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Abstract This work proposes a technique for distributed
multi-robot exploration that leverages a novel method of map
inference to increase the team’s cumulative exploration ef-
ficiency. The proposed distributed inference technique uses
observed map structure to infer unobserved map features.
The multi-robot team then uses a decentralized algorithm to
coordinate the exploration using both the inferred and ob-
served portions of the map. Individual robots select explo-
ration poses by accounting for expected information gain
and travel costs. Robots resolve conflicts between explo-
ration goals with local auctions of expected travel costs. The
benefits of inference-informed exploration are demonstrated
in both simulated explorations and hardware trials. The pro-
posed technique is compared against frontier-based and in-
formation -based exploration approaches. These comparisons
evaluate the performance of the three exploration methods
with decaying communication and a varied number of agents.
Additionally, the accuracy of the map inference technique is
evaluated using publicly available sensor datasets. The pro-
posed inference technique improves the correctly-estimated
subset of the environment by an average of 34.47% (maxi-
mum 108.28%) with a mean accuracy of 95.1%. This leads
to a 13.15% reduction in the cumulative exploration path
length in the trials conducted. The developed system was
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then verified on three Pioneer P3-DX robots with laser scan-
ners in experimental trials.

1 INTRODUCTION

The applications of distributed robotic systems continues to
grow, and consequently there is an increasing demand for
algorithms that efficiently coordinate teams of robots to ex-
plore and map environments. This paper presents a method
of coordinated exploration for decentralized multi-robot teams
that leverages novel distributed map-inference techniques.
This coordination method is applicable to multi-robot teams
exploring environments for civilian, search and rescue, mili-
tary, and research applications. Results are presented to demon-
strate the value and accuracy of the inference as well as the
benefit inference provides to multi-robot exploration. Exper-
iments were conducted with teams of robots exploring an
indoor space, but the techniques are generalizable to other
structured environments such as tunnels, caves, and mines.

The primary objective of multi-robot exploration can be
stated in two ways. First, fully explore a fixed space in the
minimum time or travel distance. Or alternatively, explore
the maximum space within allotted time and energy con-
straints. Meeting this objective is done by solving the prob-
lem of determining the next location each robot should ob-
serve from. In a distributed system the coordination prob-
lem is complicated by each agent attempting to identify their
own exploration goal with limited information sharing and
planning between agents. In a decentralized system, this pro-
cess is further complicated by the lack of a hierarchical struc-
ture with which to assign each member of the team explo-
ration tasks. Despite the complications of distributed and de-
centralized systems, they are still frequently used because
of their benefits. As each robot requires minimal input from
other members of the team, they are robust to failures of in-



dividual team members and to unreliable and limited com-
munications.

While distributed systems are robust to single point fail-
ures, they still require some type of coordination to prop-
erly allocate system resources. Without a method to resolve
conflicting robot goals, if each agent acts greedily they will
likely converge onto a single goal, significantly reducing
system efficiency [1]. Market based approaches have been
used to settle disputes to increase system performance in
exploration tasks [2], [3]. One complication in exploration
based tasks is determining the value of exploring different
areas of the environment. Some recent work has attempted
to infer the structure of the unobserved portions of the map
to aid in the exploration using visual features [4] [5]. Our
work develops a new distributed map inference technique
that uses simulated laser scans and not visual features to in-
fer map structure. Then the inferences are used to inform
goal selection for a market-based distributed exploration.
The technique is demonstrated in simulation and hardware
experiments.

The contributions of this paper are:

1. A distributed inference technique that uses environment
geometry and a library of previously collected map struc-
tures to infer over unexplored regions of the environ-
ment and merge the inferences into the agent’s explo-
ration map.

2. A decentralized coordinated exploration algorithm to ex-
ploit the information provided by the distributed map in-
ference.

The developed distributed map-inference technique uses
intuitive methods to infer unexplored map structure based
upon the partially observed map, as shown in Fig. 1. Then,
using the information gained by the inference, each member
selects a goal pose to observe from and broadcasts their se-
lected goal pose to other team members. The inference pro-
cess consists of two steps. First, we estimate the boundaries
of the explorable space using a heuristic method. Second, a
library of map structures uses the inferred boundary and ob-
served map structure to infer unobserved map portions of the
map. The inference method is tested in simulation, on real-
world datasets, and in hardware trials to demonstrate both
the accuracy of the inference and the benefits inference pro-
vides during exploration. The developed inference method
provides a mean increase of 34.47% (maximum of 108.28%)
of map recall and maintains a mean precision of 95.1%.

The decentralized exploration algorithm leverages the
map-inference by searching over the both the observed and
inferred portions of the map for poses that fully observe the
inferred free space (traversable space that is currently un-
explored). Then, each robot selects a pose using an infor-
mation theoretic approach from the set of sampled poses as
its exploratory goal; the robot broadcasts the selected pose

Fig. 1 The developed inference technique uses the observed portions
of the map (white) to infer the structure of the unobserved portions
(red), then uses the inferred structure to guide the exploration.

to local robots. Disputes are settled using a distributed sin-
gle bid local auction of travel cost. This approach is com-
pared against frontier-based exploration [1] and (inference-
free) information pose coordination strategies. Our strategy
reduces the average time required to explore an environment
by 13.15% and 12.34% for varied communication strength
and numbers of agents, respectively.

2 BACKGROUND AND RELATED WORK

The exploration and planning research community has made
great strides in increasing the efficiency of robotic teams
exploring unknown environments. Recently there has been
growing interest in using the observed portions of the map to
infer unobserved map structure with the purpose of improv-
ing exploration efficiency and mapping accuracy [4] [5]. Si-
multaneously, there have been advances in exploration tech-
niques to increase exploration efficiency for individual and
teams of robots. This section will discuss related work in
autonomous exploration, distributed coordination, and map
inference.

2.1 Autonomous Exploration

Robotic exploration of an unknown environment is primar-
ily the task of determining where a robot should observe
from next. Common approaches guide robots towards fron-
tiers; i.e. the areas that separate the explored portion of a
map from the unexplored. A greedy frontier approach, for
example, iteratively assigns each robot their closest fron-
tier to explore. They then explore the receding frontier until
the area is completely explored or another frontier becomes
closer. This process is then repeated until the exploration is
complete [1]. These greedy approaches, while effective, are
often inefficient as the nearest frontier is not necessarily the
frontier with the highest exploration value.

One approach that has been used to increase the effi-
ciency of exploration is a market or value-based approach
to selecting exploration goals [6]. This approach uses some



metric to determine the value of an exploration pose by ac-
counting for the information gained and travel cost of ob-
serving from the selected pose. To select the pose, robots
evaluate the set of poses in their market and then select the
pose that will provide them with the largest value [6]. Robots
then continue the exploration by continuously selecting the
pose that will result in the largest cumulative value. Unfor-
tunately, while the travel cost can be easily estimated it has
been an ongoing problem to estimate the reward of explor-
ing each pose.

There have been efforts to use potential information gain
to predict the reward of exploration poses or series of linked
poses forming a path. For example, information-theory based
approaches were successfully used to calculate potential in-
formation gain from different robot poses and plan optimal
multi-step actions [7] [8] [9]. These methods estimate the
information gained over a series of actions over the next few
time steps and then select the actions that will lead to the
largest information gain. Another method uses estimated in-
formation gain to determine a minimal set of poses that ob-
serve the frontiers and plans the exploration using this set of
poses [10]. These approaches simulate sensor readings from
a prospective pose to approximate the information gained by
observing from that pose.

While such approaches have been successful, there are
two ways the are limited by the lack of knowledge on the
areas they have not yet been observed. First, by not infer-
ring where the explorable space ends, information-based ap-
proaches can over-estimate the value of exploration poses.
Second, not inferring the boundary of the explorable space
limits the locations where simulated poses can be sampled.
Incorporating map inference resolves both of these prob-
lems. By inferring the outer limit of the environment we
can simultaneously increase the accuracy of estimated pose
rewards and allow for poses to be sampled (estimate pose
reward) in unobserved, but inferred to be explorable, space.

2.2 Coordinating Multi-Robot Teams

The problem of automated exploration becomes further com-
plicated when it is expanded to include teams of multiple
robots that must be coordinated. A common approach is a
centralized system that views the team as a single robotic
system governed by a central controller with an action space
consisting of the cumulative actions of all the robotic hard-
ware it controls. There are multiple issues with this approach.
For example, a centralized system requires every robot it
controls to maintain communication with the central con-
troller. If a robot travels to a remote area, which is often the
goal in an exploration, then it may be incapable of planning
a path to continue the exploration or even regain communi-
cation with the central controller. The next issue is that, as

the number of robots grows, the action space increases expo-
nentially. Consequently, optimal coordination is frequently
computationally intractable for teams of more than a few
robots [11], significantly diminishing the benefits of a cen-
tralized controller. Finally, such a system is highly vulner-
able to failure of the central controller. If the central con-
troller fails then it is likely the entire team will be unable
to continue the exploration [6]. A common solution to some
of these issues is to use a distributed system to coordinate
teams of multiple robots.

A distributed system is one in which each robotic mem-
ber acts largely independently from the remainder of the
team. There is no hierarchy of command; no team mem-
ber supervises the actions of any other team member. Dis-
tributed robots primarily rely on locally available informa-
tion and interact with agents in their immediate vicinity, lim-
iting the computational and communication requirements for
planning [12]. The structure of a distributed system makes
it robust against failure, loss of communication, and unex-
pected changes in the environments. Thus distributed sys-
tems are especially well suited for exploration tasks, as each
agent performs solitary observation tasks based off of local
information.

The information based approach to exploration provides
a straightforward method to account for other agents’ ex-
ploration action in a distributed system. The coordination
method implemented in this work uses a single-bid local
auction to settle disputes between agents [13]. Robots bid
over potential exploration goals using their expected travel
cost. As outlined above, each robot uses an internal mar-
ket to select their exploration goal poses. Each robot selects
an exploration pose and then broadcasts both their explo-
ration pose and its travel cost to robots in the local vicinity.
As the exploration continues, the auction process proceeds
and newly found exploration poses are locally auctioned and
awarded to the wining robot. Robots keep a record of re-
cent bids of local robots allowing coordination to continue
when robots break communication. Auction based coordina-
tion requires only limited local communication (conflicts are
more likely locally and limited information is exchanged for
the auction) and computation (robots individually compute
their bids) [14].

2.3 Map Inference

While there has been some prior work in map inference for
exploratory robotics, this is a largely unexplored area of re-
search. Previous work in map inference has focused on using
visual features to identify similar map segments in the area
being explored and a library of map segments [4] [5]. Then
the visual features are used to align and merge the library
entry into the map of the area being explored. These two
approaches will be discussed individually below.



Early work in map inference, named P-SLAM (Predictive-
SLAM), used a Bayesian model to predict hidden structures
of partially observed maps by comparing the partially ob-
served map areas against fully observed structures [4]. This
was done to speed up the process of simultaneous localiza-
tion and mapping (SLAM) by providing additional infor-
mation into a traditional SLAM algorithm, allowing it to
converge faster. Also, if a partially observed portion of the
map had a high similarity with a previously explored area,
then it could be identified and skipped to further speed up
the exploration. This portion of their algorithm, named look
ahead mapping, uses visual features to identify corners and
walls and then uses spatial alignment to identify matches
and place them on the map. While P-SLAM provides accu-
rate estimates of the map structure, it is limited to areas that
are partially observed. Additionally, it can only identify map
segments that are similar to segments that been explored in
the current exploration and relies on visual features to iden-
tify matches.

An alternative method of map inference was developed
to identify potential loop closures in the unobserved portions
of the map [5]. This method uses a visual bag of words tech-
nique used in appearance based place recognition, specifi-
cally FABMAP 2 [15], to expand the potential matches that
could by added to the map. Potential matches are selected
from a library of map structure by comparing visual fea-
ture descriptors and then the best matches are aligned using
RANSAC [16]. Then the matching map structure is merged
into the exploring robot’s map. The addition of the library
of map structure allowed for a larger set of map structures to
be searched over for potential matches.

Our proposed work similarly uses a library of map struc-
ture to infer the unobserved portions of the map. Our method
differs in two fundamental ways. First, visual features are
not used (such as SURF [17] or SIFT [18] features) to iden-
tify map structure because visual features in maps are often
highly similar and lead to ambiguity in matching. This re-
quires the use of RANSAC [16], ICP [19], or other computa-
tionally expensive techniques for match alignment. To com-
pensate, our inference method uses simulated sensor read-
ings (in the form of sparse 360o laser scans) to identify po-
tential matches. Second, our method uses a two step infer-
ence approach. The first step is to infer the outer limits of
the explorable space using the observed outer map bound-
aries to infer the unobserved boundaries of the map. Then
the observed and inferred boundaries are used to infer the
now enclosed unobserved space using a library of map struc-
ture described by sensor readings.

3 METHODS

This work uses map inference to guide a distributed team
of robotic agents to efficiently explore a space. Exploration

is accomplished by having individual robots visit a series
of poses and observe the environment. Our method uses a
map-inference informed information-theoretic approach to
identify a sequence of poses for each robot to explore. In
this approach, robots:

1. Calculate pose reward using the observations and infer-
ences of the environment to predict the expected infor-
mation gain of observing from sampled poses.

2. Select individual exploration goal poses using an inter-
nal market to maximize their individual collected reward.

3. Settle conflicting exploration poses with a single bid auc-
tion between local robots.

This process is repeated as the exploration proceeds, allow-
ing for continuous refinement of the map inference, explo-
ration goals, and goal distribution.

3.1 Inference

The inference developed in this work is comprised of two
components: a heuristic-based perimeter inference used to
estimate the outer boundary of the area being explored, and
structural inference used to infer internal map structure. We
use the word ’inference’ in this paper to refer to predic-
tion based on probabilistic matching from a database. We
note that our technique does not perform formal inference
over a graphical model. The two inference components can
be combined or applied independently depending upon the
environment and user’s desires. In an environment that is
sparsely filled with occupied space (such as buildings where
the space occupied by walls is significantly less than the
traversable space bounded by the walls), perimeter inference
is intended to estimate the outer boundary of the explorable
space. Then the structural inference can be used to iden-
tify both structure inside the inferred perimeter and poten-
tial breaches of the inferred perimeter. However, if the area
is mostly filled with non-traversable space (e.g. a cave or
mine environment where there are few tunnels of traversable
space among the mostly non-traversable space of the walls)
then the structural inference can be used to estimate poten-
tial connections between partially explored tunnels and mine
shafts. The inference process is performed by each robot
during each planning step on the robot’s complete observed
costmap regardless of the current robot location.

Before proceeding to the description of the two infer-
ence algorithms we provide definitions for terms introduced
in this work. The explorable space of the environment, de-
noted by X , is the set of poses, p, a robot can observe by
traveling from its start location in a continuous path. The
explorable space is discretized into cells, ci, j to form a 2D
costmap representation of X . While the discretization of the
environment into a 2D costmap results in a loss of informa-
tion, by taking care when selecting the discretization step



size or using structures such as an Oct-Tree [20] the loss
of information can be reduced. During the exploration the
robot can observe both free, X f ⊂ X , and occupied, Xo ⊂ X ,
space. A costmap cell is considered free, ci, j ⊂ X f if for
all p ∈ ci, j; p 6∈ Xo. Alternatively, costmap cells that con-
tain any poses in collision with an obstacle are occupied.
A cell is considered observed, ci, j ∈ O, if the probability of
occupancy surpasses a specified threshold to be either free,
O f ⊂ X f ∩O, or occupied, Oo ⊂ Xo ∩O. A cell that is not
observed can be either unknown, U , or inferred, I. Inferred
cells can be either free, I f ⊂ I, or inferred occupied, Io ⊂ I.
A cell is inferred to be either free or occupied when it is
unknown but the nearby environment provides insight into
what the occupancy of the cell is. It is possible for an un-
known cell to become inferred and for an inferred cell to
become unknown. It is not possible for an observed cell to
become either unknown or inferred.

3.1.1 Perimeter Inference

The primary objective of the perimeter inference is to esti-
mate the outermost boundary of the explorable space. The
process, as outlined in Algorithm 1, is a heuristic method
that begins by identifying the convex hull of the observed
map. Observed wall cells in the costmap on the convex hull
are used to infer likely unobserved portions of the building
perimeter. These unobserved portions of the perimeter are
found using a probabilistic Hough line transform to identify
unobserved connections between observed wall segments;
the probabilistic Hough line transform uses a maximum like-
lihood estimation of a line through sparsely connected points
[21]. Identified wall-lines are then extended into the unob-
served portions of the map. Where each of these wall-line
projections intersects, an inferred corner (as a single cell,
ci, j ∈ Io) is added to the exploration map at the point of the
intersection (Figure 2a). In practice, it is beneficial to restrict
the distance of inferred corners from the nearest observa-
tions to prevent nearly parallel lines from inferring corner
locations impractically far from the observed space. Finally,
a new convex hull is found, this time of the observed por-
tions of the map and the identified corner points (Figure 2b).
This new convex hull is an initial estimate of the bounds of
the exploration space and the cells along the hull are inferred
as occupied in the costmap while the cells inside the hull are
initially inferred to be free.

Since the inferred perimeter is convex, it likely overesti-
mates the boundaries of the explorable space. However, this
optimistic approach increases the reward in uncertain areas
providing increased incentive for their exploration. While
the technique of extending lines tends to infer that most
buildings are rectangular in shape, this is consistent with
many man-made spaces. In non-rectangular environments,
the inference is able to adapt to the shape of the environ-

Algorithm 1 : Perimeter Inference
1: H = convex hull(O f ∪Oo) / convex hull of observed walls and

space
2: Ho = OO ∈ H / identify occupied cells on convex hull contour
3: Lo = Probabilistic Hough Lines(Ho) / search for lines on convex

hull
4: for l in Lo do
5: ci, j ∈ Io = find intersections(l) / identify intersecting hull lines
6: H = convex hull(O f ∪Oo ∪ Io) / convex hull of observations and

intersection points
7: return H

Fig. 2 (A) Partially observed space and the inferred intersection points
shown in green. (B) The resulting inferred building hull and observed
space with the exploring agent shown in blue and their current explo-
ration goal shown in red.

ment because, while external boundaries are assumed to be
straight, the inferred boundaries are not restricted to any ori-
entation or class of polygon.

Before proceeding to the structural inference and coordi-
nation, some maintenance is performed on the inferred map.
Occupied cells, Oo ∪ Io, are inflated into I f to account for
unseen depth in obstacles; e.g. when an obstacle is only ob-
served from one side it has no observable depth. Next, areas
of the map that are inside of the inferred perimeter that are
unreachable are marked as inferred obstacles.

3.1.2 Structural Inference

The structural inference uses the observed portions of the
map and, if available, the inferred perimeter to infer un-
observed internal map structure and potential breaches in
the inferred perimeter. Structural inference is based on the
assumption that most environment structure, even structure
currently unexplored, is similar to other structure that ex-
ists. Following this logic, with the use of libraries of general
map structure, it is possible to infer the unobserved portions
of the environment by matching library structure with the
observed portions of the environment.

In practice, the inference is performed by simulating a
sparse 360o laser range scan, s, at a randomly sampled pose
in the observed environment, i.e. p∈O f ; demonstrated from
the green pose in Figure 3 and in Algorithm 2 on line 1. s
is simulated using ray-casting to simulate each individual
beam, si, of the scan. If all of the cells passed through by
any si ∈ s are observed, then s is used to create a new library
entry in the structural library of priors, L; as shown in Al-



gorithm 2 lines 3-5 and the red inset in Figure 3. If any of
the cells, c j, passed through by any si ∈ s are unobserved,
c j ∈ I∪U , then the library is searched for the entry, l∗ ∈ L,
that maximizes the probability of having generated s.

Algorithm 2 : Structural Inference
1: p = Sample Pose(costmap) / find sample pose
2: S = Simulate Scan( p )
3: if (!p0.need Inference() then
4: Lc.add To Library( S )
5: return
6: l∗ = argminl∈Lc

Compare Scans(S, l) / sample library for match-
ing scan

7: mergeScanIntoMap(l∗, p) / merge l∗ into costmap at p
8: return

Fig. 3 The developed inference method uses the observed portions of
the map (left) to create a library of map structure. The starting location
(shaded square) and exploring robot (light-shaded circle) are shown.
An example library entry is provided in the red inset from the exploring
robot’s pose. This library entry is then used to infer the unexplored
portions of the map and is then merged with the observed map as shown
in light gray for inferred free space and dark gray for inferred walls
(right).

The probability of a match is calculated by considering
each beam of the two scans; the library scan, l, and the sim-
ulated scan from the observed environment, s. Each scan is
composed of a set beams with lengths, zi

l ∈ zl and zi
s ∈ zs

and bearings. However, as both beams are simulated, the
bearings have perfect correspondence and can be ignored.
The mean and standard deviation of each set of scan lengths
can be calculated giving µs,σs and µl ,σl . The means are
then used to normalize the library entry lengths, giving z̃i

l , so
that the shape of the library entry is prioritized over the size
for the comparison. Then, assuming that the scan lengths
are normally distributed, µs and σs define a normal distribu-
tion of zs. The corresponding normal cumulative distribution
function, Φs(z), can be approximated using the sigmoid [22]

Φs(z)≈
1

1+ e−
√

π(−0.0004406x5+0.0418198x3+0.9x)
, (1)

where

x =
z−µs

σs
. (2)

Then, the probability of a random beam in s being closer
in length to zs

i then z̃l
i is

P(si = li|z̃i
l ,z

i
s) = 1−|Φs(λ1)−Φs(λ2)| (3)

where

λ1 = zi
s + |z̃i

l− zi
s| (4)

and

λ2 = zi
s−|z̃i

l− zi
s|. (5)

Here, |Φs(l1)−Φs(l2)| is the probability of another sample
from the observed population being closer to the observed
measurement then the library measurement. Resulting logic
is that as |z̃i

l − zi
s| → 0 that P(si = li|z̃i

l ,z
i
s)→ 1. From this,

the probability of the library entry l generating the simulated
observed scan s given all beams is

P(s = l|zs, z̃l) =
|zs|

∏
i=1

P(si = li|z̃i
l ,z

i
s). (6)

Then, the library entry with the highest probability of gen-
erating the simulated observed scan is

l∗ = argmax
l∈L

|zs|

∏
i=1

P(si = li|z̃i
l ,z

i
s). (7)

Or as the product of probabilities is monotonically decreas-
ing

l∗ = argmin
l∈L

|zs|

∑
i=1
−log(P(si = li|z̃i

l ,z
i
s)) (8)

is equivalent and simpler to compute.
To increase the library of structural priors beyond the ob-

servations of the current exploration, simulated scans from
different environments are seeded into the structural infer-
ence library. For this work the structural library consisted
of 86,246 entries from 124 environments [23]. While this
provides a wide range of structural priors it also increases
the computation time required to identify matching entries.
To alleviate this concern, rather than searching through the
complete library, the library is randomly sampled to iden-
tify the most probable corresponding library entry. To de-
termine the number of samples to perform for each itera-
tion of structural inference, an analysis of the match quality



and computation time was performed. This analysis found
that as the number of samples increases from 0 to 1000 the
quality of the match significantly increases as shown in Fig-
ure 4. Increasing from 1,000 to 5,000 samples there is a
small increase in match quality and there is little improve-
ment beyond 5,000 sample comparisons. The time complex-
ity scales linearly with the number of comparisons and each
comparison takes 6.72∗10−6s on a Intel Xeon CPU with 8
cores at 3.7GHz and 32 GB or RAM.
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Fig. 4 The effect of the number of library comparisons performed in
the structural inference on the minimum log-probability. The number
of sample comparisons indicates how many library entries are sampled
and compared against each query. A lower log-probability indicates a
better quality match between the library and query scan. Each quan-
tity of sample comparisons was tested 4,000 times and the mean and
standard deviation are reported.

Matching library entries, l∗, are merged into the observed
portions of the map if the log-probability of a match sur-
passes a user specified threshold. Bayesian inference is used
to merge inferred cells into the costmap by assuming that
the library of scans is a normally distributed collection that
represents an exhaustive set of general map structure and the
probability of a random entry in L having a higher probabil-
ity of generating s than l∗, P(l∗|L,s). Then, the occupancy
of each affected cell, ci, can be updated by

P(ci ∈ I f |l∗,L,s) =
P(l∗|L,s)P(ci ∈ I f )

P(l∗)
(9)

if the corresponding cell in l∗ if free. If the corresponding
cell in l∗ is occupied then P(l∗|L,s) is replaced by (1−
P(l∗|L,s)). P(ci ∈ I f ) is the prior probability that cell ci was
inferred to be free before this iteration of inference. Initially
all cells are given a prior probability of 0.5 representing
complete uncertainty in the occupancy of ci. When a cell
is observed to be ci ∈ O f ∪Oo its inferred occupancy is re-
placed with the observed occupancy of the cell. Using mul-
tiple iterations of inference over the same cell conflicting
inferences can be resolved. When P(ci ∈ I f )> 1−α , where
α is a user specified value, then ci in the costmap is inferred
to be free. Similarly, when P(ci ∈ I f ) ≥ α , ci is inferred to

be occupied. To increase the usability of the resulting in-
ferences, which as a reminder consists of simulated scans
forming narrow and sparsely sampled inferences, the prob-
ability map is blurred using a Gaussian filter [24] to form a
cohesive estimate of the inferred space before it is merged
into agents occupancy map. An example output of the visual
inference is provided in Figures 5.

Fig. 5 Example of a partially explored map, left, and sample visual
inference, right. The starting location (shaded square) and exploring
robot (light-shaded circle) are shown. The inferred free space in the
right image is weighted by the number of predictions that infer the
space to be free. The brighter the space the more likely it is believed to
be free.

The inference process provides a two-step approach to
infer the unexplored regions of the environment to assist in
exploration. By inferring the unobserved free space, the ex-
ploring robots have additional information to plan how to
explore the remaining space. Exploring robots use the infer-
ence in both their individual planner and in the multiagent
coordination, Figure 6. In their individual planners, robots
will search over both the inferred and observed free space
for potential exploration poses. Then the robots will use the
inferred free space to calculate the reward of exploring those
poses. The inference informs the coordination by identifying
conflicting robot goals.

3.2 Exploration Goal Selection

Each agent selects their exploration goal pose using an in-
ternal market-based approach. The market-based approach
was chosen because of its high performance and ease of
implementation in distributed exploration tasks [6]. In each
robot’s individual market they have a set of poses, P, with
perceived rewards, r̂p ∈ R̂, and costs, ĉp ∈ Ĉ. The rewards
are the predicted information gain from each pose, and costs
are a weighted travel cost to reach each pose. The value of
each pose, v̂p, is the reward minus the cost of each pose,
v̂p = r̂p− ĉp. The robot explores by selecting

p∗ = argmax
p∈P

v̂p (10)

and then executing the exploration of p∗.
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Fig. 6 Overall system architecture. Collected sensory data is used
to perform SLAM to generate an occupancy grid or costmap. The
costmap is then inferred over to provide additional information for both
the individual planner and coordination.

We build upon previous methods of market-based goal
selection [6] by improving how the reward of each pose
is calculated. The reward of each pose is calculated using
the additional information provided by the map inference.
To estimate r̂p a simulated measurement from p is taken to
identify the set of observable cells from p, Γ . In this case a
laser scanner is simulated, similar to [9], using ray-tracing
and every cell, ci, between the robot and first obstruction of
the simulated laser is added to Γ . r̂p then is the sum of all
reward in Γp,

r̂p =
|Γp|

∑
i

reward(ci). (11)

To calculate the function reward(), a reward map is cre-
ated, giving the reward the agent will receive for observing
any given cell. A standard information based approach to
reward mapping would use each cell’s probability of occu-
pancy to determine its reward, i.e.

reward(ci) = argmin(1−occi,occi), (12)

where occi is the Bayesian probability of occupancy of ci.
This reward mapping provides a maximum reward for cells
with the highest uncertainty, that is when occi = 0.5 and the

least reward when the occupancy of the cell has a high prob-
ability of being occupied (occi = 1.0) or free (occi = 0.0).
Alternatively, a reward mapping that prioritizes exploration
is

reward(ci) =


1 : ci ∈ (I f ∪U)

rb : ci ∈ Ib
0 : ci ∈ (Io∪O f ∪Oo).

(13)

This approach prioritizes exploration by providing re-
ward for observing cells that are inferred to be free or breach
the inferred perimeter. An inferred breach, Ib, occurs when
the structural inference contradicts with and extends beyond
the inferred perimeter; i.e. a doorway to a new wing of a
building. However, it is worth noting that multiple reward
mappings can be added simultaneously to achieve different
behaviors and accommodate multiple weighted objectives.
An example of a combined occupancy and exploration re-
ward mapping is shown in Figure 7. Our adaptation of using
a generic reward map allows for flexibility in practice. With-
out modifying the coordination or exploration algorithm we
can prioritize different agent behaviors by adding or modi-
fying reward mappings.

Fig. 7 Example of a reward map. Green indicates areas with low re-
ward, corresponding to places that have been observed, and red in-
dicates area of high reward, corresponding with unobserved inferred
areas.

Exploration goal poses are selected by each agent in-
dividually searching their reward map for the set of explo-
ration poses that will form their market, P. This is an iter-
ative process that attempts to find a set of minimal poses,
P, that fully observe all available reward, R; Algorithm 3.
As there are multiple poses that can observe the same por-
tions of the environment, P is not a unique set. Calculating
the optimal set P is infeasible as the number of potential
poses an exploring robot can take is in the hundreds or thou-
sands. To approach this problem, we simplify in two ways.
First, the observed and inferred space is reduced to a high-
level graph representation using the Zhang-Suen thinning



algorithm [25], Algorithm 3 Line 7. This produces a skele-
tonized representation of the space that reduces the size of
the set of poses to search. The benefit of the Zhang-Suen
thinning algorithm is that it does not remove the poses near
the center of each section of the map. This intuitively leaves
likely favorable poses for observing the space while remov-
ing poses that likely have a restricted view. Second, the high-
level graph is then repeatedly sampled to find the members
of P. Poses are added to P using an evolutionary algorithm
while attempting to satisfy two objectives. The first objec-
tive is to select P to maximize the cumulative observed re-
ward, R, of the poses p∈P. The second objective, in priority,
is to minimize |P|.

To search for P, an evolutionary algorithm is used for a
predetermined number of iterations for each planning step.
In subsequent planning steps the process is repeated to con-
tinuously refine and update P throughout the exploration.
The algorithm operates by sampling the high-level travel
graph, G on line 3, for a potential pose, p, to add to P, Al-
gorithm 3 Line 8. If p observes reward that is not currently
observed by a member of P, then p is added to P and the
observed reward of p, rp, is added to the cumulative reward
of P, R, Algorithm 3 Lines 10,12-13. The second step is to
sample the poses p ∈ P to identify redundant poses and re-
move them from P, Algorithm 3 Lines 15-20. If the cumu-
lative reward, R, is unaffected by the removal of p then p is
removed from P.

Algorithm 3 : Pose Selection
1: R :=: current reward of P, initially 0
2: RT = getTotalReward() / cumulative available reward
3: G = thin(I f ∪O f ) / reduce area to be searched
4: i = 0
5: imax := max iterations
6: while i < imax and R < RT do
7: if rand(0,1) > φ then
8: p = samplePose(G) / sample pose to add to P
9: rp = getReward(p)

10: R′ = R∪ rp
11: if |R′|> |R| then / does p add to P?
12: P = P+ p / yes, add p to P
13: R = R′

14: else/ prune poses from P
15: p = P.random member() / select random p ∈ P
16: P′ = P− p
17: R′ = getReward(P′) / reward of reduced set P
18: if |R′|== |R| then / does p add to P?
19: P = P′ / no, remove p from P
20: R = R′

21: return P

The result of Algorithm 3 is that set P contains a set
of poses that maximizes R while, without a loss in R, at-
tempts to minimize |P|. This optimization is considered ev-
ery time step but only performed when R does not capture
all available reward, Algorithm 3 line 6. To evaluate the per-

formance of this optimization 1000 simulations were evalu-
ated and it was found that P needs to be updated on average
14.6% of the planning steps of an exploration. On the plan-
ning steps that required P to be updated, on average 72.48
iterations ( 0.064 seconds) were required for P to fully ob-
serve all available reward. In the simulations and hardware
results that follow imax was set at 500 iterations.

This method of pruning the pose set allows robots to plan
while accounting for all available reward and significantly
reducing the search space.

With P identified, the next step in assembling each robot’s
market is to calculate the reward for p ∈ P

r̂p =
|Γp|

∑
i

wx0rx0
i + ...wxnrxn

i , (14)

where Γp is the set of observable cells from pose p, rm
i and

wm are the reward of ci and weighting of reward mapping m.
Then agents select their next exploration goal, p∗, using

p∗ = argmaxp∈P(r̂p− ĉp), (15)

where ĉp is a weighted travel cost to reach p. Travel costs
are calculated using A* on the costmap. As the reward of
each pose is a weighted area, a useful weighting is ĉp =

(travel distance)2. While the travel cost and exploration re-
ward have different units, the difference between the pro-
vides an estimate of the value of traveling to and exploring
pose p. The exploration is completed when an agent’s mar-
ket contains no poses of value. In an exploration, this would
only occur when there are no accessible inferred or unob-
served cells.

3.3 Coordinated Exploration

After each agent, ai ∈ A, has selected their individual explo-
ration goal poses, p∗i ∈P∗, from their individual markets, the
next step is to coordinate the exploration with local agents.
Each agent broadcasts their goal pose, p∗i ∈P∗, and expected
travel cost, ĉi(p∗i )∈ Ĉ, to all agents in communication range.
All local agents sharing P∗ and Ĉ effectively form a single
bid auction where agents bid with their expected travel costs
to claim their goal poses. When each robot broadcasts their
goal pose they are attempting to underbid other robots to re-
tain their goal pose. Robots are not allowed to be deceptive
in their bids and must broadcast their true expected travel
cost. When a robot is underbid on a goal pose it will resolve
the conflict by selecting an alternative goal pose from their
individual market. This procedure is outlined in Algorithm
4.



Algorithm 4 : Pose Auction For a0

1: [bidsĉ,bidsp,bidsid ] = get broadcast bids()
2: for b ∈ bids do
3: deuclid =

√
(a0.x− p∗b.x)

2 +(a0.y− p∗b.y)
2

4: if deuclid < ĉb(p∗b)+δ then
5: ĉ0(p∗b) =get travel cost(p∗b)
6: if ĉ0(p∗b)< ĉb(p∗b)−δ then
7: continue
8: if ĉ0(p∗b)<= ĉb(p∗b)+δ and id < idb then
9: continue

10: / a0 is not closer to p∗b than ab
11: discount reward(bidp)
12: P = getPoseSet(mapr)
13: p∗0 = argmaxp∈P(v̂(p)
14: return p∗0

By using broadcast goal poses and expected travel costs,
robots settle conflicting goal poses using the method out-
lined in Algorithm 4. This auction-based approach allows
each robot to explore their optimal exploration pose, p∗ if is
not in conflict with other robots. However, as the number of
robots participating in the exploration increases the chances
of conflicting goal poses increase. Two poses are consid-
ered conflicting when they have overlapping observations of
the same available reward. Algorithm 4 resolves conflicts by
having every agent compare their travel costs and discount-
ing the reward in the predicted observable range of the less
expensive pose of the losing robot’s reward map, line 11.
To reduce computational requirements, Euclidean distance,
line 3, is used as an upper bound on travel cost before a more
thorough search using A* [26], line 5. Once the bids of local
robots have been accounted for, each robots identifies their
pose set, P, and uses their internal market to select their next
goal pose. The purpose of devaluing, instead of removing,
conflicted reward from the reward map is that in the absence
of another place to explore, robot a0 will still move in the
direction of the conflicted goal. Although it will be explored
when the agent arrives, it is possible that it may branch into
new areas that have not been explored, moving the robot
closer to unexplored areas.

After the broadcast is made, the receiving robots ac-
count for the broadcast bid by calculating the reward re-
maining in the pose vicinity at the time that they could reach
the broadcast pose. Receiving robots that would reach the
broadcast pose after the broadcasting robot devalue the ex-
ploration reward observed from the the broadcast pose. Re-
ceiving robots with the potential to reach the pose before
the broadcast robot will ignore the conflict when selecting
their pose. Using the adjusted exploration reward, the robots
individually plan their exploration while accounting for the
anticipated actions of adjacent robots. Each robot uses the
adjusted reward map to maximize their individual reward
by selecting poses in their internal markets. In this way, the
robots coordinate the exploration themselves to achieve the

maximum team reward. This approach has the benefit of be-
ing fully distributed and lacking a central controller to re-
solve local disputes and assign goals.

To account for the potential observations of other robots,
it is assumed in this work that each robot has identical sensor
model; however, it is only necessary that each robot knows
the sensor model of its other team members if they are dif-
ferent. While in this work it is a prior assumption, this could
be adjusted to each robot broadcasting a description of their
sensor model (sensing distance (m) and breadth (rad)) as
part of their bid to allow agents to work with team members
with initially unknown sensor models. Additionally, each
robot maintains a list of recent broadcasts to reduce redun-
dantly exploring a space in the event of communication fail-
ure between the acting and previously broadcasting robot.

As an example of how the coordination would work, if
robot a0 is beginning Algorithm 4 it will receive broadcasts
from nearby agents a1 and a2. Their broadcasts contain their
goal pose locations, p∗1 and p∗2, and the travel costs for each
of them to travel to their goal pose, ĉ1(p∗1) and ĉ2(p∗2); here
travel costs are an estimate of travel distance as all robots
are assumed to have the same travel speed. In the case of
heterogeneous teams, time of travel can be used to settle dis-
putes instead of travel distance to account for different travel
speeds. To check for conflicting goal poses, a0 checks if it
can travel to either p∗1 or p∗2 before a1 and a2, respectively.
This is done by checking if a0’s predicted travel cost to p∗1,
ĉ0(p∗1) is less than ĉ1(p∗1)− δ , where δ is used to account
for movement of a1 since the time of the broadcast, δ = ẋ∆ t.
If a0 can arrive at p∗1 before a1 then a0 disregards a1’s bid
when selecting p∗0. To continue the example, a0 then repeats
the process with a2’s bid. In this case, a0 cannot arrive at
p∗2 before a2, i.e. ĉ2(p∗2) < ĉ0(p∗2), and the reward observed
from p∗2 is devalued for a0 to decentivize a0’s exploration in
this vicinity, e.g. for ri ∈ Sp∗2

; r′i = 0.1ri. If instead the a0 and
a2 should arrive at nearly the same time, i.e.

ĉ2(p∗2)−δ < ĉ0(p∗2)<= ĉ2(p∗2)+δ , (16)

then agent identification number is used to settle disputes.
Ideally agent identification numbers are uniquely assigned
before the exploration begins and remain fixed throughout
the exploration. However, in practice assigning random fixed
identification numbers also works as long as care is taken to
reduce matching identification numbers.

Once communication between agents stops, all infor-
mation exchange between them ceases. Consequently, both
agents’ stored location of the other agent will likely be incor-
rect shortly after the loss of communication. However, both
of their goal poses (and observed reward in the vicinity) will
likely continue to be valid until they reach their goal. This
is sufficient for each robot to, initially upon loss of commu-
nication, separate and not explore the same goal area. Once



either agent reaches their goal and/or selects a new goal, the
other agent will no longer be aware of, it or capable of re-
solving conflicts, until communication between them is re-
stored. While this seems problematic, the lack of coordina-
tion in the absence of communication does not cause many
problems in practice as the agents that are most likely to be
in conflict are also the most likely to be able to communi-
cate.

The result of the inference based coordination is a goal
pose for each robot to explore. Each robot uses the observed
map structure to make their own inferences about the un-
observed portions of the map. Then, robots sample poses
from the observed and inferred portions of the map to create
an internal market of poses that fully observe the inferred
free space. Robots then select the exploration pose with the
highest value from their internal market and set it as their
exploration goal. Robots settle local conflicts by broadcast-
ing their selected goal pose and travel cost. This approach
provides a reasonable method of incorporating the benefits
of map inferences into a distributed exploration by building
upon many of the strengths of market-based coordination
and information-theoretic approaches to exploration. This
allows for a fully distributed approach to coordination and
informed goal selection.

4 EXPERIMENTS AND RESULTS

As there are two fundamental contributions of this work, the
results will be split into two separate sections. First, the in-
ference is evaluated using both collected laser scan data and
a series of simulations. The inference is evaluated for both
the increase in information provided by the inference (recall)
and the accuracy of the information provided (precision).
Next, the inference based coordinated exploration is evalu-
ated using simulation against two baselines for exploration
efficiency. Finally, both are brought together in an experi-
ment with three Pioneer robots demonstrating the feasibility
of the system in practice.

4.1 Inference Quality

To evaluate the performance of the inference, two series of
simulated explorations were conducted. The first simulation
consisted of a single robot exploring a previously unexplored
building using the described market-based frontier explo-
ration method. It is assumed that the agent has a 360o laser
scanner and the ability to perform SLAM. While the robot
explored the building it recorded both its observations and
the output of the inference. The second simulated explo-
ration uses publicly available laser scan and odometry data
sets to perform inference using real world sensor data [27].

Each costmap is compared against a previously recorded
map of the environment.

To evaluate the performance of the inference, the com-
monly used classification metrics of precision and recall are
used. Precision describes how accurate the inferred informa-
tion is:

Precision =
|(I f ∩X f )∪O f |
|I f ∪O f |

(17)

where |(I f ∩X f )| is the count of correctly inferred free cells
and |O f | is the number of observed free cells. Recall de-
scribes how complete the inferred information is and is de-
fined as

Recall =
|(I f ∩X f )∪O f |

|X f |
. (18)

These two metrics combine to allow for an accurate descrip-
tion of how much additional information is gained by the
inference (recall) and how useful that information is (preci-
sion). The naive (without inference) exploration of the en-
vironment is used as a baseline for comparison. Increases
in the inferred recall indicates that the inference provides
information describing a larger portion of the map than is
currently observed while the inference precisions indicates
the accuracy of the inferred information. Large translation
or rotation errors in the map inference will result in a signif-
icant number of cells being inferred free that are not actually
free. As precision is a metric that quantifies the accuracy of
the predicted inference, these misclassified cells will reduce
the precision.

For the simulations, test environments were randomly
selected from the set of maps and then starting locations
were randomly selected from unoccupied cells in the chosen
map. The robot then explores the map using a greedy fron-
tier based approach without using map inference. At each
time step, the exploring robot records the current map in-
formation gathered through direct observations, the naive
costmap, and provided by the map inference for comparison.
We note that prior methods for map inference using visual
feature matching did not retrieve meaningful matches from
our database of maps because they were unable to search a
large enough portion of the database in a reasonable amount
of time due to their computational requirements. In contrast,
our methods using shape descriptors are able to find matches
from the library in real time. Thus, we do not present com-
parisons to the visual feature based methods here.

Simultaneously recording the naive costmap and the in-
ferred costmap allows the contributions of the inference to
be identified. A total of 300 trials were completed. To ac-
count for the wide range of exploration times required to
explore maps of different sizes, the results have been nor-
malized with respect to mission time duration. Results for



recall and precision are presented below in Figures 8 and 9,
respectively.
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Fig. 8 The mean recall of the naive and inference costmaps for the
exploration trials completed. Inferred refers to the method presented in
this work while the naive costmap is the costmap without inference; i.e.
only the area the robot has directly observed. The error bar indicates
the standard error of the mean. Recall provides a measure of how much
of the explored space is observed or inferred.
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Fig. 9 The mean precision of naive and inference costmaps for the ex-
ploration trials completed. Inferred refers to the method presented in
this work while the naive costmap is the costmap without inference;
i.e. only the area the robot has directly observed. The error bar indi-
cates the standard error of the mean. Precision provides a measure of
how correct the observations or inference are. Notice that the naive
observations have perfect precision; this is because no measurement
errors are provided and all observations are assumed to be correct in
the simulator.

As can be seen in Figure 8, a significant amount of in-
formation is gained by the inference, especially early in the

exploration. The peak mean gain in recall occurs at 5.6%
of the exploration duration with a gain in recall of 108.84%
measured as a fraction relative to the naive baseline, Figure
10. The mean gain in recall throughout the exploration is
34.47%. This gain in recall provides the agent with an ad-
ditional 34.47% information with which to plan the explo-
ration. By looking at Figure 9 it can be seen that the infor-
mation provided by the inference is also accurate and gener-
ally infers the map structure correctly, with a mean precision
across the exploration of 0.9539 for the inference.
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Fig. 10 Proportional benefit of recall by inference versus naive obser-
vation.

To evaluate the performance of the map inference using
real data a publicly available data set of laser scans was used
in new environments [27]. The laser used in the data set has
90o FOV and returns 180 samples per reading. The inference
was implemented using the Robot Operating System [28].
To prepare the laser scan and odometry for inference, the
data set is provided to the ROS SLAM G-Mapping project
[29] which returns a costmap. The costmap is then inferred
over and, again, both the naive and inferred costmaps are
recorded for comparisons. The inference used both the struc-
tural and perimeter inference with the same structural library
as the previous trials.

As can be seen in Figure 12, the inference has a signif-
icant increase in the recall over the naive baseline. The pre-
cision is noticeably worse than the simulated trials for both
the naive baseline and the inferred methods. Using real sen-
sor data complicates the ability to determine the accuracy
of the inference for two reasons. First, the ”ground truth”
map used to evaluate the observed costmap and the infer-
ence costmap is a recreated estimate of the true map; i.e.
every time a map is created via SLAM it is slightly differ-
ent. For this reason, the precision of the naive costmap drops
below 100% and the inference has a corresponding decrease



in precision. Second, the environment is not fully explored
in the ”ground truth” costmap. As the inference attempts
to predict the complete environment and the exploration is
not completed, as shown in Figure 14, it is expected that
the inference will suffer a slight decrease in performance in
both precision and recall. This is because it is likely that
the inferred but unobserved portions of the map are at least
partially occupied with free space as inferred. Despite these
testing complications, the inference still maintains high pre-
cision throughout the exploration as shown in Figure 11 with
an appreciable difference in recall as shown in Figures 12
and 13.
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Fig. 11 The precision of the naive and inferred costmaps using the
collected laser scans. Precision provides a measure of how correct the
observations or inference are. Notice that the naive observations no
longer have perfect precision, because of differences in the resulting
SLAM maps between iterations.

4.2 Exploration Efficiency

To evaluate inference’s contribution to exploration efficiency
multiple tests were conducted with different exploration meth-
ods, levels of communication, and number of agents. For
the purpose of these tests, exploration efficiency is measured
by the number of time steps required to complete an explo-
ration, i.e. when O f = X f . The different exploration coor-
dination methods all included a single-bid auction to settle
agent disputes with the different exploration goal selection
methods. The goal selection methods tested were the pro-
posed inference-informed pose market, a naive (without in-
ference) pose market, and a frontier market. The inference-
informed pose market is the developed method introduced in
Section 3.2 and is the method being presented in this work.
A reward mapping that prioritizes exploration, see Equation
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Fig. 12 The recall of the naive and inferred costmaps using the col-
lected laser scans. Recall provides a measure of how much of the ex-
plored space is observed or inferred.
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Fig. 13 Proportional benefit of recall by perimeter and structural infer-
ence versus naive observation.

13, with rb = 10 was used. The naive pose market is an iden-
tical implementation to the inference-informed pose market
method except it does not have the additional information
provided by the inference. Consequently, its poses are re-
stricted to the observed space and the pose rewards are ex-
panded to include unknown cells with equal weighting. In
this way robots develop a pose set in the observed space that
attempt to maximize their observational coverage of the un-
known space. The frontier market is included as a well stud-
ied baseline. For the frontier market frontier cells were clus-
tered based upon their 2D costmap 8-factor connectedness.
The mean center of individual frontier cluster member loca-
tions is assigned as the exploration goal of each cluster. Each
frontier centroid had a uniform reward, causing agents to op-
erate to minimize their cumulative travel cost when select-



Fig. 14 The fully observed naive costmap (left) and the resulting in-
ferred costmap (right). Notice that though the exploration is complete
it is likely not fully explored resulting in a misrepresentation of the per-
ceived ground truth and an underestimate of both the inference recall
and precision. This is because, although it is not certain, it is likely that
the inferred but unobserved portions of the map are at least partially
occupied with free space

ing exploration goals. Robot markets consist of all known
frontier clusters and robots. All three methods used an inter-
nal market for exploration goal selection and then broadcast
their bids in the open local auctions. The primary difference
between the three methods was the method of sampling goal
poses and calculating each goal pose’s reward.

The simulated explorations were performed in a simu-
lation environment developed by the authors. The simulator
used a discretized 2D costmap of the world. Environments
were included by importing raw images of floor plans, Fig-
ure 15, which were discretized into cells that were either
free or occupied. The exploration test map was not included
in the inference library. All robots have no prior knowl-
edge of the environment they are to explore. Robots have
the available actions of moving to any adjacent costmap cell
or remain stationary. Robot observations are simulated using
ray-casting to detect obstacles and restrict the robot’s field of
view. Communication is similarly checked using ray-casting
to detect obstacles between robots and restrict communica-
tion as necessary. There is no stochasticity in the robot’s po-
sition or observations.

To test the robustness of the developed method, it was
tested with varying communication restrictions and numbers
of robots in the exploration team. The simulations used the
same simulator as the inference verification. For each iter-
ation a random starting location was chosen and all robots
started at that location. The communication ability of each
agent was varied from unrestricted global communication

between all agents to range restricted line-of-sight commu-
nication. The range for line of sight communication was var-
ied from 5 to 100 units. Robot sensor range was held fixed
at 100 units for all trials. Tests were conducted to identify
the performance of the system with two to eight agents.
This range was chosen as the exploration gain of additional
agents appeared to be negligible. For each test scenario, ei-
ther number of agents or communication strength, a random
starting location was chosen on the map for each test itera-
tion for a total of 50 iterations.

Fig. 15 The test environment used for multi-robot simulated trials. The
map has dimensions of 144x108 units. Note: the size of the test envi-
ronment in meters was not available for every map in the dataset, so
we normalize maps to dimensionless units for comparison.
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Fig. 16 Exploration efficiency for varying number of agents in the sim-
ulated trials. As can be seen across the range of agents tested the infer-
ence informed pose selection method results in more efficient explo-
ration of the environment. The error bar indicates the standard error of
the mean for the 50 iterations of each of the 7 testing scenarios.



The developed exploration method that leverages map
inference to inform pose selection outperforms the naive
pose and frontier based explorers by (µ = 17.70%, σ =

5.37) and (µ = 12.34%, σ = 2.97), respectively, across the
range of team sizes tested as shown in Figure 16. This shows
that the inference informed exploring team is able to iden-
tify better exploration goals for the members of the team
resulting in reduced time to fully explore the same space.
As the number of team-members is increased the inference
informed exploring team continues to outperform the two
baselines suggesting the inference leads to improved coor-
dination. It is interesting to note that for the trials conducted
with seven agents, all three methods had a reduction in ex-
ploration efficiency. This is likely due to there only being
50 simulations for each trial and increasing the number of
simulations and varying the environment would remove this
behavior.
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Fig. 17 Exploration efficiency for varying communication ability in
the simulated trials with three robots. As can be seen across the range
of communication tested the inference informed pose selection method
results in more efficient exploration of the environment. The error bar
indicates the standard error of the mean for the 50 iterations of each of
the 11 testing scenarios.

The developed exploration method that leverages map
inference to inform pose selection outperforms the naive
pose and frontier based explorers by (µ = 16.89%, σ =

4.92) and (µ = 13.15%, σ = 3.26), respectively, across the
communication ranges tested with three agents. This shows
that as the communication between agents degrades the de-
veloped pose base inference degrades gracefully. This is be-
cause, similar to the two baselines, the inference informed
robot uses the auction based approach to resolve local con-
flicts. When two robots come into contact they resolve ex-
ploration conflicts and retain the other robots goal locations.
So, even after communication between them has been sev-
ered they continue to account for the other robot’s broadcast

exploration goal. This behavior results in the robots sepa-
rating from one another and effectively exploring the space
even with unreliable communication.

The inference informed pose market method significantly
outperforms the other two methods, Figures 16-17. The in-
ference assists the exploration in two ways. First, as dis-
cussed before the inference improves the estimate of pose re-
wards. Second, the inference allows for the marketed poses
to be placed in additional locations. The inference informed
pose market allows for poses to be placed in O f ∪I f and I f is
the unobserved portions of the map. Previous methods that
use information theory approaches restrain the poses of ex-
ploring robots to the explored portion of the map, O f . With-
out an inferred boundary to limit pose placement, poses with
the largest reward would be those well outside of the ex-
plored region. This is because a simulated sensor reading at
this location would predict the maximum available reward in
every direction; as there is unobserved space in every direc-
tion. In practice this would likely lead to poor performance
as little information is known about the true value of explor-
ing this area or if it is even reachable. Our method of map
inference solves this problem by placing limits on where in
the unobserved space the poses can be placed and inferring
limits on the simulated sensor readings. This is done by lim-
iting poses to the inferred free regions and limiting the sen-
sor readings to rewarding only inferred free space.

4.3 Hardware trials

Hardware trials were conducted on Pioneer P3-DX robots,
see Figure 18, to verify the functionality of the combined
inference and coordination on hardware. For this trial global
communication was assumed and a fixed team size of three
agents was conducted with each of the coordination methods
in one environment. The experiment environment is shown
in Figures 19-20. Each Pioneer has an Acer netbook with a
Pentium N3530 Processor (< 2.58 GHz) and 4 GB DDR3
Memory and Ubuntu 14.04 LTS operating system. Each pi-
oneer is differential drive and equipped with wheel encoders
and an RPLidar 2D Laser Scanner (≈ 200o FOV) as its sen-
sors for odometry and mapping. Each Pioneer uses the Robot
Operating System (ROS) (Indigo) for all computation [28].
ROS packages used for sensor acquisition and SLAM in-
clude Rosaria[30], rplidar ros[31], Rocon [32], and gmap-
ping[29]. Navigation, control, and communication was per-
formed using publicly available pioneer packages [33]. Map
merging was performed using iterative-closest-point with ini-
tial estimates of team member positions and orientations.

During the hardware trials it was demonstrated that the
pioneers were capable of using the inference based coordi-
nation to explore an indoor space with existing open source
mapping/navigation packages and off-the-shelf laser scan-
ners. Figure 21 shows a sequence of costmaps through out a



Fig. 18 Pioneer P3-DX used in the hardware experiments.

Fig. 19 The test environment used in the hardware trials. Environment
is 8.4m x 6.1m.

solo exploration by a pioneer. Each sequence identifies both
the pioneer’s location and the location of their current goal
pose. Figure 22 shows the map constructed by the explo-
ration team and their paths through the environment during
the mapping. During the exploration the pioneers each at-
tempt to collect the maximum amount of reward. Pioneer 0
initially infers a large reward forward and to the left. How-
ever, upon turning the corner and communicating with Pi-
oneer 1, Pioneer 0 reverses direction to observe the area
initially to its right. Pioneer 1 chooses its path to avoid the
claimed areas of Pioneers 0 and 2, leaving mainly the room
in the bottom right. Pioneer 2, upon observing the hallway in
the top left, reverses direction to clear the corner room in the
top right. This observed behavior qualitatively confirms the
results from the simulations on a team of robots operating in
an indoor environment with distributed computation.

Fig. 20 The test environment used in the hardware trials. Picture is
taken from right side of map in Figure 19.

5 CONCLUSIONS AND DISCUSSION

This work presents a novel map inference based coordina-
tion method for distributed multi-robot exploration. Explor-
ing robots sample potential poses from the observed and in-
ferred portions of the map and use an internal market to se-
lect their goal pose for exploration. To resolve conflicting
goal poses between agents, each agent broadcasts their goal
pose and travel cost in an open auction. Robots use the de-
veloped map inference techniques to sample and evaluate
potential goal poses. The map inference was tested across
126 different maps and provided an average gain in infor-
mation of 34.47% with a mean precision of 95.1% in the
simulated trials. The inference based exploration method in-
creased the team’s cumulative exploration efficiency against
a naive (without inference) information pose and frontier
based exploring teams in the simulated trials. The distributed
coordination method was demonstrated to be robust to vary-
ing numbers of agents, outperforming the naive and fron-
tier based exploration methods by 13.15% and 16.89%, and
communication ability, outperforming the naive and fron-
tier based exploration methods by 12.34% and 17.70%. The
developed system was then demonstrated through hardware
trials on a team of robots.

In this paper we addressed some of the current limita-
tions in coordinated exploration. We demonstrated an effec-
tive method of coordinated exploration that leverages addi-
tional information provided by map inference to increase ex-
ploration efficiency. There are multiple extensions that may
benefit from the developed techniques. First, individual path
planning is non-optimized, which likely decreases the over-
all system efficiency. Information gathering path optimiza-
tion methods [34,35,8] could be incorporated using simu-
lated sensor readings to further improve system performance.

While exploring, the inference is able to identify dom-
inated unexplored contours. These contours are dominated
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Fig. 21 An example of an inference informed exploration sequence. The pioneer is the dark-shaded circle and its current exploration is the lightly-
shaded circle. The sequence shows eight inference updates throughout the exploration proceeding from left to right through the top and then bottom
row.
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Fig. 22 The resulting merged map of the test environment and the
paths of the three pioneers during the exploration. Numbered rectan-
gles indicate starting positions of each pioneer.

in the sense that they are completely surrounded by explored
space. Consequently these areas can be reduced in value to
disincentive their exploration in favor of areas that are not
dominated. This would likely extend the explorable range
of the system at a potentially small information cost.

In an energy restricted exploration, common among quadro-
tors especially, exploring robots are required to select the
last place they will explore before their battery expires. One
method of extending battery life uses self-organizing pairs
of relay and sacrificial robots. Near the end of the explo-
ration the relay will rest, or land, with enough energy to re-
turn to the operator and await the sacrificial robot. The sac-
rificial robot will then explore until their battery decreases

to point that is can only reach the relay. The sacrificial agent
will then share its observations with the relay and land, un-
able to return to the operator. The relay will then return both
their collected data and the data of the sacrificial robot. This
method was demonstrated to increase the exploration range
of a system [36]. However, as the potential cost of sacrific-
ing an agent is large it would be beneficial to use inference
to predict the value of information gain prior to selecting to
sacrifice.
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