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INTRODUCTION

The physical, biological, chemical, and opti-

cal processes of the ocean operate on a wide 

variety of spatial and temporal scales, from 

seconds to decades and from micrometers to 

thousands of kilometers (Dickey et al., this 

issue; Dickey, 1991). These processes drive 

the accumulation and loss of living and non-

living mass constituents in the water column 

(e.g., nutrients, phytoplankton, detritus, sed-

iments). These mass constituents frequently 

have unique optical characteristics that alter 

the clarity and color of the water column 

(e.g., Preisendorfer, 1976). This alteration 

of the ocean color, or more specifi cally the 

change in the spectral “water-leaving radi-

ance,” Lw(λ), has led to the development of 

optical techniques to sample and study the 

change in biological and chemical constitu-

ents (Schofi eld et al., this issue). Thus, these 

optical techniques provide a mechanism to 

study the effects of underlying biogeochemi-

cal processes. In addition, because time- and 

space-dependent changes in Lw(λ) may be 

measured remotely, optical oceanography 

provides a way to sample ecological interac-

tions over a wide range of spatial and tem-

poral scales.

The question often posed by scientists 

trying to resolve problems involving the 

temporal and spatial variation of oceanic 

properties is: “What is the optimal time/

space sampling frequency?” The obvious an-

swer is that the sampling frequency should 

be one half the frequency of the variation 

(i.e., Nyquist frequency) of the property of 

interest. However, therein lies the rub for 

the oceanographer: the range of the relevant 

scales is large, and the range of available 

resources and/or actual engineering capa-

bilities to sample all relevant scales is often 

small. Hence, the decisions affecting re-

source allocation become critical in order to 

maximize the total data information in both 

quantity and quality. While these scientifi c 

resource decisions are rarely discussed in 

explicit terms of cost-benefi t analysis, such 

discussions should be integral parts of the 

scientifi c design of instruments, platforms, 

and experiments aimed at resolving oceanic 

processes.

The practical examples of this problem in 

remote sensing include: “What is the optimal 

repeat coverage frequency?” and “What is the 

optimal Ground Sample Distance (GSD) or 

pixel size of the data?” For the optical ocean-

ographer, there is also the issue of optimal 

spectral coverage needed to resolve the opti-

cal constituents of interest (Chang et al., this 

issue). The sum of these considerations feed 

into the sensor, deployment platform, and 

deployment schedule decisions. For polar-

orbiting and geo-stationary satellites that 

cost hundreds of millions of dollars, as well 

as airborne sensors that have smaller upfront 

costs but higher deployment costs, the deci-

sion of sampling frequency directly impacts 

the scientifi c use of the data stream, and 

what processes may be addressed with data 

streams collected by these sensors. These 

scientifi c cost-benefi t analyses extend be-

yond the cost in dollars because the typical 

lifetime and replacement cycle of these sen-

sors is on the order of years to decades, and 

a poorly designed sensor package is very dif-

fi cult to replace.

In 2001, the Offi ce of Naval Research 

(ONR) sponsored the Hyperspectral Coastal 

Ocean Dynamics Experiment (HyCODE) 

(Dickey et al., this issue), which presented 

the opportunity to study the question of 

scales of variability in remote-sensing data. 

Hyperspectral airborne sensors were de-

ployed on several platforms at various al-

titudes. This coverage was supplemented 

by numerous space-borne, remote-sensing 

satellites. The airborne instruments included 

two versions of the Portable Hyperspectral 

Imager for Low-Light Spectroscopy (PHILLS 

1 and PHILLS 2) (Davis et al., 2002) op-

erating at an altitude of less than 10,000 

feet and 30,000 feet, respectively, as well as 

the NASA Airborne Visible/Infrared Imag-

ing Spectrometer (AVIRIS) sensor operat-

ing at 60,000 feet. These sensors provided 

hyperspectral data at 2 m, 9 m, and 20 m 

GSDs, respectively. The satellite data col-

lected included the multi-spectral images 

from Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS), Moderate Resolution Imaging 

Spectroradiometer (MODIS), Fengyun 1 

C (FY1-C), Oceansat as well as the multi-

spectral polarimeter Multiangle Imaging 

SpectroRadiometer (MISR) sensor and sea 

surface temperature (SST) sensor Advanced 

Very High Resolution Radiometer (AVHRR). 

These collections provided a wealth of re-

mote-sensing and fi eld data during a spa-

tially and temporally intense oceanographic 

fi eld campaign, and they offered the ability 

to begin to address the issue of optimal sam-

pling scales for the coastal ocean. 

The use of these multiple remote-sensing 

data streams requires the calibration, vali-

dation, and atmospheric correction of the 

sensor signals to retrieve estimates of Lw(λ), 

or “remote sensing refl ectance,” Rrs(λ), a 

normalized measure of the Lw(λ). Our goals 

in this paper are to illuminate some of the 

issues of remote sensing spatial scaling in 

the nearshore environment and attempt to 

derive some understanding of appropriate 
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sampling scales in the nearshore environ-

ment. We will focus on the data collected by 

a single sensor (PHILLS 2) to reduce uncer-

tainties in the analysis that may result from 

the different data processing techniques ap-

plied to each of the individual sensors’ data.

METHODS

The PHILLS 2 was deployed seven times 

(July 21st, 23rd, 27th, 31st a.m., 31st p.m., and 

August 1st and 2nd) during the 2001 HyCODE

LEO-15 fi eld program, and each mission 

generated nearly 4,000 square kilometers 

of spectral data at 9 m resolution (Figure 

1). For this discussion on spatial scaling, we 

have chosen to focus on a single PHILLS 2 

image from July 31st, as the coverage pro-

vided by these data approximates the total 

spatial extent of a satellite sensor, at a much 

higher spatial resolution, which allows us to 

explore scaling issues within a single image 

cube. The calibration of the sensor (Kohler 

et al., 2002a) and the specifi c corrections for 

the window as well as the atmospheric cor-

rection of these data are described elsewhere 

(Kohler et al., 2002b). The data values are 

given in Rrs(λ), units of 1/sr (Mobley, 1994). 

This single 124-band data cube from July 31, 

2001 represents 15 GB of raw data. This data 

was calibrated, atmospherically corrected, 

and geo-rectifi ed for the analyses presented 

here. 

The engineering issues surrounding the 

collection, storage, and transmission of 

higher spatial and spectral resolution sys-

tems are fairly cost intensive. If this image 

was collected from space, it would require 

over three hours to transmit the data to a 

ground station over an X-band downlink 

(for reference, a polar-orbiting satellite has 

approximately an 11-minute transmission 

window). One of the easiest ways to reduce 

data density is to reduce spectral resolution. 

However, reducing spectral resolution also 

reduces the biogeochemical information that 

may be derived from optical data. To look at 

the impacts of spectral resolution reduction 

on the ability to discern spatial variability 

in the spectral Rrs(λ) data, the hyperspectral 

data were reduced in spectral resolution to 

approximate the SeaWiFS bands. This was 

accomplished by multiplying the Rrs(λ) by 

the SeaWiFS wavelength response function 

(Figure 2). This created an 8-band image, 

with band centers located at 412, 443, 490, 

510, 555, 670, 765, and 865 nm. These data 

are used to illuminate the different multi-

spectral and hyperspectral data streams to 

resolve information variability in the near-

shore environment. 

The autocorrelation function has previ-

ously been used in time-series studies to de-

termine the optimal time frequency of sam-

Figure 1. A false color 

composite of the 9 m Portable Hyper-

spectral Imager for Low-Light Spectroscopy (PHILLS 2) data 

collected at an altitude of 30,000 feet on July 31, 2001 at the HyCODE LEO-15 study 

site off shore of New Jersey. Th e inshore yellow dot represents the location of the LEO-15 profi ling bio-optical 

node. Th e off shore blue dot is the location of the UCSB OPL (University of California, Santa Barbara, Ocean Physics Laboratory) 

bio-optical mooring. Th e inshore small red box and the off shore small green box represent regions of interest (ROIs) where the 

variance of the SeaWiFS Band 5 Rrs, PC1 (SW) and PC1 (Hyp) were approximately the same, even though the mean was signifi cant-

ly diff erent (see text and Table 1). Th e size of these boxes represents a mean ground sampling distance (GSD) of 441 m (49 pixels 

on a side for a total of 2401 pixels equal to approximately 0.2 km2). Th e white line represents the transect data used in the variable 

GSD study. Its selection was driven by the desire to use a single fl ight line of data for the variance calculation (see text).
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pling (e.g., Abbott and Letelier, 1998; Chang 

et al., 2002; Dickey et al., 2001), which led 

us to attempt a spatial autocorrelation 

to examine spatial variability of Rrs(555) 

along the transect shown in Figure 1 (Fig-

ure 3). However, results indicated a trend in 

this data record, with higher intensities of 

Rrs(555) nearshore. Autocorrelation stud-

ies require the mean of any subsample of a 

record to approximate the mean of the total 

record. Any attempt to calculate a decorrela-

tion scale from this transect would result in 

a value for the decorrelation scale that had a 

direct proportional relationship to the total 

length of the transect. The statistical reason 

for this is that data from the transect does 

not represent a stationary function (i.e., 

the mean changes as the transect length in-

creases and, therefore, the sample variance 

will increase with domain size) (Chilès and 

Delfi ner, 1999) (see Statistics Review box). 

This suggests that the measure (decorrela-

tion scale) may be an improper statistic to 

use to describe the optimal spatial sampling 

frequency for coastal-ocean data sets. 

While not statistically explored here, the 

change in mean (and thus, variance) appears 

to be different over cross-shore distances 

compared to along-shore distances. There 

are other statistical methods for estimating 

spatial variability, including those that de-

termine the anisotropy in the directionality 

of the variance calculation (i.e., the variance 

is different in different directions) (Curran, 

1988; Dale et al., 2002). Variance ellipses 

have been used to describe the variance in 

altimeter-derived velocities in the near-

shore environment (e.g., Strub and James, 

2000). Of particular interest may be the use 

of semivariogram or variograms developed 

in the soil research community to describe 

“roughness” in the topology of spatial mea-

surements (Curran, 1988). These have been 

used with satellite ocean remote-sensing 

data to describe larger scales of interest in 

chlorophyll distributions (e.g., Yoder et al., 

1987). However, many of these methods 

require interpretations that are diffi cult to 

defi nitively relate to geophysical parameters, 

i.e., “sills” and “nuggets” in variograms. Here, 

we are interested in determining an optimal 

sampling size that is more easily discussed in 

terms of this scene of interest and in terms 

of the sensor capabilities. In other words, we 

would like the scene itself to describe the op-

timal GSD based on the ability of the sensor 

and hyperspectral data to resolve distinct, 

homogeneous waters. The more rigorous 

application of 2-D variance analyses is the 

subject of a follow-on study. 

For this study, we derived another meth-

od of estimating spatial variability, one that 

focuses on the ability to separate the linearly 

additive noise of the image from the “real” 

geophysical detail of the scene. Linearly ad-

ditive noise refers to the interference derived 

from the noise of the sensor as well as any 

noise generated from the atmosphere or 

processing algorithms. If the noise is stable 

and linear, then the true signal of interest 

may be retrieved from a sample of a popula-

tion, provided the sample size is suffi ciently 

large. In this case, we would expect that the 

standard deviation of the Rrs(λ) signal to be 

a proxy for the total noise, and that over any 

homogenous region of the scene it should be 

constant, regardless of the magnitude of the 

signal. Thus, any pixel in a homogenous re-

gion of interest would be equal to the mean 

value of the region ± some random compo-

nent. 

Figure 2. To evaluate the eff ect of reduced spectral resolution on spatial variability, a reduc-

tion in the spectral resolution of the hyperspectral data was performed so as to approxi-

mate that of SeaWiFS bands. Shown are the SeaWiFS wavelength response functions used 

to transform the hyperspectral PHILLS 2 data into a simulated SeaWiFS-type data product.

Figure 3. Th e Simulated SeaWiFS Band 5 Rrs values (sr-1*10,000) along the sampling line 

transect as shown in Figure 1. Th e vertical green and red lines denote the respective 

locations of off shore and inshore regions of interest from which the variance threshold 

for the GSD analysis was determined.
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This analysis would fail if there were mul-

tiplicative noise in our data. Multiplicative 

noise occurs when the noise (i.e., standard 

deviation) is a direct function of the inten-

sity (mean) of the signal. By assuming (and 

confi rming) that the noise of the scene is 

truly random and linear, any increase in the 

standard deviation would thus be gener-

ated by a change in real geophysical proper-

ties within the region of interest. Therefore, 

an increase in a region’s standard deviation 

above a background random noise-gener-

ated standard deviation would suggest a 

nonhomogenous region of interest, i.e., one 

with real differences in the region’s geophysi-

cal properties. Put simply, a region of inter-

est with a standard deviation greater than a 

When analyzing any data set, a good place to start is 

by calculating the data set’s mean (a measure of the 

central tendency) and variance (a measure of the dis-

persion or variability). Th e mean is given by the fol-

lowing equation:

where the capital Greek letter sigma (Σ) means sum-

mation over all values, Xi, in the population, divided by 

the total number of values, N, in the population. Th e 

variance is given by:

It is easily seen that the greater the separation of 

the individual values, Xi, are from the mean, , the 

larger the variability of the population represented in 

the data set grows. Th e square root of the variance is 

called the standard deviation. When the population is 

normally distributed around its mean, the standard de-

viation provides a measure that is easily conceptualized 

as a distance away from the mean. Th e standard devia-

tion may also be used to produce a confi dence interval 

in populations that are normally distributed. In such 

data sets, one would expect 68 percent of the popula-

tion to fall with 1 standard deviation (1σ) around the 

population’s mean. Th e probabilities that any member 

of the population would fall within 2 and 3σ are ap-

proximately 95 and 99 percent, respectively.

In spatial data analysis, one is frequently interested 

in how a sample at one spot co-varies or correlates 

with the same measure of a sample in another location. 

Autocovariance and autocorrelation are simply mea-

sures of the covariance and correlation of the values of 

a single variable for all pairs of points separated by a 

given spatial lag (Dale et al., 2002). An estimate of the 

autocovariance for samples at a distance d is given by:

Th e autocorrelation is given by dividing Cov by σ2. 

Th e value of these statistics in describing the data set of 

interest depends on the validity of the underlying as-

sumptions. A trend in the spatial data (similar to Figure 

3) violates the assumption of stationarity, i.e. the esti-

mate of the mean and the autocorrelation are constant 

with respect to distance along the record, and negates 

the eff ectiveness of the autocovariance and autocorre-

lation in the overall analysis. 

Other measures, such as sample variograms and 

Pair Quadrat Variance (PQV), focus only on the change 

with lag distance. For a transect of n contiguous or 

equally spaced intervals (quadrats), a sample variogram 

for a given distance d is given by (Dale et al., 2002): 

 

Note that this equation is omnidirectional. If the 

sample variogram is constant with respect to direc-

tion, it is referred to as isotropic. If the variogram 

changes with respect to the direction with which it 

was calculated, then it is referred to as anisotropic. It 

is clear from Figures 1 and 6 that there appears to be a 

directionality component to the along shore and cross 

shore variance, and thus this image would be consider 

anisotropic. 
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S TAT I S T I C S  R E V I E W

background noise-generated standard devia-

tion must contain regions of distinctly dif-

ferent optical constituents. 

Most studies of spatial variation in radi-

ance fi elds focus on the variance within a 

single channel, or perhaps a combination 

of channels. In this study, we wish to assess 

if there is any additional information to be 

retrieved from the continuous spectrum of 

refl ectance data, as opposed to using only 

one or two bands individually. The question 

of how to use the entire hyperspectral data 

simultaneously to identify homogeneous 

regions of optical properties is an active area 

of research; as a fi rst step, we would like to 

be able to determine if the full spectrum of-

fers any ability over single or multichannel 

data to separate water masses into distinct 

optical regions. One approach to using the 

full spectrum simultaneously is to fi rst lin-

early transform the n-dimensional spectral 

data (where n is the number of wavelengths) 

into a variance minimizing coordinate sys-

tem. When the “proper” or root vectors (ei-

genvectors) of this new coordinate system 

are orthogonal to each other, this type of 

transformation is called a Principal Com-

ponent Analysis (PCA). A PCA allows the 

user to focus on the vectors that describe the 

most variance (information) using the entire 

spectral and image space, rather than focus-

ing only on the variance in the image at a 

single wavelength A PCA is a powerful way 

to look for patterns.
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It should be noted that great care must 

be used in analyzing a PCA transformation 

of a hyperspectral image. There will be an 

equal number of eigenvectors as there are 

spectral channels, but frequently only the 

fi rst 10 eigenvectors are necessary to de-

scribe >99 percent of the total variance in 

the scene. However, the number of eigenvec-

tors needed to describe the total variance in 

the scene is completely image dependent. If 

there is a large amount of spectral variation 

in the scene, then more eigenvectors will 

be needed to describe the majority of the 

scene variance. If there is a small amount of 

spectral variation, then a smaller number of 

eigenvectors will be required. As an example, 

many open-ocean images have been found 

to only need the fi rst three eigenvectors to 

describe 98 percent of the scene dependent 

variance (e.g., Mueller, 1976). For these 

ocean images, a common error in PCA is to 

assume that only three spectral channels are 

needed to describe the scene dependent vari-

ance. It must be understood that the eigen-

vector is a measure of the variance across all 

bands simultaneously, and therefore requires 

the user to recognize that it is a hyperspec-

tral vector itself, which could not have been 

generated without the full spectral data set. 

The easiest way to see the impacts of all of 

the wavelengths on the eigenvector is to 

square the PCA eigenvectors to calculate 

each channel’s percentage contribution to 

the description of scene’s spectral variation. 

We seek to use the hyperspectral data to 

separate homogenous water masses, and we 

believe that there is additional information 

in the full spectrum of the radiance fi eld, 

rather than in any single channel or combi-

nation of channels. In order to test this be-

lief, we will compare the spatial variability of 

three images created from the same hyper-

spectral data set. The fi rst image is a single 

simulated SeaWiFS band (Band 5). The sec-

ond is an image of the eigenvalues of the fi rst 

eigenvector created from a PCA (referred 

to as PCA SW) of a simulated two band 

SeaWiFS image (Bands 3 and 5). These two 

bands were selected for this multispectral 

test, since they are used in many common 

SeaWiFS chlorophyll algorithms (O’Reilly et 

al., 1998). The third image is an image of the 

eigenvalues of the fi rst eigenvector created 

from a PCA (referred to as PCA Hyp) of the 

hyperspectral image. We used the Environ-

ment for Visualizing Images (ENVI) soft-

ware package from Research Systems, Inc., to 

accomplish a PCA of the hyperspectral data. 

The fi rst eigenvector (PC1) of both the hy-

perspectral and two band images described 

>95 percent of the variance of the images; 

PCA Hyp PC1 = 95.6 percent and PCA SW 

PC1 = 99.0 percent. The second and third ei-

genvector of the PCA Hyp accounted for 2.9 

percent, and 0.7 percent of the image’s spec-

tral variance, respectively. The total variance 

described by the remaining eigenvectors for 

PCA Hyp is 1.43 percent. There are only two 

eigenvectors for the PCA SW, and the second 

accounts for 1 percent of the variance.

The fi rst three eigenvectors from the PCA 

Hyp as well as the percentage contribution 

from each spectral channel to each eigen-

vector, is shown in Figure 4. It is clear that 

while there are some dominant channels in 

the fi rst eigenvector (i.e., approximately 560 

nm in PC1), it peaks at only approximately 

6 percent, which means that the other wave-

A B

Figure 4. So as to evaluate the entire spectral data set, Principal Component Analysis (PCA) was used to reduce the dimensionality of the image. PCA is a method of maintaining nearly all 

of the characteristics of the original data set while reducing the number of parameters needed to describe the data. Th is is accomplished by reprojecting those data along orthogonal axes 

that are positioned to best describe the variance of the data (eigenvalues and eigenvectors). Th e fi rst three eigenvector principal components are displayed in (A). Th e infl uence that each 

spectral band had on the fi rst three principal components is displayed in (B). 
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Table 1. Th e mean and standard deviation from the simulated single-band image (SeaWiFS Band 5) as well as the fi rst Principal 

Component Analysis eigenvalue images from simulated dual band (SeaWiFS Band 3 and 5), and hyperspectral data. Also, includ-

ed is the test standard deviation, σt, used for the optimal GSD calculation.

Image Type
Region of 

Interest, ROI
Mean of ROI

Standard 
Deviation 

of ROI

Standard 
Deviation Used 
in Analysis, σt

Simulated SeaWiFS Band 5
Inshore 52.77 1.54

2.0
Off shore 24.55 1.85

PC1 of Simulated SeaWiFS 

Bands 3 and 5

Inshore 13.38 1.79
2.2

Off shore -21.68 1.98

PC1 of Hyperspectral Cube
Inshore 111.08 6.44

8.0
Off shore -12.11 7.46

lengths contribute 94 percent of the infl u-

ence on the variance described by this vector 

(Figure 4A). Therefore, it would not be ac-

curate to say a single channel would describe 

95.6 percent of the variance in this image. A 

more accurate statement would be that the 

spectral shape that describes the most vari-

ance in this image is demonstrated in the 

fi rst eigenvector.

Two regions of interest (ROIs) in the 

visually homogenous areas of the imagery 

were selected to confi rm the hypothesis of 

linear noise (which should be applicable to 

the PCA because it is a linear transforma-

tion of the hyperspectral data) and to gen-

erate a test standard deviation value. These 

two ROIs were approximately 441 m on a 

side (49 pixels), (approximately 0.2 km2, 

2401 pixels); one region was inshore while 

the other was offshore (Figure 1). Table 1 

gives the mean and standard deviations for 

the two ROIs from the simulated SeaWiFS 

Band 5 as well as the PC1 for PCA SW and 

PCA Hyp. Note this standard deviation is 

not normalized by the mean (e.g., Mahade-

van and Campbell, 2002; Mahadevan and 

Campbell, in press) because we are trying 

to separate random noise of the sensor and 

processing from the real geophysical changes 

in the image. Theoretically, any homogenous 

region of the same size should have a similar 

standard deviation; otherwise, some real fea-

ture of interest has been included within the 

study region. As the ROIs were selected with 

an eye to a perfectly homogenous region, we 

allow for some error in our selection criteria. 

Table 1 also provides the test standard devia-

tion, σt, for each of the GSD calculations.

Next, at every pixel along the transect line 

(Figure 1), a new ROIi was created with a 

minimum size of 3 X 3 pixels, or 27 X 27 m 

(729 m2). The mean and standard deviation, 

σ, of each region was calculated, and σi was 

compared against σt. If σi was less than σt, 

then ROIi increased in size by two pixels in 

each of the along-track and cross-track di-

rections, while remaining centered on pixel 

i, and the mean and standard deviations 

were recalculated. This procedure continued 

until σi was greater than σt, at which point 

the size of the previous non-failing ROIi was 

recorded. The size of the ROIi should then 

equate to the maximum size of a region with 

homogenous optical properties.

RESULTS AND DISCUSSION

The results of this approach in describing 

the spatial variability of this coastal environ-

ment may be found in Figure 5. Here, the 

largest GSD of the ROIi that has a standard 

deviation greater than or equal to σt is plot-

ted as a function of the position along the 

transect for three images: single band (Fig-

ure 5A), dual band PC1 (Figure 5B), and 

hyperspectral PC1 (Figure 5C). It can be 

seen that the size of the GSD increases when 

moving from onshore to offshore. The opti-

mal GSD for each data set increases rapidly 

out of the surf zone to an average of approx-

imately 100 m within 200 m of the shore. By 

about 10 km, the optimal GSD grows to >1 

km. The average and median optimal GSD 

for all vary between 150 and 200 m out to 

5 km, with the average GSD growing to ap-

proximately 1 km beyond approximately 12 

km from the shoreline. 

The variability inshore for each GSD 

calculation is driven primarily by intensity 

differences, probably resulting from the 

sediments suspended during the passage of 

the weather front. This variability is repre-

sented in Figure 6, as a false color composite 

of the PCA Hyp PC1 eigenvalues rendered 

in density slices. Clearly, there is a tremen-

dous amount of spatial variability inshore, 

which decreases as we move offshore. As we 

move offshore past 20 km, the optimal GSD 

increases for each test. However, beyond 

this point there are signifi cant differences 

between the SW Band 5 and PCA SW and 

the PCA Hyp. The optimal average GSD 

and median GSD grow to approximately 2 

km and approximately 1.5 km, respectively, 

for SW Band 5 as the water masses become 

more homogeneous with respect to this 

wavelength. The average and median GSD 

for the PCA SW and PCA Hyp are less, as 

the additional bands of information provide 

improved ability to delineate water-mass 

types. There is some additional geophysical 

structure between 28 and 40 km that reduces 

the optimal GSD back to the levels seen 

nearshore for all three tests. Once offshore 

more than 40 km, the optimal GSD grows to 

> 6 km for the Band 5 test, and > 4 km for 

the PCA SW. These larger GSDs approach 

the scale of chlorophyll distributions de-

scribed by others in the coastal environment 

using multispectral data (e.g., Yoder et al., 

1987). However, the PCA Hyp drops back to 
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Figure 5. (A) To determine the optimal GSD for the SW Band 5 Rrs, the real geophysical variation 

along the fl ight line transect needed to be resolved. Th e data values show that nearshore (<10 km) 

an optimal GSD would be less than 100 m to 200 m. Th ese optimal GSDs grow to 1 km farther off -

shore. Note, however, that there are discontinuities in the progression of larger and larger GSDs as one 

moves off shore. Th is may suggest the crossing of a frontal boundary, which would require a smaller 

GSD to resolve. Th e blue and red lines are the mean and median, respectively, of the GSDs from a 

particular point along the transect to the most inshore point. Th e vertical green and red lines denote 

the respective locations of the inshore and off shore regions of interest (ROIs) from which the variance 

threshold for the GSD analysis was determined. Th e horizontal grey line indicates the size of the re-

gion of interest from which the threshold was determined. (B) Determining the optimal GSD for the 

simulated SeaWiFS PC1 image was accomplished in the same manner as Figure 5A. Similar to Figure 

5A, this fi gure illustrates the same basic trend: smaller GSDs are required inshore while larger GSDs 

are suffi  cient off  shore. Th e description of the lines in the image are the same as in Figure 5A. (C) Th e 

optimal GSD for the hyperspectral PC1 image was determined in the same manner as Figure 5A. In 

shore, this analysis is in agreement with the results from the other two GSD studies. However, off shore 

the variance found within the PC 1 (Hyp) was signifi cantly greater than what was witnessed in the 

other two studies resulting in smaller GSDs required to resolve what were thought to be regions of 

homogeneous ocean color. Th e description of the lines in the image are the same as in Figure 5A. 

A B

C

        Figure 6. 

A false color com-

posite of the inshore 

variability of the GSD is 

shown. Th e image displays 

the eigenvalues associated with 

the fi rst eigenvector of the PCA Hyp 

(PC1) image generated from the hyper-

spectral data. Th e eigenvalues are mapped 

into linear density slices and colored using 

a linear blue to red color table. A land mask 

was applied prior to the PCA being applied to the 

data set. Results suggest that the variability of the 

water color is greater as one approaches the shore.
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Figure 7. Th e inshore GSD for SW 

Band 5, PCA SW, and PCA Hyp. Th e 

similarity within this region of the 

GSD trends is striking, and suggests 

that variance within the inshore re-

gion may be driven by the concen-

trations of suspended matter. Th e 

vertical red line denotes the loca-

tion of the inshore ROI from which 

the variance threshold for the 

analysis was determined. Th e hori-

zontal grey line indicates the size of 

the region of interest from which 

the threshold was determined.

levels seen nearshore, suggesting the hyper-

spectral data offers additional information 

with which to separate features in otherwise 

homogeneous-appearing waters.

In many respects, these statistical results 

confi rm what many coastal oceanographers 

intuitively understand. The closer to shore 

one approaches, the more variable the color 

of the water. In the optically deep waters off 

the coast of New Jersey, the optical features 

are driven by the wind and tidal mixing of 

sediments as well as allochthonous inputs 

of sediments, nutrients, and organic mate-

rial from rivers and estuaries. In addition, 

far fi eld dynamics drive coastal jets that also 

bring in allochthonous material into this lo-

cation (Chant et al., in press), which are tid-

ally mixed with nearshore waters. This drives 

the variability of the optical signal to a very 

high level over small spatial distances. As we 

move offshore into the deeper waters of the 

shelf, the impacts of tidal oscillations are less 

important. The change in water-mass optical 

characteristics is driven by the interactions 

of larger-scale physical features (i.e., mean 

currents) and weather patterns. These larger-

scale processes tend to homogenize water 

masses over kilometer scales, and as a result, 

the GSD needed to adequately resolve the 

real horizontal geophysical boundaries with-

in these homogenous waters grows in size.

In the nearshore environment (less than 

10 km from the shore in this example), each 

of these tests yield approximately the same 

result (Figure 7). It would appear from this 

result that to adequately describe the geo-

physical features in the nearshore, the GSD 

must be < 200 m. Many important bio-

chemical processes occur within 10 km of 

the shore. River discharges of nutrients and 

organic matter have their greatest infl uences 

in this nearshore region, and the cycling of 

these materials within the nearshore envi-

ronment may have large impacts on esti-

mates of the fate of biogeochemical elements 

(e.g., carbon, at the terrestrial or ocean 

boundary). In addition, the input of fresh 

water has its greatest impact on baroclinic-

ity in the nearshore environment. The use of 

optical tracers for salinity (Coble et al., this 

issue) may actually improve the understand-

ing and prediction of coastal circulation, a 

requirement for any study on the sources 

and fate of biogeochemically relevant mate-

rials. These results suggest that color studies 

at the LEO-15 site may require GSDs ap-

proximately 100 m to resolve biogeochemi-

cal processes from ocean-color data.

The optimal GSD is also a function of 

the information content of the data set. The 

single-band data set shows less variability in 

its standard deviation than the PC1 of the 

dual-band data set, which in turn shows less 

variability in the standard deviation than the 

PC1 of the hyperspectral data set. This effect 

results in lower mean and median optimal 

GSDs as the number of bands used in the 

analysis increases. This result suggests that 

additional bands add information that may 

be used to discriminate optically different 

water masses, and perhaps retrieve estimates 

of different optically active constituents. 

In particular, beyond 40 km, there is a real 

divergence between the GSDs of the PCA 

Hyp and those derived from the simulated 

SeaWiFS data set. Unsurprisingly, it also sug-

gests that the optimal GSD for delineating 

the spectral variances in upwelling radiance 

signals may be a function of the total num-

ber of bands sampled.

A PCA reduces the dimensionality of a 

data set of interest by rotating the coordi-

nate system into one that minimizes the 

variance across the entire data space. In 

the hyperspectral image cube of Figure 1, a 

single eigenvector (Figure 4) accounts for 

most of the variance in this image. While 

this eigenvector (PC1) may appear similar to 

a water-leaving radiance vector in high-scat-

tering green waters, great care must be used 

in ascribing real geophysical properties to 

eigenvectors. Figure 4B does show why the 

three techniques were so similar, particularly 

in the nearshore region, as the wavelengths 

around 560 nm infl uenced the variance of 

the PC1 the most. PCA is a tool to describe 

scene-dependent variance, and in this pa-

per, we focus on the information content 

of spectral data over small homogeneous 

regions of water color, and intensity across 

a large scene of interest. The spatial scale 

of homogeneous regions often depends on 

the total number of bands used to describe 

that homogeneous region, particularly when 

moving away from the shallow water regions 

impacted by high-energy mixing. It does 

not, however, necessarily suggest that eco-

logical parameters of interest vary over these 

same scales. The determination of variance 

of ecological-relevant material would 
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depend greatly on the algorithms that in-

vert color and intensity into optically active 

mass constituents (i.e., chlorophyll, colored 

dissolved organic matter [CDOM], sedi-

ments).

Ocean-color research and applications are 

frequently more concerned with the prod-

ucts derived from Rrs(λ) estimates (e.g., total 

absorption, total scattering, diver visibility, 

total chlorophyll concentration), rather than 

the Rrs data itself. It may be that the appro-

priate spatial sampling frequency for these 

products is different than the sampling fre-

quency determined from the spatial varia-

tions in the radiance fi elds. However, using 

the products produced from these same 

radiance fi elds to determine spatial sam-

pling frequencies may produce vary different 

scaling results, strictly due to the method of 

product generation. In this paper, we show 

how the noise of the sensor and atmospheric 

processing approximates a linear transform 

function, and we expect that the variance in 

radiance data above the background linear 

noise represents true difference in ocean col-

or. However, many remote-sensing product 

calculations are nonlinear transforms of the 

Rrs data (e.g., Lee and Carder, 2002; O’Reilly 

et al., 1998). A nonlinear transform of the 

Rrs data will alter the mean and variance sta-

tistics in ways that may alter scaling results 

shown here. 

We specifi cally did not include an analy-

sis using a ratio of a simulated Band 3 to 

Band 5 because our primary assumption is 

that the sum of environmental and sensor 

noise is a linearly additive component of the 

total signal, and the standard deviation of 

this noise component of the signal would 

be constant across varying levels of inten-

sity. If this assumption is true (and it would 

appear so from this analysis), then a linear 

addition of noise to a downward trending 

numerator would yield an increasing vari-

ance estimate of a ratio product. In fact, for 

the ROIs shown in Figure 1, the Band 3:5 

ratio showed a signifi cant difference in stan-

dard deviation, versus the similar standard 

deviations calculated for each band in each 

ROI. This violates our primary assumption, 

and suggests that studies using ratio analyses 

should attempt to delineate the differences 

in the variances of biogeochemical estimates 

that result from variance of the data versus 

the mathematical variance created by the ap-

plication of the algorithm.

This work suggests that future studies on 

the optimal sampling frequency in the spa-

tial domain of remote-sensing data begin 

with the Rrs data itself. Furthermore, the op-

timal sampling frequency may be a function 

of the total number of wavebands available 

for analysis. This work does not defi nitively 

suggest that variations of optically-active 

constituents may be retrieved at the same 

spatial resolution as the variation in the total 

Rrs vector. However, it does suggest that spa-

tial variations in ocean color depend on the 

number of channels used to described differ-

ences between homogenous regions. If these 

additional channels can be used to discrimi-

nate additional biological, chemical, and 

physical information, then the hyperspectral 

ocean color signal will yield a greater ability 

to identify, study, and predict important eco-

logical processes in the coastal environment. 

New algorithms are being developed that 

focus on relatively continuous spectral data 

rather than on the ratio of multispectral 

channels. These new algorithms use a variety 

of techniques to take advantage of the great-

er degrees of freedom that the hyperspec-

tral data stream offers to the ocean-color 

scientist; algorithms are in development to 

retrieve standard oceanographic products, 

such as total chlorophyll and CDOM, as well 

as new products such as bathymetry, bottom 

type, and water-column Inherent Optical 

Properties (IOPs) (e.g., Dierssen et al., 2003; 

Hoge et al., 2003; Lee et al., 1998; Lee et al., 

1999; Lee and Carder, 2004; Louchard et al., 

2003; Mobley et al., 2002). In addition, hy-

perspectral approaches may also yield infor-

mation on phytoplankton speciation, which 

might allow for the remote identifi cation of 

harmful algal blooms (HABs) (Roesler et 

al., in press). These hyperspectral imagery 

analysis techniques offer the potential to 

dramatically increase our ability to retrieve 

coastal zone information from ocean color 

data streams and specifi cally address critical 

issues in coastal-zone management. As we 

move from multispectral to hyperspectral 

data products, we may also fi nd a need for 

higher spatial resolution data to better de-

scribe the changes in the nearshore coastal 

environment.

SUMMARY AND CONCLUSIONS

There are probably many methods of de-

termining the optimal spatial sampling fre-

quency in the coastal zone. However, when 

a statistical approach is used, care must be 

taken to use a method that is applicable to 

the sample, and to ensure the rigorous as-

sumptions of stationary functions are not 

violated. Otherwise, unclear results are ob-

tained that may lead to an ineffi cient scien-

tifi c design of a remote sensing sensor or ex-

periment, for example, for the data discussed 

here, the assumptions inherent to using the 

autocorrelation function were violated, in-

dicating that autocorrelation analysis is the 

wrong tool for this coastal data set. 

The results described here suggest that the 

spatial resolution required for offshore stud-

ies may be dependent on the spectral resolu-

tion of the data stream. At LEO-15 between 

1 and 10 km, a 50- to 200-m GSD appears 

suffi cient for single-band, dual-band, and 

hyperspectral-band data. Within 1 km of 

the shore, an even higher resolution sensor 

might be needed to resolve the wind and tid-

ally impacted features. In the optically deep 

offshore waters of LEO-15, bottom effects do 
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not impact Rrs. However, in optically shallow 

areas, the spatial heterogeneity of the bottom 

may further reduce the GSD required to re-

solve the optical constituents near the coast 

(see Philpot et al., this issue). Offshore of 10 

km, there is a signifi cant difference in the 

ability to discriminate optical boundaries 

using the single or dual band data compared 

to the hyperspectral data. This suggests that 

hyperspectral data may be better able to de-

lineate optically distinct regions in offshore 

coastal waters and that scaling studies may 

be dependent on the total number of spec-

tral channels used in the analysis. 

Nonlinear transforms of Rrs, typical of 

algorithms for products such as chlorophyll 

concentration, may alter variance calcula-

tions; optimal scaling results for these de-

rived products may depend in part on the 

transform of the data, or the algorithm used. 

Care must be used when deriving statistics 

on nonlinear transforms to avoid missing 

real differences in ocean color and biogeo-

physical boundaries.

The real goal in optical oceanography is 

to use optics to identify interesting oceanic 

features as well as describe their time-de-

pendent change. These features range from 

individual, HAB-forming phytoplankton 

species to the delineation of terrestrial out-

fl ow plumes from background coastal wa-

ters. The features may also include bottom 

characteristics, such as seagrass beds or coral 

formations. The future of hyperspectral im-

agery will depend on the ability to retrieve 

these optically distinct constituents from the 

Rrs(λ) data streams. One of the fi rst steps in 

retrieving biogeochemical information from 

imagery data is to resolve the spatial varia-

tions distinguishable in these hyperspectral 

scenes. The next step will be to focus on the 

development of new algorithms that use the 

entire water-leaving spectrum to assess and 

monitor the coastal zone environment.
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