [30]. Plate stability has been 

recognized as an issue of significant importance since the earliest research reactor 

designs; it was qualitatively postulated that there was a direct relation between flow and 

fuel plate vibration as pertaining to reactor element geometry during the design process 

of the High Flux Reactor (HFR) [31].  

2.1 Flow Induced Vibration of Flat Plate-Type Geometry 

Flat plate-type geometry has been studied more than any other geometric form regarding 

its susceptibility to failure caused by hydraulic instability [29]. This geometry has been 

the focus of research due to its relatively weak structural capabilities with respect to other 

geometric shapes including that of a cylindrical plate or pipe. 

 

One of the first formally published reports regarding FIV and its pertinence to the 

research reactor discipline was produced in 1948 by Stromquist and Sisman [31]. The 

purpose of their study was to determine whether the frequency of the fuel plate vibrations 

would be of significant importance to the mechanical strength of a fuel assembly or the 

operating characteristics of the reactor. At the conclusion of the study Stromquist and 

Sisman determined that (1) the examined fuel assembly was able to withstand all 

vibrational stresses as well as fatigue requirements within the experimental ranges 

considered and (2) the bucklingiv of plates occurred under very unusual conditions (e.g. 

improper plate spacing, insufficient restraint of plate ends, and brazing defects). It is 

noteworthy that the experimental investigation fell short in extending its flow rates to 

produce sufficient hydraulic forces necessary to buckle the plates using a simple static 

force balance. 

 

                                                 
ii  Hydro-elastic: Elastic deformation of a component caused by hydraulic loading. 
iii  Hydro-plastic: Plastic deformation of a component caused by hydraulic loading. 
iv  Buckling: Bending of a sheet, plate, or column supporting a compressive load. 
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In 1958, during the fuel element design, development, and construction for integration 

into the Engineering Test Reactor (ETR), Ronald Doan qualitatively discussed a critical 

flow field associated with the onset of plastic plate deflection [32]. His hypothesis was 

soon followed by Daniel Miller who developed a method for the prediction of a critical 

flow velocityv (Vcr) by equating the pressure differences between coolant channels to the 

elastic restoring force of a single fuel plate [33]. This force balance theory is more 

commonly referred to as ‘neutral equilibrium’. In order to acquire this hydraulic force 

Miller related the change in local pressure in a flow channel resulting from a slight 

perturbation in the flow channel’s wall. Considering a plate centered around two adjacent 

flow channels, the net pressure applied to the plate for a small differential change in cross 

sectional flow area is 

 

2 2

2 1 1
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P S S
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
    
           
     

 (2-1) 

where S is the flow channel original cross sectional area and S  is the change in cross 

sectional area. For small changes in cross sectional area, that is for 0.2S S  , (2-1) may 

be linearized to 

 22
S

P U
S

 
  (2-2) 

The relation (2-2) was employed by Miller to predict the critical velocity required to 

induced plate deformation. As the change in area approaches zero, Equation (2-3) is 

Miller’s model representing a flat plate with fixed (clamped) edges under axial flow 

conditions, 
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 (2-3) 

where E and υ are the plate averaged modulus of elasticity and Poisson’s ratio; ρ is the 

fluid density; a and b are the plate thickness and width; and lastly h is the subchannel 

height. 

 

Miller’s model is based on the following assumptions [33]: 

                                                 
v  Critical velocity: Flow velocity past a rigid body producing enough hydraulic load to buckle the body. 
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 The plate is homogeneous, isotropic, elastic, and initially flat or uniformly curved, 

uniform in spacing and dimensions are free of unidentified sources of 

deformation. 

 The coolant is incompressible, all channels have the same mass flow, at any cross 

section normal to the longitudinal axis the flow within any channel is uniform, 

and leakage between channels is suppressed. 

 The plates are broad enough (in comparison with their thickness) so that shear 

deformation is negligible, and are long enough (in comparison with their breadth) 

so that they can deflect locally without significant redistribution of flow among 

the coolant channels. 

 The side plates or supports are rigid. 

 
These assumptions, although quite limiting on the physics of the system, were novel for 

the time period. Davis and Kim experimentally verified that Miller’s model predicts a 

critical velocity of approximately twice that required to plastically deform ETR type fuel 

plates [34]. However, there were several limitations to Miller’s model. By assuming the 

plate takes the form of a wide beam (using wide beam theory), the model neglects to 

consider any local effects occurring in the vicinity of the upstream and or downstream 

edges of the plate. At the upstream and downstream edges, the plate is no longer, in 

effect, a wide beam, and the deflection at these edges will be greater than that calculated 

in the analysis.  

 

Within the same year of Miller’s hypothesis, Zabriskie [35, 36] experimentally evaluated 

both critical flow values and length-to-width geometry effects of the onset of plastic 

deformation. His experimental studies concluded that (1) Miller’s model gave a good 

approximation for that flow rate which induces a plate to undergo large deflections; (2) 

the plates do not suddenly collapse at Miller’s predicted velocity but rather deflect at 

lower velocities while the amount of deflection increases as the flow increases until very 

large deflections occur in the vicinity of Miller’s predicted flow rate; and (3) the inlet 

region of the plates is the most susceptible plate region flow induced deflections occur, 

primarily because this section of the plate is less rigid than sections further downstream.  
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Johansson [37] improved Miller’s work in 1960 and was able to produce a flat plate 

model which included the effects of fluid friction and flow redistribution within the flow 

channel, the second term of (2-4). However, Johansson too had several assumptions that 

limited the physics found in his model: 

 The pressure drop through all channels is equal. 

 The static pressure distribution across the span of a plate is uniform at each axial 

location. 

 Small deflection elastic theory holds for the plates (membrane stresses are 

negligible). 

 The water is incompressible and no voids or bubbles exist. 

Incorporating the above assumptions and using clamped edge boundary conditions 

Johansson produced the following relation: 
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 (2-5) 

and   is the friction factor, ki and ke are the inlet and exit channel form major loss 

coefficients, l is the effective plate length,  is a corrective parameter for axial bending 

stiffness, and 1  and 2  are the axial distance from the inlet to the start of the deflected 

plate region and axial length of deflected plate region. Based on the required inputs for 

Johansson’s correlation (ki, ke, 1 ,  , and  ) to predict critical velocity the result is 

highly subjective based on the flexibility of a user’s inputs and therefore it has not been 

historically adopted for research reactor safety analyses. 

 

In 1962 Rosenberg and Youngdahl [38] formulated a dynamical model and obtained the 

same critical velocity as Miller’s prediction when incorporating a two-dimensional mode. 

They did this by linearizing the pressure drop expression using only a first order 
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approximation. The linearization was accomplished by assuming the change in flow 

channel area after a plate has deflected is much smaller than that of the total unperturbed 

flow channel area. This model assumes plate divergence (buckling of the first mode) in 

both the span-wise and axial direction. 

 

Then in 1963, Kane [39] investigated spacing deviations of subchannels for plate type 

fuel elements based on Miller’s model while applying a modified continuity equation 

such that a spacing deviation in subchannels adjacent to a single plate may create a 

Bernoulli effect. At the completion of his study Kane determined that (1) for flow rates in 

excess of Miller’s prediction, plate deflections become quite large with small deviations 

in subchannel geometry, and (2) under certain geometric conditions for lower flow rates 

deflections occur which may be significant. A similar study by Groninger and Kane [40] 

was conducted during the same year which focused on flow-induced deflections of 

individual plates for three parallel plate assemblies. Their model showed that (1) adjacent 

plates always move in opposite directions at high flow rates, causing alternate opening 

and closing of the channel, and (2) they detected a violent dynamic instability at 

approximately 1.9 times that of Miller’s collapse velocity (similar to that observed by 

Davis and Kim [34]). 

 

Earl Dowell [41, 42] conducted one of the first in-depth studies on dynamic instabilities 

of rectangular plates in 1967 pertaining to fluttervi under axial flow conditions. Air was 

used as the fluid medium flowing over a flat panel in his study. Dowell focused his 

attention on three types of plate oscillations: A coupled-mode oscillationvii, single-mode 

oscillationviii, and single mode-zero frequency oscillation (buckling). He investigated 

each physical type of hydro-mechanical instability and its relevance to the Mach (M) 

number of the medium surrounding the plate. A few of the most significant conclusions 

drawn from Dowell’s study include (1) the coupled-mode oscillations occur at M 1, 

single-mode oscillations occur at M1, and single mode-zero frequency oscillations 

                                                 
vi  Flutter: The oscillatory loss of stability of a panel in the form of a flat plate or shallow shell 
vii  Coupled-mode oscillation: Multiple modes of flutter constructively and destructively interacting in one 

lineal direction 
viii  Single-mode oscillation: Single mode of flutter observed in one lineal direction. 
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occur at M 1, and (2) that the analysis of the nonlinear oscillations of a fluttering plate 

using the full linearized aerodynamic theory can be carried through in essentially the 

same manner as when quasi-steady (neutral equilibrium) aerodynamics are employed. 

 

Expanding on all prior studies, Scavuzzo [43] and Wambsganss [44] made further 

improvements to Miller’s model by considering the nonlinearity caused by large 

deflections. They did this by retaining the second-order bending terms for a wide beam in 

an attempt to assess their influence on stability. The second-order terms generate an 

additional stability criterion in the form of an upper bound on the amplitude of quasi-

static deflections for stable oscillations. Wambsganss [44] derived a new expression for 

critical velocity as presented below: 
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 (2-6) 

where   and   are mode dependent constants, and CR  is the critical plate deflection. 

Similar to Johansson’s correlation, the first term of (2-6) is the same as Miller’s model, 

while the additional parameters presented in the second term capture the second order 

accurate physics of the model. However, due to the inherent boundedness of the second 

order model, numerous boundary conditions are required which are application specific 

and subjective. Wambsganss presents one of these terms as the design constant ( CR h ) 

which allows a user to artificially determine a critical deflection of the plates within the 

model prior to determining a required critical velocity. Similarly,   and   are defined as 

mode dependent constants in Wambsganss’ model and were determined by using first 

order approximations to the bending stiffness of the plate under various boundary 

conditions. Due to the complex methodology used to develop the model along with the 

number of subjective model ‘tuning’ parameters, the use of Wambsganss’ model was 

never widely employed in application. 

 

Following previous work which had primarily focused on static deformation or ‘neutral 

equilibrium’ theory, Smissaert [45, 46] performed analytical and experimental 

investigations on a Materials Test Reactor (MTR) type flat plate fuel element. The 
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experimental results [45] showed that (1) for low velocities the plates deform as a result 

of static pressure differences in the channels between these plates, and (2) at high fluid 

velocities a high amplitude flutter vibration is observed. This flutter does not appear 

below a minimum average water velocity referred to as the flutter velocity, which is 

approximately equal to two times the Miller velocity (or 1.9 times that of the Miller 

velocity as determined by Groninger and Kane [40]). In the analytical study, Smissaert 

[46] indicated that a plate assembly is characterized by two velocities; Miller’s velocity 

and a flutter velocity. His explanation of the dynamic instability (flutter) was that the 

excitation frequency of the fully-developed turbulent flow approaches the in-fluid natural 

frequency (NF) of the plate. Under this condition the resonance amplitude of the plate 

vibration becomes large. 

 

In 1968 a National Aeronautics and Space Administration (NASA) study led by Roger 

Smith [47] expanded on Miller’s model once again. Smith did this by incorporating 

neutral equilibrium theory into a semi-empirical correlation for flat plate-type geometry. 

His correlation was presented in a representation of critical dynamic pressure (Pcr); 
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Recalling (2-2), (2-7) may be reformulated into a critical velocity. This is done such that 

the limit of the change in cross sectional area goes to zero in order to determine the onset 

of instability itself. Smith’s correlation may be reformulated in terms of critical velocity 

by inserting (2-7) into (2-2) for comparison against Miller’s model. 
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 (2-8) 

Notice that the first term in (2-8) is the same as Miller’s model, while the second term is 

added to incorporate dynamic pressure drop variations along the axial length of the plate. 

Smith’s correlation accounts for the effect of fluid redistribution as well as some form 

loss effect at the inlet of the subchannel due to a sudden contraction in cross sectional 

flow area. Although Smith’s correlation incorporates more physics than Miller’s model, it 

has not been employed in application due to the similar critical velocity value that it 
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produces relative to Miller’s predicted velocity, while Miller’s model had already been 

used widely in industry for more than ten years prior to the release of Smith’s correlation. 

 

Weaver and Unny [48] studied the dynamic behavior of a single flat plate, one side of 

which was exposed to high flow rates of a heavy fluid. They examined the variation of 

natural frequencies according to the rate of flow. They concluded that for a given mass 

relationship, the neutral zone of stability is followed by a zone of static instability. After 

this stage the plate quickly returns to neutral stability, which continues until the 

occurrence of dynamic stability (occurring at approximately twice that of Miller’s critical 

velocity).  

 

Leissa [49] conducted a lengthy theoretical study on free vibrationix of rectangular plates, 

and acquired a relative error for the general frequency parameter  m  used when 

conducting dynamic analyses through implementation of the classic plate equations. 

Leissa presented the value of m  and its corresponding error using his method for all 

twenty six potential boundary condition combinations (simply supported, clamped, and 

free edges) for a four sided plate given an option of five different plate aspect ratios and 

one Poisson’s ratio value ( = 0.3). The work presented in Leissa’s paper is often used to 

assess the accuracy and credibility of eigenvalue solutions produced when a part of 

mechanical instability studies as applied to wide beams and plates. 

 

Kornecki et al. [50] considered a flat panel of infinite width and finite length embedded 

in an infinite rigid plane with uniform compressible potential flow over its upper surface. 

The studied plate was constrained (considering both clamped and simply supported 

cases) along their leading and trailing edges. The case of a panel clamped at its leading 

edge and free at its trailing edge was investigated both theoretically and experimentally. 

The obtained results demonstrated that a panel fixed at its leading and trailing edges loses 

its stability by divergence (static instability), while the cantilevered panel loses its 

stability by flutter (dynamic instability). 

                                                 
ix  Free vibration: Dynamic response of a rigid body subject to no externally applied load. 
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In 1977 Holmes [51] took Leissa’s [49] work one step further and conducted a stability 

analysis on a fluttering panel caused by flow, focusing his work on bifurcationsx to 

divergence and flutter in flow induced oscillations. Holmes used Galerkin’s method and 

modal truncation, in the form of an ordinary differential equation to recast the nonlinear 

terms of a fluid loaded panel under motion. Holmes concluded his study by 

acknowledging that however rigorous his derivation to analyze bifurcation of a simple 

panel was, it left many unanswered questions, and was unable to completely identify all 

regions of stability.  

 

In the 1980s when computational resources became more readily available, much work 

shifted from theoretical modeling of plate vibration into the application of finite element 

models, and the advancement of finite element analysis (FEA) using both low and high 

resolution schemes [52-55]. 

 

In 1991 Davis and Kim [34] developed a single plate semi-numerical model with unequal 

subchannel coolant velocities perturbing the stability of the plate. They looked at both 

simply supported and clamped edges in order to compare the relative difference in 

stability of the plate under different boundary conditions. Their results were different 

from that produced in previous dynamic stability studies. Davis and Kim found that the 

flutter velocity was approximately 2.5 times larger than that of Miller’s velocity for a 

simply supported plate and 2.2 times larger for a clamped plate. It was acknowledged in 

their model that by including only a single plate, there was a possibility of reducing the 

damping factor of the system and therefore inducing instability at lower velocities than 

may physically occur.  

 

In 1993 Guo et al. [56] developed a dynamic semi-numerical model for flat parallel plate 

assemblies. Their limiting assumption was that regardless of the deformation a plate 

takes, all subchannels have uniform spacing. Employing this multi-plate model, Guo et 

                                                 
x  Bifurcation: To divide into two parts, or branch. 
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al. produced predicted flutter velocities that were significantly larger than that of Davis 

and Kim [34]. They attributed their large difference to the additional damping caused by 

surrounding plates. 

 

Then in 1995, Kim and Davis [30] published a second semi-numerical study which was 

very thorough in its derivation of the model and results presented. In this study, Kim and 

Davis considered five separate cases: a one, two, three, four, and five plate model. Their 

primary objective was to answer the question raised by Guo et al. [56] in a previous study 

as to the affect of damping due to the addition of plates in a dynamic model. At the 

conclusion of their study, when comparing the calculated plate NF versus plate stiffness 

for all five cases, they found that the NF was reduced significantly with the addition of a 

single plate (two plate model), while results don’t start to asymptotically collapse until 

the addition of the fifth plate. Therefore, it was concluded necessary to incorporate five 

plates in a dynamic flat plate model in order to identify the NF of an individual plate.  

 

These early studies spurred a number of other investigations which focused on 

hydrodynamic instabilities associated with flat plate type solid-fluid interfaces [57] while 

many other studies focused on modeling plate mechanics using free vibration analysis 

[58-60], a transformation method (also known as spectral characterization) [61-63], and 

perturbation theory [64-67]. In 1997 Yang and Zhang [68] developed a multi-span elastic 

beam model to imitate a typical substructure of a parallel-plate structure. In their 

analytical model, there exists a narrow channel between the lower surface of a wide beam 

and the upper surface of the bottom plate of a water trough. By using the added water 

mass and damping coefficients, the free vibrational frequencies of the system were 

analyzed. Yang and Zhang [69] further investigated a parallel flat plate-type structure in a 

rigid water trough and rigid rectangular tube to expand their comprehensive formulation. 

 

Guo and Paidoussis [70] theoretically studied the stability of rectangular plates with free 

side-edges in inviscid channel flow. They treated the plate as one dimensional and the 

channel flow as two-dimensional. The Galerkin method was utilized to solve the plate 

equation, while the Fourier transform technique was employed to obtain the perturbation 
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pressure from the potential flow equations. They investigated seven combination of 

classical supports at the leading and trailing edges of the plates. They concluded that 

divergence and coupled mode flutter may occur for plates with any type of end supports, 

while single mode flutter only arises for non-symmetrically supported plates.  

 

More recently, Guo and Paidoussis [71] developed a more accurate and general 

theoretical analysis for parallel-plate assembly system. In their analysis, the plates were 

treated to be two-dimensional, with a finite length, and the flow field was taken to be 

inviscid. Advanced Strength and Applied Elasticity [72] presents the equation of motion 

of an elastic plate using Classic Plate Theoryxi 
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W(x,y,z,t) is the lateral displacement; x, y, z are the spatial coordinates; P(x,y,z,t) is the 

pressure on the exposed surface; and t is time. m(x,y,z,t) is the mass per unit area, and L  

is the linear operator representing the load-deflection relationship of the panel. In Guo 

and Paidoussis’ study of flow over a flat plate,  WL  is 
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and 
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where K is the flexural rigidity. 

 

Employing (2-9) with its corresponding plate type geometry conditions, Guo and 

Paidoussis drew several important conclusions: (1) single-mode divergence, mostly in the 

first mode and coupled-mode flutter involving adjacent modes were found; (2) the 

frequencies at a given flow velocity and the critical velocities increase as the aspect ratio 

decreases; (3) in the case of large aspect ratios and small channel-height-to-plate-width 

ratios, the plates lose stability by first-mode divergence, however, very short plates 

                                                 
xi  The development and a supplement explanation of the classical plate equation can be found in 

Appendix A. 
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usually lose stability by coupled-model flutter in the first and second modes; (4) critical 

velocities for both divergence and flutter are insensitive to changes in damping 

coefficients [72]. 

 

Within the past decade a number of studies have been conducted, both experimentally 

and theoretically including that of Ho et al. [73] who experimentally examined two 

parallel plates and investigated the relevance of including combs (plate spacers) between 

the fuel plates to reduce the dynamic instability and increase the critical velocity. They 

concluded that although the combs produced a larger required critical velocity, the 

resultant redistribution of flow between subchannel must be considered before 

application in high flux reactors. 

 

Recently a study was conducted by Shufrin et al. [74] with the focus on a semi-analytical 

approach for the prediction of plate instability. This approach was termed as the multi-

term extended Kantorovich method (MTEKM). The Kantorovich reduction method has 

been paramount to the development of newly modified and extended techniques for the 

study of plate instability due to its ability in reducing nonlinear differential equations in a 

single dimensional direction such that all other directions may be solved for. 

 

Further development of FIV models applied to flat plate type geometry have since been 

expanded upon, however, because of the general foundation for which Gui and 

Paidoussis’ model was based around, none have produced such significant conclusions 

[71]. 

 

There are a number of commonly referred book references regarding FIV to be of help 

including Blevins [75] which includes a thorough set of beam integrals and frequency 

parameters; Yu [76] containing a wide variety of methods for evaluating both static and 

dynamic elastic deflection of plates; Qatu [77] evaluates techniques unique to laminated 

plates, starting with basics and expanding on some of the most advanced theoretical 

methods currently available. Blevins, Naudascher, and Kaneko [78-80] wrote several 

books which provide unique perspective on the issue of FIV from the perspective of a 
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lifelong career in the field, each book gives both simple back-of-the-envelope methods 

for solving rigid and free body vibrating system as well as complex approaches which 

address issues in the area of FIV that have not been resolved yet. 

2.2 Flow Induced Vibration of Curved Plate-Type Geometry 

Although hydro-elastic instability pertaining to flat plate-type geometry has been a more 

popular subject of study within the field of hydro-mechanical instability, cylindrical 

plate-type geometry is no less significant of an issue. Numerous high flux reactors around 

the world currently employ cylindrical plate-type geometry including three of the five 

U.S. HPRRs (ATR, MURR, and NBSR).  

 

In the same study which produced a model for critical velocity prediction using flat plate 

geometry, Daniel Miller [33] similarly developed a model for a cylindrical plate 

geometry using ‘neutral equilibrium’ theory. Miller achieved his formulation by simply 

transforming the flat plate geometry into an approximated cylindrical coordinate system. 

Miller’s critical velocity prediction for cylindrical plate-type geometry is 
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where  
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and clR , A ,  , and I  are the mean radius of plate curvature, plate cross sectional area per 

unit width, curved-plate arc between two supports, and area moment of inertia of plate. 

 

Soon after Miller’s work, in 1959 Lyell Sanders [81] conducted a study at the NASA. His 

study led to a newly developed set of differential equations for mapping surface moments 

and resultants in shells. The differential equations produced as a result of his study are 

commonly referred to as the ‘simple set’ of differential equations for plate dynamics. 
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In 1963 Ferris and Moyers [82] conducted a rigorous experimental investigation 

pertaining to ATR type fuel elements and their subsequent cylindrical shape. The 

objective of their study was to identify flaws in the various fuel element designs based on 

extreme hydraulic loads. The experimental investigation included six alternative ATR 

element designs which incorporated subtle variations in subchannel width, plate 

thickness, side plates, and end fittings. Steady state hydraulic tests of each fuel element 

were conducted at a system pressure of 600 psig while the coolant temperature and flow 

rate was varied between 150 – 420 °F and 40 – 1100 gpm. At the conclusion of their 

study they found that (1) four of the six element designs tested plastically buckled and 

completely collapsed the flow channel; (2) of the two designs that did not show signs of 

extreme buckling, one had a fuel plate deflection of approximately 0.058 inches relative 

to its centerline which is a 74.3% reduction in flow channel spacing; lastly they 

acknowledged that (3) under realistic mass flux ranges that the elements would be 

exposed to under operational conditions one element design had less than a 0.012 inch 

lateral plastic deflection in a single fuel plate, which was assumed to be within fuel 

element design limits.  

 

Ferris and Jahren [17] conducted a second study in the same year considering static 

buckling and deflection criteria of individual cylindrical type fuel plates along with 

fabricated elements as well. They compared experimental deflection tests against a 

theoretical model employing static equilibrium and wide beam theory. Their theoretical 

results compared well to the experimental deflection values under small deflection cases, 

however, the results diverged when the nonlinear effects became large during the 

experiment under large deflection situations. 

 

A study was conducted by Sewall et al. [83] in 1964 from NASA pertaining to vibration 

analysis of ring stiffened cylindrical structures for theoretical applications associated with 

fuel tanks in space flight. A Rayleigh type vibration analysis was performed and 

compared against experimental data collected for a similar geometry. The authors found 

that the experimental data and analytical analysis compared quite well with regard to 

such a complex system. They accounted this good agreement for the careful handling of 
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area moment of inertia calculations associated with the geometry of the system that were 

performed to produce the analytical results. This study paved the road for a number of 

studies that followed with respect to vibration of curved plate type geometries by 

providing a set of fundamental tools and reasoning to relate the theory of mechanical 

plate instability to a physical system. 

 

Sewall [84] then conducted a second study in 1967 pertaining to vibration analysis of 

curved panels expanding his original study to a more broad set of conditions with the 

intent of employing these theoretical results as a part of the design process for a new fuel 

tank applied to space travel. The study employed the Rayleigh-Ritz method from a 

theoretical perspective for both clamped and simply supported curved panels and 

compared these results to experimentally obtained data. 

 

Most methods studied to date focused primarily on solving differential equations of 

motion that hold for shallow plates only [84]. In 1969 a study by Petyt and Deb Nath [85] 

was conducted to investigate possible methods of solving a set of differential equations 

which hold for non-shallow-xii as well as shallow-platesxiii. Several techniques were 

compared [86] for solving free vibration of a rectangular curved plate. At the conclusion 

of the report a single method was endorsed by the authors; the Kantorovich reduction 

method for reducing the differential equations into eight order differential equations and 

then applying a modified matrix progression (MMP) technique for solving them. The 

MMP described in the study was a modified version of the matrix progression technique 

first presented by Tottenham [87]. Petyt and Deb Nath were able to produce eigenvalues 

for various edge boundary conditions, but did not evaluate the edge boundary conditions 

which are under discussion in this study. At the conclusion of their study, they found that 

all instabilities can exponentially collapse upon a ‘frequency parameter’ which is a 

function of material properties and geometry. The basis for choosing Petyt and Deb 

Nath’s work as a basis for this study is presented in Chapter 4. 

                                                 
xii  Non-shallow-plate: A curved plate who’s radius of curvature is of a small enough value such that the 

area moment of inertia is located outside the plate’s cross section. 
xiii Shallow-plate: A curved plate who’s radius of curvature is of a large enough such that the area moment 

of inertia is located inside the plate’s cross section. 
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Outside of reactor applications, several investigations were conducted in the 1980’s 

pertaining to structural design of bridges under high wind loads, nearly all these studies 

apply previously developed finite element methods and are very specific in the geometry 

that they are investigating [52-55]. 

 

In the early 1990’s the Advanced Neutron Source (ANS) research reactor (similar to the 

HFIR design) was under development at ORNL. During this period of time, many 

experimental and theoretical studies were undertaken to support the design of this reactor. 

These studies focused on both flow and mechanical instability of the plates under static 

and dynamic conditions. Focus was directed at the fuel element geometry itself to 

identify weaknesses in its hydraulic loading capabilities. Although this reactor was never 

constructed, much was learned as a result of the preliminary design studies. In 1990, a 

newly developed method (similar to that of Miller’s neutral equilibrium theory) was 

established by Swinson and Yahr [88] for calculating plastic deflection of ANS type fuel 

plates. This method assumes that the primary mechanism for plate deflection is the 

dynamic pressure onset by the extreme kinetic energy of the coolant. At the conclusion of 

their study they compared their math model to experimental data collected by Smissaert 

[45] for flat and cylindrical plates and showed that for small deflection cases their model 

produced results that were quite accurate. At deflection values which became large 

enough that the nonlinearity in the classic plate equations is no longer negligible, their 

model began to diverge from the experimental data. 

 

Then in 1993 Swinson et al. [89] conducted an experimental follow up study on stability 

of ANS type fuel plates. Their thorough investigation only included flow velocities up to 

approximately 12 m/s, which is much lower than Miller’s critical velocity. The 

deflections that were observed, however, are not consistent with that produced in similar 

previous experiments [89]. The following observations are acknowledged in their 

concluding remarks: (1) It was determined in the experiment that the entrance conditions 

were sensitive variables in determining the plate’s response to flow (it was recommended 

that the flow be as smooth entering the plates as possible), (2) the experimental results 
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and analytical models do not correlate on several points, (3) the data did not show a 

sudden or rapid increase in the entrance deflection as predicted by analytical models, (4) 

the most critical deflection region of the plate does not always occur at the entrance as 

predicted by theory, and lastly (5) the maximum deflection of the plate as determined by 

experiment was bounded by the dynamic pressure being applied as a load to the plate, 

whereas the collapse theory predicts unbounded deflections. 

 

Sartory [90] supported the study of Swinson et al. [89] by utilizing a structural finite 

element code. Particular attention was directed toward the effect of an imperfection in the 

fluid channels. At the conclusion of Sartory’s study it was determined that a bifurcation 

point occurs at a coolant velocity of approximately 45 m/s when varying plate deflection 

as a function of coolant velocity. This predicted velocity is approximately 1.8 times 

larger than the operational velocity of the ANS and therefore was concluded to be of little 

relevance in the ANS safety regime. 

 

The last published hydro-mechanical study conducted on the prototypic ANS and its fuel 

plates was reported in 1995 by Luttrell [91]. Luttrell continued the work done by Sartory, 

investigating three particular thermal hydraulic conditions: (1) extremely high flow 

velocities and (2) under pressure due to a partial flow channel blockage. Luttrell began by 

assessing Miller’s model as it applies to ANS type fuel plates. Table 2-1 lists the results 

of varying the edge conditions on an ANS fuel plate calculated by Luttrell [91]. 

Considering the three cases under investigation, Luttrell suggested a new core design of 

the ANS that included larger subchannels to reduce the flow velocity from approximately 

25 m/s to 20 m/s. He concluded that a combination of thermal stresses in the fuel plate 

along with extreme hydraulic loading have potential to cause fuel plate failure at nominal 

operating conditions in the ANS. 
 

Table 2-1: Critical velocity from fixity studies  
Boundary Conditions Critical Velocity [m/s] 

100% Fixed edges 46.03 
50% Simply supported edges 40.56 
75% Simply supported edges 36.52 
100% Simply supported edges 3.99 
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The studies described in this chapter have added contributions to the fields of mechanical 

stability and hydro-elastic instability from both theoretical and experimental perspectives. 

These studies have touched on all known significant topics with these fields. However, 

many more questions have been raised as a result of these works as well. A summary of 

the literature surveyed as a part of this study is outlined in Table 2-2. It includes major 

authors contributing to the work of mechanical stability of flat- and cylindrical-plates and 

their specific addition to the field. This studies work will add to the knowledge of: (1) 

dynamic instability, and (2) static instability as it applies to cylindrical-plate type 

geometry. 
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Table 2-2: Summary of literature survey 

 
Author(s) [reference(s)] 
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Flat Plate Type Geometry Cylindrical Plate Type Geometry 
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Stromquist & Sisman [31]  X X       

Doan [32]   X    X  

Miller [33]  X X   X X  

Zabriskie [35, 36]   X X    X 

Johansson [37]   X      

Rosenberg & Youngdahl [38] X        

Kane [39]  X       

Groninger & Kane [40]  X X X     

Dowell [41, 42] X        

Scavuzzo [43]  X       

Wambsganss [44]   X      

Smissaert [45, 46] X X  X X X  X 

Smith [47]  X X      

Weaver & Unny [48] X        

Leissa [49] X        

Kornecki et al. [50] X        

Holmes [51] X        

Davis & Kim [34] X        

Guo et al. [56] X X       

Kim & Davis [30] X        

Yang & Zhang [68, 69] X        

Guo & Paidoussis [70, 71] X        

Ho et al. [73] X  X X     

Sanders [81]     X X   

Ferris & Moyers [82]     X X X X 

Sewall et al. [83, 84]     X   X 

Ferris & Jahren [17]      X   

Petyt & Deb Nath [85, 86]     X    

Swinson & Yahr [88]      X X  

Swinson et al. [89]     X X  X 

Sartory [90]      X X  

Luttrell [91]     X X X  
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3 ADVANCED TEST REACTOR OVERVIEW 

3.1 Overview 

The ATR is an experimental irradiation facility and provides the capability to insert 

experiments into its core. The ATR, located at Idaho National Laboratory (INL), is a 250 

MWth high flux test reactor designed to study the effects of radiation on samples of 

reactor structural materials, fuels, and poisons. The ATR is the highest licensed thermal 

power research reactor in the world. Construction of the reactor began in November of 

1961 and completed in 1965. Fuel loading commenced in 1967 and core testing was 

completed in 1969. Full power operation began in August 1969 and the first experiment 

operating cycle began in December 1969 [20].  

3.2 Element Description 

The current ATR core contains forty fuel elements arranged in a serpentine pattern to 

form nine flux trap regions. Each fuel element forms a 45-degree sector of a right circular 

cylinder and consists of nineteen fuel plates with coolant channels on both sides of each 

plate. The fuel plates are 1.2573 meters in length with an active fuel length of 1.2192 

meters loaded with highly enriched uranium-aluminum matrix (UAlx) in an aluminum 

sandwich plate cladding. B4C is impregnated into specific plates as a burnable poison to 

minimize radial power peaking and extend the cycle life of the fuel elements. The ATR 

operates continuously, with the exception of ‘outages’ (fuel change-outs), equipment 

maintenance, and emergency shutdowns. ATR outages occur approximately every four 

months, during which time one third of the fuel elements are removed and replaced with 

fresh elements while the remaining are manipulated within the core to extend their core 

life as long as possible. A graphical rendering of a typical ATR fuel element is presented 

in Figure 3-1.  
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Figure 3-1: Pictorial view of ATR fuel element 
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1.295 mm (coolant channel 1)
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1.956 mm (coolant channels 11- 19)

1.270 mm (plates 2 to 18)

1.981 mm (coolant channels 2- 10)

Nominal Dimensions 

Detail of Inner Plate 

0.508 mm (fuel meat) 

0.381 mm (aluminum clad) 

1682.75 mm 

Vent hole 



 

31 

Figure 3-1 presents the nominal dimensions associated with plate and element geometry. 

The inherently compact geometric configuration that this element is based around, along 

with the relative dimensional size of each plate and subchannel thickness sets up for the 

possibility of significant percent changes in fabrication dimensions relative to that of the 

nominal drawing dimensions below due to tolerances. Consider a single ATR interior 

fuel plate with nominal thickness 1.27 mm; fabrication tolerances allow this plate to have 

a minimum thickness of 1.219 mm. Now consider an interior subchannel adjacent to this 

plate. The nominal thickness of this subchannel is 1.981 mm; while the minimum and 

maximum flow channel dimensions are 1.803 and 2.159 mm, respectively. This 

combination of dimensional tolerances sets up the possibility for difference of ~18% in 

subchannel thickness in adjacent channels creating an opportunity for significant flow 

biasing in one flow channel versus its neighbor which may result in a pressure difference 

and produce a net pressure acting on the 1.219 mm plate centered around these two 

subchannels. Although this combination of geometric parameters is extreme relative to 

that of the nominal plate geometry, it is a valid combination of stack-up imperfections as 

a result of the fabrication drawing tolerances for each element. 

3.3 Facility Operations 

The ATR has four primary coolant pumps (PCPs) available for use. Three of the four 

pumps are required for operational use leaving the fourth as an installed spare 

component. It is left to the reactor operating staff’s discretion to employ the required 

number of pumps needed to adequately remove the heat load of the core, generally 

operating within a thermal load range which requires two or three pumps at full capacity. 

The reactor vessel is pressurized with a core inlet of approximately 2.48 MPa gage and a 

core outlet of approximately 1.79 MPa gage during three PCP operation at a nominal 

primary coolant system (PCS) operating pressure of 2.56 MPa gage. The same PCS and 

core inlet pressure are maintained for two PCP operation resulting in a core outlet 

pressure of approximately 1.95 MPa gage. Nominal core inlet and outlet coolant 

temperatures are 51.67 °C and 76.67 °C respectively during all operational conditions, 

sufficiently low to prevent nucleate boiling. A portion of the primary coolant flow is 

directed through the fuel elements and the remainder through the reactor internals. The 
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PCS flow rate with three PCPs is nominally 3.1545 m3/s resulting in a flow rate of 1.7633 

m3/s through the fuel elements or 0.04408 m3/s per fuel-element with a nominal channel 

coolant superficial velocity of 14.295 m/s. With two PCPs operating, the PCS flow rate is 

nominally 2.7442 m3/s resulting in a flow rate of 1.5344 m3/s through the fuel elements 

or 0.03836 m3/s per fuel-element and a nominal coolant superficial velocity of 12.466 

m/s.  

 

The ATR’s design incorporates several unique features. The primary coolant system 

flows downward through the core as opposed to the upward flow found in a typical light 

water reactor (LWR). The core kinetics are manipulated by control drums at the core 

periphery which rotate about a central axis vice control rods inserted into the active fuel 

region. Approximately 60 azimuthal degrees of the control drum contains neutron 

absorber material while the remaining portion contains the control drum drive 

components and filler material. By rotating these control drums about their central axis, 

the reactor operator is able to increase or decrease the solid angle potential of neutron 

absorber material to fuel element surface area and therefore control the neutron 

population without impacting the axial flux profile. The serpentine core configuration 

along with control drum drive system allows for reactor power to be offset in any number 

of the five core lobes (center, northwest, northeast, southwest, southeast) at any given 

time. ATR technical specifications limit the power offset across the core to remain less 

than 80% to 20% power contribution at all times. A cross sectional rendering of the ATR 

is presented in Figure 3-2. 
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Figure 3-2: Advanced Test Reactor core cross section 
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3.4 The ATR & Flow Induced Vibration 

Based on the wide range of operational core conditions the thermal and hydraulic loads 

induced on the fuel elements and plates over a fuel cycle may vary significantly, 

potentially resulting in fuel plate fatigue. A qualitative discussion can be made in order to 

determine the relevance of FIV associated with the ATR safety analysis. Considering the 

geometry of the outer most radial fuel plate in an ATR fuel element, a critical flow 

velocity of 36.167 m/s is calculated using Miller’s model [33]. This predicted critical 

velocity is approximately 2.98 and 2.60 times larger, respectively, than the two and three 

PCP velocities. However, it has been shown that the use of Miller’s relations on ETR fuel 

plates predicts critical velocities twice as large as they occur experimentally [35]. The 

ETR’s fuel element geometry is similar to that of the ATR (cylindrical fuel plates), 

therefore, if Miller’s model is adjusted to the ATR, the critical velocity ratio drops to 1.49 

and 1.30 respectively. Similarly, it has been stated that although plastic deflection of ETR 

type fuel plates occurs at approximately twice the critical velocity, large plate vibrations 

have been reported at coolant velocities “much less than the experimental critical 

velocities” [36].  

 

Several design features incorporated into the ATR element promote sustained flow and 

reduce the significance of FIV caused by large pressure drops across the length of the 

element which Miller’s model predicts. These features include (1) four vent holes located 

on each side plate of an element (Figure 3-1) that span across several subchannels 

allowing for pressure re-equilibrium at these axial locations along the length of the fuel 

element and (2) fuel element spacer plates which allows for a small percentage of the 

integral core flow to pass through the outside of the fuel plates and provides for a volume 

of fluid which can be exchanged with subchannel coolant caused by mixing at each vent 

hole location.  
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4 ANALISYS OF STATIC PLATE DIVERGENCE 

This section describes methods used to develop two widely recognized unique models for 

the prediction of mechanical instability through divergence of plates under static loading. 

A set of results are presented for generic geometric boundary conditions to provide a 

qualitative demonstration of the relationship between the load necessary for a plate 

failure. Lastly, critical flow velocity values which are approximately representative of 

those comprising an ATR fuel plate are presented.  

4.1 Miller’s Method 

As discussed previously, Miller [33] produced the first widely recognized relationship 

between the hydraulic loading force imposed by a flow field on the plate’s primary 

surface and the mechanical rigidity of a plate (flat and cylindrical) exposed to that load. 

Miller’s equation for critical velocity was developed using neutral equilibrium theory as 

it applies to a wide beam. A flat “wide beam” (plate) under growing deformation with a 

uniformly applied pressure (P) and having clamped boundary conditions (C-F-C-F) at 

both span-wise ends has a deformation shape of 
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note that (4-1) holds true for the coordinate system defined in Figure A-1. Integrating w 

along y from 0 to b, multiplying by two to include the total reduction in cross sectional 

area of the flow channel due to the adjacent plate collapsing inward, and dividing by bh  

(subchannel original cross sectional area) yields the percent change in cross sectional area 
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Recall that the pressure differential developed across the plate away from the upstream 

and downstream ends of the deformed regions is 

 2
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2cr cr

S
P V

S
 

 . (2-2) 

Inserting (4-3) into (2-2) yields the equation developed by Miller for prediction of critical 

velocity of a flat plate with C-F-C-F edge boundaries; 
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The same methodology may be used to calculate a modified version of Miller’s critical 

velocity for a flat plate with one edge clamped and the other edge simply supported (C-F-

SS-F). The deflection profile of a wide beam with these prescribed boundary conditions 

and a uniformly applied pressure has been defined as [92]; 
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Integrating from 0 to b , multiplying by two and dividing by bh  results in the percent 

change in, or 
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Substituting (4-5) into (2-2) produces the critical velocity for a flat plate with C-F-SS-F 

edge boundaries, 
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Note that the only difference between (4-6) and (2-3) may be found with the multiplier 

coefficients where (2-3) has a value of 15 and (4-6) has a value of 40/3. The ratio of these 

two quantities provides a qualitative basis to claim that a flat plate with C-F-C-F edge 

boundaries is 1.125 times more mechanically stable than that of a plate with C-F-SS-F 

edge boundaries. As a part of that Miller’s original study he also developed a prediction 

for mechanical instability of a flat plate with both edges simply supported (SS-F-SS-F) 
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Recall that for a cylindrical plate with C-F-C-F edge boundaries, the critical velocity is 
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Equation (2-12) may be rearranged to the following form 
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Through the examination of the first term in (4-8) shows that it is identical to Miller’s 

formulation for critical velocity of a flat plate with clamped boundary condition seen in 

(2-3), leaving the second term as the transformation relation between and flat and 

cylindrical plate with clamped edges. Miller derived the displacement relation for 

clamped edges in the radial direction corresponding to the critical velocity presented in 

(4-8), as 
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on the interval of  0, 2   where the displacement profile holds true for the coordinate 

system in Figure 5-1. Miller determined that the percent change in cross sectional area 

due to membrane pressure on the plate may be obtained by integrating (4-8) from as 

follows 
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where b  may be approximated as clR  , the coefficient s for this case is equal to integer 4 

and is included to account for the displacement of the adjacent plate and symmetry to 

account for  2,    of the plate during the integral. Miller similarly developed a 

displacement relation for a cylindrical plate with simply supported boundaries as seen 

here, 
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and 
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Integrating (4-11) by use of (4-10), the solution yields the percent change in cross 

sectional area of the subchannel for a plate with simply supported boundary conditions on 

both edges (SS-F-SS-F). 

 

It is desired to estimate the critical velocity for a cylindrical plate with one edge clamped 

and the other edge simply supported using Miller’s methods. This may be done by 

modifying (4-10) such that s is equal to the integer 2, integrating (4-9) and (4-11) using 

(4-10) and summing them to produce the total percent area change in the subchannel for a 

cylindrical plate with one edge clamped and the other edge simply supported (C-F-SS-F), 

the result is as follows; 
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By inserting (4-14) into (2-2), one may obtain a modified version of Miller’s critical 

velocity for a cylindrical plate with C-F-SS-F edge boundaries; 
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A qualitative comparison of the mechanical rigidity for a cylindrical plate with both 

edges clamped, to that of a plate with one edge clamped and one edge simply supported 

may be made by taking the ratio of critical velocity (VR1) in (4-8) to that of (4-15). 
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Figure 4-1: Critical velocity ratio (VR1) dependant on edge boundary angle 
(a) for   ranging from 0 to 1 and (b) for   ranging from 0.7 to 0.9 
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The velocity ratio VR1 is presented in Figure 4-1 for various plate aspect ratios  b a  as a 

function of edge boundary angle. For all aspect ratios in Figure 4-1 as   approaches zero 

the cylindrical plate with C-F-C-F edges becomes 1.415 times more mechanically stable 

than the plate with C-F-SS-F edges. However, as   increases, the trend approaches unity 

for all aspect ratios until the relationship between boundary conditions C-F-C-F and C-F-

SS-F becomes analogous. Figure 4-1 presents a single value for a cylindrical plate with 

similar boundary conditions to that of an ATR fuel plate  55 and 4b a    ; note that 

the ATR fuel plate falls within the analogous region for C-F-C-F and C-F-SS-F boundary 

conditions using Miller’s methodology. 

 

Employing the same methodology as previously described while applying SS-F-SS-F 

edge boundaries, Miller created a critical velocity prediction for a cylindrical plate with 

SS-F-SS-F edge boundaries; 
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. (4-17) 

This may be verified by visual comparison of the velocity ratio (VR2) derived by Miller to 

create a relationship between a cylindrical plate with boundary conditions C-F-C-F and 

SS-F-SS-F; 
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. (4-18) 

Plotting (4-18) as a function of edge boundary angle for various plate aspect ratios 

produces Figure 4-2. For all aspect ratios in Figure 4-2, as   approaches zero the 

cylindrical plate with C-F-C-F edges becomes 2.450 times more mechanically stable than 

the plate with SS-F-SS-F edges. While within typical ATR fuel plate geometry, the 

boundary conditions are nearly analogous, as was observed with VR1. 
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Figure 4-2: Critical velocity ratio (VR2) dependant on edge boundary angle 
(a) for   ranging from 0 to 1 and (b) for   ranging from 0.7 to 0.9 
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By taking the ratio of the critical velocity derived for cylindrical plates for a given 

boundary condition type, to that of a flat plate with congruent boundary conditions a 

number of qualitative observations may be deduced. Miller considered this ratio 

relationship for the case of a plate with C-F-C-F edge boundaries as seen in (4-19): 
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. (4-19) 

Figure 4-3 presents the relative increase in mechanical stability of a cylindrical plate to 

that of a flat plate with C-F-C-F edge boundaries for various plate aspect ratios. Given, 

representative geometry of a typical ATR fuel plate; a cylindrical plate with C-F-C-F 

boundaries is approximated to be 5.451 times more mechanical stable than that of a flat 

plate with similar edge boundaries. 
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Figure 4-3: Critical velocity ratio (VR3) dependant on edge boundary angle 
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A similar velocity relation (VR4) may be produced by taking the ratio of (4-15) to (4-6) 

which yields 
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. (4-20) 

Inserting geometric conditions representative of an ATR fuel plate, demonstrates an 

increase in mechanical stability of approximately 5.457 times that observed for a 

cylindrical plate with C-F-SS-F edge boundaries than that of a flat plate with similar edge 

boundaries. A demonstration of the relationship between azimuthal angle and VR4 for 

various plate aspect ratios may be seen in Figure 4-4. 
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Figure 4-4: Critical velocity ratio (VR4) dependant on edge boundary angle 
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4.2 Smith’s Method 

As previously discussed, Roger Smith [47] expanded on Miller’s critical velocity 

prediction by including longitudinal plate deformation effects through empirically 

collected data. Recall that Smith’s relation is 
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. (2-8) 

However a limitation to Smith’s analysis requires the effective length, l, to be 

approximated equal to b for all plate lengths greater than b, therefore if it is assumed that 

l b , (2-8) becomes 
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. (4-21) 

A qualitative comparison of Smith’s relation may be derived by taking the ratio (VR5) of 

(4-21) to Miller’s formula for a flat plate with C-F-C-F edge boundaries, or 
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Figure 4-5: Critical velocity ratio (VR5) dependant on edge boundary angle 
 

Notice that in Figure 4-5 the critical velocity ratio asymptotically approaches a plateau 

value at a b/h of approximately 200 regardless of the Poisson’s ratio. For geometry 

representative for this study, the critical velocity predicted by Smith’s correlation is 

approximately 1.138 times higher than that predicted using Miller’s model. Furthermore, 

for any b/h value greater than approximately 20 and all Poisson’s ratio values considered, 

Smith’s correlation produces higher critical velocities than that of Miller’s model. 

4.3 Closing 

A set of common boundary conditions that will be used through the duration of this study 

are presented in Table 4-1. The material properties in the table are representative of 

Aluminum 6061-T0 and the plate geometric values are characteristic of plate 18 of the 19 

fuel plate ATR element. Plate 18 is the second largest radius plate and has historically 

been analysed in safety analyses as the mechanically weakest plate in the ATR element 

geometry due to its combination of large radius and relatively small thickness [17]. 
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Table 4-1: Cylindrical plate input parameters 
Geometric Description Value 

Element entry length prior to plate, i  [m] (in) 0.1524 (6) 

Element outlet length after plate, o  [m] (in) 0.1524 (6) 

Plate axial length, L  [m] (in) 1.2573 (49.5) 
Subchannel height, h  [m] (in) 0.00198 (0.078) 
Plate thickness, a  [m] (in) 0.00127 (0.05) 
Plate Radius, clR  [m] (in) 0.13324 (5.246) 

Angle between edge boundaries,   [radians] (degrees) 0.78539 (45) 
Plate arc length, b  clR  
Plate area moment of inertia, I  3 12a  
Plate modulus of elasticity, E  [MPa] (psi) 68947.57 (10 106) 
Plate Poisson’s ratio,   0.33 
Plate density,   [Pa] (psi) 2700 (0.098) 

 

Table 4-2 presents the predicted critical velocity and provides a demonstration for the 

large variation of predicted hydraulic characteristics necessary to buckling a plate under 

various boundary conditions. As expected from the previous discussion, the adapted 

Smith relation applied to a cylindrical plate with C-F-C-F edge boundaries produces the 

largest predicted critical velocity of 180.886 m/s while Miller’s method for a flat plate 

with SS-F-SS-F edge boundaries results in the lowest predicted critical velocity at 8.011 

m/s. 

 

Table 4-2: Buckling results comparison against various boundary conditions 
Plate 

Geometry 
Boundary 
Condition 

Critical Velocity Relationship Value [m/s] 

Flat Plate 

C-F-C-F 
Miller, Eq. (2-3) 19.623 
Smith, Eq. (4-21) 22.269 

C-F-SS-F 
Adapted Miller, Eq. (4-6) 18.501 
Adapted Smith, Eq. (4-6) (4-22) 20.996 

SS-F-SS-F 
Miller Eq. (4-7) 8.011 
Adapted Smith, Eq. (4-7) (4-22) 9.091 

Cylindrical 
Plate 

C-F-C-F 
Miller Eq. (4-8) 159.395 
Adapted Smith, Eq. (4-8) (4-22) 180.886 

C-F-SS-F 
Adapted Miller, Eq. (4-15) 158.997 
Adapted Smith, Eq. (4-15) (4-22) 180.435 

SS-F-SS-F 
Miller, Eq. (4-17) 158.2083 
Adapted Smith, Eq. (4-17) (4-22) 179.5396 
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5 MODEL AND METHODOLOGY 

This chapter comprehensively describes the analytical derivation and numerical 

discritization developed from first principles and used to predict the mechanical stability 

of a single cylindrical plate under hydraulic loading. This is accomplished by coupling a 

plate stability module and flow module to simulate the dynamic response of a plate to 

representative reactor flow conditions. This chapter concludes with a discussion as to 

how these modules are coupled together such that they combine to produce a three 

dimensional FIV model of a single plate which is representative of ATR type fuel 

element geometry.  

5.1 Plate Stability Module 

As a corollary to the extensive quantity of literature available regarding flat plate type 

geometry and a contrary lack of cylindrical plate type geometry literature, the added 

complexities required for solving the vibration of a cylindrical-plate are often avoided if 

feasible. Appendix A presents a summary of the general semi-numerical method used to 

solve flat-plate stability problems which are simplified dramatically relative to the work 

presented in this chapter. In contrast to that of a flat plate or ‘wide beam’, determining (or 

predicting) the mode shapes and frequencies at which mechanical instability occurs is a 

very complicated process for a cylindrical plate. It has been hypothesized [93] that one 

never observes a single mode instability in a beam with both flat edges clamped, thus a 

curved plate only undergoes multi-mode vibration, however, this premise has yet to be 

studied rigorously.  

5.1.1 Introduction 

The coordinate system employed during this study is that of the cylindrical type. Figure 

5-1 displays the geometry of the cylindrical plate under discussion along with its 

corresponding coordinate system. Any set of edge boundary conditions may be applied to 

this geometry using the semi-numerical method outlined in this study if done so in the 

appropriate manner. 



 

48 

rP
P  

xP  

,v  ,z w

,x u  
0  

R
  

L
b

 

Figure 5-1: Geometry of a singly curved rectangular plate 
 

The externally applied membrane pressures  ,  ,  and x rP P P  shown in Figure 5-1 are 

scalars that are applied normal to the primary surface exposed in their coordinate 

direction. In other words, xP  is the pressure applied to the leading edge of the plate and is 

positive along the x+ coordinate direction, rP  is applied to the interior radial surface of 

the plate and is positive in the outward radial direction, P  is applied to the fixed edges. 

During this study these membrane pressures will be explicitly inserted into the equations 

of motion based on the hydraulic loads produced for a given flow condition. Throughout 

this study the fixed edges do not experience any hydraulic load as the surface normal to 

P  is not exposed to the flow field and is therefore set to zero for all cases considered, 

herein. However, all analytical derivation includes P  such that it may be utilized for 

future studies. 

 

Figure 5-2 displays the shell element of differential length   along the azimuthal 

direction and  1 R x  along the axial direction based on the coordinate system of choice 
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presented in Figure 5-1. Figure 5-2(a) contains all external and internal forces acting on 

the element and Figure 5-2(b) contains the moments. Under equilibrium the forces and 

moments may be simply equated to each other such that they balance in each direction, 

however, in order to evaluate this elemental shell under non-equilibrium conditions 

(buckling or vibration) the coordinate system must be subject to a small displacement, 

only then may the forces and moments be balanced correctly. In order to define the 

relations for all stress resultants and moments two assumptions must be made: (1) all 

points aligned normal to the middle surface before deformation, remain congruent to the 

middle surface afterwards; and (2) for all kinematic relations the distance z of a point 

from the middle surface may be considered as unaffected by the deformation of the shell. 

The first assumption provides a mechanism for the exclusion of xQ  and Q  in Figure 

5-2(a), as they are insignificant to the outcome of the solution. The second assumption 

states that the z direction is negligible to the outcomes of stress and strain in the plate 

during this study; that is, deformation in the z direction is considered, but the extensional 

stresses in x and   dominate the z, therefore the z directional stresses are neglected. 
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Figure 5-2: An element of cylindrical shell geometry (a) forces and (b) moments 
 

Employing the methods presented in Flügge (Ref [94], Eq’s 5.3a – 5.6a) the resultants 

and moments may be defined as follows:  
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where   and   are normal and shear stresses in their prescribed directions, respectively, 

and may be directly related to their partner strain as (refer to Appendix A for a discussion 

of these stress strain relations) 
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Note that x ,  , and x  are normal strain in x and  , and shear strain crossed by x and 

. These strains are defined by Flügge [94] in the form of displacements and there 

derivatives for a cylindrical coordinate system as 
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and 
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When the stresses from (5-9) through (5-11) expressed by the strains in (5-12) through 

(5-14) are combined into (5-1) through (5-8) the integrations with respect to z may be 

completed appropriately for the case of plate deformation. Completing these integrations 

in their proper manner yields the following set of relations. These stress resultants may be 

formulated in terms of the displacements and their derivatives, in the form of the forces 

and their derivatives, or in a mixed way. During this study they are always formulated in 

terms of the displacements and their derivatives, as these parameters are more physically 

interpretable. 

 

Direct stress resultants: 
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, (5-16) 

where D is referred to as the extensional rigidity known as  21D Eh   , and recall that 

K refers to the flexural rigidity, or  21K EI   . 

 

Inplane shear stress resultants: 
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, (5-17) 
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, (5-18) 

 

Bending stress resultants (Moments): 
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, (5-19)  

 

2 2

2 2 2

2 2

2 2 2 2 2

K w w
M w

R x

K K w K w
w

R R R x

 





  
     

                   

, (5-20) 

 

Twisting stress resultants (Moments): 
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, (5-22) 

 

Note that relations (5-15) through (5-22) are first presented in their compact form and 

secondly in their expanded form such that each directional component is independent; as 

this is how they will be employed during this study. In an attempt to be thorough, if it 

were not assumed that xQ  and Q  were insignificant to the solution, they would relate the 

bending and twisting moments as follows, where 

  1 1 xM M
Q

R R x
 

 
 

 
 

 (5-23) 

and 

 1 1 xx
x
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Q

R x R





 
 

. (5-24) 

These then can be expanded such that they represent the complete form of the transverse 

shear stress resultants: 
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, (5-25) 
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. (5-26) 

Nonetheless, (5-25) and (5-26) are not considered herein. Once these physical relations 

for all resultants have been accounted for, it is now necessary to acquire an appropriate 

set of equations of motion. Most variations of the differential equations applicable to 

plate mechanics differ in their bending terms. This is due to the simplifying assumptions 

made in the derivation of the equations. The equations may be divided into two broad 

groups. One group is known as the “simple set” (mentioned in chapter 2, developed by 

Sanders [81]) and the other is known as the “exact set”, differing only in the small 
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bending terms. For the set of differential equations based on a cylindrical plate the simple 

set of equations is usually used by structural engineers due to its simplicity. However, the 

exact set of equations will be used in this study so that all nonlinearities that may result 

from large plate deflections will be accounted for. 

 

It is worthwhile to examine briefly the merits of both sets of equations given by Flügge 

[94]. First, both sets are symmetrical in structure with respect to the partial differential 

operators. The main appeal of the simple set is not only the simplicity, but, in certain 

cases, it will lead to the same type of solutions as the exact set (most often when opposite 

edges are simply supported). For reference, both sets are presented in (5-27) through 

(5-35). The geometry of the plate is shown in Figure 5-1, while the forces are shown in 

Figure 5-2. The exact set of equations mapping the motion of a curved plate presented by 

Flügge [94] are as follows; 
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, (5-27) 
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and 
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where k is a dimensionless quantity and is defined as  2k K DR . Three now terms are 

introduced into these equations and account for the externally applied forces acting in 

each of the three principle directions; these terms may be expanded as rq P R D  , 

x xq P D , and z xq N D . All in-plane stresses included in (5-27) through (5-29) are of 

opposite sign relative to that presented by Flügge [94] in order to comply with the 

coordinate system presented in Figure 5-1 and directional forces seen in Figure 5-2. 

Recall that the out of plane  z  forces  zq  are dominated by those in the x  and   

direction and therefore are assumed to be negligible reducing (5-27) through (5-29) to 
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and 
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It is this set, (5-30) through (5-32), that will be employed during this study. Reducing the 

exact set of equations with the appropriate assumptions that the bending terms are 

negligible yields the simple set of equations to be 
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and 
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The qualitative difference between the two sets of equations is only in the terms 

associated with k. Equations (5-33) and (5-34) are completely free of k terms. The 

contribution to the bending by u and v is eliminated in (5-35). In terms of the energy of 

the plate, both sets account correctly for the membrane part of the energy but the simple 

set of equations does not account for the bending part of the energy. Therefore, if the 

state of deformation is purely or nearly flexural (bending) then it is necessary of use the 

exact set. On the other hand, if the deformation is primarily of extensional (stretching) 

type, either set of equations may be used.  

 

Complexities are added with both types of differential equations relative to the equations 

for solving a flat plate. The added effort in solving the differential equations for 

cylindrical plates primarily results from the asymmetry in plate deflection in the normal 

direction to the primary plate surface (referred to later as in-plane-forces), whereas it is 

assumed that flat plates are symmetric and typically free of all internal shearing stresses, 

therefore simplifying the displacement equations significantly. 

5.1.2 Discussion of Available Boundary Conditions 

For determination of the constant of integration, the number of prescribed boundary 

conditions is required to be equal to the order of the system of equations. The present 

problem may be treated as a combination of a pair of two point boundary value problems, 

one in the variable x and other in  . For the solution of each of these two-point boundary 

value problems, the order of the system of differential equations in each of the variables 

must be even so that half of the conditions may be prescribed at each edge.  
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Both exact and simple set of equations are of the order eight with respect to  . Therefore, 

four boundary conditions are required at each edge ( =0 and  = ). Similarly the simple 

set of equations is also of order eight with respect to x so that four conditions are required 

at each of the edges (x=0 and x=L). However, due to the presence of the term   3 3k u x   

in (5-29), the exact set of equations are of order nine with respect to x. Under this 

situation, it will not be possible to prescribe the boundary conditions correctly. This 

difficulty may be overcome by eliminating the displacement of the plate along the axial 

direction (u) from the governing equations. During this study u is eliminated, therefore, 

both the sets of equations are of order eight with respect to both   and x. 

 

The small term   3 3k u x   is contributed to the equilibrium equation by the transverse 

shear Qx. Although Qx is small in magnitude, it might contain large derivatives. If the 

apparently small term   3 3k u x   is neglected, then the system of equations will no longer 

be symmetrical. In order to preserve the symmetry of the system,   3 3k w x   in (5-29) 

will also have to be neglected if   3 3k u x   is neglected in (5-27). Henceforth, only the 

exact set of equations (5-27) through (5-29) will be considered. 

 

The edge boundary conditions most commonly encountered in practice are: (a) clamped, 

(b) simply supported, and (c) free edge.  

 

 

Figure 5-3: Example sketch of edge boundary condition types 
 

 

(a) (b) (c)
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Considering the geometry in Figure 5-3 along with the coordinate system and stress 

resultants presented in Figure 5-1 and Figure 5-2, respectively, the corresponding edge 

boundary conditions are as follows: 

(a) Clamped: 

 0, constant
w

u v w x
x


    


 (5-36) 

 0, constant
w

u v w v 



     


 (5-37) 

(b) Simply Supported: 

 0, constantx xv w N M x      (5-38) 

 0, constantu w N M        (5-39) 

(c) Free Edge: 

 0, constantx xN M x    (5-40) 

 0, constantN M      (5-41) 

 

Similarly, other boundary equations, or a combination of those listed above may be 

formulated to reflect specific edge conditions desired [94]. Focus during this study will 

be directed toward boundary conditions (5-37), (5-39), and (5-40) as these pertain to 

cylindrical fuel plate-type geometric conditions. The focus of this study is aimed at two 

boundary value problems: 

 Both straight edges Clamped and both curved edges Free  

(C-F-C-F) 

The C-F-C-F case assumes both straight edges are rigid and do not allow for 

flexure both in displacement and the first displacement derivative, this is the 

ideal mechanical case for an ATR fuel element. 

 One straight edge Clamped, one straight Simply Supported, and both curved 

edges Free  

(C-F-SS-F) 

The C-F-SS-F case assumes that one straight edge is restricted in both 

displacement and the first displacement derivative, while the second straight 
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edge has the ability to flexure through the first displacement derivative. This 

allows for the simulation of torsion occurring in the element (the fuel element 

itself is not truly rigid) and is a more realistic case for an ATR fuel element. 

5.1.3 Solution Method 

In general, methods of solutions may be analytical, numerical, experimental or any 

combination thereof. The numerical methods such as the finite element technique or the 

experimental techniques are not considered in this chapter. Consideration will be given 

only to a semi-numerical method. 

 

A purely analytical solution is obtainable only when all the four edges of the plate are 

simply supported. Exact solutions to the problem may be obtained only when any pair of 

opposite edges are simply supported. Otherwise, the solutions will always be 

approximate. The approximate methods for such solutions will be at best semi-numerical 

in character. 

 

Such intermediate approximate analytical methods rest upon the works of notable 

mathematicians such as Ritz, Galerkin, Kantorovich, and Krylov. If the two dimensional 

problem were to be reduced to a one-dimensional problem it generally would become 

easier to solve. The method of Kantorovich’s reduction may be used to reduce the partial 

differential equations to ordinary differential equations [95]. Then the ordinary 

differential equations may be solved by various methods, like the transfer matrices, 

matrix progression line solution, Ruge-Kutta, modified matrix progression, and others. 

 

Kantrovich’s method, or the method of reduction to ordinary equations, occupies a 

solution position between the exact solution of the problem (often unattainable) and the 

methods of Rayleigh-Ritz and Galerkin [86]. The method of Rayleigh-Ritz employs 

complete functions to use such that a beam or plate’s eigenfunction is entirely assumed. 

These assumed functions are substituted into the expression for the Kinetic-Potential, Λ, 

which is a double integral commonly used in structures and plate theory. The problem 

then reduces to the determination of the undetermined constants in the assumed 
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functions, such that Λ is minimized. The minimum condition leads to the final set of 

algebraic equations. However, the solution obtained by assuming functions strongly 

depends upon the assumed functions themselves [95]. This inherently biases the results 

produced for a prescribed problem. 

 

In the Kantorovich method the solution of the plate problem is assumed as the sum of 

products of functions in one direction and functions in the other direction. Then, 

assuming the functions in the one direction, the nonlinear partial differential equations of 

the plate problem are reduced to a system of nonlinear ordinary differential equations. 

The resulting one-dimensional solution serves as a starting point for an iterative 

procedure, in which the solution obtained in one direction is used as the assumed 

eigenfunctions in the second direction. Because the solution is inherently iterative it does 

not depend on the initial assumption (as long as that assumption is within the solution’s 

radius of convergence), which may be poor or may not satisfy any of the boundary 

conditions.  

5.1.4 Reduction of Equations (Kantorovich’s Method) 

If Fm(x) is an assumed eigenfunction; after performing the integrations with respect to x 

the expression of an arbitrary convergence parameter (Λ) will contain undetermined 

functions of one variable which are g1( ), g2( ), and g3( ). The problem now reduces to 

finding these functions such that Λ is a minimum. The condition that Λ is minimum with 

respect to the undetermined functions yields a set of linear homogeneous ordinary 

differential equations. 

 

This approach to Kantorovich’s reduction is unnecessary in practice if the differential 

equations of motion are already available. If the equations of motion are known, 

Kantorovich has suggested a more convenient way of obtaining the ordinary differential 

equations [95]. Following the method of Kantorovich the exact set of equations (5-27) 

through (5-29) are reduced to a set of ordinary differential equations as follows. The 

equations of (5-27) through (5-29) may be written in operational form as: 
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  
2 2

12
, ,

R a u
L u v w

Dg t

  
   

, (5-42)  

  
2 2

22
, ,

R a v
L u v w

Dg t

  
   

, (5-43) 

and 

  
2 2

32
, ,

R a w
L u v w

Dg t

  
    

, (5-44) 

where L1, L2, and L3 are partial differential operators. If the boundary of the plate 

coincides with a rectangle (e.g. the edges of the geometry aligned with the coordinate 

system) the solutions for (5-42) through (5-44) may be written as follows 

    1 1
i tu f x g e  , (5-45) 

    2 2
i tv f x g e  , (5-46) 

and 

    3 3
i tw f x g e  , (5-47) 

where   is the circular frequency of vibration and g1( ), g2( ), and g3( ) are functions 

to be determined. Recalling that f1, f2, and f3 are assumed to be known, the reduction of 

(5-42) through (5-44) to ordinary differential equations is done in the following way. It is 

first assumed that  1 m mf x F x   , 2 mf F , and 3 mf F  where mF  is the mth 

eigenfunction of a straight beam, and x  is a dimensionless plate length scale equivalent 

to L R . Substituting u, v, and w from functions (5-45) through (5-47) into (5-42) through 

(5-44), multiplying each equation by  m mx F x   , mF , and mF  respectively, and 

integrating along the length of the plate yields 

  1 1 1 2 2 3 3 1 1 1

0

,  ,  0
x

x

L f g f g f g f g f dx


     , (5-48) 

  2 1 1 2 2 3 3 2 2 2

0

,  ,  0
x

x

L f g f g f g f g f dx


     , (5-49) 

and 

  3 1 1 2 2 3 3 3 3 3

0

,  ,  0
x

x

L f g f g f g f g f dx


     , (5-50) 

where   is the frequency parameter and is defined as  2 2R a Dg   . 
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This study assumes that f1(x), f2(x), and f3(x) are known. Note that the x direction is taken 

to have an assumed eigenfunction in this study for which the Rayleigh-Ritz method with 

characteristic beam vibration functions have produced acceptable results for flat plates 

suggesting that it yields a dependable solution if the x direction, this is why it is chosen 

for reduction. Furthermore, unless a transposition of the equations of motion is performed 

based on a reduction in the   direction, the equations remain of order nine, preventing 

their solution in matrix form all together. After performing the term by term integrations 

and making necessary simplifications, (5-48) through (5-50) become [95] 

  1 1 2 3 1,  ,  0aL g g g g   , (5-51) 

  2 1 2 3 2,  ,  0aL g g g g   , (5-52) 

and 

  3 1 2 3 3,  ,  0aL g g g g   . (5-53) 

In these equations, La1, La2, and La3, are linear ordinary differential operators with 

constant coefficients. Thus the original partial differential equations are reduced to two 

sets of ordinary differential equations. The prescription of the required integrals and the 

reduced (5-51) through (5-53) must now be determined. 

5.1.4.1 Prescribing Curved Edge Boundary Conditions ( x  = constant) 

In the case where both axial ends (x = 0 and x = L) have free boundary conditions the 

formulation for the eigenfunction, Fm(x) of a straight beam takes the form [75]: 

   cosh cos
cosh cos sinh sin

sinh sin
m m m m m m

m
m m

x x x x
F x

x x x x

     
 

                                  
 (5-54) 

where x  is a dimensionless characteristic length of the plate defined as x L R  and the 

transcendental equation for m  is 

 cos cosh 1m m   . (5-55) 

Defining m  is defined as 

 
cosh cos

sinh sin
m m

m
m m

 


 





, (5-56) 

simplifies (5-54) to  
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   cosh cos sinh sinm m m m
m m m

x x x x
F x

x x x x

   
                  

       
. (5-57) 

The following expression will also be utilized in future application 

 2 2 m
m m

m

I





   (5-58) 

where Im is the moment of inertia of a beam of unit width (wide beam). The values for m  

may be obtained from Blevins [75]. From these tabulated values m  and Im may then be 

calculated. These coefficients for the first 5 modes (m) are presented in Table 5-1. 

 

Table 5-1: Single span beam modal coefficients 
Mode (m) m m mI  

1 04.73004074 0.982502215 0.54987984 
2 07.85320462 1.000777312 0.74668416 
3 10.99560790 0.999966450 0.81804820 
4 14.13716550 1.000001450 0.85853162 
5 17.27875970 0.999999937 0.88425083 

 

A visual interpretation of the eigenfunction presented in (5-57) after applying the 

coefficients identified in Table 5-1 is provided in Figure 5-4. These displacement profiles 

are representative of the plate’s assumed eigenfunction, or modal shape, in the axial 

direction (x), referring to Figure 5-1. The modal shape considered during this study is 

highly sensitive to both m  and m  in the higher modes. Chang and Craig [96] have 

shown that changes in m  as small as 10-6 can result in a significant change in the 

computed mode shape. It is for this reason that all digits available in the literature (and 

presented in Table 5-1) are employed during this study. 

 

As can be seen from Figure 5-4 all even modal numbers are asymmetric about the beam 

centerline, while the odd modal numbers are symmetric; this observation will be 

elaborated upon in Chapter 6 when describing tendencies of the plate dynamic response 

over modal values. 
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Figure 5-4: Normalized mode shapes of straight slender beams (both ends free) 
 

Now that the appropriate eigenfunction has been acquired for this study, the x 

independent solution functions may be resolved; f1(x), f2(x), and f3(x) are written for each 

mode of vibration as 

 
1

sinh sin cosh cos ,

m

m

m m m m
m m

Fx
f

x

x x x x

x x x x


   

 






                 
       

 (5-59) 

and 

 
2 3

cosh cos sinh sin .

m

m m m m
m m

f f F

x x x x

x x x x

   
 

 

                 
       

 (5-60) 

For explicitness the first four derivatives of f1(x), f2(x), and f3(x) with respect to x are 

presented below as they are necessary for performing the required integrals that follow. 

These first four derivatives are as follows: 

 1 cosh cos sinh sinm m m m m
m m

x x x xf

x x x x x x

    
 

                             
, (5-61) 
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22

1
2 2

sinh sin cosh cosm m m m m
m m

x x x xf

x x x xx x

    
 

                             
, (5-62) 

 
33

1
3 3

cosh cos sinh sinm m m m m
m m

x x x xf

x x x xx x

    
 

                             
, and (5-63) 

 
44

1
4 4

sinh sin cosh cosm m m m m
m m

x x x xf

x x x xx x

    
 

                             
; (5-64) 

and 

 32 sinh sin cosh cosm m m m m
m m

f x x x xf

x x x x x x x

    
 

                                
, (5-65) 

 
2 22

32
2 2 2

cosh cos sinh sinm m m m m
m m

f x x x xf

x x x xx x x

    
 

                                
, (5-66) 

 
3 33

32
3 3 3

sinh sin cosh cosm m m m m
m m

f x x x xf

x x x xx x x

    
 

                                
, and (5-67) 

 
4 44

32
4 4 4

cosh cos sinh sinm m m m m
m m

f x x x xf

x x x xx x x

    
 

                                
. (5-68) 

Appendix B presents the method and location in which the eigenfunction of choice and 

its derivatives are incorporated into the algorithm to produce a coupled eigenvalue in 

both the x and   directions. 

 

Now that the functions identifying variations in u, v, and w along the direction of x have 

been established the necessary integrations on (5-51) through (5-53) may be performed, 

producing the following set of ordinary differential equations (Appendix B presents all 

coefficients in integral form): 

 
22

31 2
11 1 12 13 12 3 162 2

0
gg g

g g    
 

 
    

 
, (5-69) 

 
2

1 2
21 22 21 2 222

0
g g

g   
 

 
   

 
, (5-70) 

and 

 
2 42

3 31 2
31 1 34 33 32 3 34 392 2 4

0
g gg g

g g     
  

  
     

  
. (5-71) 

It is possible to reduce (5-69) through (5-71) to a set of eight first-order ordinary 

differential equations [97]. This reduction requires the definitions of new parameters g4 

through g8 as follows; 
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 3
4

g
g







, (5-72) 

 
2

34
5 2

gg
g

 


 
 

, (5-73) 

 
32

5 34
6 2 3

g gg
g

  
 

  
  

, (5-74) 

 1
7

g
g







, (5-75) 

and 

 2
8

g
g







. (5-76) 

From the newly defined parameters above, the following can then be assumed that 

 
4

6 3
4

g g

 
 


 

, (5-77) 

 
2

7 1
2

g g

 
 


 

, (5-78) 

and 

 
2

8 2
2

g g

 
 


 

. (5-79) 

Using the newly defined parameters, from (5-69) 

 

22
7 16 3 131 11 12 2

2 32 2
12 12 12 12

16 1311 12
2 3 5 8

12 12 12 12

g gg g
g g

g g g g
a a

  
      

  
 

         
                     

       
           

       

; (5-80) 

from equation (5-70)  

 

2
8 32 21 22 21 1

22
22 22 22

21 22 21
2 4 7

22 22 22

g gg g
g

g g g

  
     

  
  

       
                 

     
        

     

; (5-81) 

and from (5-71) 

 
4 22

6 3 34 31 32 34 3 331 2
1 34 2 2

39 39 39 39 39

g g gg g
g g

    
        

            
                           

. (5-82) 

By applying the newly defined parameters and (5-80), this becomes 
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 6
1 1 3 3 5 5 8 8

g
g g g g   




   


 (5-83) 

where  

 34
1 11 31

39 12

1 
  

 
  

   
   

 (5-84) 

 34
3 12 32

39 12

1 
  

 
  

   
   

 (5-85) 

 34
5 16 34

39 12

1 
  

 
  

   
   

 (5-86) 

 34
8 13 33

39 12

1 
  

 
  

   
   

 (5-87) 

In matrix form the above system of equations, may now be written as 

 
    
G

A G






 (5-88) 

where    1 2 8G , ,...g g g  and A is expanded to become 

 

1 3 5 8

11 12 12 12 16 12 13 12

21 22 22 22 21 22

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
A

0 0 0 0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

   
       

     

 
 
 
 
 
   
 
 
     

    

. (5-89) 

5.1.5 Modified Matrix Progression (MMP) 

Consider a discritized grid representative of that shown in Figure 5-5. Note that δθ is an 

interval spanning between nodes 1 and 2 where 1 is the origin node  j , then 2 must be  

 1j  . This discritization scheme is employed when computing the frequency parameter 

and displacement vectors, described below; 
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Figure 5-5: Discritization grid nomenclature in ϕ direction 
 

A simplification of (5-88) can be conducted now that the coefficient matrix (Eq. (5-89)) 

has been evaluated. This simplification is dependent upon the application of boundary 

conditions applied. The matrix  G  will be partitioned into two sub matrices where  G  

contains rows 1 through 4 of  G  and  G  occupies rows 5 through 8. Using this 

nomenclature, the generic boundary condition for (5-88) applied at 0   may be written 

as 

       

1

2

3

**4
0 0 0

5

6

7

8 0

G J 8 4 G 4 1

g
g
g
g
g
g
g
g

 
 
 
 

        
 
 
 
 

 (5-90) 

where the subscript 0 represents the boundary value at 0  . 0J  in (5-90) is the 

coefficient matrix which includes all boundary values at the edge 0  . The conditions at 

the other end,   , are expressed as 

      K 4 8 G 8 1 0            (5-91) 

where  K  is the coefficient matrix in this case representing the boundary values present 

along the edge   . The solution of (5-88) is taken to be of the form 

         A
1 1G G H Go oe    (5-92) 

where    A
1H e   is the exponentiation of  A  . Introducing the boundary (5-90) gives 

the following solution at node n = 1 (Figure 5-5). 

              A
1 0 0 1 0 0 1 0G J G H J G F Ge        (5-93) 

where  1F  is the product of  1H  and  0J . At    

δθ 

θ 

0       1            2   3      4            5                    n 

ϕ 
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      

   

A
0 0

0 0

G J G

H J G

e 









 (5-94) 

Pre-multiplying by  K  and introducing the boundary equation, (5-91) yields 

     0 0K H J G 0
   (5-95) 

This matrix equation represents four linear algebraic equations in the unknowns  0G , 

the matrix  H  being a function of the frequency parameter  . For a non-trivial solution 

the determinant of coefficients should vanish [97], that is 

    0K H J 0   (5-96) 

which is the frequency determinant. Experience has shown that two of the off-diagonal 

elements of the matrix  A  are very large in comparison with the other elements. This 

causes the determinant to increase monotonically with  , resulting in the disappearance 

of all the eigenvalues. This difficulty is overcome by dividing the interval  0,  into 1n  

equal sub-intervals of size 1 1n   and applying a modified matrix progression 

technique. At 1   

         1A
1 0 1 0G G H Ge    (5-97) 

Introducing the boundary equation (5-90) gives 

         1 1 0 0 1 0G H J G F G    (5-98) 

Now partition this equation in the form 

  
 

 
   1 1

0
1 1

G 4 1 F 4 4
G

G 4 1 F 4 4

 


 
           

 (5-99) 

where  

    1 1 0G F G       (5-100) 

therefore  

    1

0 1 1G F G
       (5-101) 

Substituting (5-101) into (5-99) gives 

       
1

1 1
1 1 1 1

F FG G J G
I

 
          

 
 (5-102) 
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where I is a (4x4) identity matrix. Similarly at 2   

 

     
     
   

2

1 1

1

A
2 0

A A
0

A
1

G G

G

G

e

e e

e



 









 (5-103) 

The above procedure can now be repeated to give 

     2 2 2G J G  (5-104) 

This process is repeated for all the sub-intervals. The final interval gives 

      
1 1 1

G J G Gn n n 
     (5-105) 

Pre-multiplying by  K  and introducing the boundary equation (5-91) yields 

      
1 1

K J G 0n n
     (5-106) 

Since the matrix 
1

Jn
    is a function of the frequency parameter  , the frequency 

determinant is 

  
1

K J 0n     (5-107) 

Recall from (5-96) that    0K H J 0   then     0H J Jn ; either relation (equation 

(5-96) or (5-107)) may be used to solve for the roots, that satisfy the eight equations of 

motion; (5-107) is employed here. This is due to the operation 
1

1 1F F
         which is 

performed at every step. No analytical solution to (5-107) has yet been successfully 

developed requiring the support of an iterative method. The numerical iterative technique 

adopted for this study is indicated in Figure 5-6. Each eigenvalue provides for a unique 

solution of (5-106) for  
1

Gn
 . This is used to determine the eigenvectors as follows. At 

the jth step 

    1 1G F Gj j j
  

      (5-108) 

and 

    G J Gj j j
     (5-109) 

Therefore a forward sweep of  0,   is performed to determine the eigenvalues that 

satisfy the boundary conditions; once this is accomplished a backward sweep is 
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conducted using (5-108) and (5-109) to calculate the eigenvectors in each prescribed 

direction for a given eigenvalue solution. 

5.1.5.1 Prescribing Straight Edge Boundary Conditions ( = constant) 

Recall from (5-36) through (5-41), the generic constraints for edge type boundary 

conditions are presented. Using these generic constraints and applying them to the two 

cases considered as a part of this study (C-F-SS-F and C-F-C-F) the following forcing 

function, is determined at prescribed   values. 

 

For the case of a clamped edge at 0  , the conditions are 1 2 3 4 0g g g g    ; the forcing 

function then becomes 

 
5

6
0

7

8

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0G 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

o

o

g
g
g
g

 
 
   

     
     

  

 (5-110) 

Recall from (5-90) that the matrix notation for (5-110) is 

     0 0 0G J G   

Now considering the case of a clamped edge at   , the conditions are 

1 2 3 4 0g g g g     and the forcing function becomes 

 

1

2

3

4

5

6

7

8

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

g
g
g
g
g
g
g
g

 



 
 
    
         
        
 
 

 (5-111) 

Recall from (5-91), the matrix notation for (5-111) is 

   K G 0    

Considering the case where one straight edge is clamped and the other is simply 

supported recall (5-110) for the straight edge with 0  . The appropriate boundary 

conditions for the simply supported edge at    corresponds to conditions of 
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2 2

1 3 2 3 0g g g g          and based on the relations previously presented reduces to 

1 3 5 8 0g g g g    , therefore the forcing function becomes 

 

1

2

3

4

5

6

7

8

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

g
g
g
g
g
g
g
g

 



 
 
    
         
        
 
 

 (5-112) 

Utilizing the above technique along with a modified version of the algorithm for solving 

free vibration of a curved plate developed by Petyt [85] and expanding upon it to include 

body forces (Pr and Px) one can create a relation between the axial forces imposed along 

the plate (Px) as well as those applied in this radial direction (Pr) and their affect on the 

frequency parameter, or eigenvalue of the system. 

 

Note that the results from a set of test cases are presented in Chapter 6 using the 

algorithm presented in Figure 5-6 and compared against results produced from other 

studies to verify that the plate stability model behaves as it should. 
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Figure 5-6: Flow diagram of modified matrix progression 
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5.2 Flow Module 

The purpose of the flow module is to develop an estimate for the axial pressure  xP  and 

radial pressure  rP  imposed on the plate. These pressure values are onset from the flow 

field created by geometries similar to those of two adjacent subchannels in an ATR fuel 

element. Once acquired, these pressure values are inserted into the equations of motion in 

the plate stability module which is used to estimate modal stability of a cylindrical plate 

under axial flow conditions. 

5.2.1 General Theory 

The law of conservation of mass states that mass may neither be created nor destroyed. 

With respect to a control volume, the law of conservation of mass may be stated as  

 
Rate of accumulation Rate of mass Rate of mass 

of mass within efflux from flow into 0

control volume control volume control volume

     
            
     
     

. 

Mathematically, the integral expression for the mass balance over a general control 

volume then becomes 

  
c.v. c.s.

v n 0dV dS
t

 
  

    (5-114) 

where v n  represents the fluid passing through the control surface; assuming steady flow 

conditions and integrating through the control surface from point o (outlet) to point i 

(inlet) such that all fluid passes through point i and exits at point o 

 0o o o i i iu S u S   . (5-115) 

Assuming incompressible fluid state conditions, conservation of mass is extended to 

conservation of flow, or 

 0o o i iu S u S  . (5-116) 

 

The first law of thermodynamics states that if a system is carried through a cycle, the 

total heat added to the system from its surroundings is proportional to the work done by 

the system on its surroundings, or 
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Rate of addition of Rate of work done

heat to control volume by control volume

from surroundings on its surroundings

Rate of accumulation Rate 

of energy within

control volume

   
      
   
   

 
   
 
 

of energy efflux Rate of energy entering

from control volume control volume .

due to fluid flow due to fluid flow

   
      
   
   

 

Mathematically, conservation of energy is 

  
c.v. c.s.

v n
Q W P

dV dS
t t t

    


 
           , (5-117) 

where 2 2u gz     is the specific energy which includes the potential energy  gz  due 

to position of the fluid continuum in the gravitational field, the kinetic energy  2 2u  of 

the fluid due to its velocity, and the internal energy    of the fluid due to its thermal 

state; while P   is termed the flow work, or the ratio of the thermodynamic pressure and 

fluid density. Note that flow work and fluid internal energy may be summed to equal 

fluid enthalpy  h P   . Given the coordinate system of interest (i.e. vertical 

convective flow) the vector in-line with the gravitational field is congruent to the axial 

flow direction  z x . Integrating the energy equation similar to that done with the 

continuity equation, (5-114), assuming steady flow, no work is done, no heat is produced 

in the control volume, and the cross sectional flow area is constant along a straight 

length, then 

 
2 2

0
2 2

o i

P U P U
gx gx

 
   

           
   

, (5-118) 

where U  is the superficial fluid velocity. Equation (5-118) is most commonly referred to 

as Bernoulli’s equation. Equation (5-118) may be reformulated to produce a differential 

pressure given as 

  
2

2
i o i

o i o i
h

U x x
P P P K g x x

D


 
 

       
 

. (5-119) 

The relations associated with kinetic energy of the fluid are referred to as non-

recoverable pressure losses and are accounted for by form losses  K and friction losses 

  . 
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5.2.2 Development of Geometric Relations 

The flow system’s cross sectional geometry is represented by Figure 5-7. The flow 

geometry assumes (1) ‘perfect’ cylindrical geometry, where the curvature for inner and 

outer radii of a single flow channel is uniform through the entire prescribed region, (2) 

uniform fuel plate thickness (a), and (3) the fuel plate considered during the study is 

uniform in both the azimuthal (ϕ) and axial (x) direction. 

 

 

Figure 5-7: Top-down view of flow channel geometry 
 

Considering the diagram above, the outer radius of channel two (R2,o) may be defined as  

 2, 22o clR R a h    (5-120) 

assuming a uniform plate thickness, a, and uniform flow channel height, h2. Similarly, the 

inner radius of channel two (R2,i) is then 

 2, 2i clR R a  . (5-121) 

The outer and inner radii for channel one may be defined using the same methodology as 

channel two, where 

 1, 2o clR R a   (5-122) 

and 

 1, 12i clR R a h   . (5-123) 
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Each flow channel’s cross sectional area may then be assessed as 

  2 2
2 2, 2, 2o iS R R




    
 

 (5-124) 

and 

  2 2
1 1, 1, 2o iS R R




    
 

 (5-125) 

The hydraulic diameter is defined as 4h wD S P , where Pw is the wetted perimeter of a 

flow channel. Then the hydraulic diameter for flow channel two and one, respectively, 

may be described as 

 
 

2
,2

2 2, 2,

4

2
h

o i

S
D

h R R 


 
 (5-126) 

and 

 
 

1
,1

1 1, 1,

4

2
h

o i

S
D

h R R 


 
 (5-127) 

A vertical cross section of Figure 5-7 is given in Figure 5-8. From Figure 5-8, the inlet 

region of the fuel element is considered to have a common flow channel of length i , and 

a common outlet of length o . The hydraulic diameter of the inlet flow and outlet flow 

channel is then equivalent to 

 
 , ,

1 2 2, 1,

4

2 2 2
i

h i h o

o i

S
D D

h h a R R 
 

   
. (5-128) 

and the cross sectional area is 

  2 2
2, 1, 2i o o iS S R R




     
 

 (5-129) 

 

Given a prescribed inlet flow rate at x = 0 in Figure 5-8 the pressure field is uniform until 

it reaches the inlet of each subchannel. The flow field is forced to divide while passing 

through channel one and channel two and then remerges at ix L  . Figure 5-9 presents 

a graphical sketch of the pressure profile along the axial length of the fuel element. 

Notice that at ix    and ix L   the pressure associated with channel one and channel 

two is common. This is due to the unification of flow in the inlet and outlet regions of the 

fuel element. 
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Figure 5-8: Vertical cross sectional view of flow channel geometry 
 

 

Figure 5-9: Pressure profile along flow direction 
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Recall from (5-119) that there are three components to pressure loss in Bernoulli’s 

equation: (1) gravitation losses, (2) form losses, and (3) friction losses. The friction losses 

for pipe flow are addressed through the Fanning friction factor given for laminar flow is 

given as [98] 

 164 Re   (5-130) 

where Re is the Reynolds number and is defined as Re =  hD U   and Dh is the 

hydraulic diameter. Onset of turbulent flow for this study is analogous of that considered 

for ‘internal flows’ and applies to Reynolds numbers in excess of 2300. The turbulent 

friction factored employed and developed specifically for the safety analysis of the ATR 

is [20] 

 0.4370.0024 0.358Re   . (5-131) 

Primary consideration will be given to (5-131), as the coolant velocities observed under 

normal operations in the ATR produce Re of the order 104 and larger. 

 

Considering only friction losses through a given region of the fuel element while 

employing (5-119) results in the following general formulation of pressure loss equation: 

 
2

2
o i

f
h

x xU
P

D

 
 

   
 

. (5-132) 

The generalized equation above may be specified for four applicable locations within the 

fuel element including the (1) inlet region, (2) channel one, (3) channel two, and (4) 

outlet region: 

 
2

,
,2

i i
f i i

h i

U
P

D



 

    
 


, (5-133) 
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1
,1 1

,12f
h

U L
P

D



 

    
 

, (5-134) 
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The form losses in (5-119) are accounted for through the form loss coefficient  K . The 

form loss coefficient is a localized geometric parameter that quantifies fluid flow 

resistance due to a local change in geometry. The inlet and outlet form loss coefficients 

represent the form losses of the flow redistribution from a single bulk flow channel to 

individual flow channels surrounding each fuel plate. Form loss is a dimensionless 

parameter and is given as [98] 

 
2

2 P
K

u


 . (5-137) 

The general form loss relation presented above is not easily quantified, for this reason it 

is assumed that the form losses are comprised of either sudden expansions or sudden 

contractions (5-138) and (5-139) [99]. 
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Sudden expansion form losses typically result in a form loss less than a value of 1.0. For 

low flow, low pressure systems the resulting form loss is approximately 0.3. A visual of a 

sudden expansion and contraction is presented in Figure 5-10.  

 

Figure 5-10: Geometry of (a) sudden expansion and (b) sudden contraction 
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The friction factor correlation chosen to use throughout this study was taken from the 

ATR UFSAR [20], and was experimentally acquired. Because this relation was acquired 

through experimental methods, there is an inherent characteristic uncertainty associated 

with it. A comparison of the friction factor used during this study is made against other 

widely used friction factor correlations including the Haaland correlation [100], Churchill 

correlation [101], Moody correlation [102], and McAdams correlation [103], all seen 

below 
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, (5-140) 

 
2

Churchill 0.9

3.7 5.74
1.325 ln

Re
hD

f



     

  
, (5-141) 

 
0.3336

4
Moody

100.0055 1 2 10
Reh

f
D

           
, (5-142) 

and 

 McAdams 0.2

0.184

Re
f  . (5-143) 

where   in this case is the wall surface roughness and is assumed to be 0.11 micro-

meters as this is the surface roughness employed throughout the ATR safety analysis 

[20]. Plotting the output friction factors for (5-131) and (5-140) through (5-143) over a 

spectrum of Re yields the distributions seen in Figure 5-11. Notice that all relations are 

quite similar in both trend and magnitude with exception of the Churchill correlation. Of 

the similar four correlations, the correlation created specifically for the ATR results in the 

smallest friction factor over the entire flow regime, if compared against the Haaland 

correlation, the friction factors deviate by approximately 13% at the lowest Reynolds 

number. This demonstrates that of the similar friction factor relations the influence on 

pressure drop due to frictional losses may deviate as much as approximately 13%, 

depending on the friction factor correlation used. 
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Figure 5-11: Comparison of friction factor coefficients against Reynolds Number 
 

The pressure loss resulting from abrupt geometric changes may be evaluated differently 

depending on the empirical relation considered during the study. During this study 

(5-139) was used to estimate the non-recoverable pressure loss due to a sudden 

contraction in cross sectional and (5-138) was used to estimate the non-recoverable 

pressure loss caused by a sudden expansion in cross sectional flow area.  

 

Two common explicit form loss values are generally employed when considering sudden 

contractions; 0.5 and 0.3 [104]. The values calculated for the geometry identified in Table 

4-1 for a sudden expansion form loss for channel one was found to be 0.7189 and for two 

is 0.7187. The largest difference in form losses between that of channel one and the 0.3 

form loss suggested by Abdelall et al. [104] resulting in a 81.0% difference in form loss 

values suggesting that the influence of pressure loss on that of the applied relation for a 

sudden expansion may be as large as approximately 81%. 
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Two common explicit form losses are generally utilized when accounting for sudden 

expansions including 0.4 [98] and 0.36 [104]. The values calculated for the geometry 

described in Table 4-1 for a sudden expansion form loss for channel one was found to be 

0.3561 and for two is 0.3560. The values produced for this study relate well with those 

presents in other literature. A difference of approximately 11% is found between the form 

loss value suggested by White [98] and that calculated the sudden contraction of flow 

entering channel two.  

 

Of the three non-recoverable pressure loss relations considered including friction losses, 

sudden contraction form losses, and sudden expansion form losses; it is found that the 

largest uncertainties when compared against other commonly used relations are found to 

be associated with the sudden contraction form losses while the other the relations 

correlate, in general, reasonably well with other published information. 

 

Given an initial inlet superficial velocity of iU  from Figure 5-8, an estimate for individual 

flow channel velocities may be made by satisfying conservation of momentum and 

requiring the fluid pressure at the inlet of each flow channel (one and two) to be equal. 

This is done by assuming that the flow experiences a sudden contraction form loss at the 

inlet of flow channels one and two where the inlet hydraulic diameter in (5-139) is 

governed by (5-128) and the outlet hydraulic diameter is given by (5-126) or (5-127). The 

form loss coefficients associated with the sudden contraction of each flow channel are 

then defined as 
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Then employing (5-119), (5-144), and (5-145) for the inlet of each flow channel, 
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and  
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which accounts for the non-recoverable losses associated with this geometric region. 

Applying (5-138) to the outlet region of each subchannel yields 
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and 

 
22

,2
2, 2

,

1 h
o

h o

D
K

D

 
  
 
 

. (5-149) 

Similar to the methodology used to evaluate 
iKP , the pressure drop as a result of each 

sudden expansion into the common flow channel must be evaluated; where 
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An assessment of the superficial velocities associated with each subchannel may be 

acquired by recalling that the pressure Pi and Po in Figure 5-9 are common for both 

channel one and channel two pressure profiles. This observation forces the total pressure 

loss on the interval  ,i ix L    for each flow channel to be equal in magnitude. Then 

the total pressure loss over this prescribed length within the fuel element associated with 

channel one may be described from the general pressure loss equation, (5-119) 
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 (5-152) 

Similarly, the pressure drop along channel two may be accounted for as 
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By observation, 1P  and 2P  must be equal 
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 (5-154) 

From conservation of flow in (5-116) the flow passing through each subchannel must 

sum to the total inlet flow, 

 1 1 2 2i iU S U S U S  . (5-155) 

Solving for U2 in (5-155) yields 
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2 1 1 2i iU U S U S S

  . (5-156) 

The newly formulated relation for the superficial velocity in channel two from (5-156) 

may be inserted into (5-154) 
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Simplifying (5-157) and removing common terms allows for the explicit solution of U1  
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Notice the quadratic form of (5-158). The superficial velocity for subchannel one in 

(5-158) may now be solved for given an inlet flow rate and geometric boundary 

conditions. Recall that e1 and e2 in (5-158) contain Reynolds dependant friction factors, 

which must also be solved for simultaneously. Inserting in specific subchannel velocities 

into (5-131) yields 
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and 
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Recalling conservation of flow, (5-160) may be reformulated as 
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Formulations for the superficial velocity in channel one and the Fanning friction factor in 

channel one and two have now been acquired. Each of these variables may now be 

implicitly solved for. 

 

Once U1 has been obtained the superficial velocity in subchannel two can be tabulated by 

inserting the solution of (5-158) back into (5-155) yielding U2. 

5.2.3 Determination of Axial Membrane Pressure 

Recall from section 5.1.4 that the eigenfunctions along the x (axial) direction have been 

assumed in the plate stability module. For this reason, only a single discrete value for xP  

may be inserted in the equations of motion, therefore only an estimate for the average 

pressure induced by the fluid acting against the plate is needed for xP .  

 

The membrane pressure Px acting along the axial direction may be acquired through 

(5-152) or (5-153), as these are both equal in valve in order to satisfy conservation of 

momentum.  

5.2.4 Determination of Radial Membrane Pressure 

The radial pressure  rP  is equivalent to the net pressure acting on the primary surface of 

the plate due to a relative pressure difference in adjacent subchannels such that a rP  value 

is found to be in the outward radial direction or the pressure in channel one subtracted 

from the pressure in subchannel two. This net difference in pressure is acquired by 

evaluating the inlet pressure losses caused by sudden contraction in each flow channel, 

and then evaluating the pressure loss caused by viscous effects evaluated at half the 
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length of the plate as this is assumed to produce an appropriate value for the average 

pressure loss along the length of each flow channel, 
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Then the net pressure may be acquired as 

    1, 1 2, 2i iK L K Lr P P P PP        . (5-164) 

5.3 Closing 

Applying the plate dynamics equations using Kantorovich reduction along the axial 

length and solving them with the MMP technique allows for the closure of the plate 

dynamics equations. However, because this study’s interest is focused on the onset of 

instability due to hydro-elastic forces, a modified version of Petyt’s algorithm will be 

used to allow for an approach to incorporate hydro-dynamic forcing functions in the 

MMP model. Utilizing the values produced in (5-152) and (5-164) which result from the 

flow module and insertion into the plate stability module, an estimate for the modal 

stability of a cylindrical plate under axial flow conditions may be acquired. This 

alternative version of the MMP method is presented in Figure 5-12, while the added step 

for explicit calculation of the pressure field values is highlighted. A presentation and 

discussion of the flow induced vibration model developed under axial flow conditions 

follows. Matlab® was used exclusively to develop and couple the plate stability module 

and flow module as well as produce all results presented during this study. 
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Figure 5-12: Flow diagram of flow induced vibration algorithm 
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6 RESULTS AND OBSERVATIONS 

Results for the plate stability module, the flow module, and relationships created for flow 

induced vibration by coupling these modules are presented in this chapter. General 

observations are made between the methods used for predicting static instability of plates 

discussed in chapter 4 to that of FIV, by qualitatively defining conditions for an ATR 

type fuel plate that are more likely to statically fail or dynamically fail.  

6.1 Plate Stability Module Results 

Beyond the results and discussion presented in this section, a test case was run and 

compared against other theoretical methods and experimental data for similar boundary 

conditions to verify the plate stability module’s capabilities of producing representative 

eigenvalue solutions. No known available literature was found to include NF values for a 

cylindrical plate with C-F-C-F or C-F-SS-F edge boundaries. However, a set of cases 

were published with natural frequencies including a Rayleigh, Rayleigh-Ritz and 

experimental result acquisition techniques for a square cylindrical plate with all four 

edges clamped. The results for this test case are presented in Appendix C and 

demonstrate that the plate stability module is capable of producing acceptable eigenvalue 

solutions under free vibration.  

6.1.1 Grid Sensitivity 

In order to verify that the correct frequency parameter is acquired for a given set of 

boundary conditions it is necessary to determine the grid independent solution, or grid 

resolution required to produce a representative frequency parameter. Figure 6-1 presents 

the solution determinant value calculated as a part of the flow induced vibration 

algorithm against the frequency parameter. Five mesh refinement cases were considered 

while varying the refinement only along the azimuthal direction, as this is the only 

direction which the solution iterates over. The geometric and material properties 

presented in Table 4-1 were used and applied to the C-F-C-F boundary values presented 

in section 5.1.5.1 with no applied membrane forces (i.e free vibration). Figure 6-1(a) 
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presents the determinant over the interval  0,0.5 ; at first glance all nodal refinement 

values considered produce similar roots, however, after closer examination from Figure 

6-1(b) the roots are significantly different for the first eigenvalue solution. It was 

qualitatively determined by visual examination of Figure 6-1(b) that 500 nodes sweeping 

across the azimuthal direction is sufficient to produce a representative frequency 

parameter as the profile for 500 nodes is nearly analogous to that of 1000 nodes, therefore 

a grid resolution of 500 nodes along the azimuthal direction is employed throughout this 

study and all solutions presented during this study include 1000 nodes along the axial 

direction. 

 

As previously discussed, when the determinant is equal to zero for the system of 

equations, the eigenvalue used to calculate the solution satisfies the equations of motion 

and therefore is representative of a given eigenvalue for prescribed boundary conditions. 

This may be graphically seen in Figure 6-2; each root represents a corresponding 

eigenvalue solution, the frequency parameter corresponding to the first root represents the 

frequency parameter for the n = 1 mode along the azimuthal direction. Continuing, the 

frequency parameter corresponding to the second root represents the n = 2 mode, and so 

on. Two eigenvalues from Figure 6-2 may be identified along the azimuthal direction (n), 

for a prescribed mode number of m = 1 along the axial direction. 

 



 

91 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5

10

15

20

Frequency Parameter, 

D
et

er
m

in
an

t,
 |D

|x
10

11

 

 

nodes=1000

nodes=500

nodes=200
nodes=100

nodes=50

 
(a) 

0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295 0.3
-10

-8

-6

-4

-2

0

2

4

6

8

10

Frequency Parameter, 

D
et

er
m

in
an

t,
 |D

|x
10

11

 

 

nodes=1000

nodes=500

nodes=200
nodes=100

nodes=50

 
(b) 

Figure 6-1: Solution determinant against frequency parameter (m = 1) 
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Figure 6-2: Solution determinant against frequency parameter (m = 1) 
 

6.1.2 Frequency Results under Free Vibration 

The determinant profile is inherently dependant on the buckling mode along the axial 

direction of the plate. Figure 6-3 presents the solution determinant profile for axial 

buckling modes m = 1, 2, and 3. The solution determinant is characteristically small in 

magnitude, as seen in Figure 6-3, it is for this reason that double precision was employed 

during all calculations numerically performed in Matlab® during this study.  

n=1

n=2
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Figure 6-3: Solution determinant against frequency parameter for C-F-C-F edges 
 

Although the solution determinant profile seen in Figure 6-3 is significantly different for 

each axial buckling mode, its roots are nearly analogous. Table 6-1 and Table 6-2 present 

the frequency parameter for various modal combinations given C-F-C-F and C-F-SS-F 

edge boundaries, respectively. It is observed that the axial mode of buckling does not 

impact the frequency parameter for both set edge boundaries. This is congruent with 

previous studies’ observations which note that for L/b values which are much greater than 

2, the mechanical stability along the azimuthal direction dominant the dependence on the 

frequency parameter [75]. 

 

Table 6-1: Frequency parameter for various modal combinations and C-F-C-F edges 
 n = 1 n = 2 n = 3 

m = 1 0.071 0.220 0.761 
m = 2 0.071 0.220 0.761 
m = 3 0.071 0.220 0.761 
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Table 6-2: Frequency parameter for various modal combinations and C-F-SS-F edges 
 n = 1 n = 2 n = 3 

m = 1 0.047 0.209 0.625 
m = 2 0.047 0.209 0.625 
m = 3 0.047 0.209 0.625 

 

Taking these previous observations into consideration, a set of simulations were 

performed while varying the value of L/b where b was held fixed as clR   and all other 

boundary conditions from Table 4-1 were held constant for the case of free vibration. The 

frequency parameter for azimuthal modal numbers n = 1, 2, and 3 were found while 

holding the axial modal number to 1 for both C-F-C-F and C-F-SS-F edge boundary 

cases. The results for these simulations are presented in Figure 6-4 and Figure 6-5. 
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Figure 6-4: Frequency parameter against plate aspect ratio for m = 1 (C-F-C-F) 
 

Notice for each of the two cases considered that the smallest magnitude frequency 

parameter is not necessarily applicable for the condition where n = 1. In fact each of the 

first three modal numbers along the azimuthal direction have a region in which they 
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produce the lowest frequency parameter for a prescribed set of L/b values. This indicates 

that the cylindrical plate will tend to dynamically fail under different modes of vibration 

depending on the plate’s length to span width relation. As can be seen in both figures, the 

frequency parameter asymptotically flattens to a minimum value for n = 1 near an L/b of 

2 where the frequency parameter for n = 1 is smallest in magnitude, indicating that for 

this study’s geometric characteristics where L/b = 7.4112, the frequency parameter will 

be similar in magnitude to that of a plate with aspect ratio of L/b = 2. Similarly this 

observation reiterates the remark made regarding Table 6-1 and Table 6-2 which states 

that beyond a plate aspect ratio of approximately L/b = 2 the axial mode of buckling is in-

significant to the dynamic characteristics of the plate which is dominated by the physics 

governed along the azimuthal direction. 
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Figure 6-5: Frequency parameter against plate aspect ratio for m = 1 (C-F-SS-F) 
 

Considering only the lowest magnitude frequency parameter acquired from Figure 6-4 

and Figure 6-5, a comparison may be made regarding the dynamic mechanical stability of 

a plate under each edge boundary case considered. This comparison is presented in 
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Figure 6-6. The frequency parameter under all plate aspect ratios is lower for the C-F-SS-

F edge boundary case. This is expected, as the frequency parameter is defined as 

 2 2 21clR Eg    , therefore the circular frequency    for the plate with C-F-SS-F 

edge boundaries is lower, indicating that it is mechanically weaker than that of the plate 

with C-F-C-F edge boundaries. In this case a rigid body which is “mechanically weaker” 

suggests it will either buckle under smaller externally applied loads or dynamically 

respond to free vibration with a lower NF for a given modal number. 
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Figure 6-6: Lowest frequency parameter against plate aspect ratio for m = 1 
 

For the case of C-F-C-F edge boundaries, if   is increased to 360°, the solution domain is 

then representative of a cylinder. This is only true for even modal numbers in the 

azimuthal direction, as the position derivative at x = constant is forced to zero for the 

clamped edge boundary type and therefore the modal shape must be symmetric in order 

for each edge boundary to satisfy the cylindrical geometry. Figure 6-7 presents the 

frequency parameter for a C-F-C-F cylindrical plate where   equals 360° as a function of 

dimensionless radius.  

n = 3 

n = 2 

n = 1 
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Blevins [75] presents the frequency parameter of a perfect cylinder of various modes 

using Flügge’s equations of motion and applying them through the Rayleigh-Ritz 

method. Figure 6-7 displays the profiles given by Blevins along for various radius to 

plate thickness ratios. Notice that the trend seen in Figure 6-7 is similar to that seen in 

Figure 6-6 this can be seen through the relation of arc length where clb R  , and for the 

case in Figure 6-7,   is held constant. A number of observations may be made from 

Figure 6-7:  

 The natural frequency is reduced with a reduction in dimensionless plate 

thickness  clR a  for the trends presented in Blevins and those values calculated 

herein. This is due to a reduction in the mechanical rigidity found in the bending 

moment component of the plate (refer to Figure 5-2(a)). 

 

 The frequency parameter calculated during this study becomes more 

representative of those presented by Blevins through use of the Rayleigh-Ritz 

method with a reduction in dimensionless plate thickness. This fundamental 

observation is caused by a mechanical weakening due to its reduction of the 

extensional rigidity. 

 

 A region exists for all clR a  presents that the frequency parameter plateaus at the 

lowest possible modal number (n = 2). This is similar to that observed in Figure 

6-6 and shows that the plate length becomes insignificant to the solution at this 

location. 

 

 The calculated frequency parameter converges toward Blevins’ results with an 

increase in clL R ; it is hypothesized that this results from two primary factors: 

o The lowest frequency parameter may be seen through an increase in modal 

number (n) with a decrease in clL R . As n increase, the modal shape along 

the azimuthal direction of the plate becomes primarily flexural. The 

clamped edge boundaries therefore become more influential to the 
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solution than that of lower modal numbers. These clamped edge 

boundaries are not truly representative of a cylindrical plate, but are rather 

engineering approximations to the physical response the cylindrical plate 

may undergo for prescribed eigenvalues. 

 

o A decrease in clL R  results in a larger plate curvature, that is as clL R  

approaches zero, Rcl must approach zero. Because of this, the bending 

stress terms included into the equations of motion for this study become 

more influential than that seen in the simplified Flügge equations. As a 

result of this increased influence on the bending stiffness terms, the 

frequency parameter increases slightly. 
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Figure 6-7: Lowest frequency parameter against radius for m = 1,  =360° (C-F-SS-F) 
 

Consider the case where Rcl approaches infinite, that is, that the cylindrical plate under 

discussion approaches that of a flat plate. In such a case, the flexural rigidity added by the 

curvature of the plate is diminished and the natural frequency or dynamic response of the 

n = 4 

n = 3 

n = 2 

n = 3

n = 4 

n = 4 

n = 2 

n = 2 
n = 3
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plate should be comparable to that of a flat plate. By definition clb R  . If   is held 

constant, an objective comparison between the dynamic response of a flat plate relative to 

that of a cylindrical plate may be made as a function of arc length. 

 

Blevins presents the frequency solution for a flat plate with C-F-C-F edge boundaries 

given as 

 
 

1
2 2 2

,

2 2122 1

m n Ea
f

b


 

 
  

 
. (6-1) 

Through a reformulation (6-1) may be presented through the frequency parameter as: 

 
2 4

,
flat 2 212

m na

gb




  , (6-2) 

where ,m n  is a two dimensional modal eigenvalue coefficient specific to the boundary 

conditions under consideration as opposed to the frequency parameter of a cylindrical 

plate 

  2 2 2

cylindrical 2

1b

Eg

 


  . (6-3) 

A direct comparison against the frequency parameter of a cylindrical plate and that of a 

flat plate may be made by taking the ratio of (6-3) to that of (6-2). Figure 6-8 presents 

this ratio as a function of plate aspect ratio where   has been held constant. A number of 

observation may be made from this figure: 

 For small aspect ratios, that is, for arc lengths which are small relative to the 

thickness, the cylindrical plate is significantly more mechanically rigid to that of 

the flat plate. This is due to the large influence on radius of curvature associated 

with the cylindrical type geometry for small b  values. 

 

 At approximate 8b a   the cylindrical plate frequency parameter no longer 

converges toward the flat plate frequency parameter. At 8b a   the arc length b  is 

significant enough that the influence of curvature no longer impacts the 

mechanical integrity of the plate. 
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 The frequency parameter for the cylindrical plate never becomes equal to that the 

flat plate, that is, cylindrical flat   never reaches unity. A possible reason for this 

results from the original equations of motion, (5-27) through (5-29). In these 

equations, the coefficients in front of several terms include characteristic variables 

which inherently influence the dynamics of a cylindrical plate, but are not 

affected by the radial component these. By incorporating these components into 

the equations of motion, a fundamental bias in mechanical rigidity of a cylindrical 

plate is added relative to that of a flat plate as seen in Figure 6-8. 
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Figure 6-8: Cylindrical and flat plate frequency versus aspect ratio of C-F-C-F 
 

6.1.3 Displacement Relations 

The displacement of the plate is directly related to its internal stress resultants through the 

rate at which the plate’s gradient changes. In contrast to the dynamic instability of a flat 

plate where the plate symmetrically displaces along both span-wise and axial planes, a 

cylindrical plate prefers to displace inward radially, that is, the maximum deflection 
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always occurs toward the radial center of the cylindrical plate rather than outward due to 

the bending terms in the equation of motion which are added for a cylindrical plate. This 

observation may be made from Figure 6-9. For the case of a plate with C-F-C-F edge 

boundaries, the maximum absolute value of displacement occurs at the azimuthal 

centerline of the plate and is directed inward. This is conveniently the same location 

where the change in displacement gradient is largest in absolute value. From Figure 

6-9(b) one may collect that the location of maximum stress on the plate occurs at the 

azimuthal centerline and is equal at both the leading and trailing edges of the plate. 

Figure 6-9(b) presents the displacement profile at the leading edge of the plate. Notice 

that the gradient is 0 at each ϕ/θ = 0 and 1, which is inherent of clamped edge boundaries 

qualitatively verifying that the plate stability module accurately calculates the 

displacement profile of a plate for each eigenvalue solution. 
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Figure 6-9: Normalized plate displacement in w of C-F-C-F (m = 1, n = 3)  
 (a) contour plot and (b) displacement profile 

 

In contrast to the plate displacement profile in Figure 6-9(b), Figure 6-10(b) shows that 

the maximum displacement of the plate with C-F-SS-F edge boundaries, however 

directed inward radially is skewed toward one edge boundary, this is due to the 

asymmetry of applied boundary conditions. Notice that where ϕ/θ = 0 the displacement 

and displacement gradient are zero while at ϕ/θ = 1 only the displacement is zero. These 

characteristics are representative of the C edge boundary conditions being correctly 

applied to the ϕ/θ = 0 and SS edge boundary conditions at ϕ/θ = 1. It may also be seen 

from Figure 6-10(b) that the maximum outward displacement occurs toward the edge 

with the C edge demonstrating that the stresses are skewed in such a way that more stress 

occurs overall near the clamped edge side than the simply supported edge, this is 

congruent with literature regarding beam displacements with similar edge boundaries 

[92]. 
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Figure 6-10: Normalized plate displacement in w of C-F-SS-F (m = 1, n = 3)  
 (a) contour plot and (b) displacement profile 
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Figure 5-4 in section 5.1.4.1 describes the eigenfunctions which have been employed 

throughout the duration of this study in the axial direction, recall that all odd numbered 

modal shapes in the axial direction (m) are of the symmetric type; conversely, the even 

modal numbers are anti-symmetric. Several developments results from the solution of the 

plate stability module these include two relations regarding the shapes of the 

displacement functions (1) when f1 is symmetric in shape, f2, and f3 are inherently 

asymmetric, given by (5-59) and (5-60); and (2) f2 is similar in shape to f3 but differs in 

amplitudes based on the integration scheme developed in Appendix B when forming the 

coefficient matrix [A]. Similarly, f1 is similar in shape with 3f x   but differs in 

amplitude. These two relations attest to the relative shapes of the displacement functions, 

however, they do not define the shapes precisely. If f3 is symmetric with one half wave, f2 

may be symmetric with either one or three half waves and f1 may be asymmetric either 

with two or four half waves. This adds credibility to the hypothesis made by Jeong [105] 

stating that curved panels only see multiple modes of vibration; although this hypothesis 

is not completely true for this study in the sense that conditions may exist such that single 

modal response is dominant in the solution, it does verify that there exists the possibility 

that multiple modes of vibration occur concurrently. 
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Figure 6-11: Contour plot of plate displacement in w (m = 0, n = 1)  
(a) C-F-C-F and (b) C-F-SS-F boundary conditions 
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The displacement relations previously described may be visually interpreted from the line 

plots below and the view graphs in Appendix D. Recall from section 4.1.2 that two sets 

of boundary conditions are considered during this study (C-F-C-F, and C-F-SS-F). A 

contour plot of mode m = 0, n = 1 is presented below in Figure 6-12 for both cases. At 

first glance both displacement shapes along the azimuthal direction appear analogous to 

one another, however, if their profiles are overlaid (Figure 6-12) it becomes obvious that 

at either end (ϕ = 0 and ϕ = θ), displacement and the first derivative of displacement are 

forced to zero for C-F-C-F solution. In contrast at ϕ = 0 the displacement and the first 

derivative of displacement are forced to zero, while at ϕ = θ the displacement and the 

moment are forced to zero for the C-F-SS-F solution. 
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Figure 6-12: Displacement profile of C-F-C-F and C-F-SS-F along ϕ 
 
The normalized eigenfunction along the azimuthal direction for modes 1 through 5 given 

C-F-C-F and C-F-SS-F are below in Figure 6-13(a) and Figure 6-13(b), respectively. It 

can be seen that the maximum deflection decrease with an increase in mode number for 

both sets of edge boundary cases, this is due to the conserved characteristic of the fixed 
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plate arc length. In Figure 6-13(a) all odd modes are symmetric about ϕ/θ = 1/2 while the 

even modes force anti-symmetric about the azimuthal centerline. In contrast all modal 

shapes are anti-symmetric about the azimuthal centerline in Figure 6-13(b) due to the 

mismatch in edge boundary conditions. 
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Figure 6-13: Normalized eigenfunctions along ϕ for various modes  
(a) C-F-C-F and (b) C-F-SS-F edges 

 

A complete set of displacement calculations were performed for all mode combinations 

given the available eigenfunction coefficients in the axial direction presented in Table 5-1 

for each set of boundary conditions. These displacement contour plots are presented in 

Appendix D. As previously stated, the relations f1, f2, and f3 describe the eigenfunction 

shape, and do not account for amplitude (true displacement), it is for this reason that the 

figures in Appendix D are presented in the form of normalized displacement such that the 

absolute maximum displacement coincides with an absolute amplitude of unity. 

6.2 Flow Module Results 

The objective of the flow module is to produce membrane forces on the plate of interest 

for a prescribed set of geometric and flow conditions. These flow results are 

representative of two subchannels on either side of plate 18 of a standard 19 plate ATR 

fuel element, the geometry and flow properties used to produce the flow module results 

were taken from Table 4-1 unless otherwise specified. Beyond the results presented in 
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this section, a test case was performed for the purpose of developing credibility on the 

flow module’s capability in predicting flow and pressure values. The description and 

results for this test case are presented in Appendix E. 

6.2.1 Flow versus Pressures 

Figure 6-14 presents the evaluated pressure distribution along the length of the fuel 

element given an inlet superficial velocity of 10 and 20 m/s, respectively. The pressure 

profile in Figure 6-14 numerically demonstrates the “evaluated profile” presented in 

Figure 5-9 during the discussion of the flow module development. Note that a single inlet 

pressure boundary value of 4.1368 MPa was imposed on the solution for all results 

presented during this study. It may be qualitatively seen that the effect of pressure drop 

due to an increase in flow is correctly handled by an increase in local pressure drop at the 

inlet and outlet of the flow channels due to the form losses associated with the separation 

and recombining of the flow field. 
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Figure 6-14: Local evaluated pressure distribution along fuel element length 
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Using the methodology presented in sections 5.2.3 and 5.2.4 the membrane pressure 

applied to the plate in both the x and r direction is presented over a range of flow rates as 

seen in Figure 6-15. The membrane pressures are presented against both inlet Reynolds 

number (Rei) in Figure 6-15(a) and inlet superficial velocity (Ui) in Figure 6-15(b). 

Notice that for all flow rates the pressure acting along the x direction is greater than that 

in the r direction. This is expected as Pr is calculated by taking the net pressure difference 

between the adjacent flow channels while Px accounts for the entire pressure drop across 

the element. 
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Figure 6-15: Plate membrane pressure(s) against flow rate 
(a) flow rate = Rei and (b) flow rate = Ui 

 

6.2.2 Geometry Sensitivity 

The membrane pressure values presented in Figure 6-15 are for the ideal geometry taken 

from the nominal dimensions off the ATR fuel element drawing and are representative of 

the dimensions presented in Table 4-1. The influence of machining tolerance of an 

element and the location of a given plate within that element may play a significant role 

in the pressures applied to the plate. Figure 6-16 presents the axial and radial pressure 

values applied to the plate of interest as a function of plate offset relative to its nominal 

position presented in Table 4-1. It is apparent that given coolant velocities which 

represent the upper envelope of operating conditions and the maximum offset of the plate 

in the outward radial direction (+0.5 mm) a significant increase in both pressure 

components results. The pressures increase by 178% for Px  and 169% for Pr in the most 

extreme case. 
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(a) 

 
(b) 

Figure 6-16: Plate membrane pressure versus flow rate and plate offset [MPa]  
 (a) Px and (b) Pr 
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6.3 Flow Induced Vibration Results 

An assessment of the dynamic instability of a plate under axial flow conditions is given 

here by applying a prescribed set of membrane pressure values to the plate and solving 

for the frequency parameter of that plate. 

6.3.1 Membrane Pressure and Frequency Parameter 

The frequency parameter solution for the first three buckling modes along the azimuthal 

direction given a combination of ten pressure loads are presented Table 6-3 and Table 6-4 

for C-F-C-F and C-F-SS-F edge boundaries, respectively. The pressure loads were 

determined by collecting the corresponding pressure components for each of the ten 

equally spaced velocity intervals presented in Figure 6-15. Only the first axial modal 

number (m = 1) is considered here as the axial modal number was previously determined 

irrelevant to the value of the frequency parameter given an ATR fuel plate’s aspect ratio 

(L/b). 

 

Table 6-3: Frequency parameter against membrane pressure(s) for C-F-C-F edges 
Imposed Membrane Pressure(s) m = 1 

Px [Pa] Pr [Pa] n = 1 n = 2 n = 3 
0.00 0.00 0.071 0.220 0.761 

16756.30 13523.85 0.072 0.222 0.770 
56442.77 44777.34 0.075 0.228 0.774 
116067.87 91126.35 0.079 0.239 0.785 
194503.34 151577.43 0.086 0.248 0.799 
291081.14 225542.32 0.094 0.261 0.816 
405342.78 312617.36 0.103 0.277 0.837 
536947.24 412502.23 0.113 0.296 0.860 
685627.41 524961.76 0.125 0.316 0.887 
851166.39 649804.97 0.138 0.339 0.916 

 

Table 6-4: Frequency parameter against membrane pressure(s) for C-F-SS-F edges 
Imposed Membrane Pressure(s) m = 1 

Px [Pa] Pr [Pa] n = 1 n = 2 n = 3 
0.00 0.00 0.047 0.209 0.625 

16756.30 13523.85 0.049 0.214 0.629 
56442.77 44777.34 0.052 0.222 0.639 
116067.87 91126.35 0.055 0.234 0.656 
194503.34 151577.43 0.062 0.244 0.675 
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291081.14 225542.32 0.067 0.260 0.703 
405342.78 312617.36 0.074 0.280 0.735 
536947.24 412502.23 0.082 0.294 0.771 
685627.41 524961.76 0.092 0.330 0.811 
851166.39 649804.97 0.103 0.360 0.856 

 

Plotting the frequency parameters presented in Table 6-3 and Table 6-4 against an inlet 

flow velocity produces Figure 6-17. A number of observations may be made from Figure 

6-17. The first two modes tend to produce relatively similar frequency parameters while 

the frequency parameter for the third mode is approximately six to eight times larger than 

the first mode’s frequency parameter. The second mode of buckling produces frequency 

parameter values which are nearly analogous for both the C-F-C-F and C-F-SS-F edge 

boundaries throughout the entire range of flow conditions considered. For the third mode  
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Figure 6-17: Frequency parameter for various n modes while m = 1 
(O = C-F-C-F and Δ = C-F-SS-F) 
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the C-F-C-F edge boundary tends to produce larger frequency parameter values than the 

C-F-SS-F edge boundary, however as the flow rate increases these values begin to 

converge suggesting that they may become equal in magnitude if the flow rate, or applied 

membrane pressures, are increased sufficiently. The relationship between frequency 

parameter and flow velocity is nonlinear for all cases, however, through observation of 

the data presented in Table 6-3 and Table 6-4 the frequency parameter and applied loads 

are nearly linear suggesting that the a relationship between frequency parameter and flow 

rate may be 2
iU  , or the frequency parameter is approximately proportional to the 

square of the inlet velocity. 

6.3.2 Relations with Static Buckling 

The critical velocity predicted by Miller for C-F-C-F and C-F-SS-F edge boundaries 

given this study’s geometry is 159.395 and 158.2083 m/s, respectively (Table 4-2). 

Recall that a relation between pressure and velocity were created by Miller 

 2

0

2cr cr

S
P V

S
 

 . (2-2) 

The critical pressure necessary for buckling a cylindrical plate may then be evaluated 

using (2-2) where the critical pressure for C-F-C-F edge boundaries is 0.5179 MPa and 

for C-F-SS-F edge boundaries is 0.5103 MPa. These pressures are representative of Pr 

accounted for in the flow module; however, because inlet form losses are considered, a 

flow bias in one subchannel is considered in this study while it is not considered as a part 

of Miller’s method. Based on this study’s flow geometry, channel two observes higher 

superficial velocities than that in channel one. Figure 6-18 presents each channel’s 

coolant velocity plotted against the inlet coolant velocity. Notice that for an inlet flow 

velocity of 70 m/s channel two’s flow velocity reaches the critical velocity of ~160 m/s 

predicted by Miller, both of which are significantly larger than that observed in the ATR. 

The difference in coolant velocities between channel one and two is directly proportional 

to the relative difference in pressure drop along the length of each subchannel as 

discussed earlier in the flow module development section. 
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Figure 6-18: Coolant channel velocity versus inlet coolant velocity  
 

Consider the relationship between the coolant velocity in channel two and the radial 

membrane pressure applied to the plate. Figure 6-19 provides a visual representation of 

the radial pressure over a range of coolant velocities associated with channel two. Notice 

from Figure 6-19 that this study’s evaluated radial pressure is approximately 14 times 

larger than that predicted by Miller’s, corresponding to the critical velocity of ~160 m/s. 

It may be qualitatively concluded from Figure 6-19 that for membrane pressure’s greater 

than that predicted by Miller’s method the plate of interest will fail through static 

instability (buckle) regardless of its previous state, as this has been demonstrated through 

previous studies [33]. Thus the region above “Miller’s Pr” in Figure 6-19 need not be 

evaluated for dynamic instability as the plate is assumed to already have mechanically 

failed. In contrast the region below “Miller’s Pr” is assumed not to have mechanically 

failed through static instability and is therefore susceptible to dynamic instability. 
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Figure 6-19: Radial membrane pressure versus coolant channel two velocity 
 

The reason that Miller’s critical velocity and pressure are different than that acquired 

during this study is a direct result from the use of Bernoulli’s effect employed during 

Miller’s study. It was assumed in Millers study that the flow velocity in both channels 

adjacent to the central plate are of equal velocity until a small perturbation in the flow 

area causes plate failure, while it was found in this study that for the flow geometry under 

discussion, the flow velocities are in fact unequal in adjacent flow channels. As a result 

of the observations made from Figure 6-19 a relationship between radial pressure 

imposed on the plate of interest and the NF of the plate up to the coolant velocity which 

produced a radial pressure equivalent to that predicted by Miller may be made. Because 

the frequency parameter associated with n = 1 in Table 6-3 and Table 6-4 is the lower 

than n = 2 and 3 through the entire flow regime considered, the plate is most likely to 

dynamically fail through n = 1 modal shape. Figure 6-20 presents the NF of the plate as a 

function of flow rate, or applied radial pressure load. Notice the linear relation between 

Miller’s Vcr 

Miller’s Pcr 

Consider Buckling 

Consider FIV 
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NF and applied load in the positive (radially outward) direction indicating that, hydraulic 

loading a cylindrical plate increases the mechanical stiffness of the plate.  

 

A fluid’s resonant frequency  Rf  may be estimated through the use of [78, 79], 

 

1
22 211

2R

c
f

hL

        
    

 (6-4) 

where c is the speed of sound in the fluid under consideration. Considering this study’s 

geometric parameters (Table 4-1) and if the speed of sounds in water is approximated to 

be 1,500 m/s, the resonant frequency for the fluid is 3787 Hz. In order for convective 

instability, that is forced instability of the plate under discussion to occur the fluid 

resonant frequency and the plate’s natural frequency must align. Visual examination of 

Figure 6-20 demonstrates that of the two boundary condition sets considered herein, the 

case of C-F-SS-F produces the lowest natural frequency at a flow rate of 0 m/s of 

approximately 4379 Hz. From this relation, and for the case considered, the fluid NF will 

never reach the plate’s NF, thus plate dynamic instability for an ATR element is highly 

unlikely. 
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Figure 6-20: Plate natural frequency versus applied radial pressure load 
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7 CONCLUSIONS 

This investigation leads to the first implementation of a simulated dynamic model for 

assessing mechanical instability of cylindrical plate-type geometry under axial flow 

conditions. Although much research has been conducted in the area of mechanical 

instability cause by the hydro-elasticity between a fluid and solid surface, current safety 

analysis methods for the high flux research reactors employ the oldest “static 

deformation” model developed by Daniel Miller in 1958.  

 

As the U.S. HPRRs begin to convert their cores and update their safety analyses, it is 

crucial to update methods used to calculate key parameters. By employing this new 

model, predictive uncertainty will be reduced regarding flow induced mechanical 

instability safety. This, in turn, leads to higher confidence in life-cycle fuel performance 

and potentially greater safety margins or higher performance because we understand the 

margins better. Incidentally, this also leads to better insight into other key performance 

characteristics we thought were “good” but now we have concerns. 

7.1 Observations 

An extensive review of the published work related to mechanical instability of flat and 

cylindrical plates with emphasis on numerical methods previously employed was 

conducted. The open literature contains broad descriptions of numerical models 

developed and their relation to cylindrical plate type geometry. Very little detail was 

found describing the development of dynamic instability models which apply to 

cylindrical plate type elements, likely due to the fact that the application of instability 

models one developed herein are developed for the purpose of safety analyses in reactor 

specific applications. There were four objectives that governed the model development 

1. Compare plastic plate deformation prediction methods of cylindrical plate type 

geometry (of ATR element geometry) using current safety analysis methods. 
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2. Develop a three dimensional FIV model for axial flow over a cylindrical plate 

based on ATR type fuel element geometry. 

 

3. Employ the developed vibration model and compare the criticality of plastic plate 

deflection safety criteria used in current safety analyses to the fatigue of a 

cylindrical fuel plate over a fuel element life cycle. This fatigue information will 

be explicitly calculated using the natural frequencies (eigenvalues) and modal 

shapes (eigenfunctions) produced from the FIV model. 

 

4. Assess the pressure fields which are most likely to cause FIV in geometry 

representative of an ATR element and provide a relation between plate 

dimensional characteristics and the onset of mechanical instability for range of 

pressure values along the axial and radial direction of the plate. 

 

All four objectives were met. The plate stability module was found to adequately predict 

the NF of a cylindrical plate under test case conditions when compared against other 

published results. Although the test case is not representative of the two boundary 

condition sets considered during this study no analytical adjustment of the model was 

required when considering the test case, but rather the employment of two alternative 

edge boundary conditions used adding credibility to the derived model’s capability. The 

NF trended toward the value of a flat plate with an increase in radius, as expected, 

however, did not fully collapse on the solution of a flat plate due to the flexural terms left 

in the equations of motion for a cylindrical plate relative to that of a flat plate.  

 

A relationship between the pressure fields associated with an ATR type element and its 

NF was created along with a general relationship for the NF of a plate given C-F-C-F and 

C-F-SS-F edge boundaries as a function of plate aspect ratio. An assessment of the 

pressure fields and natural frequencies demonstrates that an ATR type fuel plate 

mechanically stiffness with an increase in load rendering it advantageous by design and 

the fluid NF will not reach that of the plate demonstrating that dynamic instability is 

unlikely under the conditions considered during this study.  
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7.2 Relevance of Work 

The FIV model developed herein represents a first step toward improving the capabilities 

of predicting complex failure mechanisms associated with plate type fuel. The addition of 

this model provides an alternative method through the use of semi-numerical techniques 

to produce a relationship between cylindrical plate type geometry and its NF as opposed 

to finite element codes which are widely used. This study lastly objectively demonstrates 

that an ATR element is mechanical stable by design and is most likely to fail through 

buckling rather than flutter. 

7.3 Assumptions and Limitations 

Although this rigorous study on cylindrical plate instability caused by hydraulic 

characteristics attempts to capture all important physics that are associated with this 

phenomenon, it inherently requires the assistance of numerous assumptions. These 

assumptions innately affect the limitations of the study at hand and the model developed 

for the application and use in identifying conditions susceptible to vibration caused under 

axial flow conditions. 

7.3.1 Plate Module 

The most fundamental assumption included into the plate instability model is that 

associated with the modal response of the plate itself. Hypotheses associated with plate 

vibration in cylindrical form acknowledge the likelihood that cylindrical plates do not 

undergo single mode vibration under any conditions, but rather deflect in multiple modes 

which both constructively and destructively interfere with each other [63]. This study 

assumes that a single mode of vibration occurs independent of all other modes for a given 

boundary value case. 

 

The plate geometry considered during this study assumes homogeneity throughout the 

entire plate material in contrast to that which is representative of actual fuel plate 

geometry (Figure 1-3). HPRR type fuel plates are of the laminate type with three distinct 

layers. The outer two layers are comprised of an aluminum shell while the inner is of a 

uranium molybdenum alloy which has much different characteristic properties to that of 
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the aluminum. This assumption alters the numerical eigenvalue solution by an unknown 

amount relative to that of a physical HPRR plate. 

 

A simplification to the exact set of plate equations was performed with the removal of 

deflection (u) as it was necessary to reduce the order of equations in the axial direction 

(x) from nine to eight such that both the x and   coordinate directions matched in order. 

As a result of eliminating u it was also necessary to remove the bending term   3 3k w x 

to preserve symmetry in the system. 

 

Kantrovich’s reduction limits the calculation to be projected in a single coordinate 

direction while the perpendicular coordinate direction solution is iterated upon. During 

this study it was chosen to assume a modal shape along the axial length (x) of the plate 

and iterate upon the azimuthal ( ) direction. This assumption was chosen because 

previous studies employing the Rayleigh-Ritz method, which depends solely on 

eigenfunctions, has shown that an acceptable solution may be produced given an assumed 

modal shape for a straight beam [75]. The axial direction of the plate is associated to the 

‘straight beam’ during this study. Furthermore it has been shown that the modified matrix 

method produces reliable, accurate, and stable solutions when applied to complex 

geometries [86] justifying its implementation in and the iteration on the azimuthal 

direction rather than the axial direction. 

 

The model under discussion assumes that the plate (prior to vibration) is a ‘perfect 

cylindrical plate’. It assumes that the surface is ‘smooth’ and that there are no geometric 

abnormalities to the plate geometry. Previous studies have addressed the effect of 

imperfections of geometries and their association with the mechanical instability of flat 

plate type elements [39], however, these considerations were neglected as a part of this 

study’s model development process. 

 

The study presented herein focuses on the analysis of a single cylindrical plate under 

vibrational conditions, however, a truly representative FIV model which reflects ATR 
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type fuel element geometry must include all plates and characteristic flow through 

concurrent subchannels. This oversight in the model development has an unknown 

impact on the results of the model relative to that compared against the actual vibrational 

characteristics of a complete ATR element. Kim and Davis [30] found that the added 

mass of fluid and affect of adjacent plates in flat plate type geometry significantly alters 

the NF for a single plate under axial flow conditions.  

 

This study is limited to digits of precision available in 32 bit computer software. Matlab® 

was employed during this study and was installed on a 32 bit desktop work station. As 

has been previously discussed, the use of sufficient significant digits is paramount to 

success for numerical studies regarding plate stability, in particular those associated with 

complex mode shapes and complex geometries (both characteristic of this study). During 

the use of the modified matrix progression method coefficients of the forcing function 

compound over each iteration resulting in potentially large deviations from the correct 

solution even if the solution has converged if a sufficient number of significant digits are 

not considered during the calculation. 

 

The data available for coefficients of the eigenfunction ( m  and m ) chosen to be used 

during this study, presented in (5-57), are limited to a select number of references. As 

discussed in Chapter 4, previous studies have demonstrated that even changes of the 

order 10-6 to these coefficients may significantly alter the modal shape in higher order 

modes. It is for this reason that the use of as many available significant digits of these 

eigenfunction coefficients is paramount to the accuracy of the solution. Data from 

Blevins [75] was chosen for use here as it is the most recently published available data. 

7.3.2 Flow Module 

The fluid module is steady. That is, no temporal response of the fluid is considered as a 

part of the flow module. It is assumed that the flow conditions are incremented at 

infinitely small increments until they induce plate instability. This may be an accurate 

assumption for eigenvalues which are located near the steady state operating conditions 
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of the ATR, however, they do not reflect the correct NF that a plate may undergo as it 

observes transient flow conditions. 

 

The membrane pressures applied to the plate stability module are produced through the 

application flow module. It is assumed that the fluid passing through each of the flow 

channels is fully developed through the channels’ entire length. This significantly alters 

the physics associated with flow redistribution. By assuming the flow field is turbulent 

through the entire element length both Px and Pr values may be significantly altered in 

contrast to a model which includes a flow field region with developing turbulent flow. 

 

It was assumed that the plate deformation is insignificant to the alteration of the flow 

field. That is that the pressure losses due to acceleration along the channel caused by the 

plate’s deformation is negligibly small relative to the other forces. Although this was 

qualitatively justified for the study herein, it may be applicable for alternative geometry 

and flow conditions to include these phenomena into the model. 

 

The radial pressure is assumed to be uniformly applied along the entire axial length of the 

plate, however, this is not representative of the physical system. Because the radial 

pressure is a function of the pressure in each channel and the pressure acquired for a 

given channel is dependent upon the friction losses in that channel, a net pressure 

gradient along the stream wise direction is bound to occur. 

 

7.4 Future Work 

The study presented herein supports the ongoing work in the field of FIV and 

demonstrates a feasible method for computing and identifying this phenomenon using a 

semi-numerical method. This study is intended to be the first step in a continuing effort to 

create a representative FIV model developed around ATR type element geometry which 

may be employed during the process of core conversion from HEU to LEU fuel. A 

number of necessary assumptions made in the development of this FIV model may be 

addressed during these future studies. 
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The addition of multiple plates in previous studies have shown to produce a significant 

impact on the converged NF solution produced using semi-numerical methods and 

applied to flat plate type geometries submerged in liquids. This consideration as a part of 

the model development will provide an objective evaluation as to whether this 

phenomenon is observed for cylindrical plate type geometry as well and add credibility to 

the development of the current work under discussion. 

 

All phenomena considered during this study were that of the mesa-scale order, however, 

the influence of many micro-scale phenomena including surface roughness and oxide 

layer growth have been experimentally shown to influence flow characteristics of large 

aspect ratio geometries like that considered herein, thus influencing the vibrational 

conditions necessary to a induce NF of various modes. 

 

Additional work with the focus of laminate plate type geometry relative to that of the 

homogeneous type considered here will provide a more representative eigenvalue to that 

of the physical HPRR type plate. Flügge [94] presents the following set of relations, 

which in future studies may replace the relations (5-15) through (5-22) considered during 

this study 
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where D , vD , and K  are directionally dependant characteristic parameters and are 

defined as, 2 1 1 22D E h E h   , v vD E h , and    3 3 3
1 1 2 112 12K E h h E h    , respectively. Note 

that subscript 1 represents the inner core parameter, and subscript 2 represents 

characteristics of the outer layers (assuming both outer layers are similar in geometry and 

material). 
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where 1 1 2 22xD E h E h   and    3 3 3
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where xD Gh  ,  31 12xK Gh  , and G is the shear modulus of the plate; 
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where  31 12v vK E h ; 
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and 
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A comparison to this study’s solutions by that produced by experimental work will 

further expand upon the credibility for the model discussed herein. OSU and INL are 

currently collaborating on a test program which will conduct hydro-mechanical testing of 

a generic plate type fuel element, or standard fuel element (SFE), for the purpose of 

qualitatively demonstrating an increase in mechanical integrity of U-Mo alloy monolithic 

plates as compared to that of uranium aluminum, and aluminum fuel plates due to 

hydraulic forces. This test program supports ongoing work conducted for/by the fuel 

development program and will take place at OSU in the Hydro-Mechanical Fuel Test 

Facility (HMFTF). Once all SFE tests have concluded it is incumbent upon OSU to 

employ the HMFTF in the experimental examination of vibration and plate deformation 

under flow conditions with fuel plate geometries representative of that in the ATR. 
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9 NOMENCLATURE 

Symbols 

a Plate thickness 
 

b Plate width 
 

1f  Spatial function in u direction dependant only on x  
 

2f  Spatial function in v direction dependant only on x  
 

3f  Spatial function in w direction dependant only on x  
 

 g Gravitational acceleration 
 

1g  Spatial function in u direction dependant only on   
 

2g  Spatial function in v direction dependant only on   
 

3g  Spatial function in w direction dependant only on   
 

 h Flow channel height 
 

 h1 Flow channel height of channel one 
 

 h2 Flow channel height of channel two 
 

 k Bending stiffness 
 

 ki Flow channel inlet form loss 
 

 ke Flow channel exit form loss 
 

 l Effective plate length 
 

 m Plate mass per unit area, mode number in axial direction 
 

n  Normal vector directional pointed outward from control surface 
 

 n Mode number in span-wise direction, number of discrete nodes in  0,   

q  rP R D  
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xq  xP D  
 

zq  xN D  
 

 r Directional component positively pointing outward 
 

t Time  
 

u Local plate position in axial direction 
 

ui Average fluid velocity at inlet of control surface 
 

uo Average fluid velocity at outlet of control surface 
 

ru  Radial component of instantaneous fluid velocity 
 

u  Azimuthal component of instantaneous fluid velocity 
 

xu  Axial component of instantaneous fluid velocity 
 

ru  Radial component of mean fluid velocity 
 

u  Azimuthal component of mean fluid velocity 
 

xu  Axial component of mean fluid velocity 
 

ru  Radial component of fluctuating fluid velocity 
 

u  Azimuthal component of fluctuating fluid velocity 
 

xu  Axial component of fluctuating fluid velocity 
 

v Local plate position in traverse direction 
 

v  Mean flow vector 
 

w Local lateral plate deflection 
 

wo Normalized lateral local plate deflection relative 
 

x  Dimensionless plate length scale,  L R  

 
x Spatial coordinate in axial flow direction 

 
xi Axial location at inlet of control surface 
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xo Axial location at outlet of control surface 

 
y Spatial coordinate in span-wise direction 

 
z Spatial coordinate in traverse direction 

 
  

 
A  Coefficient matrix of first order differential equations of motion (8 x 8) 

 

A  Plate cross sectional area per unit width 
 

C Defined in (4-13) 
 

D Plate extensional rigidity 
 

Dh Flow channel hydraulic diameter 
 

Dh,1 Hydraulic diameter of channel one 
 

Dh,2 Hydraulic diameter of channel two 
 

Dh,i Hydraulic diameter at inlet of form loss junction 
 

Dh,o Hydraulic diameter at outlet of form loss junction 
 

E Modulus of elasticity 
 

F Product of H and J0 

 

F* Rows 1 through 4 of F 
 

F** Rows 5 through 8 of F 
 

mF  mth eigenfunction of a straight beam 
 

G Displacement matrix  1 2 8, ,...g g g  

 
G* Rows 1 through 4 of G 

 
G** Rows 5 through 8 of G 

 
G Parameter defined by (2-5) 
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H Exponential of  A   
 

I Area moment of inertia of plate 
 

mI  Area moment of inertia of a beam per unit width 
 

J0 Boundary condition matrix acting on G at 0   
 

K  Boundary condition matrix acting on G at    
 

K Flexural rigidity of plate, form loss coefficient 
 

K1,i Form loss coefficient resulting from sudden contraction from common flow 
channel to subchannel one 
 

K1,o Form loss coefficient resulting from sudden expansion from subchannel one 
to common flow channel 
 

K2,i Form loss coefficient resulting from sudden contraction from common flow 
channel to subchannel two 
 

K2,o Form loss coefficient resulting from sudden expansion from subchannel two 
to common flow channel 
 

KSC Sudden contraction form loss coefficient 
 

KSE Sudden expansion form loss coefficient 
 

L  Plate length in x direction 
 

1aL
 

Partial differential operator acting on the x directional equation of motion 
with constant coefficients 
 

2aL
 

Partial differential operator acting on the ϕ directional equation of motion 
with constant coefficients 
 

3aL  Partial differential operator acting on the r directional equation of motion 
with constant coefficients 
 

1L
 

Partial differential operator acting on the x directional equation of motion 
 

2L
 

Partial differential operator acting on the ϕ directional equation of motion 
 

3L  Partial differential operator acting on the r directional equation of motion 
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M    directional bending moment on plate x  
 

xM    directional bending moment on plate crossed by x  
 

xM  x directional bending moment on plate 
 

xM   x  directional bending moment on plate crossed by   
 

M Mach Number 
 

N   directional normal stress resultant component  
 

xN   directional normal stress resultant component crossed by x  
 

xN  x directional normal stress resultant component  
 

xN   x directional normal stress resultant component crossed by   
 

P Pressure imposed on exposed plate surface, local instantaneous pressure of 
fluid 
 

P  Local mean pressure of fluid 
 

P  Local fluctuating pressure of fluid 
 

P1,i Inlet pressure of subchannel one 
 

P1,i Outlet pressure of subchannel one 
 

P2,i Inlet pressure of subchannel two 
 

P2,i Outlet pressure of subchannel two 
 

PBC Inlet boundary condition pressure 
 

Pcr Critical dynamic pressure 
 

Pi Fluid pressure at inlet control surface, fluid pressure in common flow 
channel of inlet flow geometry region 
 

Po Fluid pressure at outlet control surface, fluid pressure in common flow 
channel of outlet flow geometry region 
 

Pr Membrane pressure imposed on plate in radial direction 
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Pw Wetted perimeter or flow channel 
 

Px Membrane pressure imposed on plate in axial direction 
 

Q   directional shear stress resultant component 
 

xQ  x  directional shear stress resultant component 
 

,  clR R  Mean radius of plate curvature 
 

R1,i Inner radius of subchannel one 
 

R1,o Outer radius of subchannel one 
 

R2,i Inner radius of subchannel two 
 

R2,o Outer radius of subchannel two 
 

Ri Inner radius of flow channel 
 

hR  Hydraulic radius,  wA P  
 

1hR  Hydraulic radius of subchannel one 
 

2hR  Hydraulic radius of subchannel two 
 

Rm Mean radius corresponding to radial location where maximum velocity in 
annulus occurs 
 

Ro Outer radius of flow channel 
 

Re Reynolds number 
 

S0 Cross sectional area of flow channel prior to deformation 
 

1S  Cross sectional flow area of channel one 
 

2S  Cross sectional flow area of channel two 
 

iS  Generic cross sectional flow area at control volume inlet 
 

oS  Generic cross sectional flow area at control volume outlet 
 

U Superficial fluid velocity 
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U1 Superficial fluid velocity in channel one 
 

U2 Superficial fluid velocity in channel two 
 

Ui Superficial fluid velocity at inlet control surface 
 

Uo Superficial fluid velocity at outlet control surface 
 

Vcr Critical velocity 
 

VR1 Critical velocity ratio, a cylindrical plate with C-F-C-F edge boundaries to a 
cylindrical plate with C-F-SS-F edge boundaries 
 

VR2 Critical velocity ratio, a cylindrical plate with C-F-C-F edge boundaries to a 
cylindrical plate with SS-F-SS-F edge boundaries  
 

VR3 Critical velocity ratio, a cylindrical plate with C-F-C-F edge boundaries to a 
flat plate with C-F-C-F edge boundaries 
 

VR4 Critical velocity ratio, a cylindrical plate with C-F-SS-F edge boundaries to 
a flat plate with C-F-SS-F edge boundaries 
 

VR5 Critical velocity ratio, Miller’s critical velocity for a flat plate with C-F-C-F 
edge boundaries to Smith’s critical velocity for a flat plate with C-F-C-F 
edge boundaries 
 

W Lateral plate displacement 
 

  
 

2  Curved-plate arc between two supports 
 

  Parameter defined by (2-13) 
 

  Coefficient(s) of first order differential equations of motion 
 

CR  Critical plate deflection 
 

  Discrete interval of   between 0 and   
 

  Normal component of strain in plate 
 

  Plate normal strain in   direction 
 

x  Plate normal strain in x  direction 
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  Shear Component of strain in plate 
 

x  Plate shear strain in ,x   direction 
 

1  Axial distance from subchannel inlet to start of plate deflection 
 

2  Axial length of deflected plate region 
 

i  Axial length of common flow channel at inlet of flow geometry 
 

o  Axial length of common flow channel at outlet of flow geometry 
 

  Frequency parameter 
 

m  Modal dependant eigenfunction coefficient, (5-55) 
 

  Fluid dynamic viscosity 
 

  Poisson’s ratio 
 

  Circular frequency of vibration 
 

O  Order of magnitude 
 

  Mode dependent constant 
 

  Coefficient(s) of first order differential equations of motion 
 

  Fluid density 
 

1  Fluid density in channel two 
 

2  Fluid density in channel one 
 

i  Fluid density at inlet of control surface 
 

o  Fluid density at outlet of control surface 
 

m  Defined in (5-56) 
 

  Plate normal stress in   direction 
 

x  Plate normal stress in x  direction 
 

x  Plate shear stress in , x  direction 
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t  Turbulent shear stress 
 

x  Plate shear stress in ,x   direction 
 

w  Wall shear stress 
 

  Mode dependent constant, curved-plate arc angle between two supports 
 

  Friction factor 
 

1  Friction factor representative of flow in subchannel one 
 

2  Friction factor representative of flow in subchannel two 
 

  Specific energy of fluid,  2 2u gz    

 
  Coefficient(s) of first order differential equations of motion 

 
  

 
  Corrective parameter for axial bending stiffness 

 
  Frequency parameter,  2 2R a Dg   

 
P  

Pressure difference along a discrete length 
 

iP  Average inlet pressure drop due to form losses 
 

1,iKP  
Pressure difference caused by sudden contraction from inlet flow channel to 
subchannel one 
 

1,oKP  
Pressure difference caused by sudden expansion from subchannel one to 
outlet flow channel 
 

2,iKP  
Pressure difference caused by sudden contraction from inlet flow channel to 
subchannel two 
 

2,oKP  
Pressure difference caused by sudden expansion from subchannel two to 
outlet flow channel 
 

LP  
Average pressure drop due to friction and body forces in channels one and 
two along length L 
 

1LP  
Pressure drop due to friction and body forces in subchannel one along length 
L 
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1LP  
Average pressure drop due to friction and body forces in subchannel one in 
the interval  0,x L  

 

2LP  
Pressure drop due to friction and body forces in subchannel two along 
length L 
 

2LP  
Average pressure drop due to friction and body forces in subchannel two in 
the interval  0,x L  

 

oP  
Average outlet pressure drop due to form losses 
 

S  Change in flow channel area due to plate deformation 
 

t  Discrete differential time interval 
 

  
 

x  Body forces acting on fluid in the axial direction 
 

  
Kinetic potential 
 

L  Linear operator representing the load-deflection relation of a plate 
 

  Defined in (4-12) 
 

 

Acronyms 

ANS Advanced Neutron Source 

ATR Advanced Test Reactor 

C Clamped Edge 

DoE Department of Energy 

ETR Engineering Test Reactor 

F Free Edge 

FEA Finite element analysis 

FIV Flow induced Vibration 
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GTRI Global Threat Reduction Initiative 

HEU Highly Enriched Uranium 

HFIR High Flux Isotope Reactor 

HFR High Flux Reactor 

HPRR High Performance Research Reactor 

INL Idaho National Laboratory 

LEU Low Enriched Uranium 

LWR Light Water Reactor 

MIT Massachusetts Institute of Technology 

MITR Massachusetts Institute of Technology Reactor 

MTEKM Multi-term extended Kantorovich Method 

MTR Materials Test Reactor 

MMM Modified Matrix Method 

MMP Modified Matrix Progression 

MURR Missouri University Research Reactor 

NASA National Aeronautics and Space Administration 

NBSR National Bureau of Standards Reactor 

NF Natural Frequency 

NIST National Institute of Standards and Technology 

NNSA National Nuclear Security Administration  

NS Navier Stokes 

PCP Primary Coolant Pump 

PCS Primary Coolant System 
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QAP Quality Assurance Plan 

RERTR Reduced Enrichment for Research and Test Reactors 

RTR Research and Test Reactor 

SS Simply Supported Edge 

UFSAR Upgraded Final Safety Analysis Report 

U-Mo Uranium-Molybdenum 
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10 APPENDIX A (Classical Plate Equation) 

The classical plate equation arises from a combination of four distinct subsets of plate 

theory: the kinematic, constitutive, force resultant, and equilibrium equations. The 

explanation presented is expanded upon based on that presented in Ugural and Fenster 

[72].  

 

Figure A-1: Geometry of a flat rectangular plate 

 

The coordinate system for flat plate type geometry discussed in this chapter is presented 

in Figure A-1. Several similarities can be observed between the coordinate system in 

Figure A-1 and that of a cylindrical plate (Figure 5-1); the primary difference between the 

two systems is found in the arc length of the plate in the span wise direction where b may 

be evaluated as b = Rsin(θ) for a cylindrical plate and is simply the length in the y 

direction for a flat plate.  

 

Figure A-2 displays the shell element of differential length y  along the span wise 

direction and x  along the axial direction based on the coordinate system of choice 

presented in Figure A-1. Figure A-2(a) contains all external and internal forces acting on 

the element and Figure A-2(b) contains the moments. 

z, w 

y, v 

x, u 

L 

b 

Pz 

Py 

Px 
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Figure A-2: An element of flat shell geometry (a) forces and (b) moments 

10.1 The Kinematic Equation 

Kinematics describes how the plate’s displacement and strains relate: 
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and 
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where u, v, and w are the displacement in x, y, and z direction, respectively. This system 

of equations does not tend to be useful in applications. In order to acquire the correct 

form of the kinematic equations for this study, Kirchhoff’s assumptions must be made: 

(a) normal resultants remain straight, (b) normal resultants remain un-stretched, (c) 

normal resultants remain normal. Based on these assumptions, the displacement field can 

be expressed in terms of the distances by which the plate’s middle plane movies from its 

resting (unloaded position), uo, vo, wo. With the normal resultants straight and 

unstretched, the shear strain in the z direction and be assumed negligible and therefore: 
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and 
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Employing the assumption that the normal resultants remain normal to the mid-plane, the 

x, y dependence can be made explicit via a simple geometric expression, 
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and 

  2o o
o o

v w
v v z v z

z y

 
    

 
O . (A-10) 

The kinematic equations therefore become 
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The above system of equations can be further simplified by noting that if there are no in-

plane resultants, all strains at the middle plane are zero, yielding 
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and 
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10.2 The Constitutive Equation 

The constitutive equation describes how the stresses and strains are related within a plate 

(i.e. Hooke’s Law). In linear elasticity, the most generalized Hooke’s Law contains six 

components of stress that are linearly related to six components of strain as follows 
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This can be rearranged into the stiffness (strain to stress) form 
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Employing the same assumptions (Kirchhoff’s assumptions) used in the previous section 

to apply to plates, the stress-strain relations can be simplified to 

 
2

1 0

1 0 ,
1

1
0 0

2

x x

y y

xy xy

E
  
  


  

 
    
                  
 

 (A-19) 



 

152 

where 0,  0,  and 0z xy yz      which yields the following constitutive equations in for 

plates; 

  z x yE

     , (A-20) 

 0xz  , (A-21) 

and 

 0yz  . (A-22) 

10.3 The Force Resultants Equation 

Force and momentum resultants are quantities used to track the important stresses in 

plates. They are analogous to the moments and forces in statics theories, in that their 

influence is felt throughout the plate. Recall that the stress tensor has nine components at 

any given point. Each portion of the direct stress acting on the cross section creates a 

moment about the neutral plane (z = 0). Summing these individual moments over the area 

of the cross section is the definition of the moment resultants Mx, My, Mxy, and Myx, where  
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where z is the coordinate pointing in the direction normal to the plate’s primary 

surface(s). Summing the shear forces on the cross-section is the definition of the 

transverse shear resultants Qx and Qy, 
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The last set of resultants is the sum of all direct forces acting on the cross-section, these 

are known as Nx, Ny, and Nxy, where 
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10.4 The Equilibrium Equation 

The equilibrium equations describe how the plate carries external pressure loads with its 

internal stresses. There are six equilibrium equations, three for the forces and three for the 

moments that need to be satisfied. The equations of force equilibrium are 
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where Nx, Ny, Nxy, Qxz, and Qyz are the corresponding force resultants described in the 

previous section; Px, Py, and Pz are distributed external forces applied on the plate. The 

equations of moment equilibrium are 
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and 

 0xy yxN N  , (A-38) 

where Mx, My, Mxy, Myx, Nxy, and Nyx are moment resultants. The above equations assume 

that all second and higher order terms are negligible. To further simplify the problem, 

consider a plate subjected to transverse loads (Pz is the non-zero external force). All 

forces and moments in other directions are zero. The above six equations then become 
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and 

 xy yxN N . (A-44) 

Due to the lack of external force components other than Pz the shear stresses at any given 

point are paired with their symmetric partners to yield 

 xy yxN N
 

(A-44)
 

and 

 xy yxM M . (A-45) 

10.5 Acquiring the Classical Plate Equation 

The four equations presented above are combined using the following method to acquire 

the plate equation. By first combining the three equilibrium equations, Qxy, and Qyz can be 

eliminated to give 
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Secondly, the moment resultants in (A-23) can be replaced with the true definition of 

terms of the direct stresses to give 
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Using the constitutive relation in (A-19) and then using the kinematics equation to 

replace strain in favor of the normal displacement wo yields 
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The equilibrium equation can then be expressed in terms of the normal displacement wo 
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which can be simplified to 
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As a final step, assuming homogeneous material along the thickness of the plate, the 

flexural rigidity of the plate can be written as 
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Then the classical plate equation can be written in the form 

  
4 4 4

4 2 2 4
2 o zK w W P

x x y y

   
        

L . (A-52) 



 

156 

11 APPENDIX B (Reduced Plate Equations)  

11.1 Integrating Equations of Motion (Reduction to One Dimension) 

11.1.1 Axial Coordinate 

The integration of (5-48) expanded in the form of (5-30) is presented here:  
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Note that from (5-42),    2 2 2
1 , ,L u v w R a Dg u t   , then if the acceleration term (right 

side of the equation) is inserted into (5-30) the equation of motion in the u direction 
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Inserting (5-30) into the integral (5-48) gives 
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If f1 is factored through all the terms inside the integral then (B-2) further expands to 
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Reducing (B-3) based on the defined values presented below each term yields 

 
22

31 2
11 1 12 13 14 3 15 3 16 17 12 2

0
gg g

g g g g      
 

 
      

 
. (B-4) 

Combining all common terms dependant on   
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11.1.2 Azimuthal Coordinate 

The integration of (5-49) expanded in the form of (5-31) is presented here:  
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Note that from (5-43),    2 2 2
2 , ,L u v w R a Dg v t   , then if the acceleration term (right 

side of the equation) is inserted into (5-31) the equation of motion in the v direction 
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Inserting (5-31) into the integral (5-49) gives 
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If f2 is factored through all the terms inside the integral then (B-7) further expands to 
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Reducing (B-8) based on the defined values presented below each term yields 
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Combining all common terms dependant on   
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or 
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11.1.3 Radial Coordinate 

The integration of (5-50) expanded in the form of (5-32) is presented here:  

  3 1 1 2 2 3 3 3 3 3

0

, , 0
x

x

L f g f g f g f g f dx


      (5-50) 

Note that from (5-44),    2 2 2
3 , ,L u v w R a Dg w t    , then if the acceleration term (right 

side of the equation) is inserted into (5-32) the equation of motion in the w direction 

becomes 
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Inserting (5-32) into the integral (5-50) gives 
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If f3 is factored through all the terms inside the integral then (B-12) further expands to 
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Reducing (B-13) based on the defined values presented below each term yields 
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combining all common terms dependant on   
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or  
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11.2 Reduced Equations and Coefficients 

The reduced equations (5-69) through (5-71) and their coefficients are given below. 
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In an attempt to be explicit in the methodology used and parameters employed in the 

model, the compressed form of coefficients 11 , through 34  are presented below such that 
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any prescribed function f1, f2, and f3, may be inserted for future application, each 

coefficient is also presented with the eigenfunction (or its applicable derivative) 

employed in the x direction throughout this study and lastly the integrations for each 

coefficient have been performed and are displayed as well. Note that after performing the 

integrations a number of the coefficients contain no dependencies in on the eigenvalue of 

eigenfunction in the axial direction, that is no x  terms appear in their value. This can be 

directly related back to the stress resultants shown in Figure 5-2 where both normal and 

bending stress resultants N and M, where there is no x dependence in their form. 

 

Recall from (B-3) that 11  is defined as that presented below in (B-16). In chapter 4 a 

discussion of the eigenfunctions  if  and their respective derivatives  j j
if x   are 

presented for the case of a straight beam with both ends free.  
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Considering (B-16), inserting (5-62) and (5-59), then integrating  0,x x  yields (B-17). 

11  is then combined with 17  in (B-28) to form 11 . 
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From (B-3), 12  is defined as 
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Inserting (5-59) into (B-18) and integrating  0,x x  gives 
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which is then input into (5-69) to form the second term in (5-69). From (B-3), 13  is 

defined as 
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Inserting (5-65) and (5-59) into (B-20) and integrating  0,x x  gives 
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which is then input into (5-69) to form the third term in (5-69). From (B-3), 14  is defined 

as 
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Inserting (5-65) and (5-59) into (B-22) and integrating  0,x x  gives 
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which is then input combined with 15  in (B-67) to produce 12  and inserted into the x 

directional equation of motion to form the fourth term in (5-69). From (B-3), 15  is 

defined as 
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Inserting (5-67) and (5-59) into (B-24) and integrating  0,x x  gives 
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which is then combined with 14  in (B-67) to produce 12  and inserted into the x 

directional equation of motion to form the fourth term in (5-69). From (B-3), 16  is 

defined as 
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Inserting (5-65) and (5-59) into (B-26) and integrating  0,x x  gives 
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which is then inserted into the x directional equation of motion to form the fifth term in 

(5-69). From (B-3), 17  is defined as 
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Inserting (5-59) into (B-28) and integrating  0,x x  gives 
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Equation (B-29) is then combined with 11  in (B-66) to produce 11  and inserted into the x 

directional equation of motion to form the first term in (5-69).  

 

The second equation of motion, (5-70), contains the coefficient 21  as seen in (B-30) 
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Inserting (5-61) and (5-60) into (B-30) and integrating  0,x x  gives 
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which is then input into the ϕ directional equation of motion to form the first term in 

(5-70). From (B-8), 22  is defined as 
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Inserting (5-60) into (B-32) and integrating  0,x x  gives 
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, (B-33) 

which is then inserted into the ϕ directional equation of motion to form the second term 

in (5-70). From (B-8), 23  is defined as 
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Inserting (5-66) and (5-60) into (B-34) and integrating  0,x x  gives 
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. (B-35) 

Equation (B-35) is then combined with 26  in (B-68) to produce 21  and inserted into the 

ϕ directional equation of motion to form the third term in (5-70). From (B-8), 24  is 

defined as 
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Inserting (5-60) into (B-32) and integrating  0,x x  gives 
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 (B-37) 

which is then combined with 25  in (B-69) to produce 22  and inserted into the ϕ 

directional equation of motion to form the fourth term in (5-70). From (B-8), 25  is 

defined as 
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Inserting (5-66) and (5-60) into (B-38) and integrating  0,x x  gives 
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. (B-39) 

which is then combined with 24  in (B-69) to produce 22  and inserted into the ϕ 

directional equation of motion to form the fourth term in (5-70). From (B-8), 26  is 

defined as 
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Inserting (5-60) into (B-40) and integrating  0,x x  gives 

 

       

        
         

2

2
26

2 2

4 2 cos 2 2 cosh 2 1 sin 2

4sin 1 cosh 2 sinh
4

sinh 2 4 1 cos sinh sinh 2

m m m m m m m

m m m m m
m

m m m m m m

x
      

     


     

    
      
 
     

. (B-41) 
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Equation (B-41) is then combined with 23  in (B-68) to produce 21  and inserted into the 

ϕ directional equation of motion to form the third term in (5-70). 

 

The third equation of motion, (5-71), contains the coefficient (B-42) as seen in (B-42), 
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
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Inserting (5-61) and (5-60) into (B-42) and integrating  0,x x  gives 
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, (B-43) 

which is then combined with 35  in (B-70) to produce 31  and inserted into the z 

directional equation of motion to form the first term in (5-71). From (B-13), 32  is defined 

as 
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Inserting (5-60) into (B-44) and integrating  0,x x  gives 
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. (B-45) 

The resolved form of 32  presented in (B-45) is then combined with 36  in (B-72) to 

produce 33  and inserted into the z directional equation of motion to form the third term 

in (5-71). From (B-13), 33  is defined as 
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Inserting (5-60) into (B-46) and integrating  0,x x  gives 
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, (B-47) 



 

165 

which is then combined with 37 , 41 , and 42  in (B-71) to form 32  and is inserted into 

the z directional equation of motion to form the fourth term in (5-71). From (B-13), 34  is 

defined as 
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Inserting (5-61) and (5-60) into (B-48) and integrating  0,x x  gives 
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, (B-49) 

which is input into the z directional equation of motion to form the second term in (5-71). 

From (B-13), 35  is defined as 
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Inserting (5-63) and (5-60) into (B-50) and integrating  0,x x  gives 
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, (B-51) 

which is then combined with 31  in (B-70) to produce 31  and inserted into the z 

directional equation of motion to form the first term in (5-71). From (B-13), 36  is defined 

as 
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Inserting (5-66) and (5-60) into (B-52) and integrating  0,x x  gives 
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The resolved form of 36  presented in (B-53) is then combined with 32  in (B-72) to 

produce 33  and is inserted into the z directional equation of motion to form the third 

term in (5-71). From (B-13), 37  is defined as 
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Inserting (5-68) and (5-60) into (B-54) and integrating  0,x x  gives 
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, (B-55) 

which is then combined with 33 , 41 , and 42  in (B-71) to form 32  and inserted into the z 

directional equation of motion to form the fourth term in (5-71). From (B-13), 38  is 

defined as 
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Inserting (5-66) and (5-60) into (B-56) and integrating  0,x x  gives 
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. (B-57) 

The resolved form of 38  presented in (B-57) is then combined with 40  in (B-73) to 

produce 34  and is inserted into the z directional equation of motion to form the fifth term 

in (5-71). From (B-13), 39  is defined as 
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Inserting (5-60) into (B-58) and integrating  0,x x  gives 
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 (B-59) 

Equation (B-59) is input into the z directional equation of motion to form the last term in 

(5-71). From (B-13), 40  is defined as 
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Inserting (5-60) into (B-60) and integrating  0,x x  gives 
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which is then combined with 38  in (B-73) to produce 34  and is inserted into the z 

directional equation of motion to form the fifth term in (5-71). From (B-13), 41  is 

defined as 
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Inserting (5-60) into (B-62) and integrating  0,x x  gives 
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The resolved form of 41  presented in (B-63) is then combined with 33 , 37 , and 42  in 

(B-71) to form 32  and inserted into the z directional equation of motion to form the 

fourth term in (5-71). From (B-13), 42  is defined as 
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Inserting (5-66) and (5-60) into (B-64) and integrating  0,x x  gives 
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 (B-65) 

Which is then combined with 33 , 37 , and 41  in (B-71) to form 32  and inserted into the z 

directional equation of motion to form the fourth term in (5-71). In an attempt to simplify 

the three equations of motion; (5-69), (5-70), and (5-71), the coefficients of like terms 

were combined as a part of the linearization process. These coefficients are as follows: 

 11 11 17    , (B-66) 

 12 14 15    , (B-67) 

 21 23 26    , (B-68) 

 22 24 25    , (B-69) 

 31 31 35    , (B-70) 

 32 33 37 41 42        , (B-71) 

 33 32 36    , (B-72) 

and 
 34 38 40    . (B-73) 
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12 APPENDIX C (Stability Module Test Case) 

It is necessary to compare a solution set produced by the plate stability module to values 

acquired in previous works in an attempt to credibly justify the solutions produced for 

this study. No known available literature was found to include natural frequency values 

for a cylindrical plate with C-F-C-F or C-F-SS-F boundary conditions, respectively. 

However, a set of cases were published by Sewall [83, 84], Blevins [75], and Deb Nath 

and Petyt [85] for a cylindrical square plate  1x  . These cases will be used for 

comparison against the solution produced by the plate stability module, presented in 

Section 5.1. 

12.1 Definition of Coefficients 

Using the same methodology presented in Appendix B, a set of coefficients were derived 

while applying the boundary condition (5-36). 
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The coefficients for this test case were developed using the same method presented in 

Appendix B, however, the pressure terms (Px and Pr) in the equations of motion were set 

to zero. This was done because all previous studies considered curved plates under “free 

vibration” with no externally applied membrane forces. The newly defined coefficients 

above were then inserted into the coefficient matrix, (5-89), and frequency parameter 

   was solved for by employing the algorithm shown in Figure 5-6. 

12.2 Test Case Results 

A common set of material properties were considered when producing all solution for the 

test case, these properties are presented in Table C-1.  

 

Table C-1: Test case material properties 

Parameter Value 
Density [kg/m3] (psi) 2700 (0.098) 
Modulus of Elasticity [MPa] (psi) 68947.57 (10 106) 
Poisson’s Ratio 0.33 

 

The circular frequency  2 f   of cylindrical square plates with all edges clamped was 

found for in available literature for two different radii, and three plate thicknesses. A 

number of different studies either experimentally or theoretically found the circular 

frequency for various modal combinations. In all cases the modal number along the axial 

length of the plate (m) was held to one, while the free vibration solution in the azimuthal 

direction was determined for several modal numbers (n). Table C-2 summarizes these 

results. Columns 4 and 5 in Table C-2 show the theoretical solution produced during 

previous studies using the Rayleigh [75] and Rayleigh-Ritz [85] solution, respectively. 

Column 6 in Table C-2 is the experimentally acquired eigenvalues for a number for 
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various modal combinations. Column 7 in Table C-2 presents the circular frequency 

predicted by this study’s model while imposing similar geometric boundary conditions 

and material properties as employed in the previous studies. Of the three independent 

methods compared against, the circular frequencies predicted by the Rayleigh-Ritz 

method compare the best with the work presented here deviating between 0.13 and 11.87 

in percent difference, while those predicted using the fundamental Rayleigh method  

 

Table C-2: Circular frequencies (ω) and percent error relative to this study 
R 

[m] (in) 
a 

[m] (in) 
m, n 

Rayleigh 
[75] 

Rayleigh-Ritz 
[85] 

Experimental  
[83, 84] 

MMP 
(this study) 

2.44 
(96) 

0.0007  
(0.02) 

1,3 
1420.00 
(100.35) 

704.97 
(0.53) 

534.07 
(24.65) 

708.74 

1,4 
1460.84 
(84.52) 

- 
810.53 
(2.38) 

791.68 

1,5 
1678.87 
(30.79) 

- 
1193.81 
(7.00) 

1283.65 

0.0008  
(0.032) 

1,2 
1595.93 
(61.79) 

- 
735.13 
(25.81) 

990.86 

1,3 
1583.36 
(65.79) 

942.48 
(1.31) 

785.40 
(17.76) 

955.04 

1,4 
1840.97 
(19.06) 

- 
1438.85 
(6.95) 

1546.29 

0.0010 
(0.04) 

1,2 
1636.77 
(51.54) 

1036.73 
(4.01) 

772.83 
(28.45) 

1080.08 

1,3 
1718.45 
(52.54) 

- 
1237.79 
(9.87) 

1126.58 

1.22 
(48) 

0.0007 
(0.02) 

1,3 
2662.81 
(157.63) 

- 
540.35 
(47.72) 

1033.58 

1,4 
2474.32 
(148.93) 

992.74 
(0.13) 

929.91 
(6.45) 

994.00 

1,5 
2469.29 
(71.84) 

- 
1514.25 
(5.38) 

1436.96 

0.0008 
(0.032) 

1,3 
2726.90 
(115.49) 

1275.49 
(0.79) 

904.78 
(28.5) 

1265.43 

1,4 
2714.34 
(100.46) 

- 
1696.46 
(25.29) 

1354.03 

0.0010 
(0.04) 

1,3 
2833.72 
(76.65) 

1413.72 
(11.87) 

1130.97 
(29.49) 

1604.10 

1,4 
3550.00 
(125.37) 

- 
1815.84 
(15.28) 

1575.19 

1,5 
3355.22 
(30.82) 

- 
2500.71 
(2.50) 

2565.89 
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compare the most poorly to that predicted circular frequencies found in this study. This 

observation is expected as it has been demonstrated by Blevins [75] that because the 

Rayleigh method requires an analytical modal shape for the determination of a given 

eigenvalue, it does not approximate well for high number modal values and curved 

surfaces (i.e. cylindrical plates). 

 

Considering that the iterative parameter used for this study was selected to be the 

“frequency parameter”,  2 2 21clR Eg    , the results presented have been 

reformulated in the form of the frequency parameter and are presented in Figure C-1. The 

horizontal axis represents the frequency parameter predicted during this study while the 

vertical axis represents the frequency parameter produced using methods produced in 

previous studies. The trend in the figure demonstrates that both experimental results and 

Rayleigh-Ritz solutions compare well against that produced herein, while the Rayleigh 

method predicts frequency parameters which are approximately proportional to that 

predicted by herein, but are much larger in magnitude for a prescribed set of boundary 

conditions. The error bars associated with experimental results reflect 95% confidence 

[83, 84]. 
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Figure C-1: Comparison of frequency parameters for test case 
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13 APPENDIX D (Contour Plots) 

The relations f1, f2, and f3 describe the eigenfunction shape, and do not account for 

amplitude (true displacement), it is for this reason that the figures in this appendix are 

presented in the form of normalized displacement such that the absolute maximum 

displacement (red or blue) coincides with an absolute amplitude of one.  

13.1 C-F-C-F Boundary Condition 

The displacement contours representing C-F-C-F boundaries show that for all modal 

combinations, m, n, the plate displacement is either reflective for even modes of m or 

truly symmetric for odd modes of m, about 2x L . Similarly for even modes of n the 

plate is reflective and for odd modes of n the plate is truly symmetric about 2  .  
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Figure D-1: Displacement view graph of C-F-C-F plate modal shape (m = 1, n = 1) 
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Figure D-2: Displacement view graph of C-F-C-F plate modal shape (m = 1, n = 2) 
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Figure D-3: Displacement view graph of C-F-C-F plate modal shape (m = 1, n = 3) 
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Figure D-4: Displacement view graph of C-F-C-F plate modal shape (m = 2, n = 1) 
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Figure D-5: Displacement view graph of C-F-C-F plate modal shape (m = 2, n = 2) 
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Figure D-6: Displacement view graph of C-F-C-F plate modal shape (m = 2, n = 3) 
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Figure D-7: Displacement view graph of C-F-C-F plate modal shape (m = 3, n = 1) 
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Figure D-8: Displacement view graph of C-F-C-F plate modal shape (m = 3, n = 2) 
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Figure D-9: Displacement view graph of C-F-C-F plate modal shape (m = 3, n = 3) 
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13.2 C-F-SS-F Boundary Condition 

The displacement representing C-F-SS-F boundaries show that for all modal 

combinations, m, n, the plate displacements are identical in shape to those with C-F-C-F 

edge boundaries along the x direction. This is expected as the boundary conditions for x = 

constant do not change during the study. However, not modal shape along the   direction 

is symmetric or reflective about 2   as a result of the miss-match in boundary 

conditions at   = constant. 
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Figure D-10: Displacement view graph of C-F-SS-F plate modal shape (m = 1, n = 1) 
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Figure D-11: Displacement view graph of C-F-SS-F plate modal shape (m = 1, n = 2) 
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Figure D-12: Displacement view graph of C-F-SS-F plate modal shape (m = 1, n = 3) 
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Figure D-13: Displacement view graph of C-F-SS-F plate modal shape (m = 2, n = 1) 
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Figure D-14: Displacement view graph of C-F-SS-F plate modal shape (m = 2, n = 2) 
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Figure D-15: Displacement view graph of C-F-SS-F plate modal shape (m = 2, n = 3) 
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Figure D-16: Displacement view graph of C-F-SS-F plate modal shape (m = 3, n = 1) 
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Figure D-17: Displacement view graph of C-F-SS-F plate modal shape (m = 3, n = 2) 
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Figure D-18: Displacement view graph of C-F-SS-F plate modal shape (m = 3, n = 3) 
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14 APPENDIX E (Flow Module Test Case) 

In order to provide a credible basis for the predictive capability of the flow module, a of 

test case have been compared between the flow module and an industry standard lumped 

parameter code.  

14.1 RELAP5-3D Model 

RELAP5-3D version 2.4.2 is the lumped parameter code used for all comparative results 

in this test case [106, 107]. A lumped parameter code is a simplified mathematical model 

where variables that are spatially distributed are represented as single scalars rather than 

vectors. As a result, the spatial resolution of a lumped parameter code is limited; 

however, it is assumed that RELAP5-3D can sufficiently model the hydraulic 

characteristics of the study geometric conditions (Table 4-1).  

 

The RELAP5-3D model consists of six volumes as seen in Figure E-1. The coolant 

source (volume 201) contains the model’s inlet boundary conditions including a fluid 

temperature of 20 °C and pressure of 4.13685 MPa. The inlet region of the study 

geometry is represented by volume 202. At this location the flow field enters with the 

total effective hydraulic diameter and contains a length of 0.1524 m. The outlet of 

volume 202 splits into subchannel one and two with hydraulic diameters of 0.003886 m 

and 0.003887 m, respectively. Form losses in the inlet regions are manually inserted in to 

the RELAP5-3D model as were calculated for the flow module in order to provide as 

much of a representative comparison as possible. The inlet form loss coefficient for 

subchannel one is 0.356165 and for subchannel two is 0.356049. 

 

Each of the subchannels (volumes 101 and 102) contain two axial nodes and have a total 

length of 1.2573 m. The subchannels merge back into a common flow volume at the 

outlet region (volume 203). The outlet region accounts for the form losses associated with 

the sudden expansion of flow from each subchannel passing into the common flow 

channel. As previously done, the sudden expansion form loss coefficients were manually 

inserted into volume 203; for channel one the form loss coefficient is 0.7188879 and for 
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channel two the form loss coefficient is 0.71865541. Lastly, volume 203 is connected to 

the coolant sink (volume 204) which provides a location for the outlet boundary 

conditions. 

 

RELAP5-3D only permits the use of one advective boundary conditions type, pressure. 

Due to this limitation, an inlet pressure of 4.13685 MPa was held constant and the outlet 

pressure was varied for different calculations. A corresponding flow rate and pressure 

field was then calculated by RELAP5-3D for each pressure driven simulation. 

 

 

Figure E-1: RELAP5-3D model configuration 

 

Inserting an inlet flow velocity boundary condition of 10 m/s into the flow module results 

in a total pressure drop of 0.2998 MPa. After inserting a total pressure loss boundary 

condition of 0.4078 MPa results, RELAP5-3D calculated an inlet flow velocity of 10.003 

m/s. The pressure profiles for these two simulations are presented in Figure E-2. Note 

that the total pressure drop values between the two codes differ by approximately 30%.  
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Figure E-2: Comparison of local pressure values pre-modification 

 

From Figure E-2, a significant contribution to the difference in pressure drop values 

between the two codes is due to the pressure drop along the length of each subchannel, 

attributing the difference between the pressure drop values to frictional losses. A 

literature review on the method that RELAP5-3D employs to calculate the pressure losses 

in a pipe for single phase flow concludes with the developers use of the Zigrang-

Sylvester approximation [108] to the Colebrook-White correlation [109]; 

 0.91
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



         
    

 (E-1) 

where   is the surface roughness and is assumed to be equal to 0.0000021336 meters as 

acknowledged in the ATR Upgraded Final Safety Analysis Report [20]. A more 

representative comparison of the two codes’ capabilities may be conducted by employing 

(E-1) into the flow module rather than the use of (5-131) which was solely acquire for the 

ATR [20]. This is explicitly handled by inserting the Re for each subchannel into (E-1), 
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. (E-3) 

Replacing (5-159) and (5-161) with (E-2) and (E-3), respectively, allows for the closure 

of the needed equations while utilizing the newly considered friction factor correlation. 

Figure E-3 presents the newly developed pressure profile calculated from the flow 

module against that calculated by RELAP5-3D. In this case the pressure losses are nearly 

identical, a total pressure loss of 0.3774 MPa is calculated from the flow module while 

RELAP5-3D has the same 0.4078 MPa loss necessary to drive a 10.003 m/s inlet 

velocity. Note that the total pressure drop values between the two codes differ by 

approximately 7.7%. Due to the simplified method for handling complex flow fields 

using bulk fluid characterization methods, this a difference of less than 10% is 

qualitatively considered acceptable for this study. 
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Figure E-3: Comparison of local pressure values post-modification 

 

A comparison of the velocity of each subchannel channel as a function of the inlet flow 

velocity is presented in Figure E-4 calculated from both the flow module and RELAP5-

3D. As seen in Figure E-4 velocity trends for the flow module and RELAP5-3D are 

nearly analogous to one another providing a basis for the qualitative conclusion that the 

flow module performs sufficiently well to capture bulk coolant characteristics of the 

study geometry relative to that of an industry standard computational tool. 
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Figure E-4: Comparison of flow distribution in channel one and channel two 
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